

UPPSALA UNIVERSITET

Probabilistic Predictions of Metabolism using Venn-Predictors

Staffan Arvidsson Mc Shane*, Lars Carlsson**, Paolo Toccaceli***, Ola Spjuth*

*Department of Pharmaceutical Biosciences, Uppsala University **Quantitative Biology, Discovery Sciences, Innovative Medicines & Early Development, AstraZeneca ***Department of Computer Science, Royal Holloway

ABSTRACT

Prediction of drug metabolism is an important topic in the drug discovery process, and we here present a study using probabilistic predictions applying Cross Venn-ABERS Predictors (CVAPs) on data for site-of-metabolism. We used a dataset of 73599 biotransformations, applied SMIRKS to define biotransformations of interest and constructed five datasets where chemical structures were represented using signatures descriptors. The results show that CVAP produces well-calibrated predictions for all datasets with good predictive capability, making CVAP an interesting method for further exploration in drug discovery applications.

DATASET GENERATION

The datasets were generated from the MDL Metabolite database (2005) and processed according to:

- MCS matching for all reactions
- SMIRKS filtration for 60 reaction types

Cross Venn-ABERS algorithm

Normal classification setting, using observations z = (y, x), with labels $y \in \{0, I\}$ for objects x.

Training procedure

Split dataset in k non-overlapping folds, for iteration $i = 1, \dots, k$ do:

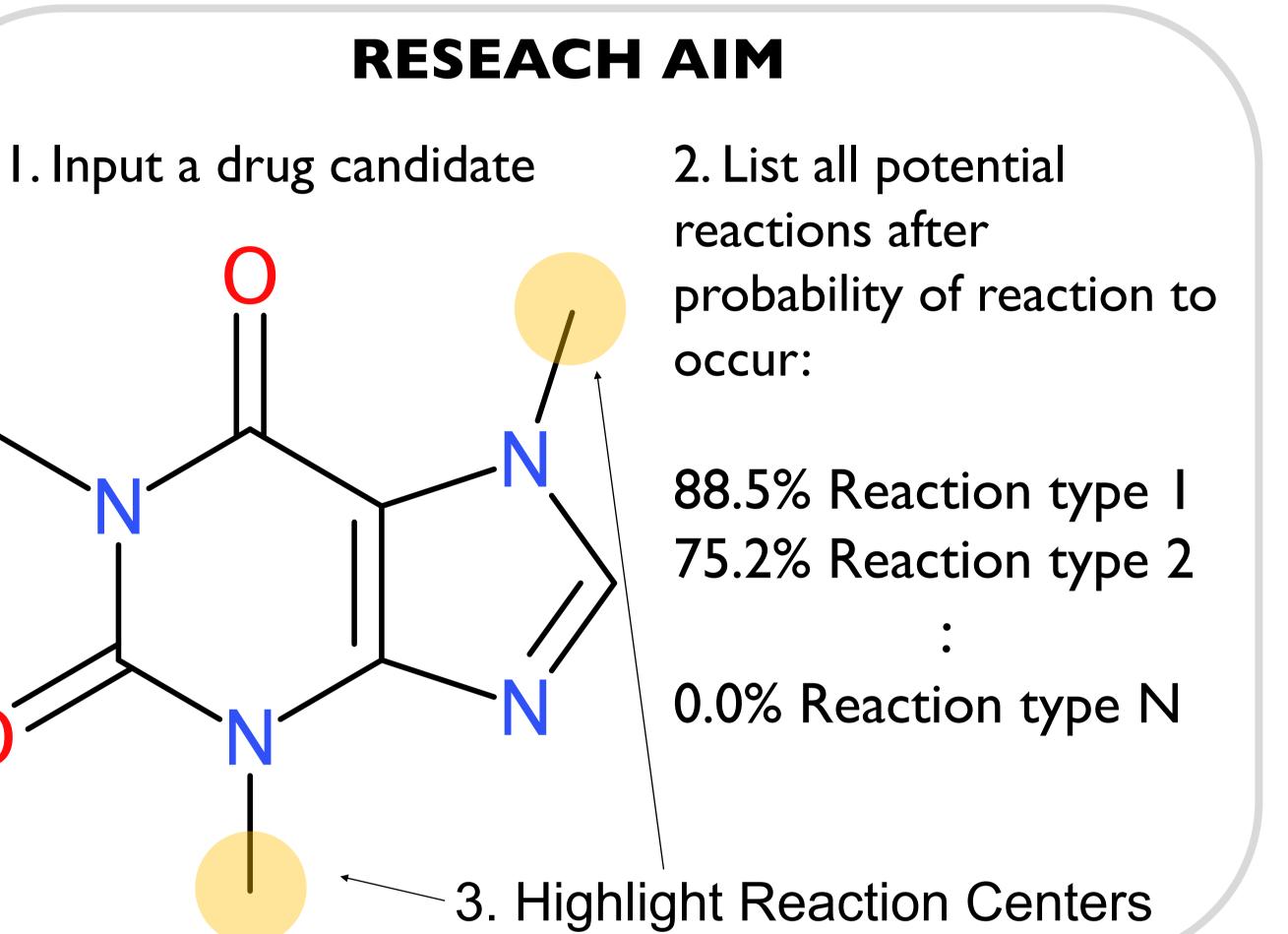
- I. Set fold *i* as *calibration* set, remaining observations is the proper training set.
- Train underlying scoring model on proper training set. Predict all observations in *calibration* set using the scoring model (step 2). 3. Save scoring model together with calibration points consisting of tuples 4. of (score, y). Redo step 1-4 for remaining k-1 folds, each leaving one fold for calibration.

