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Abstract

Dialog system is class of intelligent system that interacts with human via natural language

interfaces with a coherent structure. Based on the nature of the conversation, dialog systems

are generally divided into two sub-classes, task-oriented dialog systems that are created

to solve specific problems, and chit-chat systems that are designed for casual chat and

entertainment. This thesis focuses on task-oriented dialog systems.

Conventional systems for task-oriented dialog are highly handcrafted, usually built with

complex logic and rules. These systems typically consist of a pipeline of separately devel-

oped components for spoken language understanding, dialog state tracking, dialog policy,

and response generation. Despite the recent progress in spoken language processing and di-

alog learning, there are still a variety of major challenges with current systems. Firstly, the

handcrafted modules designed with domain specific rules inherently make it hard to extend

an existing system to new domains. Moreover, modules in current system are interdepen-

dent in the processing pipeline. Updating an upper-stream module may change its output

distribution which can make other down-stream modules sub-optimal. Last but not least,

current systems are mostly configured and trained offline. They lack the flexibility to learn

continuously via interaction with users.

In this thesis, we address the limitations of the conventional systems and propose a data-

driven dialog learning framework. We design a neural network based dialog system that

can robustly track dialog state, interface with knowledge bases, and incorporate structured



query results into system responses to successfully complete task-oriented dialogs. The sys-

tem can be optimized end-to-end with error signals backpropagating from system output to

raw natural language system input. In learning such system, we propose imitation and rein-

forcement learning based methods for hybrid offline training and online interactive learning

with human-in-the-loop. The system is enabled to continuously improve itself through the

interaction with users. In addition, we address several practical concerns with interactive

dialog learning. In addressing the impact of inconsistent user ratings (i.e. the rewards) for

dialog policy optimization, we propose an adversarial learning method which can be used

to effectively estimate the reward for a dialog. In addressing the sample efficiency issue

in online interactive learning with users, we propose a method by integrating the learning

experience from real and imagined interactions to improve the dialog learning efficiency. We

perform the system evaluation in both simulated environments and real user evaluation set-

tings. Empirical results show that our proposed system can robustly track dialog state over

multiple dialog turns and produce reasonable system responses. The proposed interactive

learning methods also lead to promising improvement on task success rate and human user

ratings.

viii



Table of Contents

Acknowledgement iii

Abstract vii

Table of Contents ix

List of Tables xiii

List of Figures xv

1 Introduction 1

1.1 Motivation and Research Problem . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background and Related Work 5

2.1 Task-Oriented Dialog Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Spoken Language Understanding . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Dialog State Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.3 Dialog Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.4 End-to-End Dialog Systems . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Sequence Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Sequence Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

ix



2.2.2 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.3 Long Short-Term Memory . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Policy Gradient Reinforcement Learning . . . . . . . . . . . . . . . . . . . . 16

3 End-to-End Dialog Learning Framework 19

3.1 Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Dialog Context Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.2 End-to-End System Optimization . . . . . . . . . . . . . . . . . . . . 20

3.1.3 Continuous Interactive Learning . . . . . . . . . . . . . . . . . . . . . 21

3.2 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 System Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.1 Learn from Dialog Corpus . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.2 Learn from User Teaching . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.3 Learn from User Feedback . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 System Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4.1 Automatic Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4.2 Human User Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Robust Spoken Language Understanding 27

4.1 Spoken Language Understanding with Multi-Task Learning . . . . . . . . . . 28

4.1.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Contextual Language Modeling and Language Understanding . . . . . . . . 36

4.2.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 End-to-End Dialog Modeling 45

5.1 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

x



5.1.1 Utterance Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1.2 Dialog State Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1.3 KB Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1.4 Dialog Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1.5 System Response Generation . . . . . . . . . . . . . . . . . . . . . . . 50

5.2 Model Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3.1 Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3.2 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6 Dialog Learning with Human-in-the-Loop 57

6.1 End-to-End Model Optimization with Deep RL . . . . . . . . . . . . . . . . 58

6.1.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.1.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.1.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.2 Dialog Learning with Human Teaching and Feedback . . . . . . . . . . . . . 63

6.2.1 Imitation Learning with Human Teaching . . . . . . . . . . . . . . . 64

6.2.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7 Dialog Learning with Adversarial Training 71

7.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.1.1 Neural Dialog Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.1.2 Dialog Reward Estimator . . . . . . . . . . . . . . . . . . . . . . . . 73

7.1.3 Adversarial Model Training . . . . . . . . . . . . . . . . . . . . . . . 75

7.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.2.1 Evaluation Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

xi



7.2.2 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8 Dialog Learning with Real and Imagined Experiences 83

8.1 Statistical User Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8.1.1 Model Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8.1.2 Model Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

8.2 Learning from Real and Imagined Experiences . . . . . . . . . . . . . . . . . 89

8.2.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8.3.1 Training Environment and Setting . . . . . . . . . . . . . . . . . . . . 91

8.3.2 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

8.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

9 Conclusion and Future Work 97

References 103

xii



List of Tables

4.1 Independent training model results on ATIS slot filling. . . . . . . . . . . . . 33

4.2 Comparison to previous approaches. Independent training model results on

ATIS slot filling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Comparison to previous approaches. Independent training model results on

ATIS intent detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4 Comparison to previous approaches. Joint training model results on ATIS

slot filling and intent detection. . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.5 ATIS Test set results on intent detection error, slot filling F1 score, and lan-

guage modeling perplexity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.6 ATIS test set results on ASR word error rate, intent detection error, and slot

filling F1 score with noisy speech input. . . . . . . . . . . . . . . . . . . . . 43

5.1 DSTC2 dialog samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2 Statistics of the augmented DSTC2 data set. . . . . . . . . . . . . . . . . . . 52

5.3 Prediction accuracy for entity pointer, joint user goal, delexicalised system

response, and final system response of DSTC2 test set using different encoding

methods and word vector initializations. . . . . . . . . . . . . . . . . . . . . 53

5.4 Dialog state tracking results on the standard DSTC2 dataset . . . . . . . . . 54

5.5 Dialog state tracking results on movie booking dataset . . . . . . . . . . . . 54

xiii



5.6 Performance of the proposed model in terms of per-response accuracy com-

paring to previous approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.1 Human evaluation results. Mean and standard deviation of crowd worker

scores (between 1 to 5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.2 Human evaluation results on dialog learning methods with human teaching

and feedback. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.1 Performance of different discriminator model design, on prediction accuracy

and probabilities assigned to successful and failed dialogs. . . . . . . . . . . . 80

8.1 Performance of different learn-from-imagination configurations at different

learn-from-user stages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

xiv



List of Figures

2.1 Pipeline architecture for task-oriented spoken dialog systems . . . . . . . . . . . 6

2.2 ATIS corpus sample with intent and slot annotation (IOB format). . . . . . . . 7

2.3 Unrolled recurrent neural network. . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Proposed task-oriented dialog learning framework. . . . . . . . . . . . . . . . . 22

4.1 Encoder-decoder model for joint intent detection and slot filling. (a) with no

aligned inputs. (b) with aligned inputs. (c) with aligned inputs and attention. 30

4.2 Attention-based LSTM model for joint intent detection and slot filling. . . . 31

4.3 Illustration of the inferred attention. Darker shades indicate higher attention

weights. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4 Proposed joint online RNN model for intent detection, slot filling, and next

word prediction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.5 Joint online SLU-LM model variations. (a) Basic joint model. (b) Joint model

with local intent context. (c) Joint model with recurrent intent context. (d)

Joint model with both local and recurrent intent context. . . . . . . . . . . 37

4.6 Schedule of increasing intent contribution to the context vector along with

the growing input sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.7 LM perplexity of the joint SLU-LM models with different schedules in adjust-

ing the intent contribution to the context vector. . . . . . . . . . . . . . . . 42

xv



5.1 End-to-end task-oriented dialog system architecture. . . . . . . . . . . . . . 47

5.2 Proposed end-to-end task-oriented neural dialog model. . . . . . . . . . . . 49

6.1 Interactive learning with human feedback. . . . . . . . . . . . . . . . . . . 60

6.2 RL curves on (a) dialog task success rate and (b) average dialog turn size. . 62

6.3 Interactive learning with human teaching. . . . . . . . . . . . . . . . . . . 64

6.4 Interactive learning curves on task success rate. . . . . . . . . . . . . . . . . 67

6.5 Interactive learning curves on average dialog turn size. . . . . . . . . . . . . 68

6.6 Interactive learning curves on dialog state tracking accuracy. . . . . . . . . . 69

7.1 Design of the dialog reward estimator: Bidirectional LSTM with max pooling. 74

7.2 RL policy optimization performance comparing with adversarial reward, de-

signed reward, and oracle reward. . . . . . . . . . . . . . . . . . . . . . . . 78

7.3 Impact of discriminator training sample size on RL dialog learning perfor-

mance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.4 Addressing covariate shift in online adversarial dialog learning with partial

access to user feedback. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

8.1 Neural user model architecture. . . . . . . . . . . . . . . . . . . . . . . . . . 86

8.2 Joint dialog agent and user model training with deep reinforcement learning 88

8.3 Integrated dialog learning with real (left) and imagined (right) experiences. . . . 89

8.4 Comparing different configurations for user model update during learn-from-

imagination stage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8.5 Comparing different choices of user model policy during learn-from-imagination

stage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

xvi



Chapter 1

Introduction

1.1 Motivation and Research Problem

Dialog systems, also known as conversational agents or chatbots, are playing an increasingly

important role in today’s business and social life. People communicate with a dialog system

in natural language form, via either textual or auditory input, for entertainment and for

completing daily tasks. Based on the nature of the conversation, dialog systems can be

generally divided into two categories, chit-chat systems and task-oriented dialog systems.

Chit-chat systems [60, 61, 71, 77, 98] are designed to engage users and provide mental support

by conducting chit-chat type of conversation. Topic of such conversation can be in a wide

range. Users usually have no specific goal to complete when talking to a chit-chat system.

Task-oriented dialog systems [14, 21, 20, 101], on the other hand, are designed to assist user

to complete tasks. They are typically designed with processes for processing requests from

users, providing related information, and taking actions. Comparing to chit-chat systems,

task-oriented dialog systems usually involve retrieving information from external resources

and planning over multiple dialog turns. The focus of this thesis is on task-oriented dialog

systems.

1



Conventional task-oriented dialog systems have a series of components connected in a pipeline.

User’s input in natural language format (text input or speech transcriptions) is firstly passed

to a spoken language understanding (SLU) component, whose job is to identify user’s intent

and extract useful semantic information from the user’s query, two tasks that are often re-

ferred to as intent identification and slot filling. Outputs of the SLU module are then passed

to the dialog state tracker (DST), where the dialog state is maintained over the past dialog

turns. Dialog state in conventional systems usually includes slots and values that the user

has expressed so far and the user’s most recent intent. The dialog state maintained in the

state tracker are then used as input to the dialog policy module, which emits a system dialog

act indicating what the system should say next. Dialog act can be seen as a semantic label

of an agent’s action (e.g. confirming a request, asking a question, and acknowledging an

utterance). The dialog act is then passed to a natural language generator to form a final

natural language system response to user.

Despite the progress in spoken language processing and dialog learning over the past decades,

there are still a variety of major challenges with the conventional dialog systems. Firstly,

current systems are still highly handcrafted, especially in modules for dialog state tracking

and dialog policy. Such handcrafted modules in a processing pipeline inherently makes it

hard for a system to extend to other task domains. The domain specific logic and rules

usually have to be redesigned for a new task domain. Secondly, modules in current systems

are process interdependent. As a result, each component in the pipeline is ideally retrained

when preceding components are updated, so that we have input similar to the training

examples at run-time. This domino effect causes several issues in practice. Last but not

least, current systems lack the flexibility in learning continuously through user interactions.

There are attempts in optimizing dialog policy online with user feedback. However, the other

system modules (e.g. SLU and DST) still require significant effort from developers for offline

model update and tuning.

2



1.2 Thesis Statement

In this thesis, we address the research question on whether we can learn end-to-end task-

oriented dialog system effectively through interaction with users.

We propose a data-driven learning framework for task-oriented dialogs that are based on do-

main ontology. On system architecture side, we design a neural network based task-oriented

dialog model that can be optimized end-to-end towards more efficient task completion and

higher user satisfaction. On system learning side, we propose imitation and reinforcement

learning based methods that enable the system to effectively learn from users in an interac-

tive manner. We further address several practical concerns in interactive dialog learning and

propose methods for improving dialog learning efficiency. The thesis presents a thorough

study and evaluation of the proposed framework in both simulated environments and real

user evaluation settings.

1.3 Thesis Outline

In this dissertation, we address two key aspects of task-oriented dialog system: end-to-

end dialog modeling and interactive dialog learning. Firstly, we study how we can best

model task-oriented dialog by representing dialog context over multiple turns and injecting

knowledge from external resources. We present our neural network based dialog system [92,

107] that models spoken language understanding, dialog state tracking, and dialog policy in

an end-to-end manner.

Secondly, we explore how we can learn such system in an interactive manner with human-

in-the-loop. We discuss how the system can continuously improve itself through different

modes of interactions with users by learning from user teaching and feedback [93, 107]. We

present how we can optimize the dialog agent end-to-end during interactive learning with

users and discuss the benefits of performing such end-to-end system optimization.

3



Lastly, we investigate how we can improve the system learning efficiency during its online

interaction with users. We address the user rating sparsity and consistency issue by proposing

an adversarial learning method [105] in estimating the dialog reward for policy optimization.

We further design a learning method [106] by integrating the learning experience from real

user interactions and from the “imagined” interactions to ameliorate the sample efficiency

issue in online policy optimization.

We start off by introducing the background and related works of task-oriented dialog systems

in Chapter 2. An overview of the proposed interactive dialog learning framework is presented

in Chapter 3. In Chapter 4, we describe the proposed neural network based models for

robust spoken language understanding. In Chapter 5, we present the proposed neural dialog

system architecture and show how the SLU sequence model can be extended to model end-

to-end task-oriented dialog. Chapter 6 presents the proposed interactive dialog learning

methods with human-in-the-loop. Chapter 7 and 8 present how we can improve interactive

dialog learning efficiency with adversarial training and learning from “imagined” interactions.

Finally, we conclude the dissertation and discuss future work in Chapter 9.
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Chapter 2

Background and Related Work

2.1 Task-Oriented Dialog Systems

This chapter reviews the conventional architecture for task-oriented dialog systems. We

discuss the limitations of the current systems, and give motivations for the following chapters

on end-to-end dialog learning.

Figure 2.1 shows a typical modular-based architecture of task-oriented spoken dialog system.

User interacts with the system by dictating to a voice interface. The automatic speech recog-

nition (ASR) module transcribes the user’s speech input to natural language text format.

The speech transcriptions are passed to the spoken language understanding (SLU) module,

where the user’s intention and other key named entities are extracted. This information is

then formatted as the input to the dialog state tracker (DST), which maintains the current

state of the dialog. Output of state tracker is passed to the dialog policy module, which

produces a dialog act based on current dialog state and the facts retrieved from external

resources (such as a database or a knowledge base). The dialog act emitted by the dialog

policy module serves as the input to the natural language generator (NLG), where the dialog

act is translated to a natural language format system response. Finally, the text to speech
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Figure 2.1: Pipeline architecture for task-oriented spoken dialog systems

(TTS) module transforms the text format system response to speech and sends it back to

user.

In this thesis, we propose end-to-end dialog learning solutions that cover the functionality

of three core components of task-oriented dialog systems, spoken language understanding,

dialog state tracking, and dialog policy. We first review each of these components in the

following sections.

2.1.1 Spoken Language Understanding

Spoken language understanding (SLU) module is a critical component in spoken dialog sys-

tems. SLU typically involves identifying a user’s intent and extracting semantic constituents

from the user’s natural language query, two tasks that are often referred to as intent detection

and slot filling.

Intent Detection

Intent detection can be framed as a semantic utterance classification problem, and classifiers

like support vector machines [12] and deep neural networks [25, 30, 28] can be applied. Given
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an utterance with a sequence of words w = (w1, w2, ..., wT ), the goal of intent detection is

to assign an intent class c from a pre-defined set of intent classes, such that:

ĉ = arg max
c
P (c|w) (2.1)

Recent neural network based intent classification models involve using neural bag-of-words

(NBoW), where words are mapped to high dimensional vector space and concatenated to

serve as input to a classifier. More structured neural network approaches for utterance

classification include using recursive neural network [41], convolutional neural network [45,

66], and recurrent neural network models [48, 81, 110, 104]. Comparing to basic NBoW

methods, these models can better capture the structural patterns in the sequence of words

in an utterance.

Slot Filling

Slot filling extracts semantic constituents by searching input text to fill in values for prede-

fined slots in a semantic frame [56]. Slot filling task can also be viewed as a sequence labeling

task that assigns an appropriate semantic label to each word in the given input text. In the

below example from ATIS [1] corpus following the popular IOB (in/out/begin) annotation

method, Seattle and San Diego are tagged as the from and to locations respectively according

to the slot labels, and tomorrow is tagged as the departure date. Other words in the example

utterance that carry no semantic meaning are assigned “O” label.

