## Field-normalized scores based on Web of Science and Microsoft Academic data

A case study in computer sciences

Thomas Scheidsteger Robin Haunschild

Sven Hug Lutz Bornmann



SCIENTIFIC FACILITY INFORMATION SERVICE CPT MAX PLANCK INSTITUTE FOR SOLID STATE RESEARCH



September 14, 2018 - STI 2018, Leiden, The Netherlands

## Outline

#### Motivation

Data Set for Case Study

## Normalized Citation Counts & Statistical Measures

Summary & Outlook





- size: currently more than 200 million documents
- functionality
  - free access to Web-GUI
  - inexpensive access to API
  - inexpensive access to Data Dump
  - search in several metadata
- *citation counts comparable* to Scopus, between WoS and Google Scholar
- only *one small study* using *normalized* data (Hug & Brandle, 2017), pointing out difficulties with field attributes
  - dynamic
  - fine-grained
  - incoherent hierarchy





- size: currently more than 200 million documents
- functionality
  - free access to Web-GUI
  - inexpensive access to API
  - inexpensive access to Data Dump
  - search in several metadata
- *citation counts comparable* to Scopus, between WoS and Google Scholar
- only *one small study* using *normalized* data (Hug & Brandle, 2017), pointing out difficulties with field attributes
  - dynamic
  - fine-grained
  - incoherent hierarchy





- size: currently more than 200 million documents
- functionality
  - free access to Web-GUI
  - inexpensive access to API
  - inexpensive access to Data Dump
  - search in several metadata
- citation counts comparable to Scopus, between WoS and Google Scholar
- only *one small study* using *normalized* data (Hug & Brandle, 2017), pointing out difficulties with field attributes
  - dynamic
  - fine-grained
  - incoherent hierarchy





- size: currently more than 200 million documents
- functionality
  - free access to Web-GUI
  - inexpensive access to API
  - inexpensive access to Data Dump
  - search in several metadata
- citation counts comparable to Scopus, between WoS and Google Scholar
- only *one small study* using *normalized* data (Hug & Brandle, 2017), pointing out difficulties with field attributes
  - dynamic
  - fine-grained
  - incoherent hierarchy





#### **Research Question**

Is it possible to calculate

- field-normalized citation scores in MA
- in good agreement with those
- from established databases as WoS?





## Outline

#### Motivation

#### Data Set for Case Study

## Normalized Citation Counts & Statistical Measures

#### Summary & Outlook





## German Computer Science Institute

- comprehensive publication list on the web page
  - 2157 papers between 2005 and 2010
- supposedly better coverage in MA than in WoS
- only restricted number of research fields





## Search in WoS

#### Source: WoS in-house database

- maintained by the Max Planck Digital Library, Munich
- derived from SCI-E, SSCI, and AHCI (Clarivate Analytics)
- address information for German research institutes and universities disambiguated and unified by Competence Centre for Bibliometrics (CCB)

## Data Set in WoS

- 1141 papers (52.9%) from the institute found in the CCB data alone.
- 51 further papers found by additional address search
- All **1192** papers **(55.3%)** have *at least one WoS subject category* attached to the resp. *journals* and used for *field-normalization*.





## Search in WoS

#### Source: WoS in-house database

- maintained by the Max Planck Digital Library, Munich
- derived from SCI-E, SSCI, and AHCI (Clarivate Analytics)
- address information for German research institutes and universities disambiguated and unified by Competence Centre for Bibliometrics (CCB)

#### Data Set in WoS

- 1141 papers (52.9%) from the institute found in the CCB data alone.
- 51 further papers found by additional address search
- All **1192** papers **(55.3%)** have at least one WoS subject category attached to the resp. *journals* and used for *field-normalization*.