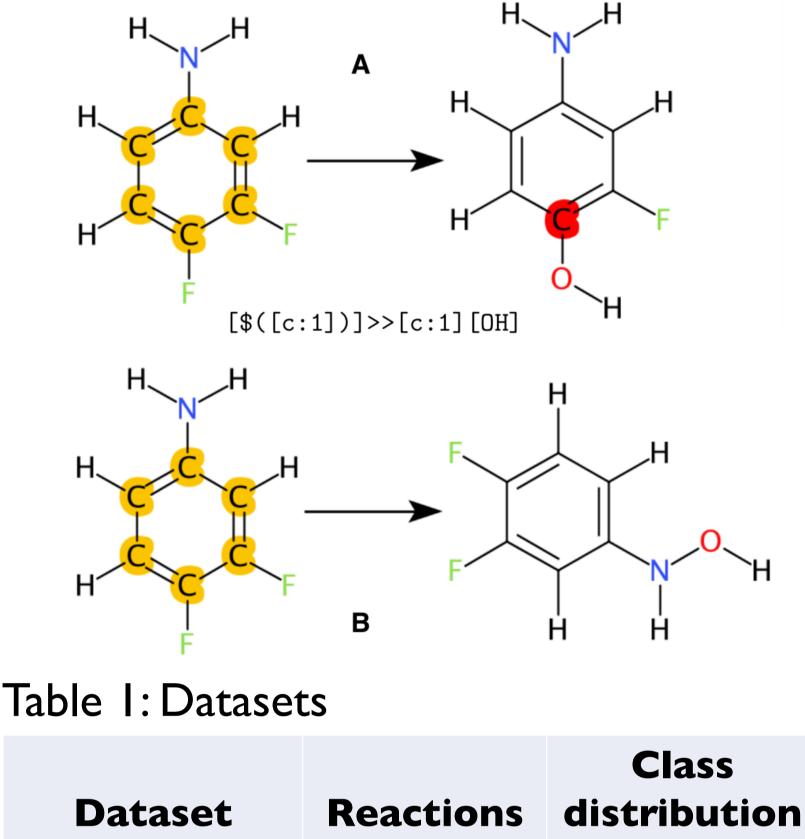
- Yellow \rightarrow only match in substrate (class label 0)
- Red \rightarrow match in full reaction (class label I)
- Filtration to keep one record per substrate, in favor for full reaction, for each of the 60 datasets