Figure 2.2: ATIS corpus sample with intent and slot annotation (IOB format).

Given an utterance consisting of a sequence of words w = (w1, w2, ..., wT ), the goal of slot

filling is to find a sequence of semantic labels s = (s1, s2, ..., sT ), one for each word in the
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utterance, such that:

ŝ = arg max
s
P (s|w) (2.2)

Popular sequence models for slot filling including using hidden Markov models [17], condi-

tional random fields [18] and recurrent neural networks [37, 48, 50, 56, 55, 59, 70].

Joint Learning of SLU

For the SLU module in task-oriented dialog systems, the intent detection and slot filling

tasks are usually handled separately by different models. Such design has several limitations.

First of all, one has to train two separated models for these tasks in each domain, which

introduces additional burden to dialog system development and maintenance. In addition,

there is no knowledge sharing between different SLU tasks. This may lead to sub-optimal

system performance as the close relations between user’s intents and semantic slots expressed

in the natural language query is not effectively utilized. In later of this thesis, we will discuss

how we can jointly model these two tasks to improve the overall system performance.

In spoken dialog systems, inputs to the SLU module are the ASR hypotheses of the user’s

speech. The word error rate (WER) of the ASR system has a direct impact to the per-

formance of the downstream SLU module. Language model, which assigns a probability

estimate of a sequence of words, plays an important role in state-of-the-art ASR systems

[29]. Language modeling (LM) is also closely related to spoken language understanding,

as the semantic meanings that are being incrementally captured in user’s speech directly

indicate what a user is likely to say next. Previous work on spoken language processing and

understanding usually treats ASR and SLU systems separately. The benefit of integrating

SLU and LM for speech recognition and understanding is not well explored. We will later

discuss how we can use a single neural network model to jointly optimize SLU and LM to

enable a tighter integration of spoken language processing and understanding.
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2.1.2 Dialog State Tracking

Dialog state tracker (DST) is a core component in task-oriented spoken dialog systems [101,

79]. DST refers to the task of maintaining a distribution over possible dialog states. The

dialog state can be seen as a full representation of the constraints that the user has expressed

so far. In slot-based dialog systems, the dialog state is usually expressed in terms of a list

of goal slots and the probability distribution of candidate values for each slot. These output

distributions are also referred to as belief state. In estimating the current dialog state, input

to the state tracker may contain the ASR hypotheses, SLU hypotheses, and previous system

dialog acts.

Early systems for dialog state tracking are designed with domain specific rules that are

highly hand-crafted. Such systems might be easy to implement, but they are not capable of

modeling uncertainties in ASR and SLU in a principled way [54]. To address this limitation,

learning based dialog state trackers have been proposed in literature. Generative approaches

include using dynamic Bayesian network [20] to model dialog state and user action as latent

variables which can be optimized with Bayesian inference. These generative models have

limitations in flexibly introducing arbitrary features [54]. Discriminative models using con-

ditional random fields [34] and recurrent neural networks [43, 44, 58] address this limitation

and achieve advanced state tracking performance.

2.1.3 Dialog Policy

Dialog policy module generates a dialog act based on the current dialog state, which serves

as a central part of dialog management [10, 21, 16, 38]. The dialog act can be seen as shallow

representations of the natural language utterance semantics. A dialog act usually consists of

a speech act and grounding information represented by slots and values. For example, the

dialog act affirm(food = italian) indicates that the system is to affirm the user that the

restaurant serves Italian food, where affirm is the speech act, and food and italian form
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the slot-value pair.

A dialog act is produced by the system at the end of each dialog turn based on the dialog

state, which contains information of the entire sequence of interactions between the system

and the user so far:

âk = arg max
a
P (ak|a<k, u<k) (2.3)

where a<k and u<k represent the system acts and user input before the kth turn.

2.1.4 End-to-End Dialog Systems

Conventional task-oriented dialog systems use a pipeline design by connecting the above core

system components together. Such pipeline system has a number of limitations. Firstly, such

design makes it hard to extend a working system to new domains, as each system module

has to be retrained separately with data and knowledge from the target domain. Secondly,

credit assignment and error tracking can be challenging in modular-based systems. The

compounding errors from upper-stream modules to down-stream modules make it hard to

identify the true source of errors in the pipeline. Last but not least, the optimization targets

of the individual modules might not fully align with the overall system evaluation metrics.

For example, it is not clear whether improvement on SLU intent detection accuracy will lead

to the same level of improvement on overall dialog task success.

In addressing these limitations of pipeline dialog systems, researchers have recently started

exploring end-to-end solutions for task-oriented dialogs, inspired by the success of end-to-end

trainable neural network models in non-task-oriented chit-chat dialog settings [60, 77]. Wen

et al. [101] proposed an end-to-end trainable neural dialog model with modularly connected

system components for SLU, DST, and dialog policy. Although these system components

are end-to-end connected, they are pre-trained separately. The intent and state tracking

networks are trained in supervised manner with specifically collected labels. The policy

and generation networks are separately trained on the system utterances. It is not clear
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how the errors in state tracking during run-time will impact the performance of the policy

and generation networks. Moreover, the system is trained with supervised learning on fixed

dialog corpora, and thus may not generalize well to unseen dialog states when interacting

with users.

Bordes and Weston [85] proposed a task-oriented dialog model from a machine reading and

reasoning approach. They used an RNN to encode the dialog state and applied end-to-end

memory networks to learn its representation. In the same line of research, people explored

using query-reduction networks [97], gated memory networks [88], and copy-augmented net-

works [87] to learn the dialog state RNN. Similar to [101], these systems are trained on

fixed sets of simulated and human-machine dialog corpora, and thus are not capable to

learn interactively from users. The grounding information from knowledge base are pulled

offline based on existing dialog corpus. It is unknown whether the same reasoning capability

achieved in offline model training can be generalized to online user interaction. Moreover,

these systems skip the slot-based state tracking stage, and directly generate or select a final

system response based on dialog context. Such systems work well in the evaluation setting

using machine-machine or human-machine dialog corpora, but may face difficulty in mod-

eling human-human conversations as human agent’s natural language response can in very

diverse forms.

Williams et al. [102] proposed a hybrid code network for task-oriented dialog that can be

trained with supervised and reinforcement learning (RL). They show that RL performed

on top of supervised pre-training model with labeled dialogs improves learning speed dra-

matically. Li et al. [90] and Dhingra et al. [111] also proposed end-to-end task-oriented

dialog models that can be trained with hybrid supervised learning and RL. These systems

apply RL directly on supervised pre-training models, without discussing the potential issue

with dialog state distribution mismatch between supervised training and interactive learning.

Moreover, these end-to-end dialog models are trained and evaluated using rule-based user
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simulators. Ideally, RL based interactive model learning should be performed with human

users by collecting real user feedback. In performing interactive learning with human user,

online learning efficiency becomes a critical factor. This sample efficiency issue with RL

policy learning is not addressed in these works.

2.2 Sequence Modeling

Task-oriented dialog modeling can be treated as a sequence learning problem, where the

dialog model takes in user’s input over a sequence of dialog turns and produce corresponding

actions and responses. In the following sections, we give a brief review of sequence models

that form the foundation of our proposed model architecture and learning methods.

2.2.1 Sequence Labeling

Sequence labeling is a class of machine learning problems where we have training examples of{
(x(i),y(i)) : i = 1, ..., N

}
and we learn a function f : X → Y that maps any input sequence

x to a corresponding label sequence f(x). Here X represents the set of all possible input

sequences, and Y represents the set of all possible output labels. x(i) is the i-th training

example, which is a sequence of observations x(i)
1 , ..., x

(i)
T i. y(i) is the corresponding label

sequence y(i)
1 , ..., y

(i)
T i .

Generative and discriminative approaches have been applied on sequence labeling tasks. For

generative models, the joint probability p(x,y) is modeled. During inference, the conditional

probability p(y|x) can be derived with Bayes rule, and the predicted label sequence ŷ can

be derived as:

ŷ = arg max
y

P (y|x) = arg max
y

P (y)P (x|y)
P (x)

= arg max
y

P (y)P (x|y)
(2.4)

An important class of generative sequence labeling model is the Hidden Markov Model
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(HMM). In HMM sequence labeling model, the hidden states correspond to labels. Efficient

training (forward and backward methods) and inference (Viterbi) algorithms have been de-

veloped for HMM following Markov assumption. A limitation with HMM is that to ensure

tractability in modeling joint probability distribution, observation at a time step may only

directly depend on the label at the same time step. This restrains the model from learning

long range dependencies among observation elements in the sequence. To avoid making such

unwarranted independent assumptions for tractable inference, an alternative approach is to

model the conditional probability p(y|x) directly. Such discriminative approach ensures that

interactive features from observation sequence can be used in the model, and no modeling

effort is made specially on modeling the observation sequence itself [13].

Maximum Entropy Markov Model (MEMM) is one such discriminative method in sequence

labeling that models the conditional distribution directly. The key advantage of MEMM

compared to HMM is that much richer features from observation sequence can be used in

the log linear model for classification. However, MEMM and other discriminative finite-state

models suffer from the label bias problem [11], in which the state transition is likely to bias

toward states with fewer outgoing connections.

Conditional Random Fields (CRFs) are introduced to keep the advantage of MEMM and

avoid the label bias problem. Instead of normalizing per-state log linear conditional prob-

abilities, a CRF defines a single log linear model over the label sequence for conditional

probability given the observation sequence. The un-normalized transition scores at each

step help to solve the label bias problem. Training can be performed with maximum likeli-

hood criteria using iterative gradient methods. Viterbi algorithm is used during inference.

2.2.2 Recurrent Neural Networks

Recurrent neural networks (RNNs) are a set of artificial neural network that store information

and states with feedback connections. Similar to MEMM, input features of different types
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can be easily added to the network. In addition, the non-linear transformations of the input

and state space equipped the RNN models with much larger modeling capacity comparing

to classical log-linear models such as MEMM. A widely used RNN architecture is the Elman

type RNN [7]. In contrast with feed-forward neural networks, the Elman RNN feeds the

hidden layer output at time t − 1 back to the same hidden layer at time t via recurrent

connections. Thus, information stored in the hidden layer can be viewed as a summary of

input sequence up till the current time. A non-linear and differentiable activation function

is applied to the weighted sum of the input vector and previous hidden layer activation.

Popular choices of such non-linear activation functions are sigmoid, hyperbolic tangent, and

rectified linear unit. Hidden layer at time t can thus be expressed as:

h(t) = θ(Ux(t) +Wh(t− 1)) (2.5)

Where θ is the non-linear activation function.

The output layer of the RNN contains neurons representing possible labels in the sequence

labeling task. Input arriving at each unit of the output layer is calculated in the same way

as in the hidden layer being the weighted sum over the units connecting to it. At each time

step, sequence labeling task can be seen as a classification problem with K classes (typically

with K > 2). Softmax function can be used to normalize the output activation and obtain
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the class probabilities:

y(t) = softmax(V h(t))

softmax(zm) = ezm

Σkezk

(2.6)

In RNN training, parameters in the network can be optimized based on loss functions derived

using maximum likelihood, with zk being 1 if k is the true label, and 0 otherwise:

L(x, z) = −
K∑
k=1

zklog(yk) (2.7)

The loss function (negative log-likelihood) can be minimized using gradient descent. Network

parameters are updated using back-propagation through time (BPTT) method considering

influence of past states through recurrent connections. Error from the output layer is back-

propagated to the hidden layers through the recurrent connections backwards in time. The

weight matrices are updated after each training sample or mini-batch.

2.2.3 Long Short-Term Memory

Regular RNN by design is capable of storing long range context information. However,

the range of context can be accessed in practice is limited due to vanishing and exploding

gradient problems [4]. Numerous attempts were made to address such problems. One popular

approach is using Long Short-Term Memory (LSTM) architecture [6], a special type of RNN

that avoids vanishing and exploding gradient problems.

LSTM model replaces the recurrent module that uses sigmoid or hyperbolic tangent activa-

tion function in basic RNN with memory block. Memory block may contain one or more

memory cells. The cell state contains summarized information of previous observations, the

propagation of which is regulated by cell gates. Such mechanism prevents the gradients from

vanishing or exploding when passing across time steps.
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Forget Gate: f(t) = sigmoid(Ufx(t) +Wfh(t− 1))

Input Gate: i(t) = sigmoid(Uix(t) +Wih(t− 1))

Cell State: C̃(t) = tanh(Ucx(t) +Wch(t− 1))

C(t) = f(t) ∗ C(t− 1) + i(t) ∗ C̃(t)

Output Gate: o(t) = sigmoid(Uox(t) +Woh(t− 1))

Cell Output: h(t) = o(t) ∗ tanh(C(t))

(2.8)

These controlling gates in memory block help the model to learn when to let the activation

get in the cell state at each time step. Correspondingly, in the network training backward

pass, the gates also learn when to let the error in and out at each step. Such mechanism

helps to avoid gradient exploding and vanishing problems.

2.3 Policy Gradient Reinforcement Learning

In learning the dialog system via the interaction with users, we use reinforcement learning,

especially policy-based reinforcement learning methods, to optimize the dialog policy with

user feedback. Here we provide a brief review of the related learning algorithms.

A reinforcement learning algorithm learns by interacting with its environment. At each time

step t, a reinforcement learning agent selects an action at to take based on current state

st. The agent receives a numerical reward rt from the environment indicating the success of

taking that action. The expectation is that the agent learns to select actions that maximize

the accumulated reward over time.

Policy gradient is a method that learns a parameterized policy that can select actions without

calculating a value function for a state [26]. The policy parameters are learned based on

the gradient of an objective function J(θ) (e.g. the accumulated reward) with respect to

16



Algorithm 1 REINFORCE
1: Initialize policy parameters θ
2: for each episode {s1, a1, r2, ... , sT−1, aT−1, rT} following πθ(s, a) do
3: for each step of the episode t = 1, ..., T − 1 do
4: Obtain return R from future step rewards
5: θ ← θ + α∇θlog(πθ(st, at))R
6: end for
7: end for

the parameters. The policy can be parameterized in any way such that the policy πθ(a|s)

is differentiable with respect to the policy parameters θ. For problem with discrete action

space, a popular choice of parameterization method is to form a transformation for each

state-action pair hθ(s, a). Each action in the action space is assigned a probability obtained

by, for example, an exponential softmax distribution:

a ∼ πθ(a|s) = exp((h(s, a; θ)))∑
m exp(h(s,m; θ)) (2.9)

In calculating the policy gradient, with likelihood ratio estimation, we have:

∇θπθ(s, a) =πθ(s, a)∇θπθ(s, a)
πθ(s, a)

πθ(s, a)∇θlog(πθ(s, a))
(2.10)

REINFORCE [3] is popular policy gradient reinforcement learning method. It is a Monte

Carlo algorithm that uses complete return R from time t that includes all future rewards till

the end of an episode as an unbiased sample of the value of taking actiona in state s.

REINFORCE as a Monte Carlo policy gradient method may suffer from high variance, as

the current step return R depends on all future rewards in the trajectory. A baseline can

be introduced during the gradient update which leaves the expected value of the update

unchanged, but reduces the large variance with REINFORCE. One natural choice for the

baseline is the state value function vw(s), which estimate the value of given state s. The
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Algorithm 2 REINFORCE with Baseline
1: Initialize policy parameters θ, and state value function parameters w
2: for each episode {s1, a1, r2, ... , sT−1, aT−1, rT} following πθ(s, a) do
3: for each step of the episode t = 1, ..., T − 1 do
4: Obtain return R from future step rewards
5: Calculate advantage δ = R− vw(st)
6: w ← w + αw∇wvw(st)δ
7: θ ← θ + αθ∇θlog(πθ(st, at))δ
8: end for
9: end for

state-value function parameters w can also be learned with Monte Carlo method.
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Chapter 3

End-to-End Dialog Learning

Framework

In this chapter, we present an overview of the proposed dialog learning framework. We

will first discuss the design considerations that motivate our study. Then, we describe

the proposed learning framework in terms of system design, system learning, and system

evaluation.

3.1 Design Considerations

Task-oriented dialog system helps users to complete a particular task by conducting multi-

turn conversations. To successfully complete a task, a dialog system is required to understand

the user’s request in natural language format, reason and plan over multiple dialog turns,

and provide responses that are based on the facts in the real world. Given the conventional

system architecture and limitations described in section 2.1, we take the following design

considerations in designing the proposed dialog learning framework.
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3.1.1 Dialog Context Modeling

Corpus based chit-chat systems tend to do very little modeling of the dialog context. They

usually focus on producing a system response that is natural and appropriate given the

user’s input utterance. Task-oriented dialog systems, on the other hand, are required to

collect information from users and clarify user’s request over multiple dialog turns in order

to successfully complete a task. This makes dialog context modeling especially important

[83, 84, 103]. Conventional frame-based systems maintain an explicit dialog state which is

typically represented by a list of slot-value pairs and the previous user dialog act. Such

state representation can provide a reasonable indication of task completion progress, but it

drops many other useful information such user style and user behavior patterns which can be

valuable in better understanding the users. We want to design a model with which a system

can decide what information in the dialog context to maintain with a data-driven approach

in order to best complete a task. Based on such more comprehensive state representation,

the system learns to take actions which finally lead to maximized expected rewards.

