http://www.orcid.org/0000-0002-2668-4821

Regional Seminar

Antony Williams

National Center for Computational Toxicology, U.S. Environmental Protection Agency, RTP, NC

The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. EPA

August 2018 Regional Seminar, Boston

Antony Williams US EPA Office of Research and Development National Center for Computational Toxicology (NCCT) Williams.Antony@epa.gov 919-541-1033

ORCID: <u>https://orcid.org/0000-0002-2668-4821</u> LinkedIn: <u>https://www.linkedin.com/in/antonywilliams/</u> Scholar: <u>https://scholar.google.com/citations?user=O2L8nh4AAAAJ</u> Wikipedia: <u>https://en.wikipedia.org/wiki/Antony_John_Williams</u>

About Me

- NMR Spectroscopist (PhD London 1988)
- Postdoc (National Research Council Canada)
- NMR Facility Manager Kodak 5.5 yrs
- Chief Science Officer ACD/Labs 10 yrs
- Consultant & ChemSpider development 2 yrs
- VP Strategic Development at RSC 5.5 yrs
- EPA 3 yrs

- Not trained as a toxicologist
- First opportunity for a multi-hour training
- Some modules are still in beta mode we released the new version 2 weeks ago
 - GenRA is in beta and presently offline
 - Our Submit Comments layer is awaiting an update
- There are no silly questions
- I might not have all of the answers

 "How can the dashboard be used to characterize risks from exposure to 2:6 Flourotelomer alcohol (CASRN 647427)?"

The issues of Chemical Names and CAS RNs

Names and CASRNs

In our domain most chemicals are text – chemical names and CAS Numbers

Attachment D (Method 3) SIM quantitation ions and qualifiers for internal standards, references method analysis, and surrogates

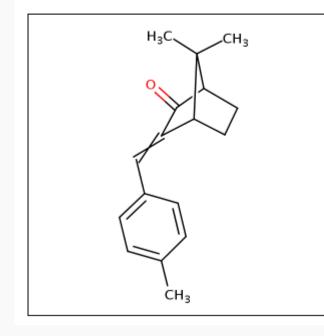
Name of Compound	CAS No.	Ouantitation Ion	Oualifier Ions
Phenol-d6 (SS)	13187-88-3	99	71, 42
Phenol	108-95-2	94	66
1,4-Dichlorobenzene	106-46-0	146	111. 75, 50
Acetophenone	98-86-2	105	77, 51, 120
Acenaphthene-d10 (IS)	15067-26-2	162	160, 80
p-Cresol	106-44-5	107	108, 77
Isophorone	78-59-1	82	138, 54
Camphor	76-22-2	95	81, 108, 152
Isoborneol	124-76-5	95	110, 121, 136
Menthol	89, 78, 1	71	81, 123, 138
Naphthalene	91-20-3	128	102, 51
Methyl salicilate	119-36-8	120	92, 152, 65 ₅

Generally problematic...

<u>Name of Compound</u>

Phenol-d6 (SS)
Phenol
1,4-Dichlorobenzene
Acetophenone
Acenaphthene-d10 (IS)
p-Cresol
Isophorone
Camphor
Isoborneol
Menthol
Naphthalene
Methyl salicilate

CAS No.
13187-88-3
108-95-2
106-46-0
98-86-2
15067-26-2
106-44-5
78-59-1
76-22-2
124-76-5
89, 78, 1
91-20-3
119-36-8


Active vs Deleted CASRN

*Enzacamene

36861-47-9 | DTXSID8047896

Searched by Approved Name.

<u>Synonym</u> +	Quality \$
Enzacamene	Valid
7,7-Dimethyl-3-[(4-methylphenyl)methylidene]bicyclo[2.2.1]heptan-2-one	Valid
Bicyclo[2.2.1]heptan-2-one, 7,7-dimethyl-3-[(4-methylphenyl)methylene]-	Valid
36861-47-9 Active CA E-FN	Valid
Bicyclo[2.2.1]heptan-2-one, 1,7,7-trimethyl-3-[(4-methylphenyl)methylene]-	Valid
EINECS 253-242-8	Other
Eusolex 6300	Other
Uvinul MBC 95	Other
Parsol 5000	Other

ONII-8I3XWY40L9	Other
4-Methylbenzylidenecamphor	Other
p-Methylbenzylidenecamphor	Other
38102-62-4 Deleted CA &-RN	Deleted
84055-85-2 Deleted CA&-RN	Deleted

This one has 316 Deleted CASRN

CAS Registry Number: 25068-38-6 (C₁₅ H₁₆ O₂ . C₃ H₅ CI O)_x

Phenol, 4,4'-(1-methylethylidene)bis-, polymer with 2-(chloromethyl)oxirane

Polymer

Polymer Class Terms: Epoxy resin

Alternate CAS Registry Numbers: 26402-79-9

Deleted CAS Registry Numbers: 1336-88-5, 1337-15-1, 8000-31-5, 9015-99-0, 9049-54-1, 9050-21-9, 9081-91-8, 9083-76-5, 9084-94-0, 9086-62-8, 9087-26-7, 9087-76-7, 11097-80-6, 11098-13-8, 11098-40-1, 11100-23-5, 11108-41-1, 11120-31-3, 11121-19-0, 11126-36-6, 20232-24-0, 35038-60-9, 36344-96-4. 36347-13-4. 36347-14-5. 37184-50-2. 37184-52-4. 37208-29-0. 37217-92-8. 37230-74-3. 37243-66-6. 37243-67-7. 37251-33-5. 37265-21-7, 37270-82-9, 37291-75-1, 37293-07-5, 37294-18-1, 37305-82-1, 37307-45-2, 37317-45-6, 37325-21-6, 37338-63-9, 37342-17-9, 37345-34-9, 37348-56-4, 37348-57-5, 37357-73-6, 37360-93-3, 39277-59-3, 39288-99-8, 39296-08-7, 39296-09-8, 39296-11-2, 39296-15-6, 39315-77-0, 39349-91-2, 39354-86-4, 39362-25-9, 39362-45-3, 39373-81-4, 39378-29-5, 39378-55-7, 39389-49-6, 39405-18-0, 39412-57-2, 39419-66-4, 39453-22-0, 39454-54-1, 39454-69-8, 39470-62-7, 42612-34-0, 42618-03-1, 50642-36-9, 50642-55-2, 50642-78-9, 51158-20-4, 51273-81-5, 51329-73-8, 51393-99-8, 51394-03-7, 51553-00-5, 52011-87-7, 52038-45-6, 52051-70-4, 52051-82-8, 52052-16-1, 52232-05-0, 52232-75-4, 52276-55-8, 52365-33-0, 52519-66-1, 52519-67-2. 52627-94-8. 52907-38-7. 53027-88-6. 53127-14-3. 53200-30-9. 53238-86-1. 53238-87-2. 53239-67-1. 53239-68-2. 53570-97-1. 53570-98-2. 53681-78-0. 53858-93-8. 54018-73-4. 54352-05-5. 55464-96-5. 55584-55-9. 55585-07-4. 55818-73-0. 56258-35-6. 56449-43-5. 56509-48-9. 57107-66-1, 57284-90-9, 57534-21-1, 57693-04-6, 58052-05-4, 58128-38-4, 58392-89-5, 58392-92-0, 58516-14-6, 58572-71-7, 59029-19-5, 59459-14-2, 59473-30-2, 59948-36-6, 60202-19-9, 60267-31-4, 60382-89-0, 60606-56-6, 60800-54-6, 60831-77-8, 60894-16-8, 61036-82-6, 61287-42-1, 61356-27-2. 61711-38-4. 61763-30-2. 61991-18-2, 62169-28-2, 62169-29-3, 62601-75-6, 62601-76-7, 62887-23-4, 63055-40-3, 63172-55-4, 63799-24-6, 63993-57-7. 63993-58-8. 64086-14-2. 64086-16-4. 64176-52-9. 64176-61-0. 64176-66-5. 64177-03-3. 65233-49-0. 65931-38-6. 65931-39-7. 66995-96-8. 67185-62-0. 68821-97-6. 69899-40-7. 70179-83-8. 70213-44-4. 70726-45-3. 71965-91-8. 72514-40-0. 73413-19-1. 74504-20-4. 74564-76-4. 75831-44-6, 78564-77-9, 79585-43-6, 80702-61-0, 81458-12-0, 81843-57-4, 81843-58-5, 81855-87-0, 82197-12-4, 82197-46-4, 83202-85-1, 84286-97-5, 84683-04-5. 84931-29-3. 85537-69-5. 86090-60-0. 88385-37-9. 88528-19-2. 88651-18-7. 89750-00-5. 91727-28-5. 91727-29-6. 92481-37-3. 95327-25-6. 96420-31-4, 96510-68-8, 97568-16-6, 97709-01-8, 99400-50-7, 101027-12-7, 102256-87-1, 103599-13-9, 103599-14-0, 104364-97-8, 104491-99-8, 105521-57-1, 106207-08-3, 106856-89-7, 107991-47-9, 108556-05-4, 108728-21-8, 110158-22-0, 111367-08-9, 111517-59-0, 114013-37-5, 115902-32-4. 117216-90-7. 117313-45-8. 117786-92-2. 118340-04-8. 120146-74-9. 120797-43-5. 121181-85-9. 121273-37-8. 121547-73-7. 123939-44-6. 125147-87-7, 127176-80-1, 127176-81-2, 128281-71-0, 132822-20-9, 132893-73-3, 135976-90-8, 137545-29-0, 138157-20-7, 138361-18-9, 139554-29-3, 142540-11-2, 144046-24-2, 144046-25-3, 144855-66-3, 149013-58-1, 150825-32-4, 157321-42-1, 157481-46-4, 158725-45-2, 160674-45-3, 161937-12-8. 162031-55-2. 167972-06-7. 168042-08-8. 179607-24-0. 183581-68-2. 183890-12-2. 187619-11-0. 188448-56-8. 189282-49-3. 191606-83-4. 220090-06-2. 222835-65-6. 222835-66-7. 222835-68-9. 222835-69-0. 222835-70-3. 222835-72-5. 222835-74-7. 222835-77-0. 309945-96-8. 339530-81-3, 353239-57-3, 367523-08-8, 383889-26-7, 383889-27-8, 395069-05-3, 470462-49-8, 681001-41-2, 848887-61-6, 913745-83-2, 917483-69-3, 922728-11-8, 934588-09-7, 945610-97-9, 950907-45-6, 1033821-54-3, 1034342-45-4, 1068160-75-7, 1082736-74-0, 1096473-97-0, 1114797-08-8. 1189565-70-5. 1190235-62-1. 1190729-68-0. 1192045-32-1. 1195324-26-5. 1196030-95-1. 1198291-96-1. 1199811-18-1. 1203835-26-0. 1206700-05-1, 1228639-00-6, 1245563-83-0, 1271727-39-9, 1300093-58-6, 1300102-07-1, 1305321-17-8, 1338071-08-1, 1446691-72-0, 1450839-98-. 1620807-39-7. 1641551-32-7. 1807886-28-7. 1815624-46-4. 1815624-47-5