Alkyl

hydroxylation

Aromatic





Predicting procedure

- For a new test object x_{new} , for each of the k Venn-Predictors, do:
- Predict score_{new} using the scoring model, fit two isotonic regression functions $f_0(s)$ and $f_1(s)$ using (Figure below);
- Append (score_{new}, 0) to calibration points \rightarrow fit $f_0(s)$
- Append (score_{new}, I) to calibration points \rightarrow fit $f_1(s)$
- 3. Set $p_0 = f_0(\text{score}_{new})$ and $p_1 = f_1(\text{score}_{new})$, creating a probability interval $[p_0, p_1].$
- Aggregate the k intervals using formula (optimal under log-loss):

$$p = \frac{GM(\overrightarrow{p_0})}{GM(1 - \overrightarrow{p_0}) + GM(\overrightarrow{p_1})}$$

Calibration of Prediction

Pre-study containing 5 reaction types showed promising results with OK to good AUC scores (Table 2). Full paper available at http://proceedings.mlr.press/v60/ Further study comprising more reactions under way, including publication of predictive models as microservices part of the OpenRiskNet.

Table 2: Performance metrics for QSAR			
Dataset	Log Loss	AUC	
Alkyl hydroxylation	0.538	0.753	
Aromatic hydroxylation	0.348	0.793	
Carboxylation	0.41	0.881	
Oxidation of tertiary amine	0.093	0.904	

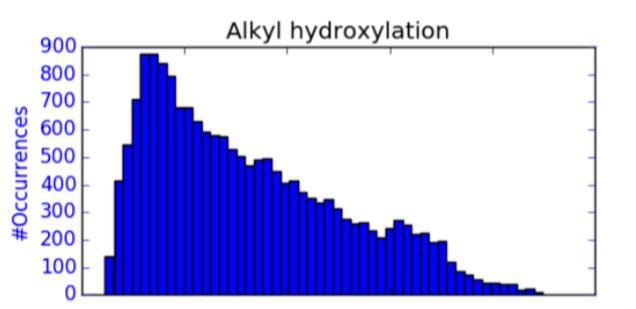
nydroxylation	14071	65.15
Carboxylation	12580	64 : 36
Oxidation of certiary amine	11040	97 : 3
Aromatization	9518	25 : 75