3.1.2 End-to-End System Optimization

Conventional systems for task-oriented dialog use a modular-based approach with indepen-

dently trained system components connected in a pipeline. A limitation with this approach

is that when one component is updated, ideally all other downstream components in the

pipeline should be retrained so that they have input similar to the training examples at

run-time. Moreover, there is a concern on how well the individual component optimization

targets align with the overall system evaluation criteria. For example, it is not easy to ex-

amine how much of an improvement in user satisfaction is resulted from the improvement

in slot filling F-1 score. We want to design a system that can be optimized directly towards

the final system evaluation criteria, such as task success and user satisfaction. Not only the

dialog policy can be adjusted with the feedback signal from the user as in [32, 78, 99], but
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the entire system can be optimized end-to-end.

3.1.3 Continuous Interactive Learning

Unlike chit-chat systems that are usually modeled with single-turn context-response pairs

[62, 60, 108], task-oriented dialog systems involves reasoning over multiple dialog turns and

planning based on the fact in the information resources. The state space in a multi-turn

conversation grows exponentially with the growing number of dialog turns. Collecting and

annotating a large enough dialog corpus that covers all possible dialog scenarios for a specific

task is very challenging in practice. This makes it especially important for a system to be able

to continuously learn through the interaction with users in addition to the initial supervised

model training. We want to design a dialog learning framework that allows an agent to

effectively learn from different modes of user interactions. In the least demanding form, an

agent can learn to adjust its policy by requesting users for simple forms of feedback (e.g.

a binary or continuous value). If a user is willing to provide more specific instruction or

demonstration, the agent can also learn effectively from it and thus reduce the additional

interactive learning cycles required.

3.2 System Design

Based on the above described design considerations, we proposed a deep neural network

based interactive dialog learning framework. An overview of the framework is shown in

Figure 3.1. We design a hierarchical recurrent neural network based dialog agent. With

all functioning components modeled by neural networks and connected via differentiable

operations, the entire system can be end-to-end optimized.

From an intelligent system learning point of view, we let the dialog agent learn to act by

interacting with the world and maximizing the long-term success or expected reward. Ideally,

the dialog agent should not only be able to passively receive signals from the environment
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Figure 3.1: Proposed task-oriented dialog learning framework.

(e.g. the user) and learn to act on it, but also to be able to understand the dynamics of the

environment and predict the changes of environment state. This is also how we human beings

learn from the world. We interact with the world and learn from the reward and penalty

received. We try to understand how the world works and learn to predict the consequences

of our actions. With this world knowledge in mind, we plan and act accordingly in order to

achieve higher long-term rewards.

We design our dialog learning framework following the same philosophy. The dialog agent

interacts with user in natural language format and continuously improves itself with the user

feedback received. The dialog agent also learns to interface with external resources, such as

a knowledge base or a database, so as to provide responses to user that are based on the facts

in the real world. Internally, the dialog agent also learns to model the users and predict their

behaviors. Such user model in the agent’s mind can be used to simulate conversations that

mimic the real conversations between the agent and users. By simulating such conversations

and learning from it, the agent can learn more efficiently from the interactions with real

users.
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3.3 System Learning

In training the proposed neural dialog system, we design a hybrid learning method by com-

bining offline supervised training on dialog corpus and interactive learning with human-in-

the-loop. We pretrain the dialog agent in a supervised manner using task-oriented dialog

corpus. The supervised training agent can continuously to improve itself via interacting with

users and learning from user demonstration and feedback with imitation and reinforcement

learning.

3.3.1 Learn from Dialog Corpus

Learning dialog model from scratch via interacting with users can be very challenging, as

the agent has to learn robust natural language understanding in addition to a good policy.

Instead, we propose to pretrain the dialog model by fitting annotated task-oriented dialog

samples in a supervised manner. This enables a good initialization of the agent model

parameters during the interactive learning stage.

3.3.2 Learn from User Teaching

Once obtaining a basic supervised pretraining model, we deploy the agent to let it conduct

task-oriented dialog with users and learn with human-in-the-loop. The agent may make

mistakes and fail to complete a task, especially at the beginning of the interactive learning

stage. We may ask a user (or an expert) to point out the mistakes that the agent makes

in understanding the user’s request and demonstrate the desired agent behavior or actions.

We design an imitation learning method that allows our agent to learn efficiently from such

user teaching.

23



3.3.3 Learn from User Feedback

The above described interactive learning method with user teaching requires a user to pro-

vide instruction at each dialog turn. This is a demanding process and may only be applicable

to a small group of expert users in practice. We want to limit the number of such imitation

dialog learning cycles and continue to improve the agent using a form of supervision signal

that is easier to obtain. We design an interactive dialog learning method with deep reinforce-

ment learning that only uses simple forms of user feedback. Different from the turn-level

corrections required during the imitation learning stage from user teaching, the feedback is

only collected at the end of a dialog from users.

Learning from user feedback has several practical concerns. In addressing the impact of

inconsistency in user feedback or user rating, we propose an adversarial learning method

which can effectively estimate the reward (i.e. the user rating) for a dialog. In addressing the

sample efficiency problem in online interactive learning with real users, we propose a method

by integrating the learning experience from real and imagined interactions to improve the

dialog learning efficiency.

3.4 System Evaluation

We evaluate the propose models and learning methods in both simulated environments using

user simulators and human evaluation settings with real users recruited via Amazon Mechan-

ical Turk. The main evaluation metrics used are task success rate and user satisfaction scores

[8, 5].

3.4.1 Automatic Evaluation

For the supervised model training evaluation, we evaluate the model’s capability in fitting

the test set dialog samples. Specifically, we present the model performance on (1) dialog state

24



tracking [42, 79] which estimates a user’s goal at each turn and (2) accuracy in predicting

the next system action or utterance [85, 97] based on the true label in the test set. For the

interactive evaluation against user simulators, we present the learning curves for task success

rate, average dialog length for successful dialogs, and average dialog rewards.

3.4.2 Human User Evaluation

We further evaluate the proposed system with human judges recruited via Amazon Me-

chanical Turk. Each judge is asked to rate each system at dialog turn level on a scale of 1

(frustrating) to 5 (optimal way to help the user). We collect multiple user ratings for each

dialog turn and calculate an overall score for each system.
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Chapter 4

Robust Spoken Language

Understanding

In this chapter, we present our proposed models and learning methods for spoken language

understanding (SLU), a critical component in spoken dialog systems. The main job of SLU is

to identify a user’s intent and extract semantic constituents from the user’s natural language

query, two tasks that are often referred to as intent detection and slot filling. Intent detection

and slot filling are usually processed separately. We will describe how we can jointly model

these two tasks with a single recurrent neural network based model, and show its advantages

over training task-specific models.

Most of the recent models for SLU focus on offline training and evaluation based on the

complete utterance from users. In speech recognition, instead of receiving the transcribed

text at the end of the speech, users typically prefer to see the ongoing transcription while

speaking. Similarly, in SLU, with real time intent identification and semantic constituents

extraction, the downstream systems will be enabled to perform corresponding search or query

while the user dictates. We further propose a model that performs online incremental SLU

as new word arrives. The incremental SLU outputs can further provide additional context
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for next word prediction in speech recognition decoding. This enables a tight connection

between SLU and language modeling in speech recognition. This chapter is based on the

publications in [73, 74].

4.1 Spoken Language Understanding with Multi-Task

Learning

Intent detection and slot filling in SLU are usually processed separately. Intent detection

can be treated as a semantic utterance classification problem, and slot filling can be treated

as a sequence labeling task. Joint model for intent detection and slot filling has also been

proposed in literature [40, 36]. Such joint model simplifies SLU systems, as only one model

needs to be trained and fine-tuned for the two tasks.

Recently, encoder-decoder neural network models have shined in many sequence learning

problems such as machine translation [47] and speech recognition [65]. Encoder-decoder

model with attention can map sequences that are of different lengths when no alignment

information is given. In slot filling, however, alignment is explicit, and thus alignment-based

RNN models typically work well. We want to explore how the alignment information in slot

filling can be best utilized in the encoder-decoder models, and on the other hand, whether

the alignment-based RNN slot filling models can be further improved with the attention

mechanism that introduced from the encoder-decoder architecture. Moreover, we want to

investigate how slot filling and intent detection can be jointly modeled under such schemes.

4.1.1 Model

In this section, we first describe our approach on integrating alignment information to the

encoder-decoder architecture for slot filling and intent detection. Following that, we de-

scribe the proposed method for introducing attention mechanism from the encoder-decoder
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architecture to the alignment-based RNN models.

Encoder-Decoder Model with Aligned Inputs

The encoder-decoder model for joint intent detection and slot filling is illustrated in Figure

4.1. On encoder side, we use a bidirectional RNN. The bidirectional RNN encoder reads

the source word sequence forward and backward. The final encoder hidden state hi at each

time step i is a concatenation of the forward RNN state −→hi and backward RNN state←−hi , i.e.

hi = [−→hi ,
←−
hi ].

The last state of the forward and backward encoder RNN carries information of the entire

source sequence. We use the last state of the backward encoder RNN to compute the initial

decoder hidden state. The decoder is a unidirectional RNN. At each decoding step i, the

decoder state si is calculated as a function of the previous decoder state si−1, the previous

emitted label yi−1, the aligned encoder hidden state hi, and the context vector ci:

si = f(si−1, yi−1, hi, ci) (4.1)

where the context vector ci is computed as a weighted sum of the encoder states h =

(h1, ..., hT ) [52]:

ci =
T∑
j=1

αi,jhj (4.2)

and

αi,j = exp(ei,j)∑T
k=1 exp(ei,k)

ei,k = g(si−1, hk)
(4.3)

g a feed-forward neural network. At each decoding step, the explicit aligned input is the

encoder state hi. The context vector ci provides additional information to the decoder and

can be seen as a continuous bag of weighted features (h1, ..., hT ).

29



from
x1

LA
x2

to
x3

Seattle
x4

h1 h2 h3 h4

Flight
(Intent)

(Slot Filling)

O FromLoc O ToLoc

h1 h2 h3 h4

from
x1

LA
x2

to
x3

Seattle
x4

h1 h2 h3 h4

Flight
(Intent)

O FromLoc O ToLoc

h1 h2 h3 h4
c1 c2 c3 c4

cintent

(b)

(c)
(Slot Filling)

from
x1

LA
x2

to
x3

Seattle
x4

h1 h2 h3 h4

Flight
(Intent)

O FromLoc O ToLoc

c1 c2 c3 c4

cintent
(a)

(Slot Filling)

Figure 4.1: Encoder-decoder model for joint intent detection and slot filling. (a) with no
aligned inputs. (b) with aligned inputs. (c) with aligned inputs and attention.

For joint modeling of intent detection and slot filling, we add an additional decoder for

intent classification task that shares the same encoder with slot filling decoder. During

model training, costs from both decoders are back-propagated to the encoder. The intent

decoder generates only one single output which is the intent class distribution of the sentence,

and thus alignment is not required. The intent decoder state is a function of the shared

initial decoder state s0, which encodes information of the entire source sequence, and the

context vector cintent, which indicates part of the source sequence that the intent decoder

pays attention to.
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Figure 4.2: Attention-based LSTM model for joint intent detection and slot filling.

Attention-Based RNN Model

The attention-based RNN model for joint intent detection and slot filling is illustrated in

Figure 4.21. The idea of introducing attention to the alignment-based RNN sequence labeling

model is motivated by the use of attention mechanism in encoder-decoder models. In bidi-

rectional RNN for sequence labeling, the hidden state at each time step carries information

of the whole sequence, but information may gradually lose along the forward and backward

propagation. Thus, when making slot label prediction, instead of only utilizing the aligned

hidden state hi at each step, we would like to see whether the use of context vector ci gives

us any additional supporting information, especially those require longer term dependencies

that is not being fully captured by the hidden state.

In the proposed model, a bidirectional RNN (BiRNN) reads the source sequence in both

forward and backward directions. We use LSTM cell for the basic RNN unit. Slot label

dependencies are modeled in the forward RNN. Similar to the encoder module in the above

described encoder-decoder architecture, the hidden state hi at each step is a concatenation

of the forward state −→hi and backward state ←−hi , hi = [−→hi ,
←−
hi ]. Each hidden state hi contains

1Code to reproduce our experiments: https://github.com/HadoopIt/rnn-nlu
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information of the whole input word sequence, with strong focus on the parts surrounding the

word at step i. This hidden state hi is then combined with the context vector ci to produce

the label distribution, where the context vector ci is calculated as a weighted average of the

LSTM hidden states h = (h1, ..., hT ).

For joint modeling of intent detection and slot filling, we reuse the pre-computed hidden

states h of the bidirectional RNN to produce intent class distribution. If attention is not

used, we apply mean-pooling [63] over time on the hidden states h followed by logistic

regression to perform the intent classification. If attention is enabled, we instead take the

weighted average of the hidden states h over time.

4.1.2 Experiments

We evaluate the proposed model on ATIS (Airline Travel Information Systems) data set [2]

which widely used in SLU research. The data set contains audio recordings of people making

flight reservations. We follow the ATIS corpus setup used in [57, 55, 36, 23]. The training set

contains 4978 utterances from the ATIS-2 and ATIS-3 corpora, and the test set contains 893

utterances from the ATIS-3 NOV93 and DEC94 data sets. There are in total 127 distinct

slot labels and 18 different intent types. We evaluate the system performance on slot filling

using F1 score, and the performance on intent detection using classification error rate.

LSTM cell is used as the basic RNN unit in the experiments. Given the size the data set,

we set the number of units in LSTM cell as 128. Word embeddings of size 128 are randomly

initialized and fine-tuned during mini-batch training with batch size of 16. Dropout rate

0.5 is applied to the non-recurrent connections [51] during model training for regularization.

Maximum norm for gradient clipping is set to 5.
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Independent Training Model Results: Slot Filling

We first report the results on our independent task training models. Table 4.1 shows the slot

filling F1 scores using our proposed architectures. Table 4.2 compares our proposed model

performance on slot filling to previously reported results.

Table 4.1: Independent training model results on ATIS slot filling.

Model F1 Score Average
(a) Encoder-decoder NN 81.64 79.66± 1.59
with no aligned inputs
(b) Encoder-decoder NN 95.72 95.38± 0.18
with aligned inputs
(c) Encoder-decoder NN 95.78 95.47± 0.22
with aligned inputs & attention
BiRNN no attention 95.71 95.37± 0.19
BiRNN with attention 95.75 95.42± 0.18

In Table 4.1, the first set of results are for variations of encoder-decoder models. Not to our

surprise, the pure attention-based slot filling model that does not utilize explicit alignment

information performs poorly. Letting the model to learn the alignment from training data

does not seem to be appropriate for slot filling task. Line 2 and line 3 show the F1 scores of

the non-attention and attention-based encode-decoder models that utilize the aligned inputs.

The attention-based model gives slightly better F1 score than the non-attention-based one,

on both the average and best scores. By investigating the attention learned by the model,

we find that the attention weights are more likely to be evenly distributed across words in

the source sequence. There are a few cases where we observe insightful attention (Figure

4.3) that the decoder pays to the input sequence, and that might partly explain the observed

performance gain when attention is enabled.

The second set of results in Table 4.1 are for bidirectional RNN models. Similar to the pre-

vious set of results, we observe slightly improved F1 score on the model that uses attentions.

The contribution from the context vector for slot filling is not very obvious. It seems that
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Figure 4.3: Illustration of the inferred attention. Darker shades indicate higher attention
weights.

for sequence length at such level (average sentence length is 11 for this ATIS corpus), the

hidden state hi that produced by the bidirectional RNN is capable of encoding most of the

information that is needed to make the slot label prediction. Table 4.2 compares our slot

filling models to previous approaches. Results from both of our model architectures advance

the best F1 scores reported previously.

Table 4.2: Comparison to previous approaches. Independent training model results on ATIS
slot filling.

Model F1 Score
CNN-CRF [36] 94.35
RNN with Label Sampling [55] 94.89
Hybrid RNN [57] 95.06
Deep LSTM [49] 95.08
RNN-EM [59] 95.25
Encoder-labeler Deep LSTM [70] 95.66
Attention Encoder-Decoder NN 95.78
(with aligned inputs)
Attention BiRNN 95.75

Independent Training Model Results: Intent Detection

Table 4.3 compares intent classification error rate between our intent models and previous

approaches. Intent error rate of our proposed models outperform the state-of-the-art results

by a large margin. The attention-based encoder-decoder intent model advances the bidirec-

tional RNN model. This might be attributed to the sequence level information passed from

the encoder and additional layer of non-linearity in the decoder RNN.
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Table 4.3: Comparison to previous approaches. Independent training model results on ATIS
intent detection.