https://comptox.epa.gov/dashboard/dsstoxdb/results?search=DTXSID0050479

Hazard Data from "ToxVal_DB"

- Environmental Protection Agency
- ToxVal Database contains following data:
 - -30,050 chemicals
 - -772,721 toxicity values
 - -29 sources of data
 - -21,507 sub-sources
 - -4585 journals cited
 - -69,833 literature citations

- How can the dashboard assist in developing an aquatic life criterion for chlorobenzene?
- Can the dashboard supplement Ecotox database and other sources of data available in the literature?
- How can QSAR and Read-Across approaches for similar chemicals apply to fish and aquatic invertebrates?
- Can the dashboard provide insight into environmental fate and transport to reduce uncertainty concerning attenuating in the subsurface?

- The Hazard Table contains ECOTOX data and other data via Los Alamos National Lab
- We have experimental and predicted environmental fate and transport data

 Show OPERA Models and TEST real time predictions

 "How can the dashboard be used to characterize risks from exposure to 2:6 Flourotelomer alcohol (CASRN 647427)?"

- We have
 - Hazard Data
 - Exposure Predictions
 - Production Volume Data

Predicted Exposure Data

High Throughput Heuristics for Prioritizing Human Exposure to Environmental Chemicals

John F. Wambaugh^{*}†, Anran Wang†^{§I}, Kathie L. Dionisio[‡], Alicia Frame†^I, Peter Egeghy[‡], Richard Judson[†], and R. Woodrow Setzer[†] [†]National Center for Computational Toxicology, and [‡]National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States [§] North Carolina State University, Department of Statistics, Raleigh, North Carolina 27695-8203, United States ^{II} Oak Ridge Institute for Science and Education Grantee, P.O. Box 117, Oak Ridge, Tennessee 37831-0117, United States

Environ. Sci. Technol., 2014, 48 (21), pp 12760–12767 DOI: 10.1021/es503583j

 Five descriptors are capable of explaining roughly 50% of the variability in geometric means across 106 NHANES chemicals for all the demographic groups, including children aged 6–11

3-trifluoromethyl-4-nitrophenol

- TFM (3-trifluoromethyl-4-nitrophenol)
- Potential exposures through drinking water pathway. *In vivo* toxicology data are limited, 90d sub-chronic rat study underway.
- An RfD is available on the dashboard-how was it derived and can it be used to set a drinking water standard?

Data is under constant curation

- Our data is under constant curation and with this release there is no RfD listed under the Hazard Tab
- There are LOAEL data and details under the Modal

mental Protection

Details Under the Modal

TaxRefDB D	etails	Long Details
	3	
Download as:	TSV	Excel

grouping ID	Study ID	study type	effect category	toxicity value type	qualifier	effect level	units	species	strain group	strain	exposure route	exposure method	reference	year	study source	data usability	guideline	purit
5660	428	SUB	systemic	lel	=	45.0	mg/kg/day	rat	sprague dawley	Sprague Dawley	Oral	Feed	US Dept of the Interior, Study Conducted by WARF Institure, Subchronic oral toxicity study in rats of TFM. (1971)	1971	opp_der	acceptable	Subchronic oral toxicity in rodents	90
5660	428	SUB	systemic	loael	=	145.8	mg/kg/day	rat	sprague dawley	Sprague Dawley	Oral	Feed	US Dept of the Interior, Study Conducted by WARF Institure, Subchronic oral toxicity study in rats of TFM. (1971)	1971	opp_der	acceptable	Subchronic oral toxicity in rodents	90
5860	428	SUB	systemic	nel	=	25.0	mg/kg/day	rat	sprague dawley	Sprague Dawley	Oral	Feed	US Dept of the Interior, Study Conducted by WARF	1971	opp_der	acceptable	Subchronic oral toxicity in rodents	90

OPERA MODELS AND DATA

Online Today

EPI Suite Data - ISIS/Base & SDF

The downloaded files are provided in "zip" format ... the downloaded file must be "un-zipped" with common utility programs such as <u>WinZip</u>.

... Updated September 15, 2010

Basic Instructions:

(1) Download the zip file (2) Un-Zip the file

<u>NOTE</u> ... zipped files extract to Folders containing the individual data files ... Folders named EPI_ISIS_Data and EPI_SDF_Data

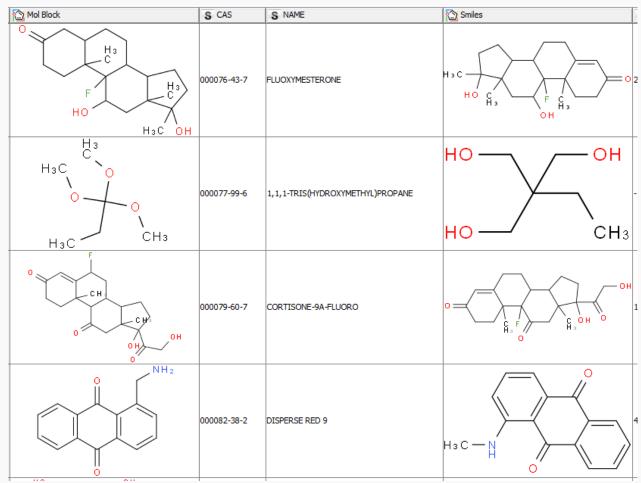
Substructure Searching Files:

ISISTM/Base & SD Files of the EPI Suite Program Experimental Data Files are now available ... The ISISTM/Base files require the commercial program for use ... The SD Files can be imported into other commercial chemical structure programs (such as ChemFinder).

... Click here to download EPI_ISIS_Data.zip ... (about 11 MB)

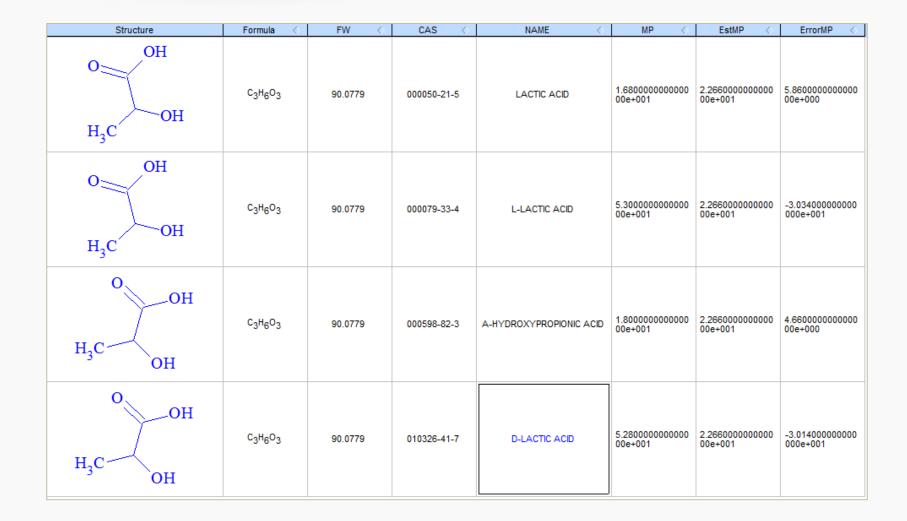
... Click here to download EPI_SDF_Data.zip ... (about 10 MB)

