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Abstract— The science gateway and online community 
nanoHUB hosts over 4000 technical resources related to 
nanoscience and nanotechnology and online capabilities for 
nano community engagement.  nanoHUB also hosts over 500 
online simulation tools. nanoHUB serves the nano community 
spectrum ranging from undergraduate students to high profile 
researchers.  In this paper, the evolution of nanoHUB online 
simulation is discussed along with the impact of that simulation 
on student behavior.  With over 52,000 simulation users, the 
nanoHUB team is not personally aware of most new classrooms 
that adopt simulation in their syllabi.  Yet, these classroom users 
feed the next generation of nano community contributors. A 
method is presented to detect classroom by clustering 
coordinated behavior among simulation users, thereby 
automatically detecting adoption of simulation tools in a 
classroom environment. Several prototypical patterns of 
clustered behavior are analyzed, ranging from peripheral to 
systemic classroom integration of simulation.  Visualizations of 
detailed user behavior illustrate the varying behavior 
structures.  Between the fall of 2000 and the fall of 2011, in 846 
clustered behaviors have been detected.  This number of 
classroom settings is on a continuous growth trend as nanoHUB 
becomes more widely adopted.  A discussion on the rate of 
adoption of published simulation tools in clustered behaviors is 
presented.   
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I. INTRODUCTION 
Personalization and demonstration of educational impact 

in scientific communities or scientific cyber-environments 
requires an understanding of how people learn and conduct 
science. In this paper, we define “cyber-environments as a 
collection of computational, visualization, and data 
management resources presented to an engineering 
community through an easy-to-access and easy-to-use online 
portal” [1]. Another definition from the online science 
gateway perspective which is highly consistent with the 
definition we adopt can be found in [2]. They define science 
gateways as “a framework of tools that allows scientists to run 
applications with little concern for where the computation 
actually takes place.”  

Regardless of which definitions of online scientific 
communities we consider, it is clear that community 
formation around scientific grade simulation tools and the 

ability to perform complex computations are important 
ingredients. It is in this context that personalization plays an 
extremely critical role. A clear understanding of user behavior 
within the online scientific community will allow better 
feature and content design as well as provisioning of 
computational and data resources. This paper is positioned in 
the context of real data collected based on observation of a 
large set of users in one of the most successful engineering 
cyber-environments, nanoHUB.org [3,4]. 

II. NANOHUB.ORG: OUR EXPERIMENTAL APPARATUS 
nanoHUB is an online scientific virtual organization 

serving the nanoscale engineering and science communities, 
and is operated by the National Science Foundation funded 
Network for Computational Nanotechnology (NCN).  NCN 
has been funded by the US National Science foundation since 
2002 as a national resource, while nanoHUB had been in 
existence since 1998. At the time of this writing, nanoHUB 
serves an extremely large community of over 1,400,000 
unique users (a user is someone who either downloads a 
resource, or spends in excess of 15 minutes on the site) 
worldwide on an annual basis. The number of users 
participating in the nanoHUB community has been growing at 
a rapid pace over the past decade. nanoHUB hosts over 4,000 
technical resources that include animations, courses, learning 
modules, notes, presentations, publications, series, teaching 
materials, and workshops.  More importantly, nanoHUB also 
hosts 400+ online simulation tools.  On an annual basis, these 
simulation tools serve more than 12,000 users running over 
500,000 simulations.   

The nanoHUB delivery mechanism is unique. Simulation 
users do not need to download or install code locally.  Instead, 
they can run simulations directly in the browser, accessing a 
variety of back-end compute clusters provided through 
nanoHUB. Such simulations are often integrated components 
of student coursework and provide a modality of interactive 
exploration not available with presentation or publication only 
resources.  Because these tools are delivered in a browser, the 
barrier to use is eliminated. These interactive tools invite users 
to ask “What if?” questions where multiple runs can be 
compared without data downloads.  In short, students interact 
with the site, rather than simply downloading resources for 
offline use.  

While the value proposition of interactivity and deeper 
learning for students is clear, nanoHUB relies heavily on 
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contributions from other expert members within the 
community to sustain a steady pace of new materials. Anyone 
can become a contributor of simulation tools or other 
resources.  As such, there must also be a value proposition for 
the creators of these new materials.  This value is delivered 
through impact measurement.  Content creators and 
contributors are able to see how their materials diffuse through 
the research and education communities and utilize these 
measurements to promote their impact in their field. These 
two elements are what makes nanoHUB unique in the field of 
online scientific research and education facilities and are a 
focus of this paper. 