Model Error (%)
Recursive NN [40] 4.60
Boosting [23] 4.38
Boosting + Simplified sentences [27] 3.02
Attention Encoder-Decoder NN 2.02
Attention BiRNN 2.35

Joint Model Results

Table 4.4 shows our joint training model performance on intent detection and slot filling

comparing to previous reported results. As shown in this table, the joint training model using

encoder-decoder architecture achieves 0.09% absolute gain on slot filling and 0.45% absolute

gain (22.2% relative improvement) on intent detection over the independent training model.

For the attention-based bidirectional RNN architecture, the join training model achieves

0.23% absolute gain on slot filling and 0.56% absolute gain (23.8% relative improvement)

on intent detection over the independent training models. The attention-based RNN model

seems to benefit more from the joint training. Results from both of our joint training

approaches outperform the best reported joint modeling results.

Table 4.4: Comparison to previous approaches. Joint training model results on ATIS slot
filling and intent detection.

Model F1 Score Intent Error (%)
RecNN [40] 93.22 4.60
RecNN+Viterbi [40] 93.96 4.60
Attention Encoder-Decoder 95.87 1.57
NN (with aligned inputs)
Attention BiRNN 95.98 1.79
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4.2 Contextual Language Modeling and Language Un-

derstanding

The above presented joint models are for offline SLU model training and evaluation. They

are not suitable for online tasks where it is desired to produce outputs as the input sequence

arrives. Joint SLU models proposed in previous work typically require intent and slot label

predictions to be conditioned on the entire transcribed utterance. This limits the usage of

these models in the online setting.

We propose an RNN-based online joint SLU model that performs intent detection and slot

filling as the input word arrives. In addition, we discuss how the generated intent class and

slot labels can be useful for next word prediction in online automatic speech recognition

(ASR). We propose to perform intent detection, slot filling, and language modeling jointly

in a conditional RNN model. The proposed joint model can be further extended for belief

tracking in dialog systems when considering the dialog history beyond the current utterance.

Moreover, it can be used as the RNN decoder in an end-to-end trainable sequence-to-sequence

speech recognition model [69].

4.2.1 Model

In this section we describe the joint SLU-LM model in detail2. Figure 4.4 gives an overview

of the proposed architecture.

Referring to the joint SLU-LM model shown in Figure 4.4, for the intent model, instead of

predicting the intent only after seeing the entire utterance, in the joint model we output

intent at each time step as input word sequence arrives. The intent generated at the last

step is used as the final utterance intent prediction. The intent output from each time step

is fed back to the RNN state, and thus the entire intent output history are modeled and can
2Code to reproduce our experiments: https://github.com/HadoopIt/joint-slu-lm
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Figure 4.4: Proposed joint online RNN model for intent detection, slot filling, and next word
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Figure 4.5: Joint online SLU-LM model variations. (a) Basic joint model. (b) Joint model
with local intent context. (c) Joint model with recurrent intent context. (d) Joint model
with both local and recurrent intent context.

be used as context to other tasks. It is not hard to see that during inference, intent classes

that are predicted during the first few time steps are of lower confidence due to the limited

information available. We describe the techniques that can be used to ameliorate this effect

in the section below. For the intent model, with both intent and slot label connections to

the RNN state, we have:

P (cT |w) = P (cT |w≤T , c<T , s<T ) (4.4)

For the slot filling model, at each step t along the input word sequence, we want to model

the slot label output st as a conditional distribution over the previous intents c<t, previous
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slot labels s<t, and the input word sequence up to step t. Using the chain rule, we have:

P (s|w) = P (s0|w0)
T∏
t=1

P (st|w≤t, c<t, s<t) (4.5)

For the language model, the next word is modeled as a conditional distribution over the

word sequence together with intent and slot label sequence up to current time step. The

intent and slot label outputs at current step, together with the intent and slot label history

that is encoded in the RNN state, serve as context to the language model.

P (w) =
T∏
t=0

P (wt+1|w≤t, c≤t, s≤t) (4.6)

Next Step Prediction

Following the model architecture in Figure 4.4, at time step t, input to the system is the

word at index t of the utterance, and outputs are the intent class, the slot label, and the

next word prediction. The RNN state ht encodes the information of all the words, intents,

and slot labels seen previously. The neural network model computes the outputs through

the following sequence of steps:

ht = LSTM(ht−1, [wt, ct−1, st−1]) (4.7)

P (ct|w≤t, c<t, s<t) = IntentDist(ht) (4.8)

P (st|w≤t, c<t, s<t) = SlotLabelDist(ht) (4.9)

P (wt+1|w≤t, c≤t, s≤t) = WordDist(ht, ct, st) (4.10)

where LSTM is the recurrent neural network function that computes the hidden state ht at

a step using the previous hidden state ht−1, the embeddings of the previous intent output

ct−1 and slot label output st−1, and the embedding of current input word wt. IntentDist,

SlotLabelDist, and WordDist are multilayer perceptrons (MLPs) with softmax outputs over
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intents, slot labels, and words respectively. Each of these three MLPs has its own set of

parameters. The intent and slot label distributions are generated by the MLPs with input

being the RNN cell output. The next word distribution is produced by conditioning on

current step RNN cell output together with the embeddings of the sampled intent and

sampled slot label.

Training

The network is trained to find the parameters θ that minimize the cross-entropy of the

predicted and true distributions for intent class, slot label, and next word jointly. The

objective function also includes an L2 regularization term R(θ) over the weights and biases

of the three MLPs. This equalizes to finding the parameters θ that maximize the below

objective function:

max
θ

T∑
t=0

[
αc logP (c∗|w≤t, c<t, s<t; θ) + αs logP (s∗t |w≤t, c<t, s<t; θ)

+αw logP (wt+1|w≤t, c≤t, s≤t; θ)
]
− λR(θ)

(4.11)

where c∗ is the true intent class and and s∗t is the true slot label at time step t. αc, αs,

and αw are the linear interpolation weights for the true intent, slot label, and next word

probabilities. During model training, ct can either be the true intent or mixture of true and

predicted intent. During inference, however, only predicted intent can be used. Confidence

of the predicted intent during the first few time steps is likely to be low due to the limited

information available, and the confidence level is likely to increase with the newly arriving

words. Conditioning on incorrect intent for next word prediction is not desirable. To mitigate

this effect, we propose to use a schedule to increase the intent contribution to the context

vector along the growing input word sequence. Specifically, during the first k time steps,

we disable the intent context completely by setting the values in the intent vector to zeros.

From step k+1 till the last step of the input word sequence, we gradually increase the intent
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context by applying a linearly growing scaling factor η from 0 to 1 to the intent vector. This

scheduled approach is illustrated in Figure 4.6.

Figure 4.6: Schedule of increasing intent contribution to the context vector along with the
growing input sequence.

Inference

For online inference, we simply take the greedy path of our conditional model without doing

search. The model emits the best intent class and slot label at each time step conditioning

on all previous emitted symbols:

ĉt = arg max
ct

P (ct|w≤t, ĉ<t, ŝ<t) (4.12)

ŝt = arg max
st

P (st|w≤t, ĉ<t, ŝ<t) (4.13)

4.2.2 Experiments

Results with True Text Input

Table 4.5 summarizes the experiment results of the joint SLU-LM model and its variations

using ATIS text corpus as input. The basic joint model (row 6) uses a shared representation

for all the three tasks. It gives slightly better performance on intent detection and next

word prediction, with some degradation on slot filling F1 score. If the RNN output ht is

connected to each task output directly via linear projection without using MLP, performance
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Model Intent Error F1 Score LM PPL
1 RecNN [41] 4.60 93.22 -
2 RecNN+Viterbi [41] 4.60 93.96 -
3 Independent training RNN intent model 2.13 - -
4 Independent training RNN slot filling model - 94.91 -
5 Independent training RNN language model - - 11.55
6 Basic joint training model 2.02 94.15 11.33
7 Joint model with local intent context 1.90 94.22 11.27
8 Joint model with recurrent intent context 1.90 94.16 10.21
9 Joint model with local & recurrent intent context 1.79 94.18 10.22
10 Joint model with local slot label context 1.79 94.14 11.14
11 Joint model with recurrent slot label context 1.79 94.64 11.19
12 Joint model with local & recurrent slot label context 1.68 94.52 11.17
13 Joint model with local intent + slot label context 1.90 94.13 11.22
14 Joint model with recurrent intent + slot label context 1.57 94.47 10.19
15 Joint model with local & recurrent intent + slot label context 1.68 94.45 10.28

Table 4.5: ATIS Test set results on intent detection error, slot filling F1 score, and language
modeling perplexity.

drops for intent classification and slot filling. Thus, we believe the extra discriminative power

introduced by the additional model parameters and non-linearity from MLP is useful for the

joint model.

Row 7 to row 9 of Table 4.5 illustrate the performance of the joint models with local,

recurrent, and local plus recurrent intent context, which correspond to model structures

described in Figure 4.5(b) to 4.5(d). It is evident that the recurrent intent context helps the

next word prediction, reducing the language model perplexity by 9.4% from 11.27 to 10.21.

The contribution of local intent context to next word prediction is limited. We believe the

advantageous performance of using recurrent context is a result of modeling predicted intent

history and intent variations along with the growing word sequence. For intent classification

and slot filling, performance of these models with intent context is similar to that of the

basic joint model.

Row 10 to row 12 of Table 4.5 illustrate the performance of the joint model with local,

recurrent, and local plus recurrent slot label context. Comparing to the basic joint model, the

introduced slot label context (both local and recurrent) leads to a better language modeling
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performance, but the contribution is not as significant as that from the recurrent intent

context. Moreover, the slot label context reduces the intent classification error from 2.02 to

1.68, a 16.8% relative error reduction. From the slot filling F1 scores in row 10 and row 11,

it is clear that modeling the slot label dependencies by connecting slot label output to the

recurrent state is very useful.

Row 13 to row 15 of Table 4.5 give the performance of the joint model with both intent and

slot label context. Row 15 refers to the model described in Figure 4.4. As can be seen from

the results, the joint model that utilizes two types of recurrent context maintains the benefits

of both, namely, the benefit of applying recurrent intent context to language modeling, and

the benefit of applying recurrent slot label context to slot filling. Another observation is that

once recurrent context is applied, the benefit of adding local context for next word prediction

is limited. It might hint that the most useful information for the next word prediction can

be well captured in the RNN state, and thus adding explicit dependencies on local intent

class and slot label is not very helpful.

Figure 4.7: LM perplexity of the joint SLU-LM models with different schedules in adjusting
the intent contribution to the context vector.

During the joint model training and inference, we used a schedule to adjust the intent

contribution to the context vector by linearly scaling the intent vector with the growing input

42



word sequence after step k. We found this technique to be critical in achieving advantageous

language modeling performance. Figure 6 shows test set perplexities along the training

epochs for models using different k values, comparing to the model with uniform (η = 1)

intent contribution. With uniform intent contribution across time, the context vector does

not bring benefit to the next word prediction, and the language modeling perplexity is similar

to that of the basic joint model. By applying the adjusted intent scale (k = 2), the perplexity

drops from 11.26 (with uniform intent contribution) to 10.29, an 8.6% relative reduction.

Results in ASR Settings

ASR Model (with LibriSpeech AM) WER Intent Error F1 Score
2-gram LM decoding 14.51 4.63 84.46
2-gram LM decoding + 5-gram LM rescoring 13.66 5.02 85.08
2-gram LM decoding + Independent training RNN LM rescoring 12.95 4.63 85.43
2-gram LM decoding + Joint training RNN LM rescoring 12.59 4.44 86.87

Table 4.6: ATIS test set results on ASR word error rate, intent detection error, and slot
filling F1 score with noisy speech input.

To further evaluate the robustness of the proposed joint SLU-LM model, we experimented

with noisy speech input and performed SLU on the rescored ASR outputs. Model per-

formance is evaluated in terms of ASR word error rate (WER), intent classification error,

and slot filling F1 score. As shown in Table 4.6, the model with joint training RNN LM

rescoring outperforms the models using 5-gram LM rescoring and independent training RNN

LM rescoring on all the three evaluation metrics. Using the rescored ASR outputs (12.59%

WER) as input to the joint training SLU model, the intent classification error increased by

2.87%, and slot filling F1 score dropped by 7.77% comparing to the setup using true text

input. The performance degradation is expected as we used a more challenging and realistic

setup with noisy speech input. These results in Table 4.6 show that our joint training model

outperforms the independent training model consistently on ASR and SLU tasks.
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4.3 Conclusion

In this chapter, we presented an attention-based bidirectional RNN model for joint intent

detection and slot filling. Joint model training enables effective representation learning of

the user’s natural language input. Using a joint model for the two SLU tasks also simplifies

the dialog system, as only one model needs to be trained and deployed. The proposed

models achieved state-of-the-art performance for both intent detection and slot filling on the

benchmark ATIS task. We further described a conditional RNN model that can be used to

jointly perform online spoken language understanding and language modeling. We showed

that by incrementally modeling user’s intent and slot label dependencies while new word in

user’s speech transcription arrives, the joint training model achieved superior performance

in intent detection and language modeling with slight degradation on slot filling comparing

to the independent training models. The joint model also showed consistent performance

gain over the independent training models in the more challenging and realistic setup using

noisy speech input.
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Chapter 5

End-to-End Dialog Modeling

In the previous chapter, we presented the proposed neural network based models for robust

spoken language understanding. In this chapter, we discuss how we can extend the recurrent

models for SLU to end-to-end dialog modeling. We will first present the architecture of our

neural network based task-oriented dialog model. Then, we discuss how we can train such

model in an end-to-end manner.

Conventional systems for task-oriented dialog usually consist of modules connected in a

pipeline for spoken language understanding, dialog management, and natural language gen-

eration (NLG) [9, 16, 14, 38]. Such pipeline system has a number of limitations. Firstly,

modules in current systems are highly handcrafted and designed with domain-specific rules.

This makes domain extension and user adaptation less flexible. Secondly, errors made in

the upper stream modules of the pipeline propagate to downstream components and get

amplified, making it hard to track the source of errors. Last but not least, current system

modules are usually trained independently, and their individual optimization targets may

not fully align with the overall system evaluation criteria (e.g. task success rate and user

satisfaction).

To address these limitations, efforts have been made recently in designing end-to-end frame-
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works for task-oriented dialogs. Wen et al. proposed an end-to-end trainable neural network

model [101] with modularly connected neural networks for each system component. Zhao

and Eskenazi introduced an end-to-end reinforcement learning framework [82] that jointly

performs dialog state tracking and policy learning. Li et al. proposed an end-to-end learning

framework [90] that leverages both supervised and reinforcement learning signals and showed

promising dialog modeling performance. Bordes andWeston proposed an end-to-end memory

network method [85], and modeled task-oriented dialog with a reasoning approach without

explicitly learning the dialog policy and tracking belief state.

In this chapter, we present the proposed end-to-end trainable neural network model for task-

oriented dialog. The model uses a unified neural network with differentiable connections for

belief tracking, knowledge base (KB) operation, and response creation. The model is able

to track dialog state, interface with a KB, and incorporate structured KB query results into

system responses to successfully complete task-oriented dialogs. This chapter is based on

the work presented in [92, 107].

5.1 System Architecture

Figure 5.1 shows the overall architecture of the proposed end-to-end task-oriented dialog

model. We use a hierarchical LSTM neural network to encode a dialog with a sequence

of turns. User input to the system in natural language format is encoded to a continuous

vector via a bidirectional LSTM utterance encoder, similar to encoding method described

in Chapter 4.1. Instead of performing utterance level intent prediction and slot filling, we

directly feed this continuous representation of user utterance to a dialog-level LSTM together

with the encoding of the previous system action. State of this dialog-level LSTM maintains

a continuous representation of the dialog state. Based on this state, the model generates

a probability distribution over candidate values for each of the tracked goal slots. A query

command can then be formulated with the state tracking outputs and issued to a knowledge
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User: Movie for the day 
after tomorrow, please

System: Ok, what 
time do you prefer? 
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Figure 5.1: End-to-end task-oriented dialog system architecture.

base to retrieve requested information. Finally, the system produces a dialog action, which is

conditioned on information from the dialog state, the estimated user’s goal, and the encoding

of the query results. This dialog action, together with the user goal tracking results and the

query results, is used to generate the final natural language system response via a natural

language generator. We describe each core model component in detail in the following

sections.

5.1.1 Utterance Encoding

We use a bidirectional LSTM to encode the user utterance to a continuous representation.