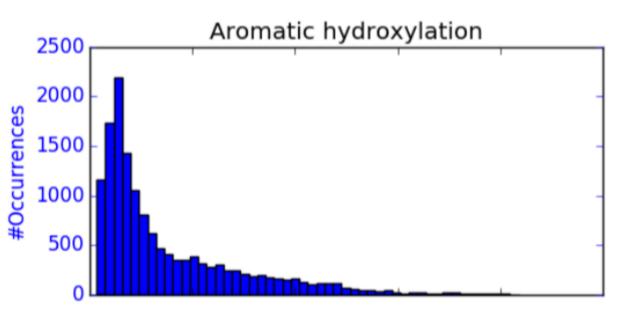
17793

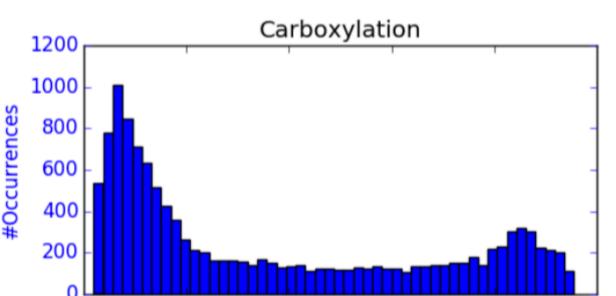
14691

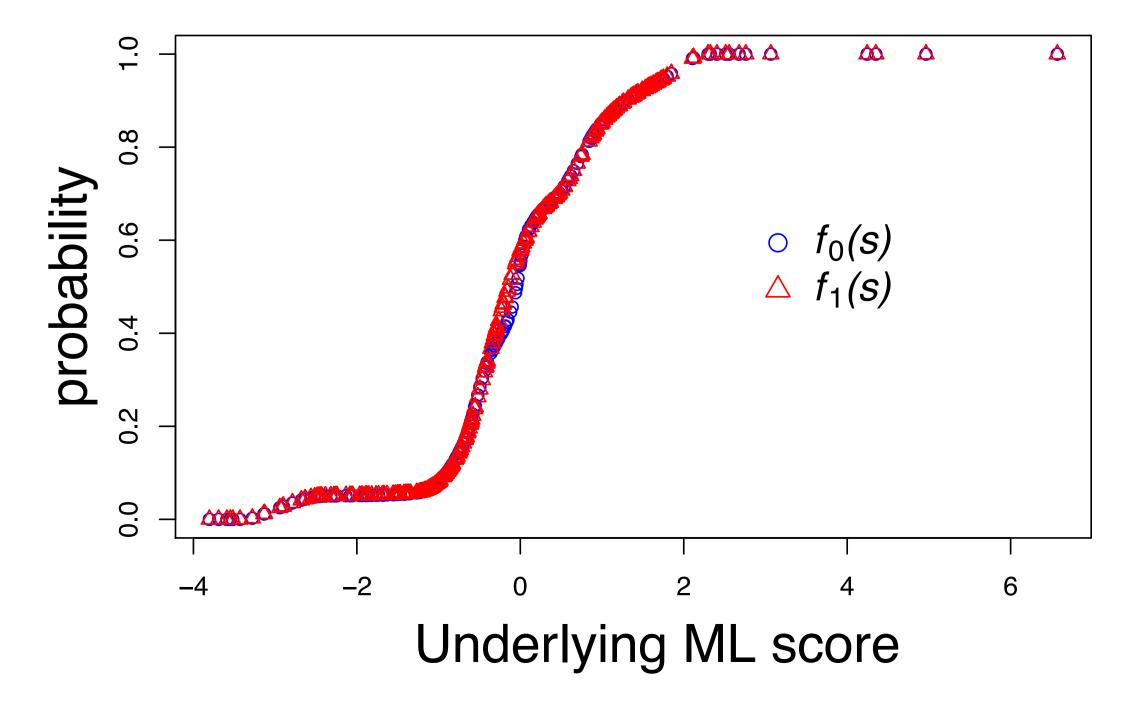
68 : 32

 $95 \cdot 15$



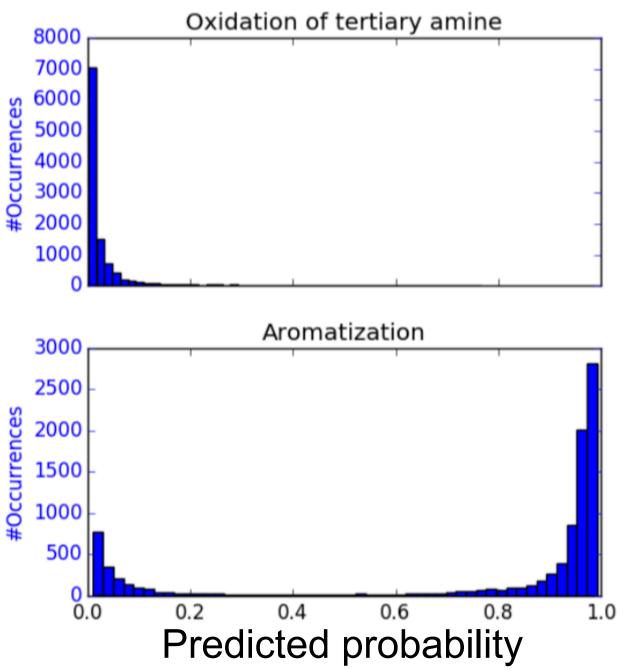






0.964 0.173 Aromatization 8000 7000 **OpenRiskNet** 6000 2 5000 ≝ 4000 A 3 year project to build an open e-າວ 3000 ຊີ 2000 Infrastructure to support Data Sharing, 1000 Knowledge Integration and in silico Analysis in Predictive Toxicology and 3000 2500 Risk Assessment. Currently focusing on ຍີ່ 2000 annotated OpenAPI specification for 1500 ğ 1000 microservices deployed on OpenShift.

Read more at https://openrisknet.org/



OpenRiskNet (Grant Agreement 731075) is a project funded by the European Commission within Horizon2020 Programme