III. PATTERNED SIMULATION:  A FINGERPRINT OF STUDENTS  
Based on anecdotal evidence, the nanoHUB team was 

aware that a non-trivial component of the simulation use was 
due to students using simulation tools for the first time in their 
coursework.  We hypothesized that in addition to our 
anecdotal evidence, there were many types of classroom use 
of simulation tools of which we were not aware that occurred 
spontaneously in our online community.  We undertook the 
effort to systematically and automatically recognize these 
student characteristics as part of our impact measurement 
system.   

Our first step in this process was to manually substantiate 
this hypothesis.  One method for this was to examine self-
declared registration information.  When nanoHUB users 
create an account, they are asked a series of questions 
regarding their affiliation and demographics.  A quick perusal 
of information provided voluntarily by users indicated that 
many people stated they were uncomfortable supplying 
personal data, others misstated their institutional affiliation as 
evidenced by comparing the location of the institution to the 
geographic location of the IP address originating the 
registration, and yet others took the opportunity to provide 
obviously false and sometimes humorous responses. 

Deciding not to rely on self-declared information, we 
therefore developed a visualization we call raindrop plot.  The 
raindrop plot aligns individual users along the vertical axis and 
time discretized in daily buckets along the horizontal axis.  
When a user activates a tool on a given day, a dot is recorded 
in the raindrop plot.  Dots are colored to indicate which tool 
has been accessed.  Dots may also assume multiple colors in 
the event more than one tool was activated by any given user 
on a given day.  The result is that each row corresponds to a 
picture of a user’s longitudinal usage record over time, as 
shown in Figure 1.  Stacking users on top of each other then 
allows one to visually scan for patterns.  The example in 
Figure 1 shows what appear to be similar patterns between 
User 1 and User N, but uncorrelated patterns with respect to 
User 2. 

A raindrop plot based on a semester’s worth of activity, 
with users sorted in such a manner that users who make the 
earliest to latest appearance in the semester are arranged from 
top to bottom, is shown in Figure 2.  By visual inspection, 
there appear to be two vertical sections of the plot that exhibit 
coordinated simulation tool usage behaviors.  Mixed in these 
vertical sections are users who do not appear to belong to the 
pattern as well.  Examining the geographic location of the IP 
numbers of users in some of the more prominent visually 
identified patterns allowed us to contact instructors at 
institutions in those geographic locations to confirm our 
classification and identification.  Analyses of our data from 

the confirmation studies showed that nanoHUB tools were 
being used in classroom settings as hypothesized. 

 
Figure 1 – Example Raindrop Plot that visualizes the temporal usage 
of different nanoHUB tools (indicated by a different color) as a 
function of time, where each dot corresponds to activity on a specific 
day.  Different users are indicated through different rows.  In this 
specific example User 1 looks somewhat similar to User N, while 
User 2 does not bear much similarity to either User 1 or User N. 

IV. METHODS, THEORY, AND CALCULATIONS 
To automatically detect and identify clustered users, 

several existing algorithms were considered and new 
algorithms developed.  Existing algorithms fall into two 
broader categories based on k-means and hierarchical 
clustering methods.  A key aspect of such algorithms is the 
focus on partitioning a set of N members into M clusters based 
on some differentiating feature of the members.  However, in 
the case of nanoHUB, patterned classroom use is exhibited in 
only a fraction of the N members.  The remaining members of 
N are not differentiable by the same criterion.  The focus then 
needs to be selecting an appropriate unknown number of 
clusters out of the N members, and leaving the members of N 
that do not fit in any cluster as unclustered elements.  
Therefore, customized algorithms were created.  The first new 
algorithm is the calculation of a similarity measure between 
individual users.  With pairwise similarities calculated, a 
novel clustering method then was created to group like users 
together.  Each of these methods is described in more detail in 
the sections below. 

 
Figure 2 – Section of a Semester-Long Raindrop Plot for 98 users.  
Each row indicates shows the longitudinal tool invocation pattern for 
an individual user.  The boxed areas show groupings of users that 
appear to have similar, but not identical patterns.  Such visual 
evidence is the basis for development of user-user similarity metrics. 

A. Similarity Measure 
One of the first stages of user identification is to classify 

users who exhibit similar usage characteristics into groups. 
The key challenge in computing similarity is that any two 
longitudinal user patterns typically differ both in temporal and 
in sequential features. We compared similarity measures 
based on variants of cosine similarity and common tool 



sequence determination with little success.  An alternative 
way to determine the similarity between two users is to 
determine a set of transformations that once undertaken will 
result in two users whose longitudinal records appear 
identical.  Penalties incurred for each transformation sum to 
an overall edit distance.  This is similar in concept to what 
Levenshtein edit distance [5] does for pairs of strings. 
However, our method is not based on the same type of data 
structure and is not guaranteed to provide an optimal edit 
distance. 