We refer to this LSTM as the utterance-level LSTM. The user utterance vector is generated

by concatenating the last forward and backward LSTM states. Let Uk = (w1, w2, ..., wTk
) be

the user utterance at turn k with Tk words. These words are firstly mapped to an embedding

space, and further serve as the step inputs to the bidirectional LSTM. Let −→ht and
←−
ht represent

the forward and backward LSTM state outputs at time step t. The user utterance vector Uk

is produced by:

Uk = [
−→
hUk
Tk
,
←−
hUk

1 ] (5.1)

where −→hTk
and ←−h1 are the last states in the forward and backward LSTMs.
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5.1.2 Dialog State Tracking

Dialog state tracking, or belief tracking, maintains the state of a conversation, such as user’s

goals, by accumulating evidence along the sequence of dialog turns. Our model maintains the

dialog state in a continuous form in the dialog-level LSTM (LSTMD) state sk. sk is updated

after the model processes each dialog turn by taking in the encoding of user utterance Uk and

the encoding of the previous turn system output Ak−1. This dialog state serves as the input

to the dialog state tracker. The tracker updates its estimation of the user’s goal represented

by a list of slot-value pairs. A probability distribution P (lmk ) is maintained over candidate

values for each goal slot type m ∈M :

sA,k = LSTMA(sA,k−1, [Uk, Ak−1]) (5.2)

P (lmA,k |U≤k,A<k) = SlotDistmA (sA,k) (5.3)

where SlotDistm is a single hidden layer MLP with softmax activation over slot type m ∈M .

5.1.3 KB Operation

Conditioning on the state of the conversation, the model may issue an API call to query

the KB based on belief tracking results. A simple API call command template is firstly

generated by the model. The final API call command is produced by replacing the slot

type tokens in the command template with the best hypothesis for each of the goal slot

from the belief tracker. In movie search domain, an example API call template can be

“api_call 〈movie〉 〈date〉 〈time〉”, and the tokens are to be replaced with the dialog state

tracker outputs to form the final API call command “api_call star_wars sunday dontcare”.

In interfacing with KBs, instead of using a soft KB lookup as in [111], our model sends sym-

bolic queries to the KB and leaves the ranking of the KB entities to an external recommender

system. Entity ranking in real world systems can be made with much richer features (e.g.
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Figure 5.2: Proposed end-to-end task-oriented neural dialog model.

user profiles, local context, etc.) in the back-end system other than just following entity

posterior probabilities conditioning on a user utterance. Hence ranking of the KB entities

is not a part of our proposed neural dialog model. We assume that the model receives a

ranked list of KB entities according to the issued query and other available sources, such as

user models.

Once the KB query results are returned, we save the retrieved entities to a queue and encode

the result summary to a vector. Rather than encoding the real KB entity values as in [85,

87], we only encode a summary of the query results (i.e. item availability and number of

matched items). This encoding serves as a part of the input to the policy network.

5.1.4 Dialog Policy

Dialog policy selects the next system action in response to the user’s input based on the

current dialog state. We use a deep neural network to model the dialog policy. There

are three inputs to the policy network, (1) the dialog-level LSTM state sk, (2) the log

probabilities of candidate values from the belief tracker vk, and (3) the encoding of the

query results summary Ek. The policy network emits a system action in the form of a dialog
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act conditioning on these inputs:

P (aA,k |U≤k,A<k,E≤k) = PolicyNetA(sA,k, vk, Ek) (5.4)

where vk represents the concatenated log probabilities of candidate values for each goal slot,

Ek is the encoding of query results, and PolicyNet is a single hidden layer MLP with softmax

activation function over all system actions.

5.1.5 System Response Generation

The emitted system action from the policy network is finally used to produce a system

response in natural language format by combining the state tracker outputs and the retrieved

KB entities. We use a template based natural language generator. The delexicalised tokens

in the NLG template are replaced by the values from either the estimated user goal values

or the KB entities, depending on the emitted system action.

5.2 Model Training

By connecting all the system components, we have an end-to-end model for task-oriented

dialog. Each system component is a neural network that takes in underlying system com-

ponent’s outputs in a continuous form that is fully differentiable, and the entire system

(utterance encoding, dialog state tracking, and policy network) can be trained end-to-end.

We train the system in a supervised manner by fitting task-oriented dialog samples. The

model predicts the true user goal slot values and the next system action at each turn of

a dialog. We optimize the model parameter set θ by minimizing a linear interpolation of
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cross-entropy losses for dialog state tracking and system action prediction:

min
θA

K∑
k=1
−
[ M∑
m=1

λlm logP (lmA,k∗|U≤k,A<k,E<k; θA)

+λa logP (a∗A,k|U≤k,A<k,E≤k; θA)
] (5.5)

where λs are the linear interpolation weights for the cost of each system output. lmk ∗ is the

ground truth label for the tracked user goal slot type m ∈M at the kth turn, and a∗k is the

true system action in the corpus.

We perform mini-batch model training with batch size of 32 using Adam optimization method

[46]. Regularization with dropout is applied to the non-recurrent connections [51] during

model training with dropout rate of 0.5. We set the maximum norm for gradient clipping to

5 to prevent exploding gradients.

Hidden layer sizes of the dialog-level LSTM and the utterance-level LSTM are set as 200

and 150 respectively. Word embeddings of size 300 are randomly initialized. We also explore

using pre-trained word vectors [35] that are trained on Google News dataset to initialize the

word embeddings.

5.3 Experiments

5.3.1 Data Set

We evaluate the proposed model using DSTC2 [42] dataset in restaurant search domain.

Bordes and Weston [85] transformed the original DSTC2 corpus by adding system commands

and removing the dialog state annotations. This transformed corpus contains additional API

calls that the system would make to the KB and the corresponding KB query results. We

combine the original DSTC2 corpus and this transformed version by keeping the dialog

state annotations and adding the system commands. We can thus perform more complete
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User goal: {“goal”: {“constraints”: [[“food”, “french”], [“pricerange”, “dontcare”]],
“request-slots”: [“addr”, “phone”]}}

Agent: Hello, welcome to the Cambridge restaurant system. You can ask for restaurants by area,
price range or food type. How may I help you?

User: uh yes im looking for malaysian food
Agent: I’m sorry but there is no restaurant serving malaysian food
User: uh okay how about french food
Agent: You are looking for a french restaurant right?
User: yes and i dont care about the price range
Agent: Sorry would you like something in the cheap price range or you dont care
User: i dont care
Agent: What part of town do you have in mind?
User: uh it doesnt matter
Agent: cote serves french food
User: okay um
Agent: Sure , cote is on Bridge Street City Centre
User: whats the address
Agent: Sure , cote is on Bridge Street City Centre
User: okay and whats the phone number
Agent: The phone number of cote is 01223 311053
User: okay and um
Agent: restaurant two two serves french food
User: thank you bye

Table 5.1: DSTC2 dialog samples.

evaluation of our model’s capability in tracking the dialog state, processing KB query results,

and conducting complete dialog. Statistics of this augmented DSTC2 data set is summarized

in the Table 5.2.

Table 5.2: Statistics of the augmented DSTC2 data set.

Number of train / dev / test dialogs 1618 / 500 / 1117
Number of turns per dialog in average 9.21
(including API call commands)
Number of area / food / pricerange options 5 / 91/ 3
Number of delexicalised response candidates 78

Additionally, we evaluate the system on a large scale dialog corpus1 in movie booking domain.

The movie booking dialog corpus is generated [109] using a finite state machine based dialog

agent and an agenda based user simulator [19] with natural language utterances rewritten
1The dataset can be accessed via https://github.com/google-research-datasets/

simulated-dialog
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by real users. The user simulator can be configured with different personalities, showing var-

ious levels of randomness and cooperativeness. This user simulator is also used to interact

with our end-to-end training agent during imitation and reinforcement learning stages. We

randomly select a user profile when conducting each dialog simulation. During model eval-

uation, we use an extended set of natural language surface forms over the ones used during

training time to evaluate the generalization capability of the proposed end-to-end model in

handling diverse natural language inputs.

5.3.2 Results and Analysis

We first experiment with different text encoding methods and recurrent model architectures

to find best performing model. Table 5.3 shows the evaluation results of models using

different user utterance encoding methods and different word embedding initialization on

DSTC2 dataset. Bidirectional LSTM (Bi-LSTM) shows clear advantage in encoding user

utterance comparing to bag-of-means on word embedding (BoW Emb) method, improving

the joint goal prediction accuracy by 4.6% and the final system response accuracy by 1.4%.

Using pre-trained word vectors (word2vec) boosts the model performance further. These

results show that the semantic similarities of words captured in the pre-trained word vectors

are helpful in generating a better representation of user input, especially when the utterance

contains words or entities that are rarely observed during training.

Table 5.3: Prediction accuracy for entity pointer, joint user goal, delexicalised system re-
sponse, and final system response of DSTC2 test set using different encoding methods and
word vector initializations.

Entity Joint De-lex Final
Model Pointer Goal Res Res

BoW Emb Encoder 93.5 72.6 55.4 51.2
+ word2vec 93.6 74.3 55.9 51.5

Bi-LSTM Encoder 93.8 77.2 55.8 52.6
+ word2vec 94.4 76.6 56.6 52.8

Table 5.4 and Table 5.5 show the supervised learning model performance on DSTC2 and the
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movie booking corpus. Evaluation is made on DST accuracy. For the evaluation on DSTC2

corpus, we use the live ASR transcriptions as the user input utterances. Our proposed model

achieves near state-of-the-art dialog state tracking results on DSTC2, on both individual slot

tracking and joint slot tracking, comparing to the recent published results using RNN [43]

and neural belief tracker (NBT) [76]. In the movie booking domain, our model also achieves

promising performance on both individual slot tracking and joint slot tracking accuracy.

Instead of using ASR hypothesis as model input as in DSTC2, here we use text based input

which has much lower noise level in the evaluation of the movie booking tasks. This partially

explains the higher DST accuracy in the movie booking domain comparing to DSTC2.

Table 5.4: Dialog state tracking results on the standard DSTC2 dataset

Model Area Food Price Joint
RNN 92 86 86 69
RNN+sem. dict 92 86 92 71
NBT 90 84 94 72
Our E2E model 90 84 92 72

Table 5.5: Dialog state tracking results on movie booking dataset

Model Num_ticket Movie Theater Date Time Joint
Our E2E model 98.22 91.86 97.33 99.31 97.71 84.57

Finally, we compare the performance of the proposed method to recently published works

using per-response accuracy metric. Even though using the same evaluation measurement,

our model is designed with slightly different settings comparing to other published models

in Table 5.6. Instead of using additional matched type features [85, 97] (i.e. KB entity type

feature for each word, e.g. whether a word is a food type or area type, etc.), we use user’s goal

slots at each turn that are mapped from the original DSTC2 dataset as additional supervised

signals in our model. Moreover, instead of treating KB query results as unstructured text,

we treat them as structured entities and let our model to pick the right entity by selecting

the most appropriate entity pointer. Our proposed model successfully predicts 52.8% of the

true system responses given the single best ASR transcription of the user utterances.
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Table 5.6: Performance of the proposed model in terms of per-response accuracy comparing
to previous approaches.

Model Per-res Accuracy

Memory Networks [85] 41.1
Gated Memory Networks [95] 48.7
Sequence-to-Sequence [87] 48.0
Query-Reduction Networks [97] 51.1
Hierarchical LSTM E2E 52.8

To further understand the prediction errors made by our model, we conduct human eval-

uation by inviting 10 users to evaluate the appropriateness of the responses generated by

our system. While some of the errors are made on generating proper API calls due to the

errors in dialog state tracking results, we also find quite a number of responses that are

considered appropriate by our judges but do not match to the reference responses in DSTC2

test set. For example, there are cases where our system directly issues the correct API call

(e.g. “api_call south italian expensive”) based on user’s request, instead of asking user for

confirmation of a goal type (e.g. "Did you say you are looking for a restaurant in the south

of town?") as in the reference corpus. By taking such factors into consideration, our system

is able to generate appropriate responses in 73.6% of the time based on feedback from the

judges. These results show that the existing performance metrics do not well correlate with

human judgments [75], and better dialogs evaluation measurements should to be further

explored.

5.4 Conclusion

In this chapter, we described an end-to-end trainable neural network model for task-oriented

dialog systems. The model is capable of interfacing with a knowledge base (KB) by issuing

API calls and incorporating structured KB query results into system responses to successfully

complete task-oriented dialogs. In the evaluation in a restaurant search domain using data

from the second Dialog State Tracking Challenge (DSTC2) and a movie booking domain, we
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showed that the proposed model achieved robust performance in tracking dialog state over

the sequence of dialog turns. We further demonstrated the model’s superior performance in

predicting the next system response comparing to prior end-to-end trainable neural network

models.
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Chapter 6

Dialog Learning with

Human-in-the-Loop

In the previous chapter, we described our neural network based task-oriented dialog model

and showed how we can train it offline in a supervised manner using annotated dialog samples.

Comparing to chit-chat dialog models that are usually trained using single-turn context-

response pairs, task-oriented dialog model involves reasoning and planning over multiple

dialog turns. The dialog state space grows exponentially with the growing number of dialog

turns. In practice, it can be very challenging to collect large enough dialog samples in every

single task domain that cover all possible dialog scenarios for supervised model training.

This makes it especially important for a system to be able to continuously learn from user

interactions.

In this chapter, we present how the proposed neural dialog system can continuously improve

itself through online interactions with humans. We let the supervised pre-trained dialog agent

to interact with users and conduct task-oriented dialogs and show how we can continuously

improve it with the feedback from users using deep reinforcement learning (RL) methods.

Previous work on RL based interactive learning systems [32, 78, 99] can only improve the
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dialog policy module of the system using the user feedback. We will show how we can

optimize the dialog agent end-to-end using the proposed neural network based model. We

further illustrate the benefit of performing such end-to-end system optimization.

In addition to improving the system by only collecting simple forms of user feedback, we

further investigate how we can enhance the learning efficiency by asking users for additional

instructions. Imagine a scenario where a dialog agent does not know how to perform a certain

task. Instead of letting the agent to explore the action space only by trial and error, we can

ask users to demonstrate the desired agent behaviors and let the agent to quickly learn from

such human demonstrations. We will show how we can let the agent to learn effectively

from such human teaching and feedback with a hybrid imitation and reinforcement learning

method. This chapter is based on the publication in [93, 107].

6.1 End-to-End Model Optimization with Deep RL

Many of the recently proposed end-to-end models are trained in supervised manner [101, 85,

87, 92] by learning from human-human or human-machine dialog corpora. Deep RL based

systems [90, 91, 102, 111] that learns by interacting with human user or user simulator

have also been studied in the literature. Comparing to supervised training models, systems

trained with deep RL showed improved task success rate and model robustness towards

diverse dialog scenarios.

We model task-oriented dialog as a sequential decision making problem, where an agent

select an action to take at each dialog turn conditioning on the current dialog state. The

goal is that such sequence of actions finally leads to a maximized expected reward. Our

interactive learning system is based on the system architecture described in Chapter 5. Each

system component takes in underlying component’s outputs in a continuous from which is

fully differentiable with respect to the system optimization target. This makes the entire

system end-to-end trainable with the feedback received from the users.
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6.1.1 Model

In this section, we define the state, action, and reward in our RL dialog model training

setting and present the training details.

State The system maintains a continuous representation of the dialog state after pro-

cessing the user inputs at each turn k. This continuous form dialog state is encoded in

the dialog-level LSTM state sA,k. This continuous form state, together with the agent’s

estimation of candidate value probability distribution for each slot and the encoding of the

KB query results summary, forms the final state representation for the policy network, i.e.

statek = [sA,k, vk, Ek]. Such representation may encode information of the entire conversation

history and related external knowledge up up till the current turn.

Action Actions of the dialog agent is the system action outputs aA,k. An action is sampled

by the agent based on a stochastic representation of the policy, which produces a probability

distribution over actions given a dialog state. The action space is finite and discrete. The

system action is defined with the act and slot types from a dialog act [33]. For example, the

dialog act “confirm(date = monday)” is mapped to a system action “confirm_date” and

a candidate value “monday” for slot type “date”. The slot types and values are from the

dialog state tracking output.

Reward The reward r is received at the end of a dialog from the user. If a user simulator

is used in the experiment, we apply task-completion as the metric in designing the dialog

reward. One can extend it by introducing additional factors to the reward functions, such as

naturalness of interactions or costs associated with KB queries. A positive reward is applied

for successful tasks, and a zero reward is applied for failed tasks.

For each proceeding turns, we assign a small penalty as step reward to encourage the agent

to complete the task in fewer steps. The final turn-level reward is obtained by summing the

discounted step rewards in future turns with a discount factor γ ∈ [0, 1). To reduce variance
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Figure 6.1: Interactive learning with human feedback.

in the calculated reward for policy update, we establish a baseline reward using the state

value function V (sA,k). This function is a feed-forward neural network with a single hidden

layer and a regression function output. The final reward Rk used for RL training is thus the

reward advantage over the baseline: Rk = ∑K
t=k γ

t−krt − V (sA,k).

6.1.2 Optimization

We optimize the dialog agent using REINFORCE [3] with the reward described above. The

objective function is written as:

Jk(θA) = EθA
[Rk] = EθA

[
K∑
t=k

γt−krt − V (sA,k)
]

(6.1)

With likelihood ratio gradient estimator, the gradient of Jk(θA) can be derived with:

∇θA
Jk(θA) = ∇θA

EθA
[Rk]

=
∑

aA,k∈A
πθA

(aA,k|·)∇θA
log πθA

(aA,k|·)Rk

= EθA
[∇θA

log πθA
(aA,k|·)Rk]

(6.2)

During model training, we encourage the agent to explore the dialog action space by sampling

agent actions from the softmax policy network output. During model evaluation, we let the
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agent to use the greedy policy by selecting action that has the highest probability score.