NOTE ... EPI Suite Data Files (some in Excel, Text, Word format) available at:

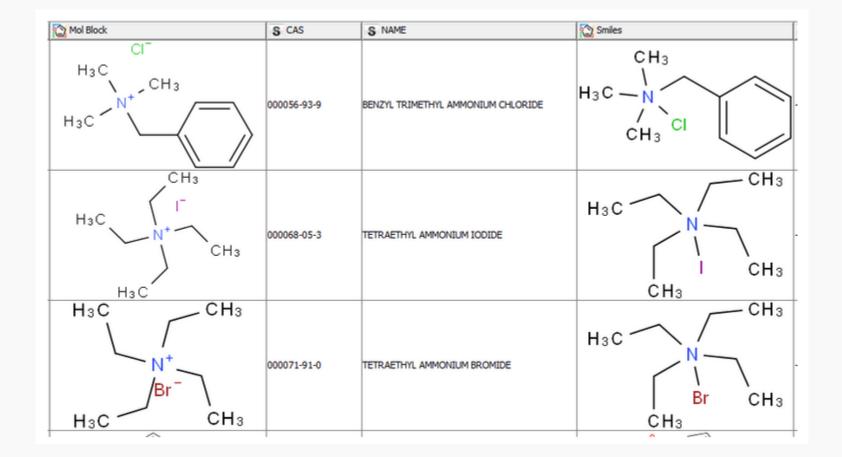

http://esc.syrres.com/interkow/EpiSuiteData.htm

We Curated These Public Data to Build Prediction Models

Environmental Protection Agency


Public data should be curated prior to modeling

Different Compounds


Duplicate Structures

Covalent Halogens

21

Curation to QSAR Ready Files

Property	Initial file	Curated Data	Curated QSAR ready
AOP	818	818	745
BCF	685	618	608
BioHC	175	151	150
Biowin	1265	1196	1171
BP	5890	5591	5436
HL	1829	1758	1711
KM	631	548	541
KOA	308	277	270
LogP	15809	14544	14041
MP	10051	9120	8656
PC	788	750	735
VP	3037	2840	2716
WF	5764	5076	4836
WS	2348	2046	2010

LogP dataset: 15,809 structures

- CAS Checksum: 12163 valid, 3646 invalid (>23%)
- Invalid names: 555
- Invalid SMILES 133
- Valence errors: 322 Molfile, 3782 SMILES (>24%)
- Duplicates check:
 - 31 DUPLICATE MOLFILES
 - 626 DUPLICATE SMILES
 - 531 DUPLICATE NAMES
- SMILES vs. Molfiles (structure check)
 - 1279 differ in stereochemistry (~8%)
 - 362 "Covalent Halogens"
 - 191 differ as tautomers
 - 436 are different compounds (~3%)

OPERA Predicted Properties

An automated curation procedure for addressing chemical errors and inconsistencies in public datasets used in QSAR modelling

K. Mansouri, C. M. Grulke, A. M. Richard, R. S. Judson & A. J. Williams

To cite this article: K. Mansouri, C. M. Grulke, A. M. Richard, R. S. Judson & A. J. Williams (2016) An automate datasets use DOI: 10.108(Mansouri *et al. J Cheminform (2018) 10:10* https://doi.org/10.1186/s13321-018-0263-1

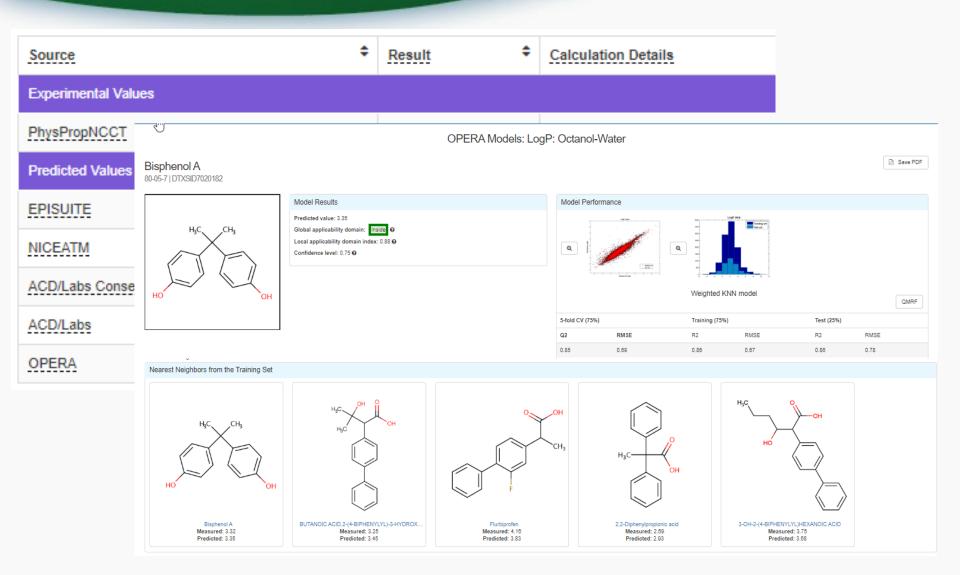
To link to th

RESEARCH ARTICLE

OPERA models for predicting physicochemical properties and environmental fate endpoints

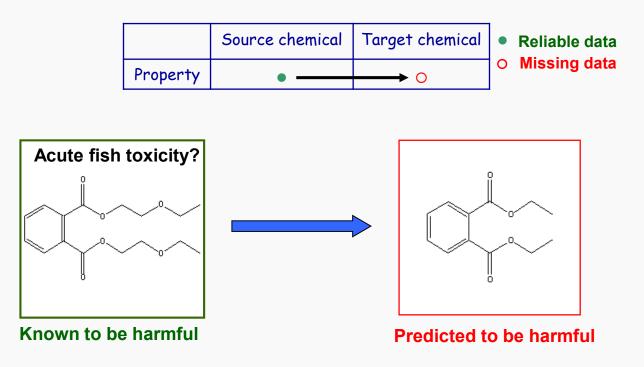
Kamel Mansouri^{1,2,3*}^(D), Chris M. Grulke¹, Richard S. Judson¹ and Antony J. Williams¹

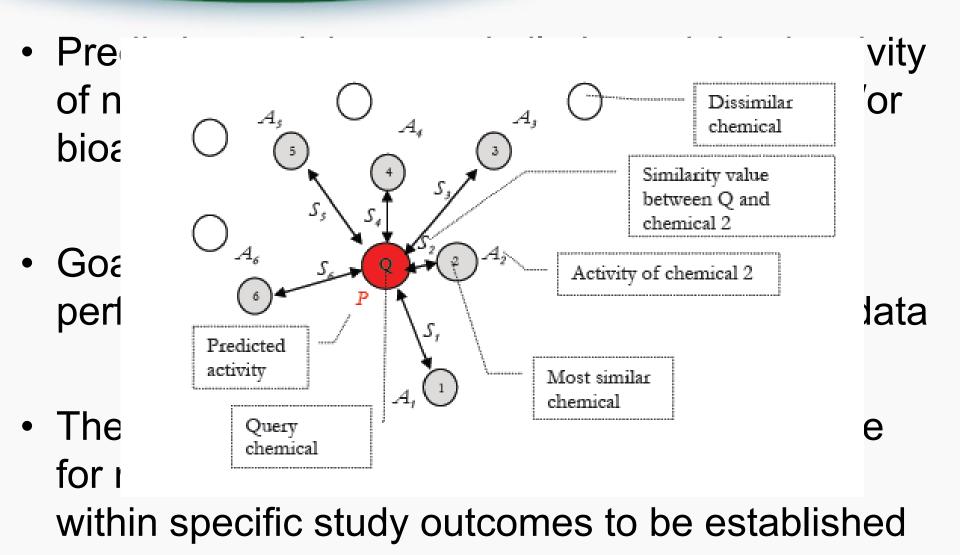
Journal of Cheminformatics



Open Access

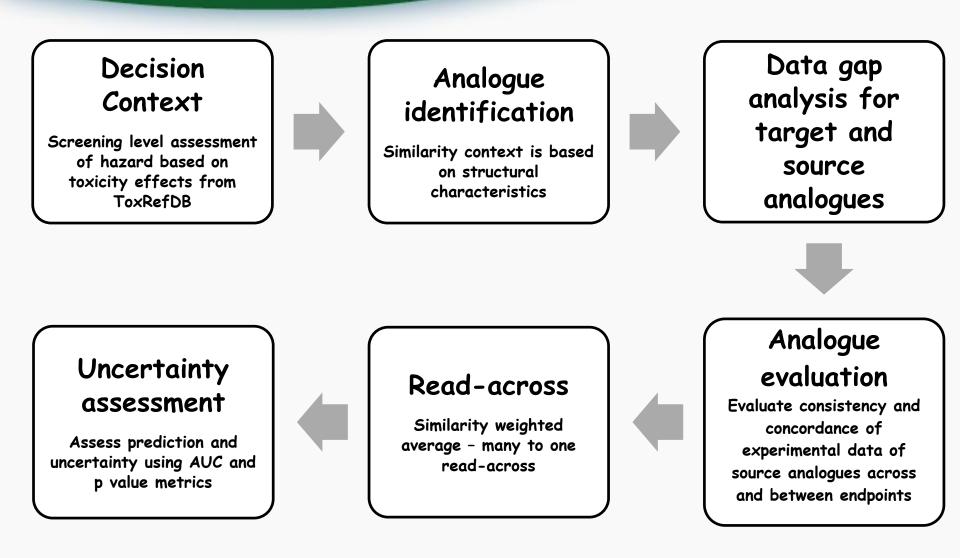
Detailed OPERA Prediction Reports




GenRA

Definitions: Read-Across

 Known information on the property of a substance (source) is used to make a prediction of the same property for another substance (target) that is considered "similar"