# Source: MA Data Dump of 165 million documents from August 2017

- imported and processed in locally maintained database
- about two thirds of them have a Field of Study algorithmically assigned on a per paper basis

#### Data Set in MA

- refined address search with 14 different truncated address variants of the institute (13 false positive papers manually removed)
- total set of 2131 papers (98.8%) from the institute





# Source: MA Data Dump of 165 million documents from August 2017

- imported and processed in locally maintained database
- about two thirds of them have a Field of Study algorithmically assigned on a per paper basis

#### Data Set in MA

- refined address search with 14 different truncated address variants of the institute (13 false positive papers manually removed)
- total set of 2131 papers (98.8%) from the institute





### Fields of Study in MA

#### Hierarchy of four levels (meanwhile two more)

- Level 0 (L0): 19
- Level 1 (L1): 290
- Level 2 (L2): 1490
- Level 3 (L3): 49531

## Choosing L1

- compromise: granularity of the FoS vs. #publications per (FoS, PY).
- 290 L1 FoS vs. 262 WoS subject categories.
- 1714 papers (80.4%) of the institute with at least one L1 FoS.





## Fields of Study in MA

#### Hierarchy of four levels (meanwhile two more)

- Level 0 (L0): 19
- Level 1 (L1): 290
- Level 2 (L2): 1490
- Level 3 (L3): 49531

## Choosing L1

- compromise: granularity of the FoS vs. #publications per (FoS, PY).
- 290 L1 FoS vs. 262 WoS subject categories.
- 1714 papers (80.4%) of the institute with at least one L1 FoS.





#### Match of institute's papers via DOI

- 1379 papers (64.7%) with DOI in MA
- 622 (28.8%) with DOI in WoS
- 442 papers (20.5%) could be matched
- all matched papers have at least one L1 FoS,

#### Affiliation check by random samples of 10%

- *none* of the matched papers incorrectly affiliated
- only 1% of the unmatched papers incorrectly affiliated





#### Match of institute's papers via DOI

- 1379 papers (64.7%) with DOI in MA
- 622 (28.8%) with DOI in WoS
- 442 papers (20.5%) could be matched
- all matched papers have at least one L1 FoS,

#### Affiliation check by random samples of 10%

- none of the matched papers incorrectly affiliated
- only 1% of the unmatched papers incorrectly affiliated





## Outline

Motivation

Data Set for Case Study

## Normalized Citation Counts & Statistical Measures

Summary & Outlook





#### Normalized Citation Score

$$NCS = \frac{c_i}{e_i}$$

- *c<sub>i</sub>*: citation count of a focal paper,
- *e<sub>i</sub>*: corresponding average citation count in the scientific field and publication year
  - MA: L1 FoS
  - WoS: subject category
  - citations counted until end of 2016
- NCS<sub>MA</sub>:= arithmetic average over MA FoS
- NCS<sub>WoS</sub>:= arithmetic average over WoS subject categories

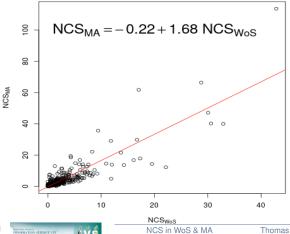




#### Normalized Citation Score

$$NCS = \frac{c_i}{e_i}$$

- *c<sub>i</sub>*: citation count of a focal paper,
- *e<sub>i</sub>*: corresponding average citation count in the scientific field and publication year
  - MA: L1 FoS
  - WoS: subject category
  - citations counted until end of 2016
- NCS<sub>MA</sub>:= arithmetic average over MA FoS
- NCS<sub>WoS</sub>:= arithmetic average over WoS subject categories






## Correlation of NCS<sub>MA</sub> and NCS<sub>WoS</sub>

#### Correlation coefficients confirm linear relationship

• Pearson:  $r_p = 0.87$  (Spearman:  $r_s = 0.84$ )



#### Lin's concordance correlation coefficient

- for agreement on a continuous measure
- $\bullet \Rightarrow reproducibility of both scores$