6.1.3 Experiments

We evaluate the proposed method on the dialog corpus in movie booking domain described

in Chapter 5.3.1. The state size of the dialog-level and utterance-level LSTM is as 200 and

150. Hidden layer size of the policy network is set as 100. We used randomly initialized word

embedding of size 300. Adam optimization method [46] with initial learning rate of 1e-3 is

used for mini-batch training. Dropout rate of 0.5 is applied during training to prevent the

model from over-fitting.

In the evaluation against a user simulator, we take a task-oriented dialog as successful if the

goal slot values estimated by the state tracker fully match to the user’s true goal values, and

the system is able to offer an entity which is finally accepted by the user. Maximum allowed

number of dialog turn is set as 15. A positive reward of +15.0 is given to the agent at the

end of a success dialog, and a zero reward is given in a failure case. We apply a step penalty

of -1.0 for each turn to encourage shorter dialog in completing the task.

Figure 6.2 shows the RL curves of the proposed model on dialog task success rate and average

dialog turn size. Evaluation is based on dialog simulations between our proposed end-to-end

dialog agent and the rule based user simulator. This is different from the evaluations based

on fixed dialog corpora as in Table 5.4 and 5.5. The policy gradient based RL training is

performed on top of the supervised training model. We compare models with two RL training

settings, the end-to-end training and the policy-only training, to the baseline supervised

learning (SL) model.

As shown in Figure 6.2(a), the SL model performs poorly during user interaction, indicating

the limited generalization capability of the SL model to unseen dialog state. Any mistake

made by the agent during user interaction may lead to deviation of the dialog from the

training dialog trajectories and states. The SL agent does not know how to recover from an
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(a) (b)

Figure 6.2: RL curves on (a) dialog task success rate and (b) average dialog turn size.

unknown state, which leads to final task failure. RL model training, under both end-to-end

learning and policy-only learning settings, continuously improves the task success rate with

the growing number of user interactions. We see clear advantage of performing end-to-end

model update in achieving higher dialog task success rate comparing to only updating the

policy network during interactive learning.

Figure 6.2(b) shows the learning curves for the average number of turns in successful di-

alogs. We observe decreasing number of dialog turns along the growing number of interactive

learning episodes. This shows that the dialog agent learns better strategies to successfully

complete the task in fewer numbers of turns. Similar to the results for task success rate, the

end-to-end training model outperforms the model with policy-only optimization during RL

training, achieving lower average number of dialog turns in successfully completing a task.

Human Evaluation

We further evaluate our proposed method with human judges recruited via Amazon Mechan-

ical Turk. Each judge is asked to read a dialog between our model and the user simulator

and rate each system turn on a scale of 1 (frustrating) to 5 (optimal way to help the user).

Each turn is rated by 3 different judges. We rate the three models with 100 dialogs each: (i)

the SL model, (ii) SL with policy-only RL model, and (iii) SL with end-to-end RL model.
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Table 6.1 lists the mean and standard deviation of human evaluation scores over all system

turns: end-to-end optimization with RL clearly improves the quality of the model according

to human judges.

Model Score
SL 3.987 ± 0.086
SL + policy-only RL 4.261 ± 0.089
SL + end-to-end RL 4.394 ± 0.087

Table 6.1: Human evaluation results. Mean and standard deviation of crowd worker scores
(between 1 to 5).

6.2 Dialog Learning with Human Teaching and Feed-

back

In the previous section, we described how we can let the neural dialog agent to learn interac-

tively from user feedback with deep reinforcement learning methods. The system optimiza-

tion with RL is performed based on the supervised pretraining model using human-human or

human-machine dialog corpus. Such hybrid supervised and reinforcement learning method

is also used in several other recent works on dialog and policy learning, as training dialog

policy online from scratch with RL typically requires a large number of interactive learning

sessions before an agent can reach a satisfactory performance level.

A potential drawback with such pretraining approach is that the model may suffer from the

mismatch of dialog state distributions between supervised training and interactive learning

stages. While interacting with users, the agent’s response at each turn has a direct influence

on the distribution of dialog state that the agent will operate on in the upcoming dialog

turns. If the agent makes a small mistake and reaches an unfamiliar state, it may not know

how to recover from it and get back to a normal dialog trajectory. This is because such

recovery situation may be rare for good human agents and thus are not well covered in the

supervised training corpus. This will result in compounding errors in a dialog which may
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Figure 6.3: Interactive learning with human teaching.

lead to failure of a task. RL exploration might finally help to find corresponding actions to

recover from a bad state, but the search process can be very inefficient.

To ameliorate the effect of dialog state distribution mismatch between offline training and

RL interactive learning, we propose a hybrid imitation and reinforcement learning method.

We first let the agent to interact with users using its own policy learned from supervised

pretraining. When an agent makes a mistake, we ask users to correct the mistake by demon-

strating the agent the right actions to take at each turn. This user corrected dialog sample,

which is guided by the agent’s own policy, is then added to the existing training corpus. We

fine-tune the dialog policy with this dialog sample aggregation [24] and continue such user

teaching process for a number of cycles. Since asking for user teaching at each dialog turn

is costly, we want to reduce this user teaching cycles as much as possible and continue the

learning process with RL by collecting simple forms of user feedback (e.g. a binary feedback,

positive or negative) only at the end of a dialog.

6.2.1 Imitation Learning with Human Teaching

Once obtaining a supervised training dialog agent, we let the agent to learn interactively

from users by conducting task-oriented dialogs. Supervised learning succeeds when training

and test data distributions match. During the agent’s interaction with users, any mistake
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Algorithm 3 Dialog Learning with Human Teaching and Feedback
1: Train model end-to-end on dialog samples D with MLE and obtain policy πθA

(a|s)
2: for learning iteration k = 1 : K do
3: Run πθA

(a|s) with user to collect new dialog samples Dπ

4: Ask user to correct the mistakes in the tracked user’s goal for each dialog turn in Dπ

5: Add the newly labeled dialog samples to the existing corpora: D ← D ∪Dπ

6: Train model end-to-end on D and obtain an updated policy πθA
(a|s)

7: end for
8: for learning iteration k = 1 : N do
9: Run πθA

(a|s) with user for a new dialog
10: Collect user feedback as reward r
11: Update model end-to-end and obtain an updated policy πθA

(a|s)
12: end for

made by the agent or any deviation in the user’s behavior may lead to a different dialog state

distribution than the one that the supervised learning agent saw during offline training. A

small mistake made by the agent due to this covariate shift [22, 24] may lead to compounding

errors which finally lead to failure of a task. To address this issue, we propose a dialog

imitation learning method which allows the dialog agent to learn from human teaching.

We let the supervised training agent to interact with users using its learned dialog policy

πθA
(a|s). With this, we collect additional dialog samples that are guided by the agent’s own

policy, rather than by the expert policy as those in the supervised training corpora. When

the agent makes mistakes, we ask users to correct the mistakes and demonstrate the expected

actions and predictions for the agent to make. Such user teaching precisely addresses the

limitations of the currently learned dialog model, as these newly collected dialog samples are

driven by the agent’s own policy. Specifically, in this study we let an expert user to correct

the mistake made by the agent in tracking the user’s goal at the end of each dialog turn.

This new batch of annotated dialogs are then added to the existing training corpus. We

start the next round of supervised model training on this aggregated corpus to obtain an

updated dialog policy and continue this dialog imitation learning cycles.
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6.2.2 Experiments

Evaluations of interactive learning with imitation and reinforcement learning are made on

metrics of (1) task success rate, (2) dialog turn size, and (3) dialog state tracking accuracy.

Figures 6.4, 6.5, and 6.6 show the learning curves for the three evaluation metrics. In

addition, we compare model performance on task success rate using two different RL training

settings, the end-to-end training and the policy-only training, to show the advantages of

performing end-to-end system optimization with RL.

Task Success Rate

As shown in the learning curves in Figure 6.4, the SL model performs poorly. This might

largely due to the compounding errors caused by the mismatch of dialog state distribution

between offline training and interactive learning. We use an extended set of user NLG

templates during interactive evaluation. Many of the test NLG templates are not seen by

the supervised training agent. Any mistake made by the agent in understanding the user’s

request may lead to compounding errors in the following dialog turns, which cause final task

failure. The red curve (SL + RL) shows the performance of the model that has RL applied

on the supervised pretraining model. We can see that interactive learning with RL using

a weak form of supervision from user feedback continuously improves the task success rate

with the growing number of user interactions. We further conduct experiments in learning

dialog model from scratch using only RL (i.e. without supervised pretraining), and the task

success rate remains at a very low level after 10K dialog simulations. We believe that it is

because the dialog state space is too complex for the agent to learn from scratch, as it has

to learn a good NLU model in combination with a good policy to complete the task. The

yellow curve (SL + IL 500 + RL) shows the performance of the model that has 500 episodes

of imitation learning over the SL model and continues with RL optimization. It is clear from

the results that applying imitation learning on supervised training model efficiently improves
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Figure 6.4: Interactive learning curves on task success rate.

task success rate. RL optimization after imitation learning increases the task success rate

further. The blue curve (SL + IL 1000 + RL) shows the performance of the model that has

1000 episodes of imitation learning over the SL model and continues with RL. Similarly, it

shows hints that imitation learning may effectively adapt the supervised training model to

the dialog state distribution during user interactions.

Average Dialog Turn Size

Figure 6.5 shows the curves for the average turn size of successful dialogs. We observe de-

creasing number of dialog turns in completing a task along the growing number of interactive

learning sessions. This shows that the dialog agent learns better strategies in successfully

completing the task with fewer number of dialog turns. The red curve with RL applied di-

rectly after supervised pretraining model gives the lowest average number of turns at the end

of the interactive learning cycles, comparing to models with imitation dialog learning. This

seems to be contrary to our observation in Figure 6.4 that imitation learning with human

teaching helps in achieving higher task success rate. By looking into the generated dialogs,

we find that the SL + RL model can handle easy tasks well but fails to complete more chal-
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Figure 6.5: Interactive learning curves on average dialog turn size.

lenging tasks. Such easy tasks typically can be handled with fewer number of turns, which

result in the low average turn size for the SL + RL model. On the other hand, the imitation

plus RL models attempt to learn better strategies to handle those more challenging tasks,

resulting in higher task success rates and also slightly increased dialog length comparing to

SL + RL model.

Dialog State Tracking Accuracy

Similar to the results on task success rate, we see that imitation learning with human teaching

quickly improves dialog state tracking accuracy in just a few hundred interactive learning

sessions. The joint slots tracking accuracy in the evaluation of SL model using fixed corpus

is 84.57% as in Table 5.5. The accuracy drops to 50.51% in the interactive evaluation

with the introduction of new NLG templates. Imitation learning with human teaching

effectively adapts the neural dialog model to the new user input and dialog state distributions,

improving the DST accuracy to 67.47% after only 500 imitation dialog learning sessions.

Another encouraging observation is that RL on top of SL model and IL model not only

improves task success rate by optimizing dialog policy, but also further improves dialog state
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Figure 6.6: Interactive learning curves on dialog state tracking accuracy.

tracking performance. This shows the benefits of performing end-to-end optimization of the

neural dialog model with RL during interactive learning.

Human Evaluation

We further evaluate the proposed method with human judges recruited via Amazon Mechan-

ical Turk in the similar setting described in section 6.1. As shown in Table 6.2, performing

interactive learning with imitation and reinforcement learning clearly improves the quality

of the model according to human judges.

Model Score
SL 3.987 ± 0.086
SL + IL 1000 4.378 ± 0.082
SL + IL 1000 + RL 4.603 ± 0.067

Table 6.2: Human evaluation results on dialog learning methods with human teaching and
feedback.
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6.3 Conclusion

In this chapter, we presented how we can train task-oriented dialog systems through user

interactions, where the agent can improve itself via communicating with users and learning

from the mistake it makes. We designed a hybrid imitation and reinforcement learning

method, with which a supervised training agent can continuously improve itself by learning

from user teaching and feedback with imitation and reinforcement learning. We evaluated

the proposed learning method in both a simulated environment against user simulators and

a real user evaluation setting. Experimental results showed that the proposed neural dialog

agent can effectively learn from user teaching and improve task success rate with imitation

learning. Applying reinforcement learning with user feedback after imitation learning with

user teaching improved the model performance further, not only on the dialog policy but

also on the dialog state tracking in the end-to-end learning framework.
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Chapter 7

Dialog Learning with Adversarial

Training

In the previous chapter, we discussed how we can let the dialog agent to learn interactively

from users. Such training setting assumes the model has access to a reward signal at the

end of a dialog, either in the form of a binary user feedback or a continuous user score.

A challenge with such setting is that user feedback may be inconsistent [78] and may not

always be available in practice. Furthermore, online dialog policy learning with RL usually

suffers from sample efficiency issue [99], which requires an agent to make a large number of

feedback queries to users.

To reduce the high demand for user feedback in online policy learning, solutions have been

proposed to design or to learn a reward function that can be used to generate a reward in

approximation to a user feedback. Designing a good reward function is not easy [8] as it

typically requires strong domain knowledge. El Asri et al. [39] proposed a learning based

reward function that is trained with task completion transfer learning. Su et al. [78] proposed

an online active learning method for reward estimation using Gaussian process classification.

These methods still require annotations of dialog ratings by users, and thus may also suffer
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from the rating consistency and learning efficiency issues.

To address the above discussed challenges, we investigate the effectiveness of learning dialog

rewards directly from dialog samples. Inspired by the success of adversarial training in

computer vision [53] and natural language generation [89], we propose an adversarial learning

method for task-oriented dialog systems. We jointly train two models, a generator that

interacts with the environment to produce task-oriented dialogs, and a discriminator that

marks a dialog sample as being successful or not. The generator is a neural network based

task-oriented dialog agent. The environment that the dialog agent interacts with is the user.

Quality of a dialog produced by the agent and the user is measured by the likelihood that it

fools the discriminator to believe that the dialog is a successful one conducted by a human

agent. We treat dialog agent optimization as a reinforcement learning problem. The output

from the discriminator serves as a reward to the dialog agent, pushing it towards completing

a task in a way that is indistinguishable from how a human agent completes it.

In this chapter, we will discuss how the adversarial learning reward function compares to

designed reward functions in learning a good dialog policy. We analyze the impact of the

size of annotated dialog samples to the effectiveness of dialog adversarial learning. We

further discuss the covariate shift issue in interactive adversarial learning and show how we

can address that with partial access to user feedback. This chapter is based on the work

presented in [105].

7.1 Model

7.1.1 Neural Dialog Agent

The generator is the neural network based task-oriented dialog agent that described in Chap-

ter 5.1. The agent uses an LSTM recurrent neural network to model the sequence of turns

in a dialog. At each turn, the agent takes a best system action conditioning on the current
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dialog state. A continuous form dialog state is maintained in the LSTM state sA,k. At each

dialog turn k, user input Uk and previous system output Ak−1 are firstly encoded to con-

tinuous representations. The user input can either in the form of a dialog act or a natural

language utterance. We use dialog act form user input in this experiment. The dialog act

representation is obtained by concatenating the embeddings of the act and the slot-value

pairs. If natural language form of input is used, we can encode the sequence of words using a

bidirectional RNN and take the concatenation of the last forward and backward states as the

utterance representation, similar to [80] and [92]. The belief tracker updates its estimation

of the user’s goal by maintaining a probability distribution P (lmA,k over candidate values for

each of the tracked goal slot type m ∈ M . Conditioning on the current dialog state sA,k,

the probability distribution of estimated user goal slot values vk, and the encoding of the

information retrieved from external sources Ek, the policy network produce a best action for

the system to take.

7.1.2 Dialog Reward Estimator

The discriminator model is a binary classifier that takes in a dialog with a sequence of turns

and outputs a label indicating whether the dialog is a successful one or not. The logistic

function returns a probability of the input dialog being successful. The discriminator model

design is as shown in Figure 7.1. We use a bidirectional LSTM to encode the sequence of

turns. At each dialog turn k, input to the discriminator model is the concatenation of (1)

encoding of the user input Uk, (2) encoding of the query result summary Ek, and (3) encoding

of agent output Ak. The discriminator LSTM output at each step k, hk, is a concatenation

of the forward LSTM output −→hk and the backward LSTM output ←−hk: hk = [−→hk,
←−
hk].

Once obtaining the discriminator LSTM state outputs {h1, . . . , hK}, we experiment with

four different methods in combining these state outputs to generated the final dialog repre-

sentation d for the binary classifier:
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Figure 7.1: Design of the dialog reward estimator: Bidirectional LSTM with max pooling.

BiLSTM-last Produce the final dialog representation d by concatenating the last LSTM

state outputs from the forward and backward directions: d = [−→hK ,
←−
h1]

BiLSTM-max Max-pooling. Produce the final dialog representation d by selecting the

maximum value over each dimension of the LSTM state outputs.