wironmental Protection

Read-across workflow in GenRA

DETAILS

EXECUTIVE SUMMARY

PROPERTIES

ENV. FATE/TRANSPORT

HAZARD

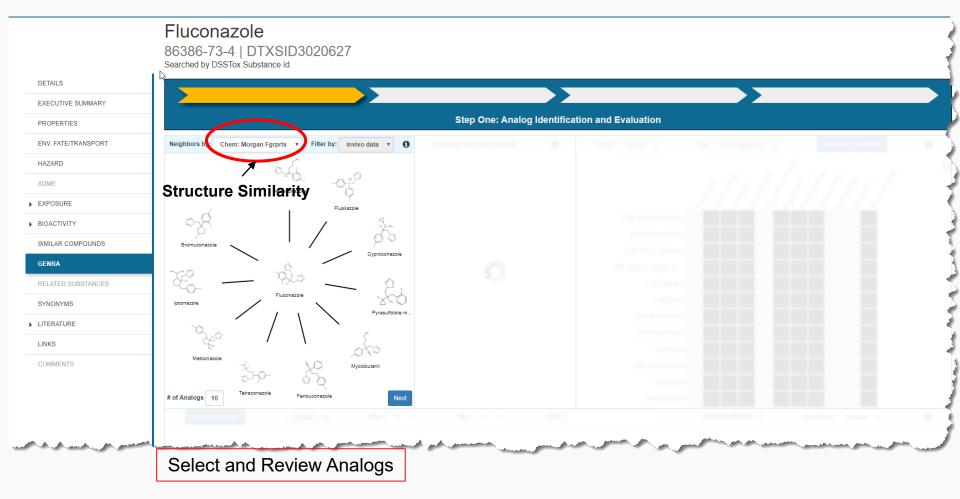
ADME

EXPOSURE

BIOACTIVITY

SIMILAR COMPOUNDS

GENRA (BETA)

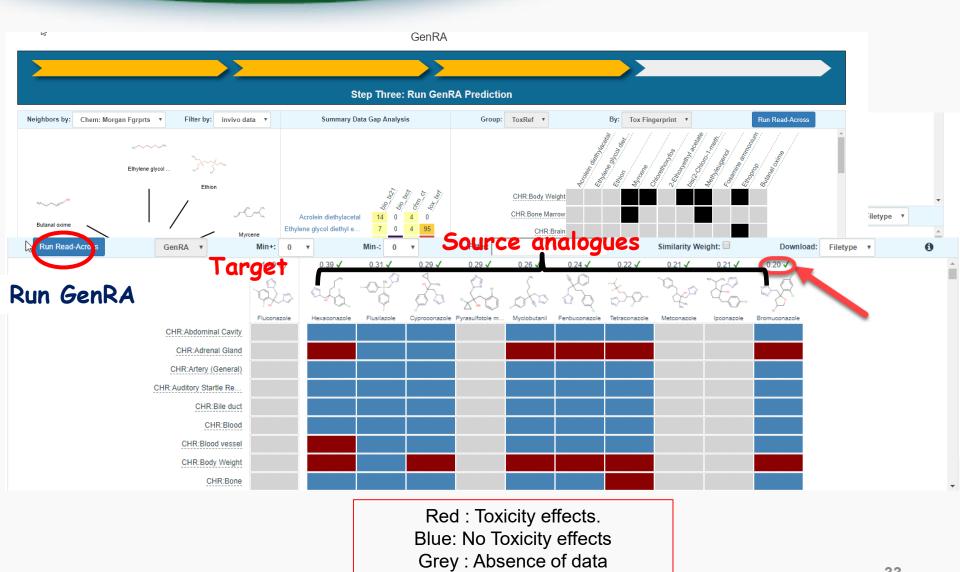

RELATED SUBSTANCES

SYNONYMS

LITERATURE

LINKS

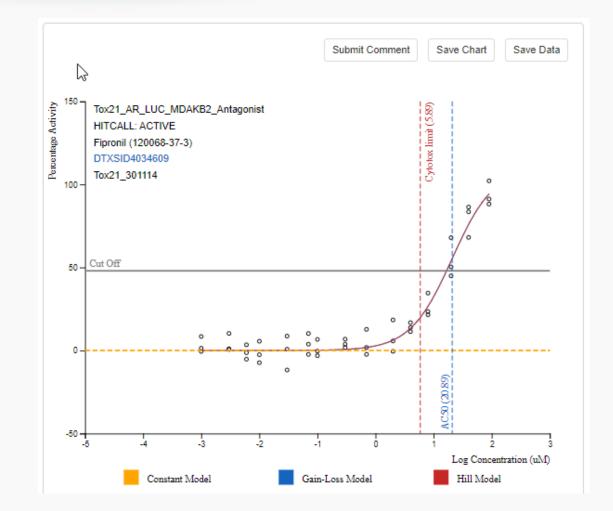
Batch Search Lists v Predictions Downloads		Сору 🔻	Share 🔻	Submit Comment	Q, Search all data	
azole -4 DTXSID3020627 ^{STox Substance Id.}	6					Í
	Wikipedia				•	
	Fluconazole is an antifungal medication used for a number of histoplasmosis, dermatophytosis, and pityriasis versicolor. It is transplantation, low birth weight babies, and those with low bird Common side effects include vomiting Read more	also used to	prevent candi	diasis in those who are	at high risk such as following organ	
	Intrinsic Properties				•	
F HO	Molecular Formula: C13H12F2NgO Mol File Molecular Formula: C13H12F2NgO Mol File Average Mass: 306.277 g/mol Image: Isotope Mass D Monoisotopic Mass: 306.104065 g/mol	Q Find All C	hemicals			
[Structural Identifiers				•	
	Linked Substances				4	
	Presence in Lists				•	
	Record Information				•	
	Quality Control Notes				•	•


United States Environmental Protection

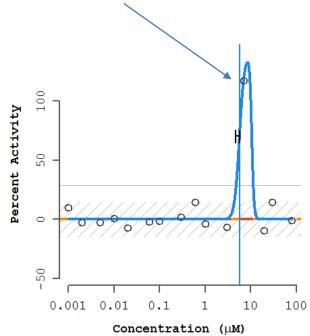
Agency

GenRA Step Two: Data Gap Analysis & Generate Data Matrix 3 Generate Data Matrix Summary Data Gap Analysis 0 6 Group: ToxRef • By: Tox Fingerprint 🔻 Neighbors by: Chem: Morgan Fgrprts v Filter by: invivo data 🔻 610 (P27 bio they chin ct Characonazol Masulfotole, Hetaconago Flusilazolo Myclobula, Ethylene glycol Ethion uconazole 0 CHR: Abdominal Cavity Hexaconazole 43 819 18 CHR:Adrenal Gland 28 819 345 Flusilazole Q Butanal oxime Myrcene CHR:Artery (General) 819 16 408 Cyproconazole 14 HJC HJC CHR:Auditory Startle Re. Pyrasulfotole metabolite 0 0 18 CHR:Bile duct Acrolein diethyl. Myclobutanil 15 818 15 Ethoprop CHR:Blood Chlorethoxyfos 34 819 17 Fenbuconazole CHR:Blood vessel 35 819 20 Tetraconazole CHR:Body Weight 35 15 82 Metconazole Fosamine amm CHR:Bone 2-Ethoxyethyl a .. 180 Ipconazole 46 16 CHR:Bone Marrow Bromuconazole 24 13 345 Methyleugenol CHR:Brain bis(2-Chloro-1-... # of Analogs 10 Next nchus Select and Review Analogs **Review Available Data** Fingerprint indicating available data