The algorithm begins by representing the activity of user x 
as a vector Ux of vectors Uxd that each contain a list of the tools 
invoked by user x on day d within an interval of time the first 
and last days of which are Dmin and Dmax.  Three types of edit 
transformations are then evaluated. 

The first edit transformation involves shifting a tool 
execution t from a vector Uxn to a vector Uxd where d < n.  This 
transformation carries a penalty of Sxdt: 

 𝑆"#$ = 𝑝' 𝑛 − 𝑑  (1) 

 𝑛 > 𝑑 ∧ 𝑡 ∈ 𝑈"0 ∧ ¬∃𝑚: 𝑚 > 𝑑 ∧ 𝑡 ∈ 𝑈"5 ∧ 𝑚 < 𝑛  (2) 

The qualification (2) ensures that there is no vector Uxm 
that contains an instance of tool execution t where m is closer 
in time to d than n.  The term pS is an empirically determined 
constant. 

The second edit transformation is a neighbor insertion.  It 
allows the insertion of a tool execution t into a vector Uxd 
provided that there is an execution of tool t in at least one other 
vector Uxn.  In other words, if the user already has an execution 
of tool t in their longitudinal record, another one can be 
inserted elsewhere in the record with a given penalty Nxdt: 

 𝑁"#$ = 𝑝8 𝑛 − 𝑑  (3) 

 n: t ∈ U<=¬∃m: m ≠ d ∧ t ∈ U<A ∧ m − d < n − d  (4) 

The qualification (4) ensures that the nearest neighboring 
set Uxn in time to Uxd that contains an execution of tool t is 
chosen such that the minimum penalty would be assessed for 
the insertion.  The term pN is an empirically determined 
constant. 

The third edit transformation involves a spontaneous 
insertion of an execution of tool t in a vector Uxd without 
respect to any neighboring sets that also contain executions of 
t at a penalty Ixdt.  A simple expression of this penalty might 
be as follows: 

 Ixdt=
pI Dmax −Dmin( )

Uxd
d


  (5) 

The term pI is an empirically determined constant.  The 
rationale behind such a penalty is that if the period of time 
over which users are being compared is large, and the number 
of unique tools they use during that period is small, then there 
should be a large penalty for inserting the execution of a 
different tool. The reason is that a new type of tool is a 
somewhat fundamental change in behavior.  Conversely, if 
two users are each using ten unique tools, there should be a 
much smaller penalty for inserting an eleventh tool since the 
significance of the eleventh tool is diluted by ten other tools.  
By itself, such a ratio would define a penalty response defined 
by a single curve.  Because such a ratio by itself is too 

restrictive for assessment of penalties by allowing only one 
curve shape, discontinuities are introduced into the penalty 
function as follows: 

 Ixdt =
pI Dmax −Dmin( )

bmin T, Uxd
d
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The terms T, b, and c are empirically determined constants.  
The first term in the denominator of (6) adds a dampening 
effect to the penalty, enforcing a minimum value of the 
penalty once a given number of tools used is surpassed.  The 
second term in the denominator of equation (6) allows us to 
shape to the dampening effect, providing a tunable penalty 
curve.  The overall cost to transform two users into identical 
users can then be expressed as Eij: 

 Eij = Midt + M jdt
t∈Uid−Ujd

∑
t∈Ujd−Uid
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 𝑀"#$ = min 𝑆"#$, 𝑁"#$, 𝐼"#$  (8) 

This sum is determined by moving forward one day at a 
time.  On each day, the tools executed by each user are 
examined.  For each tool executed by one user and not the 
other, each of the three possible move types is examined and 
the least expensive applied.  Because it marches forward 
linearly in time and greedily chooses the cheapest localized 
option, the algorithm does not guarantee that the set of 
transformations chosen is the optimal cost for transforming 
the two users. 

B. “Nucleate and Merge” Cluster Assembly 
With user-user similarity determined, clustering can be 

performed.  The nucleation phase of clustering is to assemble 
a set of highly similar users around each user, in effect creating 
a cluster of similarity for each user.  Cluster Ci is assembled 
around each user Pi using an edit distance threshold of H by 
successively taking the union of sets that are initially of 
singleton membership. 