BiLSTM-avg Average-pooling. Produce the final dialog representation d by taking the

average value over each dimension of the LSTM state outputs.

BiLSTM-attn Attention-pooling. Produce the final dialog representation d by taking

the weighted sum of the LSTM state outputs. The weights are calculated with attention

mechanism:

d =
K∑
k=1

αkhk (7.1)

and

αk = exp(ek)∑K
t=1 exp(et)

, ek = g(hk) (7.2)

g a feed-forward neural network with a single output node. Finally, the discriminator pro-
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duces a value indicating the likelihood the input dialog being a successful one:

D(d) = σ(Wod+ bo) (7.3)

where Wo and bo are the weights and bias in the discriminator output layer. σ is a logistic

function.

7.1.3 Adversarial Model Training

Once we obtain a dialog sample initiated by the agent and a dialog reward from the reward

function, we optimize the dialog agent using REINFORCE [3] with the given reward. The

reward D(d) is only received at the end of a dialog, i.e. rK = D(d). We discount this final

reward with a discount factor γ ∈ [0, 1) to assign a reward Rk to each dialog turn. The

objective function can thus be written as Jk(θA) = EθA
[Rk] = EθA

[∑K
t=k γ

t−krt − V (sk)
]
,

with rk = D(d) for k = K and rk = 0 for k < K. V (sA,k) is the state value function which

serves as a baseline value. The state value function is a feed-forward neural network with

a single-node value output. Similar to the optimization method described in Chapter 6.1.2,

we optimize the generator parameter θA to maximize Jk(θA). With likelihood ratio gradient

estimator, the gradient of Jk(θA) can be derived with:

∇θA
Jk(θA) = ∇θA

EθA
[Rk]

=
∑

aA,k∈A
πθA

(aA,k|·)∇θA
log πθA

(aA,k|·)Rk

= EθA
[∇θA

log πθA
(aA,k|·)Rk]

(7.4)

where πθA
(aA,k|·) = P (aA,k|sA,k, vk, Ek; θA). The expression above gives us an unbiased

gradient estimator. We sample agent action aA,k following a softmax policy at each dialog

turn and compute the policy gradient. At the same time, we update the discriminator

parameter θD to maximize the probability of assigning the correct labels to the successful
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Algorithm 4 Adversarial Learning for Task-Oriented Dialog
1: Required: dialog corpus Sdemo, user simulator U , dialog agent A, adversarial reward

estimator D
2: Pretrain a dialog agent (i.e. the generator) A on dialog corpora Sdemo with MLE
3: Simulate dialogs Ssimu between U and A
4: Sample successful dialogs S(+) and random dialogs S(−) from {Sdemo, Ssimu}
5: Pretrain a reward function (i.e. the discriminator) D with S(+) and S(−)
6: for number of training iterations do
7: for G-steps do
8: Simulate dialogs Sb between U and A
9: Compute reward r for each dialog in Sb with D
10: Update A with reward r
11: end for
12: for D-steps do
13: Sample dialogs S(b+) from S(+)
14: Update D with S(b+) and Sb (with Sb as negative examples)
15: end for
16: end for

dialog from human demonstration and the dialog conducted by the machine agent:

∇θD

[
Ed∼θdemo

[log(D(d))] + Ed∼θA
[log(1−D(d))]

]
(7.5)

We continue to update both the dialog agent and the reward function via dialog simulation

or real user interaction until convergence.

7.2 Experiments

7.2.1 Evaluation Setting

In this section, we present and analyze the empirical evaluation results. During dialog

simulation, a dialog is marked as successful if the agent’s belief tracking outputs fully match

the informable [33] user goal slot values, and all user requested slots are fulfilled. This is the

same evaluation criteria as used in [101] and [91]. It is important to note that such dialog

success signal is usually not available during real user interactions, unless we explicitly ask

76



users to provide this feedback.

We first compare dialog agent trained using the proposed adversarial reward to those using

human designed reward and using oracle reward. We then discuss the impact of discriminator

model design and model pretraining on the adversarial learning performance. Last but not

least, we discuss the potential issue of covariate shift during interactive adversarial learning

and show how we address that with partial access to user feedback.

7.2.2 Results and Analysis

Comparison to Other Reward Types

We first compare the performance of dialog agent using adversarial reward to those using

designed reward and oracle reward on dialog success rate. Designed reward refers to reward

function that is designed by humans with domain knowledge. A dialog is marked as successful

if the agent’s belief tracking outputs fully match the informable [33] user goal slot values,

and all user requested slots are fulfilled. Based on this dialog success criteria, we can design

a reward function for RL policy learning like below:

• +1 for each informable slot that is correctly estimated by the agent at the end of a

dialog.

• If ALL informable slots are tracked correctly, +1 for each requestable slot successfully

handled by the agent.

In addition to the comparison to human the reward, we further compare to the case of

using oracle reward during agent policy optimization. Using oracle reward refers to having

access to the final dialog success status. We apply a reward of +1 for a successful dialog,

and a reward of 0 for a failed dialog. Performance of the agent using oracle reward serves

as an upper-bound for those using other types of reward. For the learning with adversarial

rewards, we use BiLSTM-max as the discriminator model. During RL training, we normalize
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Figure 7.2: RL policy optimization performance comparing with adversarial reward, designed
reward, and oracle reward.

the rewards produced by different reward functions.

Figure 7.2 show the RL learning curves for models trained using different reward functions.

The dialog success rate at each evaluation point is calculated by averaging over the success

status of 1000 dialog simulations at that point. The pretrain baseline in the figure refers to the

supervised pretraining model. This model does not get updated during interactive learning,

and thus the curve stays flat during the RL training cycle. As shown in these curves, all the

three types of reward functions lead to improved dialog success rate along the interactive

learning process. The agent trained with designed reward falls behind the agent trained

with oracle reward by a large margin. This shows that the reward designed with domain

knowledge may not fully align with the final evaluation metric. Designing a reward function

that can provide an agent enough supervision signal and also well aligns the final system

objective is not a trivial task [96]. In practice, it is often difficult to exactly specify what we

expect an agent to do, and we usually end up with simple and imperfect measures. In our

experiment, agent using adversarial reward achieves a 7.4% improvement on dialog success

rate over the supervised pretraining baseline at the end of 6000 interactive dialog learning
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episodes, outperforming that using the designed reward (4.2%). This shows the advantage

of performing adversarial training in learning directly from expert demonstrations and in

addressing the challenge of designing a proper reward function. Another important point

we observe in our experiments is that RL agents trained with adversarial reward, although

enjoy higher performance in the end, suffer from larger variance and instability on model

performance during the RL training process, comparing to agents using human designed

reward. This is because during RL training the agent interfaces with a moving target, rather

than a fixed objective measure as in the case of using the designed reward or oracle reward.

The model performance gradually becomes stabilized when both the dialog agent and the

reward model are close to convergence.

Impact of Discriminator Model Design

We study the impact of different discriminator model designs on the adversarial learning

performance. We compare the four pooling methods described in section 7.1.2 in producing

the final dialog representation. Table 7.1 shows the offline evaluation results on 1000 sim-

ulated test dialog samples. Among the four pooling methods, max-pooling on bidirectional

LSTM outputs achieves the best classification accuracy in our experiment. Max-pooling also

assigns the highest probability to successful dialogs in the test set comparing to other pooling

methods. Attention-pooling based LSTM model achieves the lowest performance across all

the three offline evaluation metrics in our study. This is probably due to the limited num-

ber of training samples we used in pretraining the discriminator. Learning good attentions

usually requires more data samples and the model may thus overfit the small training set.

We observe similar trends during interactive learning evaluation that the attention-based

discriminator leads to divergence of policy optimization more often than the other three

pooling methods. Max-pooling discriminator gives the most stable performance during our

interactive RL training.
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Prediction Success Fail
Model Accuracy Prob. Prob.
BiLSTM-last 0.674 0.580 0.275
BiLSTM-max 0.706 0.588 0.272
BiLSTM-avg 0.688 0.561 0.268
BiLSTM-attn 0.652 0.541 0.285

Table 7.1: Performance of different discriminator model design, on prediction accuracy and
probabilities assigned to successful and failed dialogs.

Figure 7.3: Impact of discriminator training sample size on RL dialog learning performance.

Impact of Annotated Dialogs for Discriminator Training

Annotating dialog samples for model training requires additional human efforts. We investi-

gate the impact of the size of the annotated dialog samples on discriminator model training.

The number of annotated dialog samples required for learning a good discriminator depends

mainly on the complexity of a task. Given the rather simple nature of the slot filling based

DSTC2 restaurant search task, we experiment with annotating 100 to 1000 discriminator

training samples. We use BiLSTM-max discriminator model in these experiments. The ad-

versarial RL training curves with different levels of discriminator training samples are shown

in Figure 7.3. As these results illustrate, with 100 annotated dialogs as positive samples
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Figure 7.4: Addressing covariate shift in online adversarial dialog learning with partial access
to user feedback.

for discriminator training, the discriminator is not able to produce dialog rewards that are

useful in learning a good policy. Learning with 250 positive samples does not lead to con-

crete improvement on dialog success rate neither. With the growing number of annotated

samples, the dialog agent becomes more likely to learn a better policy, resulting in higher

dialog success rate at the end of the interactive learning sessions.

Partial Access to User Feedback

A potential issue with RL based interactive adversarial learning is the covariate shift [22, 68]

problem. Part of the positive examples for discriminator training are generated based on the

supervised pretraining dialog policy before the interactive learning stage. During interactive

RL training, the agent’s policy gets updated. The newly generated dialog samples based on

the updated policy may be equally good comparing to the initial set of positive dialogs, but

they may look very different. In this case, the discriminator is likely to give these dialogs

low rewards as the pattern presented in these dialogs is different to what the discriminator

is initially trained on. The agent will thus be discouraged to produce such type of successful
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dialogs in the future with these negative rewards. To address such covariate shift issue, we

design a DAgger [24] style imitation learning method to the dialog adversarial learning. We

assume that during interactive learning with users, occasionally we can receive feedback from

users indicating the quality of the conversation they had with the agent. We then add those

dialogs with good feedback as additional training samples to the pool of positive dialogs

used in discriminator model training. With this, the discriminator can learn to assign high

rewards to such good dialogs in the future. In our empirical evaluation, we experiment with

the agent receiving positive feedback 10% and 20% of the time during its interaction with

users. The experimental results are shown in Figure 7.4. As illustrated in these curves,

the proposed DAgger style learning method can effectively improve the dialog adversarial

learning with RL, leading to higher dialog success rate.

7.3 Conclusion

In this chapter, we discussed the effectiveness of applying adversarial training in learn-

ing task-oriented dialog models. The proposed method is an attempt towards addressing

the rating consistency and learning efficiency issues in online dialog policy learning with

user feedback. We showed that with limited number of annotated dialogs, the proposed

adversarial learning method can effectively learn a reward function and use that to guide

policy optimization with policy gradient based reinforcement learning. In the experiment

in a restaurant search domain, we showed that the proposed adversarial learning method

achieves advanced dialog success rate comparing to baseline methods using other forms of

reward. We further discussed the covariate shift issue during interactive adversarial learning

and showed how we can address it with partial access to user feedback.
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Chapter 8

Dialog Learning with Real and

Imagined Experiences

In previous chapters, we discussed how we can continuously improve the agent during its

interaction with users. Current model-free reinforcement learning methods for dialog policy

optimization suffers from sample efficiency issue [99, 31]. This typically requires an agent

to perform a large number of interactive learning sessions by querying users for feedback

before it can reach a satisfactory performance level. Such learning efficiency issue poses

several concerns in real world deployment. A user may easily get frustrated with the inferior

system performance at the beginning of the learning stage. The dialog sample collected in

such situation may severely deviate from the dialog distribution that the system is initially

trained on and thus be of less value for further optimizing the dialog policy. We argue that

to improve the online learning efficiency, an intelligent dialog agent should not only be able

to passively receive signals from the environment (i.e. the user) and learn to act on it, but

also to be able to understand the dynamics of the environment and plan accordingly. This

is also how we human beings learn from the world.

In this chapter, we present a integrated learning method by combining learn-from-user and
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learn-from-imagination approaches to address the sample efficiency issue in online interactive

learning with users. In addition to learning to act in different dialog scenarios or states

towards task completion, an agent should also learn to model the user dynamics and predict

their behaviors in conversations. Such user model in the agent’s mind can help the agent

to “imagine” future dialogs that mimic the conversations between the agent and a real user.

Between consecutive learning sessions with real users, we perform a number of learn-from-

imagination training cycles where an agent simulates the conversations with the user model

in mind and learns from such dialog rollouts. The intuition behind this integrated learning

method is that we want to enforce the dialog agent to fully digest the knowledge learned

from real user interactions by simulating similar dialog scenarios internally. By imagining

such conversations and learning from them, the agent may potentially learn more effectively

and reduce the number of real user interactive learning cycles.

We will first describe how we can construct a user model that may effectively mimic user

behavior in task-oriented dialogs. With such user model in mind, the dialog agent can

imagine the conversation with a real user by simulating dialogs internally with the user

model. We will further discuss how we can effectively combine the learn-from-user and

learn-from-imagination experiences to improve online learning efficiency with users. This

chapter is based on the work presented in [91, 106].

8.1 Statistical User Modeling

In RL based dialog policy learning, a user simulator [15, 64, 72] is usually used to train dialog

agents in an interactive environment. Quality of such user simulator has a direct impact on

the effectiveness of dialog policy learning. Designing a reliable user simulator or user model,

however, is not trivial, often as difficult as building a good dialog agent. User simulators

used in most of the recent RL based dialog models [82, 72, 90] are designed with expert

knowledge and complex rules. Maintaining such handcrafted user model is a big challenge,
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especially when the dialog scenarios become more complex. Moreover, such user models lack

the capability to learn from interactions. They can only be upgraded by developers who are

equipped with deep domain knowledge.

We present a neural network based statistical user model. The model is data driven and can

be configured with minimum knowledge of domain ontology (e.g. slot types in a task domain).

In training such user model, we design a two-step learning method. We first bootstrap a

basic neural user model by learning directly from dialog corpora with supervised training.

We then improve the user model together with the neural dialog agent by simulating task-

oriented dialogs between them and iteratively optimizing their dialog policies with deep RL.

We present the user model design and training details, followed by empirical evaluations.

8.1.1 Model Design

Figure 8.1 shows the design of our user model. The user model is optimized towards mim-

icking the behavior of a real user in conducting task-oriented dialogs, where a user acts

according to the dialog context and his goal in the task.

User State Representation

Our user model employs an LSTM recurrent neural network in maintaining the dialog state

over multiple dialog turns. At the kth turn of a dialog, the user model takes in the goal

encoding Gk, the previous user output encoding Uk−1, and the current turn agent input

encoding Ak, to update its internal state conditioning on the previous dialog state sU,k−1:

sU,k = LSTMU(sU,k−1, [Gk, Uk−1, Ak]) (8.1)

The user output is represented with dialog act representation, which consist of a user action

and slot-value pairs.
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Figure 8.1: Neural user model architecture.

User Goal Encoding

Similar to how user’s goal is defined in the Dialog State Tracking Challenges [33, 79], we

define a user’s goal Gk using a list of informable and requestable slots. Informable slots are

attributes that users can provide a value for in describing their goal. Requestable slots are

attributes that a user may ask the value of. We treat informable slots as inputs that can take

multiple discrete values and treat requestable slots as inputs that take binary values (i.e. a

slot is either requested or not). Each informable and requestable slot value is first mapped

to an embedding space. The final user goal representation is produced by concatenating the

embedding vectors for the values for each slots.

User Model Output

Once the user model updates its state sU,k at each turn, it predicts a corresponding user

response in the form of dialog act. The user model firstly emits a user action (e.g. inform,

deny, etc) based on the current state:

P (aU,k |G≤k,U<k,A≤k) = PolicyNetU(sU,k) (8.2)
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Conditioning on user state sU,k and the emitted user action aU,k, the user model further

predicts the value for each informable slot that a user may likely to express:

P (lmU,k |G≤k,U<k,A≤k) = SlotDistU,m(sU,k, aU,k) (8.3)

where PolicyNetU and SlotDistU,m are DNNs with single hidden layer and softmax activation

over candidate values.

8.1.2 Model Training

Similar to the method described in Chapter 5.2 in training the neural dialog agent, we can

train the user model in a supervised manner by fitting task-oriented dialog samples. The

optimization target is to minimize the prediction error of the next user action and corre-

sponding slot values based on context represented in the past dialog turns. With maximum

likelihood estimation, we optimize the user model parameter set θU with:

min
θU

K∑
k=1
−
[
λa logP (a∗U,k|G≤k,U<k,A≤k; θU)

+
M∑
m=1

λlm logP (lmU,k∗|G≤k,U<k, aU,k,A≤k, ; θU)
] (8.4)

where lmU,k∗ and a∗U,k are the ground truth labels for goal slots and user action the kth turn.