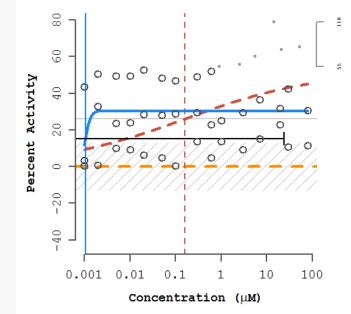
Demonstration



BIOACTIVITY DATA


Internal Review of 25,000 curves A "good fit" bioactivity curve

Internal Review of 25,000 curves


ASSAY	: TOX21	_RT_HEK29	EK293_FLO_40hr_viability						
SPID (CASRN: 200582			uoromethylsulfc				
HILL 1	MODEL (in	red):							
		ga 2.4 NaN							
GAIN-1	LOSS MODE	L (in blu	e):						
val:	tp 140	ga 0.758	gw 8	la 1.03					
sd:	56.9	0.105	3.92	0.822	64.2				
PROB:	0	131 3		113.6 1and g	gain-loss fit with a y assay (makes lit				
MAX_M	EAN: 117	MAX	MED:	117 ВМ	AD: 4.76				
COFF:	28.5 н	IT-CALL:	1 F	TTC: 50 AC	TP: 1				
FLAGS	:								
HIT-PO	ст: 0.887	MED-GA:	0.758	2 GA-CI: 0.	0826				

United States Environmental Protection

Agency

Internal Review of 25,000 curves Abnormally High-Noise

ASSAY:	TOX21_	AR_BLA_Ar	ntagoni	st_ratio	
NAME :	1-Nitr	copyrene			
		CASRN:	5522-4	3-0	
SPID(S)	: Tox21	200066			
M4ID:	181812	79 BRK			
HILL MO	DEL (in	red):			
t	р	ga	gw		
val: 5	2	-0.797	0.3		
sd: N	aN	NaN	NaN		
		in blue			
				la	
				3.77	
sd: 3	.58	0.211	59.3	7180	16800
c	NST	HILL		GNLS	
ATC: 4	64.32	423.78	3	423.68	
PROB: 0		0.49			
		23.61		23.62	
MAX_MEA	N: 55.2	MAX_	MED: 4	2.4 E	BMAD: 4.35
COFF: 2	6.1 ні	T-CALL: 1	FI FI	тс: 46 и	ACTP: 1
FLAGS:	17; 11				
HIT-PCT	: 0.971	MED-GA:	-1.591	9 GA-CI:	6.2178

Internal Curve Review Results

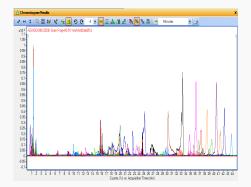
- Internal curve review has resulted in:
 - Instances of correction of fitting procedures in the ToxCast Pipeline
 - Identification of issues with source data
 - Identification of additional flags or filters that could be used, depending on the application of ToxCast data
 - a beta implementation of quality assurance for HTS data
 - Brown & Paul-Friedman, Uncertainty in ToxCast Curve-Fitting: Quantitative and Qualitative Descriptors Inform a Model to Predict Reproducible Fits (in preparation)

tcpl: the ToxCast pipeline for high-throughput screening data 🚥

Dayne L Filer, Parth Kothiya, R Woodrow Setzer, Richard S Judson, Matthew T Martin 🐱

Bioinformatics, Volume 33, Issue 4, 15 February 2017, Pages 618–620, https://doi.org/10.1093/bioinformatics/btw680

Published: 22 November 2016 Article history •


STRUCTURE ID BY MASS SPEC

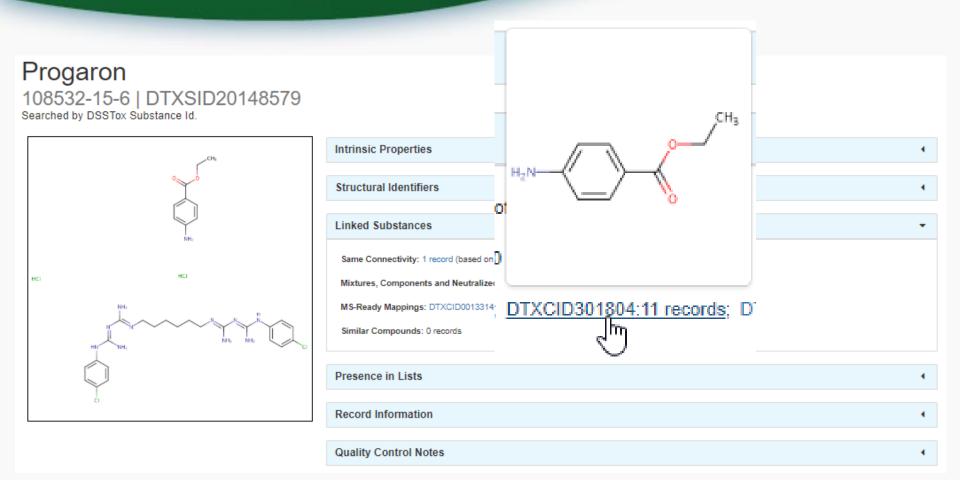
Comparing Analysis Approaches

- Targeted Analysis:
 - We know exactly what we're looking for
 - 10s 100s of chemicals
- Suspect Screening Analysis (SSA):
 - We have chemicals of interest
 - 100s 1,000s of chemicals
- Non-Targeted Analysis (NTA):
 - We have no preconceived lists
 - 1,000s 10,000s of chemicals
 - In dust, soil, food, air, water, products, plants, animals, and...us!!

Structure Identification by MS

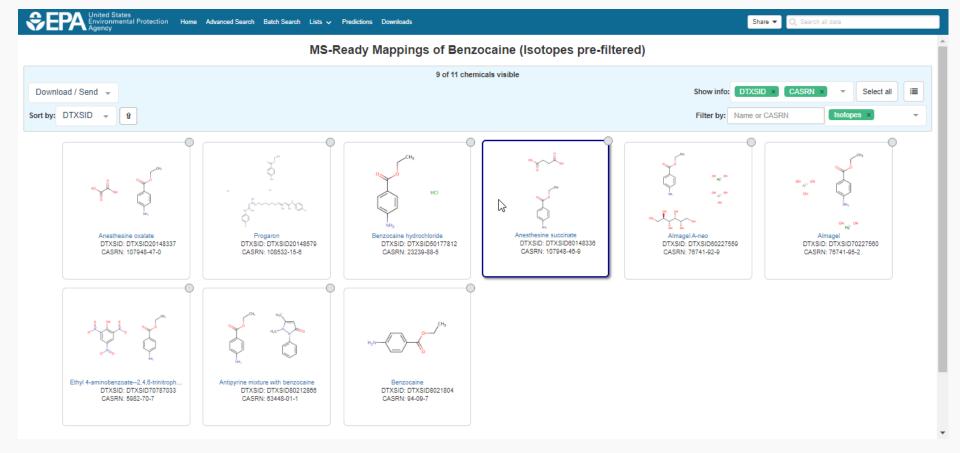
 An LC/MS/MS examination of a sol sample for tentatively identified compounds (TIC), also called suspect chemical screens, returns an exact mass of 222.22 g/mol. How can the dashboard assist in identifying and characterizing the environmental hazard of this "unknown"?

- Search is based on the Neutral Mass
- Default error is +/-5ppm
- Search 222.22+/-5ppm is it neutral mass??
 - 1 compound (Multicomponent)
 - Searching 67 million on ChemSpider SAME compound
 - Common adduct searches
 - -+H: 0 chemicals
 - -+Na: 19 chemicals
 - -+NH4: 0 chemicals
 - -+K: 0 chemicals



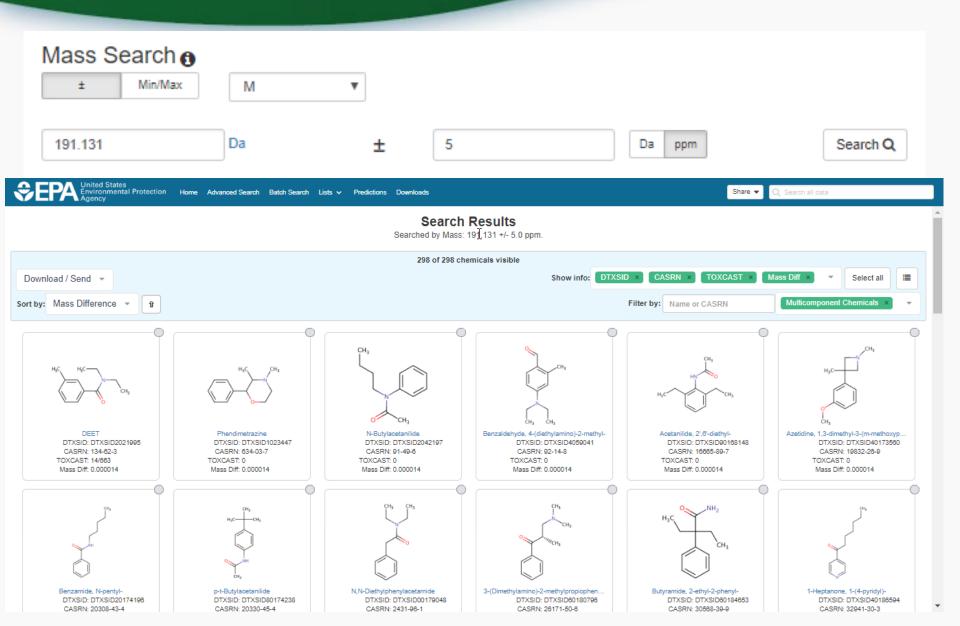
- It is a C13 linear or branched monoamine
- <u>https://tinyurl.com/yae59vpd</u>