 Ci = Pi{ } Px{ }
x:Eix<H
  (9) 

Next, clusters Cj are subsumed when they are completely 
contained within other clusters 𝐶G ⊆ 𝐶I .  Finally, the merge 
phase of the algorithm occurs when cluster Cj is merged with 
Ci, and Ci is removed from the set of clusters C under the 
following conditions: 

 𝐶I = 𝐶I ∪ 𝐶G (10) 

 𝐶 = 𝐶 − 𝐶G (11) 

 𝑖, 𝑗: 𝐶I ∩ 𝐶G ≥ 𝑞 𝐶G  (12a) 

 ⋀ ¬∃𝑚:𝑚 ≠ 𝑖 ∧ 𝐶5 > 𝐶G ∧ 𝐶I ∩ 𝐶5 ≥ 𝑞 𝐶5  (12b) 

 ⋀ ¬∃𝑘, 𝑙: 𝑘 ≠ 𝑙 ∧ 𝑘 ≠ 𝑖 ∧ 𝐶S > 𝐶I ∧ 𝐶S ∩ 𝐶T ≥ 𝑞 𝐶T  (12c) 

The first condition (12a) ensures that the degree of overlap 
between clusters Ci and Ci is at least some fraction of the 
membership in Ci where such fraction is determined by an 
empirical constant q over the interval (0,1].  The second 
condition (12b) ensures that there is not another cluster Cm as 
an alternative to Cj that is larger than Cj and also meets the 
threshold condition.  The third condition (12c) ensures that 



there is not another pair of clusters Ck and Cl that could be 
merged starting with a larger cluster than Ci.  After each 
merge, all remaining clusters are again tested for being 
subsumed.  The effect is to recursively merge the sets that will 
result in the largest merges first.  This allows longitudinal 
patterns that, as a pair, may not seem similar to be classified 
as similar by virtue of bridging members in their respective 
clusters. Users A and B may not by themselves be similar 
enough to be clustered together, but a user C who has strong 
similarity to both may define a bridge through which A and B 
can be clustered together.  A conventional clustering 
algorithm would separate these two sets. However, it is our 
goal to bring together as many similar behaviors as possible.  
Here, bridging members are the connection between what 
might visually be recognizable as similar behaviors but which 
would otherwise be mathematically ignored.  Merging is 
repeated until no pair of clusters can be found to merge. 

V. RESULTS AND DISCUSSION 
The above methods were run on data starting from Fall 

2000 continuing through Fall 2011.  The time intervals chosen 
were [January 1, June 30] and [July 1, December 31] for each 
year to roughly correspond to semester by semester schedules.  
A total number of 846 clusters were detected during that time 
period. 

Bulk measures like those shown above indicate that 
newcomers are being served in structured classroom settings 
and that this trend is growing as the number of tools on 

nanoHUB grows.  However, they do little to provide a picture 
of what is happening within those clusters.  Using the raindrop 
plot to examine some of the generated clusters indicates that 
there are several important features that characterize clusters.  
Figures 3a-h show several specimen clusters.  Visual 
examination of these clusters indicates that several attributes 
help to classify the variety of classroom behaviors: 

• Number of participants – Figure 3a shows a cluster 
with a very large number of obviously coordinated 
participants.  Figure 3f shows a very small number of 
participants but clearly they also exhibit coordinated 
behavior. 

• Number of tools used – Figure 3c shows the largest 
variety of tools used.  Figure 3b shows only a single 
tool with a few sporadic instances of other tools, used 
intensely over a long period of time. 

• Time span over which the tools are used (cluster 
duration) – Figure 3b and Figure 3c show use over a 
long period of time.  Other clustered behaviors last for 
only one day. 

• The intensity of usage (density) – Figure 3b shows 
very intense usage of a single tool.  Figure 3d is much 
less intense.  However, Figure 3d begins with a fairly 
regular pattern and at the end becomes less 
coordinated.  This may be indicative of a switch from 

Figure 3 – Raindrop Plots of Specimen Clusters.  This is a sampling of the 846 clusters detected, showing a variety of behavioral 
patterns ranging from single to many tool use, short to long time duration, sparse to dense activity patterns, and highly synchronized 
to marginally coordinated use. 



structured coursework to end of semester self-driven 
projects. 

• Sequence of tool use – Most of the plots show a 
consistent sequence of tool use as the cluster members 
switch from one tool to the next.  However, Figure 3g 
shows some users altering their sequence relative to 
other users. 

• Time synchronization – Figure 3h shows a highly time 
synchronized pattern, as though a group of newcomer 
students were in a lab together, all executing the same 
tools during that lab session. 

VI. CONCLUSIONS 
We continually measure impact in new and innovative 

ways with the goal of engaging students and incentivizing 
them to create content in the future.  In this paper, we have 
discussed one of these key measurement methods where 
students are detected by virtue of their behavior, not their own 
declarations about themselves.  With the presented detection 
method, we have demonstrated that: 

• Students participate in a large number of clustered 
classroom style settings. 

• Student participation is on a continually increasing 
trend. 

• The structure of these clusters is highly varied and may 
be characterized by a large number of descriptive 
dimensions. 

• The size of clusters varies from quite large to focused 
small groups. 
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