Supervised training user models via fitting fixed dialog corpora may perform well in the

similar dialog scenarios that are covered by the training set but may not be robust enough

to handle diverse dialog situations due to the limited varieties in the training corpora. The

user model can be further improved in an interactive setting, similar to how we can improve

the neural dialog agent interactively by simulating conversations and exploring large dialog

action space.
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Figure 8.2: Joint dialog agent and user model training with deep reinforcement learning

We design a method in jointly optimizing both the dialog agent and user model by simulating

task-oriented dialogs between the two agents and iteratively optimizing their dialog policies

with deep reinforcement learning. The intuition is that we model task-oriented dialog as

a goal fulfilling task, in which we let the dialog agent and the user model to positively

collaborate to achieve the goal. The user model is given a goal to complete, and it is

expected to demonstrate coherent but diverse user behavior. The dialog agent attempts to

estimate the user’s goal and fulfill his request by conducting meaningful conversations. Both

the two agents aim to learn to collaborate with each other to complete the task but without

exploiting the game.

Similar to the method described in Chapter 6.1.2 in optimizing the dialog agent model,

we can also optimize the user model using the reward signal received with REINFORCE.

The objective function is written as Jk(θU) = EθU
[Rk] = EθU

[∑K
t=k γ

t−krt − V (sU,k)
]
, with

V (sU,k) being the state value function serving as a baseline reward. Using likelihood ratio

88



gradient estimator, the gradient of Jk(θU) can be derived as:

∇θU
Jk(θU) = ∇θU

EθU
[Rk]

=
∑

aU,k∈A
πθU

(aU,k|·)∇θU
log πθU

(aA,k|·)Rk

= EθU
[∇θU

log πθU
(aU,k|·)Rk]

(8.5)

8.2 Learning from Real and Imagined Experiences

With this user model, the neural dialog agent may “imagine” the potential conversations with

a real user by simulating dialogs with the user model and learn quickly from these imagined

experiences. To encourage the agent to explore broader dialog state space, we let both the

agent and the user model to act by sampling actions from their corresponding softmax policy

network output. We name such learning procedure as learn-from-imagination.

8.2.1 Method

Dialog Agent

Human
User

Observation /
User Input

Action /
Sys OutputReward /

Feedback

Knowledge 
Base

E2E Agent

User Model
(in agent’s mind)

Evaluator Action
Proposal

Predicted
Observation

Estimated
RewardDialog

Agent

Estimated
Reward

Figure 8.3: Integrated dialog learning with real (left) and imagined (right) experiences.

Figure 8.3 shows our proposed learning framework by combining learn-from-user and learn-

from-imagination. The dialog agent interacts with user to complete task-oriented dialog

and keeps improving itself with the feedback received from the user. The dialog agent also

learns to interface with external resources, such as a knowledge base or a database, so as
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Algorithm 5 Learning from Real and Imagined Experiences
1: Required: dialog corpus D, agent model Amodel, user model Umodel, real user Ureal
2: Initialize and pretrain Amodel on D with MLE
3: Initialize and pretrain Umodel on D with MLE
4: for real user interaction m ∈ {1, . . . ,M} do
5: Run Amodel with Ureal to conduct dialog dreal
6: Collect reward Rreal from user for dreal
7: Update Amodel with Rreal

8: for imagined user interaction n ∈ {1, . . . , N} do
9: Run Amodel with Umodel to roll out dialog dimag
10: Obtain reward Rimag for dimag
11: Update Amodel and Umodel with Rimag

12: end for
13: end for

to be able provide responses to user that are based on the facts in the real world. Inside

the dialog agent, the agent learns to model the user dynamics by predicting their behaviors

in conversations. Such modeled user in the agent’s mind can help the agent to simulate

dialogs that mimic the conversations between the agent and a real user. By simulating such

conversations and learning from it, the agent can learn more effectively from real users and

reduce the number of interactive learning cycles.

We start with supervised pretraining of the dialog agent and user model with a set of seed

annotated dialogs. This enables a reasonable initialization of the policy for the next stage

optimization with RL. Once we obtain a supervised pretraining agent, we let the dialog

agent to conduct task-oriented dialog with real users and continue to improve it with the

user feedback at the end of the dialog. We apply policy gradient based RL in performing

end-to-end model update.

Before letting the agent to start the next learning batch with users, we instruct the agent

to practice the new knowledge learned from real user interactions by “imagining” the future

conversation it might have with users. We let the agent to simulate task-oriented interactions

with the user model using the updated policy. During these “imagined” interactions, the

agent model and user model are further updated with task-completion based rewards.
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8.3 Experiments

8.3.1 Training Environment and Setting

In our experiments, we utilize a publicly available dialog system platform PyDial [100] in

training and evaluating our neural dialog agent. We target an application in a system

providing restaurant information in Cambridge, UK. The task is to learn a dialog agent that

is able to request and understand information from users, interface with backend systems

or databases, and manage the dialog flow in successfully delivering requested information to

users. This domain is defined with 6 slots, 3 of which are informable slots (food, are, and

price range), with the remaining 3 as informable slots (address, phone, and postcode). There

are in total 110 entities that have attributes in the above 6 slots.

We train our neural dialog agent against the handcrafted simulated user provided in PyDial,

similar to the experimental setting in may prior work [99, 86]. In the experiment, this

handcrafted user plays the role of the real user in our proposed learning framework. Although

this handcrafted simulated user is sub-optimal in representing a real user, the simulation

setting allows us to perform large scale experiments and in-depth analysis. We firstly generate

500 seed dialogs using the PyDial in the Cambridge Restaurant domain and use these dialogs

to pretrain our neural dialog agent and neural user model. Agent and user actions in our

system are defined by concatenating the act and slot types in the raw dialog act output (e.g.

“confirm(area = north)” maps to “confirm_area”). The corresponding slot values (e.g.

north) are separately captured in the user goal estimation module for each slot. In total

there are 29 agent actions and 61 user actions in our experimental setup.

For both the dialog agent and user model we use LSTM with state size of 150. Hidden layer

size for the policy network and slot value estimation network is set as 100. Embedding size

for actions and informable slot values are set as 20. In interactive model training, we set

the maximum dialog turn size as 20. A task is marked as failed if the dialog goes beyond
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the maximum allow number of dialog turns. Dialog reward discount factor γ is set as 0.95.

In learn-from-user stage, we update the agent model with every mini-batch of 25 interaction

with real users. In learn-from-imagination stage, we experiment with updating the model

with every mini-batch of 25, 50, and 100 roll-out sessions with the user model.

8.3.2 Results and Analysis

We first explain and analyze our empirical evaluation results. We first show the benefits

of performing learn-from-imagination training and discuss the impact of different model

training schedules. We then discuss the impact of jointly updating the user model during

agent training process. Last but not least, we discuss how the different user model policy

choices may affect the agent training effectiveness.

Learning From Imagined Experiences

We experimented with different learn-from-imagination sessions for each model update with

real user interactions. Table 8.1 shows the results. We compare the performance of different

model training procedures at different real user interactive learning stages (i.e. 1000, 3000,

and 5000 dialogs). The baseline method is when we let the agent to only learn from real

users and perform zero learn-from-imagination sessions (first row in Table 8.1). As can be

seen from these results, all the 3 training procedures with imagined experiences helped the

agent to achieve advanced task success rate comparing to the baseline method. More learn-

from-imagination sessions per real user interaction batch led to higher task success rate at

the early stage of the real user learning cycle (e.g. 1000 sessions), but not necessarily higher

performance in the end. By looking into the dialogs conducted by the agent, we found that

the average number of turns for dialogs with real users is 7.32. On the other hand, the average

length of imagined dialogs with user model is only 4.26 turns. Conducting more imagination

training sessions may help the agent to quickly explore different dialog scenarios, but at a risk

of overfitting to the scenarios that can be covered by the user model. This might explain the
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decrease of agent performance in the end with more learn-from-imagination sessions between

two learn-from-user batch.

Imagined Real Real Real
Sess. Batch Sess. 1000 Sess. 3000 Sess. 5000

0 87.2 89.6 90.4
25 88.5 91.7 92.5
50 89.3 91.1 92.2
100 89.7 90.3 90.6

Table 8.1: Performance of different learn-from-imagination configurations at different learn-
from-user stages.

Impact of User Model Updates

We study the impact of updating the user model during learn-from-imagination training

sessions. The user model is trained with the initial set of annotated dialog samples. The

quality of this user model has a direct impact on the quality of the imagined dialogs and

further the effectiveness of dialog learning with such imagined experiences. Continuous

improvement of the user model may help the agent to learn better policy by exploring larger

dialog space. We experimented with two different user model update settings, one with

the user model being fixed during the agent training process, and the other with user model

being jointly updated with the agent model during the learn-from-imagination stage. Results

are shown in Fig. 8.4. As can be seen from these learning curves, both configurations for

learn-from-imagination effectively improved dialog policy learning efficiency at the beginning

stage of learn-from-user training cycles. With growing number of real user interactions, the

performance of the agent with only learn-from-user experience (red curve) gradually caught

up with the agent that learns from both real and imagined experiences. Agent trained with

continuously updated user mode achieved superior task success rate comparing to the other

baseline methods.
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Figure 8.4: Comparing different configurations for user model update during learn-from-
imagination stage.

Impact of User Model Policy

We further study the impact of different user model policy designs on the agent policy learn-

ing efficiency. We compare user model settings using greedy policy and softmax policy in

learn-from-imagination stage. Greedy policy always selects the best estimated user action

from the policy network, which enables a more consistent user model. Softmax policy, on

the other hand, samples a user action from the policy network action probability distribu-

tion. This introduces additional randomness in user model behaviors. Fig. 8.5 shows the

experiment results. Similar to previously observed trends, both policy configurations led to

efficient agent policy learning at the beginning stage of the learn-from-user cycles. Agent

trained with greedy policy user model did not show obvious advantage over agent that is

trained only with real user experiences after 2500 learning sessions. This might because the

agent has well exploited the greedy policy user model at this stage and stopped learning

much new insights from the remaining imagined experiences. Agent trained with softmax

policy user model achieved the highest success rate at the end of the interactive learning

cycle.

94



Figure 8.5: Comparing different choices of user model policy during learn-from-imagination
stage.

8.4 Conclusion

In this chapter, we presented how we address the sample efficiency issue in online interac-

tive dialog policy learning. Current model-free reinforcement learning based policy learning

methods are sample inefficient, which often require a dialog agent to conduct a large number

of interactive learning sessions with users in order to learn a good policy. We addressed this

issue by proposing a integrated learning method that combines learn-from-user and learn-

from-imagination experiences. The agent learns a user model which can imitate the behavior

of a real user in task-oriented dialogs. With such user model, the agent can simulate dialogs

with the user model in mind and learn further from these imagined experiences in addition to

learning from real user interactions. In the experiments in a restaurant search task domain,

we showed that the proposed integrated learning method may effectively improve dialog pol-

icy learning efficiency within limited number of user interactions. We further discussed the

how different user model designs and training procedures may impact the effectiveness of

agent policy learning.
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Chapter 9

Conclusion and Future Work

In this dissertation, we have presented a neural network based task-oriented dialog learning

framework. We discussed the recent development of spoken dialog systems that powered

by machine learning and especially deep learning methods. We identified challenges that

arise in modeling longer context in conversation, optimizing dialog system end-to-end, and

learning continuously through the interaction with users. We proposed solutions to address

these challenges and evaluated them in simulated environments as well as with real users.

In this chapter, we will conclude the thesis and discuss future directions for task-oriented

dialog system research.

In Chapter 4, we described our multi-task learning models for robust spoken language under-

standing, a critical component in spoken dialog systems. We showed how we can learn better

representations of user’s natural language input by jointly optimizing intent identification

and slot filling. In addition, we discussed how we can enable a tight integration of SLU and

language modeling with a joint incremental model for contextual language modeling and

understanding.

In Chapter 5, we discussed how we can extend the proposed SLU sequence model to end-to-

end dialog modeling. We presented a hierarchical recurrent neural network based model that
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can robustly track dialog state, interface with external knowledge resources, and incorporate

structured query results into system response to successfully complete a task. We showed

that the proposed end-to-end dialog model achieved state-of-the-art performance in dialog

state tracking and next utterance prediction in a widely studied bench-marking task in a

restaurant booking domain.

In Chapter 6, we discussed how the proposed neural dialog model can continuously improve

itself through interaction with users, which makes the learning process truly interactive.

We proposed a hybrid imitation and reinforcement dialog learning method, with which the

end-to-end dialog agent can effectively learn from human teaching and feedback. We showed

both in a simulated environment and with real user evaluation the effectiveness of conducting

such interactive dialog learning with human-in-the-loop.

In Chapter 7, we presented an adversarial learning method in addressing the rating consis-

tency and learning efficiency issues with interactive dialog learning. We showed that with

limited number of annotated dialog samples, the proposed adversarial learning method can

effectively learn a reward function and use that to guide policy optimization. We further

discussed the covariate shift issue during interactive adversarial learning and showed how we

can ameliorate it with partial access to user feedback.

In Chapter 8, we further address the sample efficiency issue with online interactive dialog

learning with real users. We proposed an integrated learning method that combines learn-

from-user and learn-from-imagination experiences. Instead of only letting the dialog agent to

passively wait for a user’s feedback and use it for policy learning, we also enabled the agent to

learn a user model so that it can “imagine” the conversation in real world user interactions.

We showed that such integrated learning method from real and imagined experience can

effectively improve the policy learning efficiency during online user interactions.

With these contributions, we created a task-oriented dialog learning framework that enables

end-to-end system optimization via efficient interactive learning with users. In this final sec-
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tion of the thesis, we highlight a few promising areas that can further advance the intelligent

task-oriented dialog systems:

Context and Knowledge Representation

In this thesis, we discussed methods for dialog context encoding which includes information

expressed in the conversation history in the current dialog between two parties. Our pro-

posed system did not model and utilize environmental context, such as when and where a

conversation is happening, or whether a conversation is closely related to an ongoing event.

Such environmental context plays a significant role in human-human conversation. A big

challenge in utilizing environmental context lies in that understanding a specific context and

learning to prioritize it over the others usually requires a significant amount of common sense

or world knowledge. How to abstract such knowledge and represent it in a way that can help

an agent to make appropriate decisions is still an active research problem. Learning such

context and knowledge representation purely from imitating the way human converse is not

an optimal solution as it likely requires a massive amount of training data. Collecting such

large annotated dialog corpus with related context signal is extremely challenging. In the

proposed methods for modeling task-oriented dialog context, we attempted to use a combi-

nation of data-driven and ontology-based approach by introducing simple form of structures

(e.g. slot types) in guiding the context representation learning. Such hybrid approach by

injecting structure as a prior and learning continuously via interaction with the environ-

ment might be worthy to explore further for a more general form of context and knowledge

representation learning.

User Modeling and Adaption

In this dissertation, we discussed the importance of user modeling in training a task-oriented

dialog agent. A good user model enables a dialog agent to conduct large scale dialog simula-

tions and learn a robust dialog policy. Comparing to many prior works that use rule-based
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user simulators in training the dialog system, we designed a statistical user model that is

more flexible in introducing additional features and can continuously improve along with the

dialog agent. Our user model is bootstrapped directly from dialog corpus, and thus can be

seen as a single general user model that fits the statistics of the user behavior expressed in

the entire corpus. A more desirable option is to have finer-grained control of a user model

so that the model can be configured with diverse user behaviors (e.g. with different levels

of randomness and cooperativeness). With such trainable and configurable user model, the

dialog agent can be optimized to be more robust towards diverse user types. The agent can

also learn to adapt to different user behaviours so as to complete a task in a more efficient

and appropriate manner. The proposed user model is build with neural network which has

the flexibility in introducing diverse types of features. We believe this can be a reason-

able starting point towards building such advanced user models that are both trainable and

configurable.

Cross Domain Knowledge Transfer

Domain extension has always been a challenge in real world spoken dialog systems. With

conventional systems designed with complex modules and domain-specific rules, extending

a system to a new task domain is a painful process. In this thesis, we have discussed how we

can model task-oriented dialog end-to-end from a data-driven approach with minimum struc-

tures introduced from domain ontology. This opens up possibilities in quickly bootstrapping

a system in a new domain with significantly reduced efforts in designing domain-specific log-

ics and annotating dialog samples. Our proposed system did not address how to effectively

transfer the knowledge learned in one task domain to another. This can be knowledge for

understanding common patterns in user requests, representing dialog state with context shar-

ing, and learning common strategies in completing different tasks, etc. Effective knowledge

transfer among task domains can help further reduce the efforts required for data collection

and annotation in the new domain. There are some recent efforts [94, 67] in cross-domain
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learning of spoken language understanding at single utterance level. It would be interesting

to explore whether these techniques can be applied for effective cross-domain learning of

task-oriented dialogs.

Research is a never-ending process. We hope the work we presented in this thesis can inspire

researchers in the direction of spoken language understanding and dialog systems and pioneer

a new class of end-to-end dialog learning systems.
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