Based on sources maybe tridecylamine


MS-Ready Mappings

MS-Ready Mappings Set

Mass and Formula Searches Supporting Mass Spectrometry



Advanced Search@

Mass Searche ± Min/Max	Select Adduct: Neutral V		
Mass	±	Error Da Da ppm	Search Q
Molecular Formula Sear	ch€	Image: MS Ready Formula (1)	Search Q
Coporate Molecular For	mula(a) a	Exact Formula 3	
denerate Molecular For	inula(e)		
Mass Da	±	Error Da ppm	Search Q
Default Options: C[1-50] H[0-10 Include Halogens: E F[0-20] Cl[0] O[0-20] N[0-20] P[0-20] S[0-10] 0-20] Br[0-20] I[0-20]		

Advanced Searches Mass Based Search

Advanced Searches Mass Based Search

	United States Environmental Prov Agency	tection Home Advanced Search Ba	ıtch Search Lists ∨ Predic	ions Downloads				Share 👻	Q. Search all data		
					Mass: 191.131 -						
Download / S	Send 👻			298 of	298 chenīicals vi	isible				Select all	
Sort by: Mass	B Difference 👻	Ŷ					Filter by: Na	ame or CASRN	Multicomponent	Chemicals ×	•
Structure	DTXSID	Preferred Name	CASR	QC Level	CPDat Count	Number of Sources	PubChem Data Sources	PubMed Ref. Counts	Monoisotopic Mass	Mass Differe	nce
H¢ H¢ CH	DTXSID2021995 ToxCast™	DEET	134-82	-3 Level 1	111	111	155	753	191.131014	0.000014	0
	DTXSID1023447	Phendimetrazine	634-03	-7 Level 2	12	28	35	50	191.131014	0.000014	0
CH ₃	DTXSID2042197	N-Butylacetanilide	91-40-	3 Level 2	1	26	50	1	191.131014	0.000014	0
	DTXSID4059041	Benzaldehyde, 4-(diethylamino)-2-methyl-	. 92-14-1	3 Level 3	0	7	51	0	191.131014	0.000014	0
	DTXSID90168148	Acetanilide, 2º,0'-diethyl-	16865-	89-7 Level 4	0	4	33	0	191.131014	0.000014	0

Batch Searching

• Singleton searches are useful but we work with thousands of chemicals!

- Typical questions
 - What is the list of chemicals for the formula $C_x H_y O_z$
 - What is the list of chemicals for a mass +/- error
 - Can I get chemical lists in Excel files? In SDF files?

Batch Searching

Batch Search@

Step Three: Select Download Data or Display Chemicals

Potassium cyanide

Chlorodimethylsilane

 Please enter one identifier per line

 Select Input Type(s)

 Identifiers

 Identifiers

 Chemical Name ()

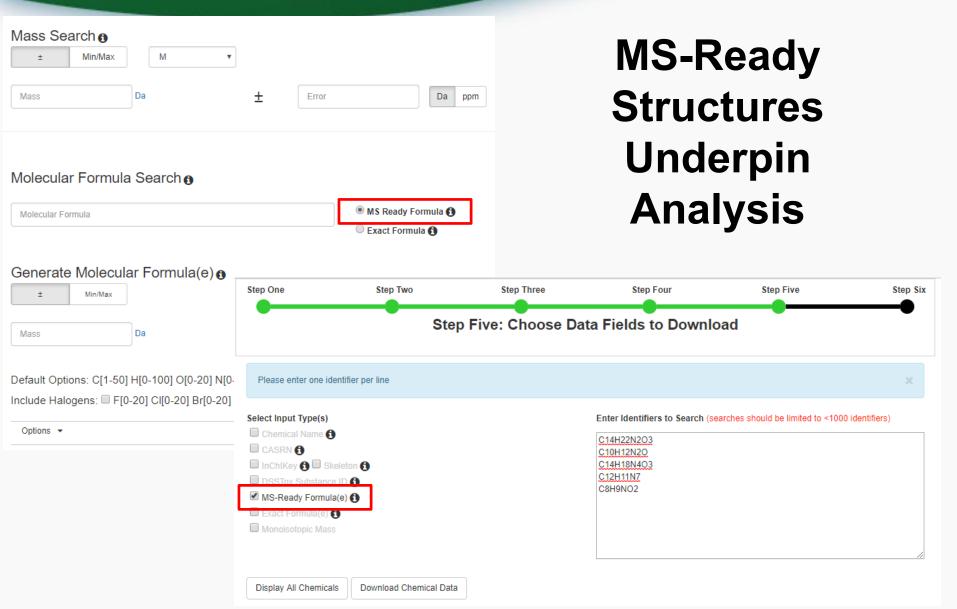
 CASRN ()

- 🔲 InChlKey 🚯
 - DSSTox Substance ID 6
- InChIKey Skeleton 1
- MS-Ready Formula(e) 1
- 🗏 Exact Formula(e) 🚯
- Monoisotopic Mass

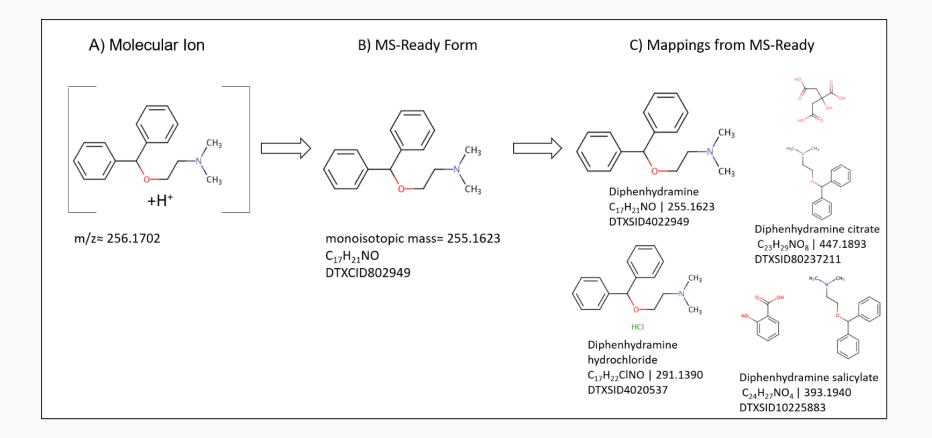
mical Data

Batch Searching

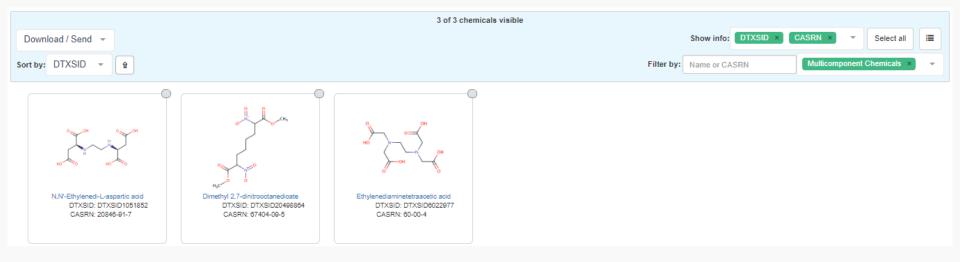
"J Select Output Format:	
💷 Excel 🗸	📩 Download
Customize Results	Presence in Lists:
Select All	ICCVAM test method evaluation report: in vitro ocular toxicity test methods
Select All in Lists	40CFR355
	A list of all PBDEs (Polybrominated diphenyl ethers)
Chemical Identifiers	A list of all PCBs (Polychlorinated biphenyls)
	A list of polycyclic aromatic hydrocarbons
Chemical Name 🕄	Acute exposure guideline levels
CAS-RN ()	Algal Toxins
InChIKey 🚯	Androgen Receptor Chemicals
IUPAC Name (1)	APCRA Chemicals for Prospective Analysis
Structures	APCRA Chemicals for Retrospective Analysis
Mol File 🚯	APCRA Chemicals for Retrospective Analysis_App_List_448_Chemicals
SMILES 🕄	ATSDR Minimal Risk Levels (MRLs) for Hazardous Substances
InChI String 1	ATSDR Toxic Substances Portal Chemical List
MS-Ready SMILES (1)	Bisphenol Compounds
QSAR-Ready SMILES (1)	California Office of Environmental Health Hazard Assessment
Intrinsic And Predicted Properties	Chemicals with interesting names
Molecular Formula	CMAP
Average Mass ()	DNT Screening Library
Monoisotopic Mass (1)	Drinking Water Suspects, KWR Water, Netherlands
TEST Model Predictions	EDSP Universe
OPERA Model Predictions	EPA Chemicals associated with hydraulic fracturing