## $r_{ccc} = 0.69[0.66, 0.72]$

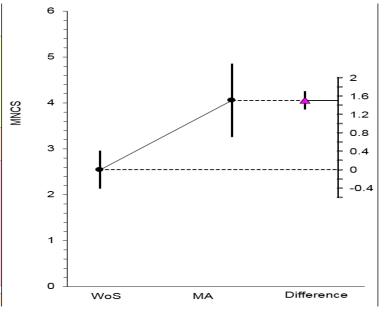
- indicates a *strong* agreement (0.61-0.80)
  - according to Koch and Sporl (2007)
- both NCS show similar citation impact results





#### Lin's concordance correlation coefficient

- for agreement on a continuous measure
- $\Rightarrow$  reproducibility of both scores


## $\textit{r_{ccc}} = 0.69[0.66, 0.72]$

- indicates a strong agreement (0.61-0.80)
  - according to Koch and Sporl (2007)
- both NCS show similar citation impact results





#### Mean of NCS (paired design, Cumming, 2012)





#### Difference between $NCS_{MA}$ and $NCS_{WoS}$ : 1.3 to 1.7

#### Proposed explanation:

*field-specific citation rate*  $e_i$  *systematically lower* for  $NCS_{MA}$  by inclusion of lesser cited document types and languages

#### Manually check random samples of 10%

|                      | all DOI papers |     | <b>DOI-matched papers</b> |    |
|----------------------|----------------|-----|---------------------------|----|
| <b>Document Type</b> |                | MA  |                           | MA |
|                      | 52%            | 16% |                           |    |
|                      | 44%            | 44% | 91%                       |    |
|                      | 4%             |     |                           |    |

English papers: only two thirds in our FoS





#### Difference between $NCS_{MA}$ and $NCS_{WoS}$ : 1.3 to 1.7

#### Proposed explanation:

*field-specific citation rate*  $e_i$  *systematically lower* for  $NCS_{MA}$  by inclusion of lesser cited document types and languages

#### Manually check random samples of 10%

|                 | all DOI papers |     | DOI-matched papers |     |  |
|-----------------|----------------|-----|--------------------|-----|--|
| Document Type   | Publisher      | MA  | Publisher          | MA  |  |
| Conference Proc | 52%            | 16% | 9%                 | 5%  |  |
| Journal         | 44%            | 44% | 91%                | 89% |  |
| Book            | 4%             | -   | -                  | -   |  |
|                 | I              |     | I                  |     |  |

English papers: only two thirds in our FoS





#### Difference between $NCS_{MA}$ and $NCS_{WoS}$ : 1.3 to 1.7

#### Proposed explanation:

*field-specific citation rate*  $e_i$  *systematically lower* for  $NCS_{MA}$  by inclusion of lesser cited document types and languages

#### Manually check random samples of 10%

|                 | all DOI papers |     | DOI-matched papers |     |
|-----------------|----------------|-----|--------------------|-----|
| Document Type   | Publisher      | MA  | Publisher          | MA  |
| Conference Proc | 52%            | 16% | 9%                 | 5%  |
| Journal         | 44%            | 44% | 91%                | 89% |
| Book            | 4%             | -   | -                  | -   |
|                 | 1              |     |                    | 1   |

English papers: only two thirds in our FoS





## Agreement between $NCS_{MA}$ and $NCS_{WoS}$

# Characteristic Scores and Scales (CSS) by Glanzel et al. (2016)

4x4-Contingency Table

|                    |               | NCS <sub>MA</sub> |        |            |               |
|--------------------|---------------|-------------------|--------|------------|---------------|
|                    |               | poorly            | fairly | remarkably | outstandingly |
|                    |               | cited             | cited  | cited      | cited         |
| NCS <sub>WoS</sub> | poorly cited  | 291               | 23     | 1          | 0             |
|                    | fairly cited  | 32                | 50     | 8          | 0             |
|                    | remarkably    |                   |        |            |               |
|                    | cited         | 0                 | 13     | 7          | 2             |
|                    | outstandingly |                   |        |            |               |
|                    | cited         | 0                 | 0      | 4          | 7             |