Excel Output

INPUT	FOUND_BY	DTXCID_IN	DATA_SOL	TOXVAL	D TOXCAST	TOXCAST	NUMBER_C	PUBCHEM	STO
C6H12O3	MS Ready	DTXCID701	y	Y	0.36	2/562	24		
C6H12O3	MS Ready	DTXCID0034	67	Y	0.36	1/276	376	80	Y
C6H12O3	MS Ready	DTXCID106	65	Y	4.42	5/113	6	77	Y
C6H12O3	MS Ready	DTXCID105:	45	Y	0.0	0/163	3	94	-
C6H12O3	MS Ready	DTXCID901	38	Y	-	-	14	110	Y
C6H12O3	MS Ready	DTXCID4024	34	Y	0.0	0/113	-	53	Y
C6H12O3	MS Ready	DTXCID202	31	Y	-	-	-	36	Y
C6H12O3	MS Ready	DTXCID2024	30	-	2.54	7/276	-	54	-
C6H12O3	MS Ready	DTXCID109	26	Y	-	-	-	46	-
C6H12O3	MS Ready	DTXCID202	24	Y	0.0	0/113	-	47	-
C6H12O3	MS Ready	DTXCID303	22	Y	-	-	-	89	-
C6H12O3	MS Ready	DTXCID302	20	Y	-	-	2	25	Y
C6H12O3	MS Ready	DTXCID4074	19	Y	-	-	12	62	-
C6H12O3	MS Ready	DTXCID704	17	Y	-	-	-	64	-
C6H12O3	MS Ready	DTXCID704	16	Y	-	-	3	49	-

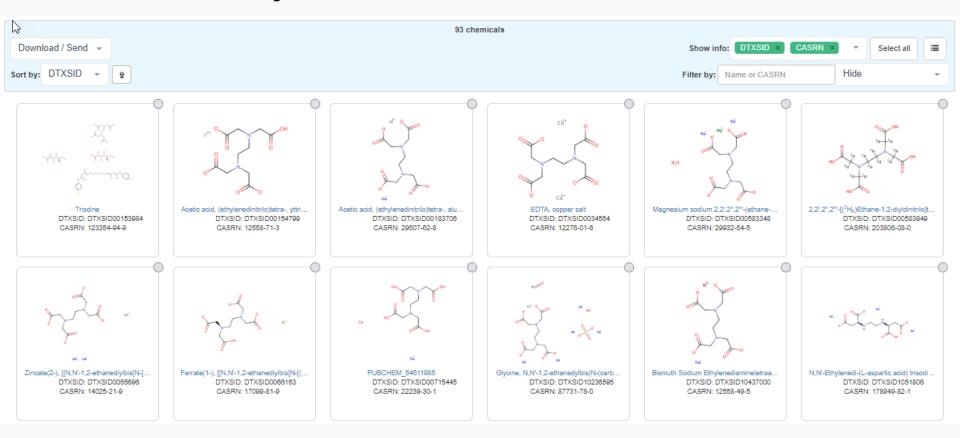

The Dashboard to Support MS-Analysis

Specific Data-Mappings "MS-Ready Structures"


MS-Ready Mappings

• Input Formula: C10H16N2O8

Molecular Formula Search


C10H16N2O8	MS Ready Formula 🚯	Search Q
	Exact Formula (1)	

MS-Ready Mappings

- Same Input Formula: C10H16N2O8
- MS Ready Formula Search: 93 Chemicals

- 93 chemicals returned in total
 - Only 7 of the 93 are single component chemicals
 - Only 4 of the 93 are non-isotope-labeled
 - 3 are neutral compounds and 1 is charged

Complexity to Simplicity 93 Chemicals – 7 in EPAHFR

1	INPUT	DTXCID INDIVIDI	FORMULA	SMILES		CASRN	EXPOCAST M	EXPOCAST	DATA_SOURCITOXVAL_D	TOXCAST	TOXCAST	# OF PUBMED	PURCHEM	FPAHER
2					DTXSID6022977		7.96e-05	Y		2.65	3/113	25251	158	
3	C10H16N2O8				DTXSID9027073		-	-	41 Y	-	-	25251	56	
	C10H16N2O8				DTXSID3026350		-	-	37 Y	-	-	-	57	
	C10H16N2O8				DTXSID7020556		-	-	30 Y	-	-	-	33	-
6	C10H16N2O8				DTXSID5049609		-	-	20 Y	-	-	-	8	Y
7	C10H16N2O8				DTXSID5049576		-	-	19 Y	-	-	25251	31	Y
8	C10H16N2O8				DTXSID0034564		-	-	11 -	-	-	-		Ŷ
	C10H16N2O8				DTXSID5027774		-	-		1.98	6/303	241	53	
	C10H16N2O8				DTXSID2036409		4.64e-06	Y		0.0	0/64	25251	42	-
		DTXCID00197424					-	-	36 Y	-	-	89	25	
	C10H16N2O8			· · ·	DTXSID6042107		-	-	25 Y	-	-	97	25	
	C10H16N2O8				DTXSID3036442		-	-	23 Y	-	-	25251	25	-
14	C10H16N2O8	DTXCID00197424					-	-	22 Y	-	-	-	5	-
	C10H16N2O8				DTXSID0065696		-	-	22 Y	-	-	-	43	-
16	C10H16N2O8				DTXSID9027813		-	-	21 Y	-	-	-	12	-
17	C10H16N2O8				DTXSID9027815		-	-	20 Y	-	-	241	24	-
18	C10H16N2O8	DTXCID902977	C10H16N2C	OC(=0)C	DTXSID5058272	17421-79-3	-	-	19 Y	-	-	25251	25	-
19	C10H16N2O8	DTXCID902977	C10H16N2C	OC(=0)C	DTXSID3058612	2001-94-7	-	-	18 Y	-	-	25251	19	-
20	C10H16N2O8	DTXCID902977	C10H16N2C	OC(=0)C	DTXSID8027820	22473-78-5	-	-	16 Y	-	-	-	11	-
21	C10H16N2O8	DTXCID902977	C10H16N2C	OC(=0)C	DTXSID8058324	17572-97-3	-	-	15 -	-	-	-	36	-
22	C10H16N2O8	DTXCID902977	C10H16N2C	OC(=0)C	DTXSID8028343	67859-51-2	-	-	14 Y	-	-	-	5	-
23	C10H16N2O8	DTXCID902977	C10H16N20	OC(=0)C	DTXSID4051328	13235-36-4	-	-	14 -	-	-	-	18	-
24	C10H16N2O8	DTXCID902977	C10H16N20	OC(=0)C	DTXSID6070980	68015-77-0	-	-	14 Y	-	-	-	13	-
25	C10H16N2O8	DTXCID902977	C10H16N20	OC(=0)C	DTXSID9058317	15934-01-7	-	-	11 -	-	-	-	5	-
26	C10H16N2O8	DTXCID902977	C10H16N20	OC(=0)C	DTXSID0066163	17099-81-9	-	-	11 -	-	-	241	14	-
27	C10H16N2O8				DTXSID1068988		-	-	11 -	-	-	241	14	-
28	C10H16N2O8	DTXCID902977	C10H16N20	OC(=0)C	DTXSID5074266	60816-63-9	-	-	11 -	-	-	1	10	-
	C10H16N2O8				DTXSID4048197		-	-	10 -	-	-	-	28	-
	C10H16N2O8				DTXSID2065830		-	-	10 -	-	-	47	9	
	C10H16N2O8				DTXSID70189997		-	-	10 -	-	-	25298	26	
	C10H16N2O8				DTXSID7051420		-	-	9 -	-	-	-	4	
	C10H16N2O8				DTXSID2051425		-	-	8 Y	-	-	-	3	
	C10H16N2O8				DTXSID7051426		-	-	8 Y	-	-	-	5	-
	C10H16N2O8				DTXSID2051427		-	-	8 Y	-	-	-		-
	C10H16N2O8				DTXSID3058741		-	-	8 Y	-	-	-	31	
	C10H16N2O8				DTXSID6065925		-	-	8 -	-	-	-	19	
	C10H16N2O8				DTXSID20217976		-	-	8 -	-	-	-	13	
	C10H16N2O8				DTXSID5065807		-	-	7 -	-	-	-	12	
	C10H16N2O8				DTXSID6069408		-	-	7 -	-	-	-	12	
	C10H16N2O8			· · · ·	DTXSID00153984		-	-	7 -	-	-	2	6	
	C10H16N2O8				DTXSID70190705		-	-	7 -	-	-	6	9	
43	C10H16N2O8	DTXCID902977	C10H16N20	OC(=0)C	DTXSID7051424	67401-50-7	-	-	6 -	-	-	-	4	-