- Agreement (= share of diagonal entries): 81%
- only 1 paper (0.2%) more than one class apart





## Outline

Motivation

Data Set for Case Study

## Normalized Citation Counts & Statistical Measures

Summary & Outlook





## **Summary & Conclusion**

### Summary

- Focusing on *journal papers* only, we compared *field-normalized scores* based on WoS resp. MA for an anonymous computer science institute.
- $\Rightarrow$  substantial correlation of both scores ( $r_p$ ,  $r_s > 0.8$ )
- $\Rightarrow$  substantial Lin's concordance  $r_{ccc} \sim 0.7$
- ⇒ significantly higher impact of paper set in MA, probably due to inclusion of lesser cited document types
- ${\scriptstyle\bullet} \Rightarrow \text{CSS}$  show high level of agreement in all four classes

#### Conclusion

It **is possible and reasonable** to calculate **field-normalized citations scores from FoS (L1) in MA** in good agreement with the resp. scores based on WoS subject categories.





## **Summary & Conclusion**

### Summary

- Focusing on *journal papers* only, we compared *field-normalized scores* based on WoS resp. MA for an anonymous computer science institute.
- $\Rightarrow$  substantial correlation of both scores ( $r_p$ ,  $r_s > 0.8$ )
- $\Rightarrow$  substantial Lin's concordance  $r_{ccc} \sim 0.7$
- ⇒ significantly higher impact of paper set in MA, probably due to inclusion of lesser cited document types
- ${\scriptstyle\bullet} \Rightarrow \text{CSS}$  show high level of agreement in all four classes

#### Conclusion

It is possible and reasonable to calculate field-normalized citations scores from FoS (L1) in MA in good agreement with the resp. scores based on WoS subject categories.





## **Limitations & Outlook**

## Limitations

- Computer Science only
- papers with DOI only
- no distinction of document types

## Outlook

- apply more comprehensive paper matching procedures
- compare also with Scopus
- evaluate separately according to *document type* as far as available in MA - currently and in the future
- for a fairer comparison with WoS focus on *other subject fields*

· . . .





## **Limitations & Outlook**

## Limitations

- Computer Science only
- papers with DOI only
- no distinction of document types

## Outlook

- apply more comprehensive paper matching procedures
- compare also with Scopus
- evaluate separately according to *document type* as far as available in MA - currently and in the future
- for a fairer comparison with WoS focus on *other subject fields*

• • •





#### References

- CCB: http://www.bibliometrie.info.
- Cumming, G. (2012). Understanding the new statistics: effect sizes, confidence intervals, and meta-analysis. London, UK: Routledge.
- Glanzel, W., Debackere, K., & Thijs, B. (2016). Citation classes: a novel indicator base to classify scientific output.
- Hug, S.E, Brandle, M.P. (2017). The coverage of Microsoft Academic: analyzing the publication output of a university, Scientometrics 113:1551-1571, doi: 10.1007/s11192-017-2535-3
- Lin, L. I. (1989). A concordance correlation-coefficient to evaluate reproducibility. Biometrics, 45(1), 255-268. doi: 10.2307/2532051.
- Lin, L. I. (2000). A Note on the Concordance Correlation Coefficient. Biometrics, 56(1), 324-325. doi: 10.1111/j.0006-341X.2000.00324.x.
- Liu, J., Tang, W., Chen, G., Lu, Y., Feng, C., Tu, X.M. (2016). Correlation and agreement: overview and clarification of competing concepts and measures. Shanghai Archives of Psychiatry, 28(2), 6. doi: 10.11919/j.issn.1002-0829.216045.
- Koch, R., & Sporl, E. (2007). Statistical methods for comparison of two measuring procedures and for calibration: Analysis of concordance, correlation and regression in the case of measuring intraocular pressure. Klinische Monatsblatter Fur Augenheilkunde, 224(1), 52-57. doi: 10.1055/s-2006-927278.
- Microsoft Academic Graph; download from https://aminer.org/open-academic-graph on August 15, 2017