Complexity to Simplicity 93 Chemicals – 7 in the list

Structure	DTXSID	Preferred Name	CASRN	QC Level	CPDat Count	Number of Sources	PubChem Data Source	PubMed Data Source	Monoisotopi Mass	c
5°	DTXSID0034564	EDTA, copper salt	12276-01-6	Level 1	10	11	8	0	413.918561	
	DTXSID3026350	Ethylenediaminetetraacetic acid tetrasodium salt	64-02-8	Level 1	1227	37	57	0	380.018442	•
	DTXSID5049576	Disodium ethylenediaminetetraacetate dihydrate	6381-92-6	Level 1	93	19	31	25251	372.075683	•
n fri a n	DTXSID5049609	Ethylenediaminetetraacetic acid, diammonium copper salt	67989-88-2	Level 2	9	20	8	0	387.057712	•
	DTXSID6022977	Ethylenediaminetetraacetic acid	60-00-4	Level 1	346	71	158	25251	292.090665	•
N NI NI	DTXSID7020556	Trisodium ethylenediaminetetraacetate	150-38-9	Level 1	85	30	33	0	358.036498	•
	DTXSID9027073	Ethylenediaminetetraacetic acid, disodium salt	139-33-3	Level 1	1358	41	56	25251	336.054554	•

Searching batches Formula (or mass) searching

	A	B	С	D	E	F	G
1	INPUT	DTXSID	CASRN	PREFERRED NAME	MOL FORMULA	MONOISOTOPIC MASS	DATA SOURCES
2	C14H22N2O3	DTXSID2022628	29122-68-7	Atenolol	C14H22N2O3	266.163042576	46
3	C14H22N2O3	DTXSID0021179	6673-35-4	Practolol	C14H22N2O3	266.163042576	32
4	C14H22N2O3	DTXSID4048854	841-73-6	Bucolome	C14H22N2O3		20
5	C14H22N2O3	DTXSID1045407	13171-25-0	Trimetazidine dihydrochloride	C14H24Cl2N2O3	338.116398	19
6	C14H22N2O3	DTXSID0045753	56715-13-0	R-(+)-Atenolol	C14H22N2O3	266.163042576	19
7		DTXSID2048531	5011-34-7	Trimetazidine	C14H22N2O3		14
8	C14H22N2O3	DTXSID10239405	93379-54-5	Esatenolol	C14H22N2O3	266.163042576	12
9	C14H22N2O3	DTXSID50200634	52662-27-8	N-(2-Diethylaminoethyl)-2-(4-hydroxyphenoxy)acetamide	C14H22N2O3	266.163042576	7
10	C14H22N2O3	DTXSID4020111	51706-40-2	dl-Atenolol hydrochloride	C14H23CIN2O3	302.1397203	6
11	C14H22N2O3	DTXSID1068693	51963-82-7	Benzenamine, 2,5-diethoxy-4-(4-morpholinyl)-	C14H22N2O3	266.163042576	5
12	C18H34N2O6S	DTXSID3023215	154-21-2	Lincomycin	C18H34N2O6S		35
13	C18H34N2O6S	DTXSID7047803	859-18-7	Lincomycin hydrochloride	C18H35CIN2O6S	442.1904357	22
14	C18H34N2O6S	DTXSID20849438	1398534-62-7	PUBCHEM_71432748	C18H35CIN2O6S	442.1904357	1
15	C10H12N2O	DTXSID1047576	486-56-6	Cotinine	C10H12N2O	176.094963014	40
16	C10H12N2O	DTXSID8075330	50-67-9	Serotonin	C10H12N2O	176.094963014	22
17	C10H12N2O	DTXSID8044412	2654-57-1	4-Methyl-1-phenylpyrazolidin-3-one	C10H12N2O	176.094963014	18
18	C10H12N2O	DTXSID80165186	153-98-0	Serotonin hydrochloride	C10H13CIN2O		11
19	C10H12N2O	DTXSID2048870	29493-77-4	(4R,5S)-4-methyl-5-phenyl-4,5-dihydro-1,3-oxazol-2-amine	C10H12N2O	176.094963014	10
20	C10H12N2O	DTXSID10196105	443-31-2	6-Hydroxytryptamine	C10H12N2O	176.094963014	9
21	C10H12N2O	DTXSID90185693	31822-84-1	1,4,5,6-Tetrahydro-5-phenoxypyrimidine	C10H12N2O	176.094963014	7
22	C10H12N2O	DTXSID40178777	2403-66-9	2-Benzimidazolepropanol	C10H12N2O	176.094963014	7
23	C10H12N2O	DTXSID80157026	13140-86-8	N-Cyclopropyl-N'-phenylurea	C10H12N2O	176.094963014	6
24	C10H12N2O	DTXSID30205607	570-14-9	4-Hydroxytryptamine	C10H12N2O	176.094963014	6
25	C14H18N4O3	DTXSID5023900	17804-35-2	Benomyl	C14H18N4O3	290.137890456	68
26	C14H18N4O3	DTXSID3023712	738-70-5	Trimethoprim	C14H18N4O3	290.137890456	51
27	C14H18N4O3	DTXSID40209671	60834-30-2	Trimethoprim hydrochloride	C14H19CIN4O3	326.1145682	8
28	C14H18N4O3	DTXSID70204210	55687-49-5	Benzenemethanol, 4-((2,4-diamino-5-pyrimidinyl)methyl)-2,	C14H18N4O3	290.137890456	5
29	C14H18N4O3	DTXSID20152671	120075-57-2	6-Methoxy-4-(3-(N,N-dimethylamino)propylamino)-5,8-quina	C14H18N4O3	290.137890456	4
30	C14H18N4O3	DTXSID30213742	63931-79-3	1H-1,2,4-Benzotriazepine-3-carboxylic acid, 4,5-dihydro-4-	C14H18N4O3	290.137890456	3
31	C14H18N4O3	DTXSID30219608	69449-07-6	2,4-Pyrimidinediamine, 5-((3,4,5-trimethoxyphenyl)methyl)	C14H20N4O4	308.14845514	3
32	C14H18N4O3	DTXSID20241155	94232-27-6	L-Aspartic acid, compound with 5-((3,4,5-trimethoxyphenyl	C18H25N5O7	423.175398165	3
33	C14H18N4O3	DTXSID80241156	94232-28-7	L-Glutamic acid, compound with 5-((3,4,5-trimethoxypheny	C19H27N5O7	437.191048229	3
34		DTXSID20143781		1H-Pyrido(2,3-e)-1,4-diazepine-2,3,5-trione, 4-(2-(diethylam		290.137890456	3
35	C12H11N7	DTXSID6021373	396-01-0		C12H11N7	253.107593382	52
36	C12H11N7	DTXSID00204465	5587-93-9	Ampyrimine	C12H11N7	253.107593382	7
37		DTXSID5064621	7300-26-7		C12H9N7	251.091943318	4
38	C12H11N7	DTXSID00848025			C12H13N7O4S	351.074973101	1
39		DTXSID50575293			C12H11N7	253.107593382	1
	C8H9NO2	DTXSID2020006	103-90-2		C8H9NO2		75
	CSHONOS		12/ 20 2		CONON		60

PFAS

A List of Lists of Chemicals

https://comptox.epa.gov/dashboard/chemical_lists

United States Environmental Protection Agency	Home	Advanced Search	Batch Search	Lists	Predictions	Downloads	Search All Da
Chemistry Dashboa	rd			•			Aa 🕶 Aa Aa
			Sele	ect Lis	st		
				5			
List Name	Number of Chemicals	List Descr	iption	- 0			
40CFR355	354		azardous Substano 52 FR 13378)	e List and	Threshold Plann	ng Quantities; Emergency Planning and Release	e Notification Requirements;
Algal Toxins	54	A set of alga	I toxins of interest				
Androgen Receptor Chemicals	110		emicals used to id cs.org/doi/abs/10.1			o AR binding . From Kleinstrauer et al 47	
ATSDR Toxic Substances Portal Chemical List	200	The Agency Human Serv		es and Dise	ease Registry (A	FSDR)is a federal public health agency of the U.	S. Department of Health and
Bisphenol Compounds	52	This list repr	esents a collection	of Bisphen	ol Compounds		
California Office of Environmental Health Hazard Assessment	972					hazard information including reference exposure or numbers, soil-screening levels, and fish advis	
Chemicals with interesting names	17	This is a list	of chemicals with i	nteresting a	nd fun names		
EPA Integrated Risk Information System (IRIS)	510		rogram identifies a nical, a group of re			hazards of chemicals found in the environment. ex mixture.	Each IRIS assessment can
EPAHFR - EPA Chemicals associated with hydraulic fracturing	1640		s chemicals associ Final Report (Dec		ydraulic fracturin	g from 2005-20013, as reported in EPA's Hydrau	Ilic Fracturing Drinking Water
EU Cosmetic Ingredients Inventory (Combined 2000/2006)	2878					dients Employed in Cosmetic Products (2000, S I for NORMAN by P. von der Ohe (UBA) and R.	
EU Toxrisk Dataset	230	Compounds	of interest to the E	U-ToxRisk	Case Studies.		
French Monitoring List	1171					ing activities in France, developed in cooperatio o, INERIS, France. Further details on the websit	

11 PFAS Lists

http://comptox-prod.epa.gov/dashboard/chemical_lists

United States Environmental Protection Home Advanced Search Batch Search Lists ∨ Predictions Downloads

Share 👻 🔍 Search all data

			Select List	
Show 10 v entries				Download Search: pfas
List Acronym	List Name	🗄 Last Updated 🔶	Number of Chemicals	List Description
EPAPFAS75S1	EPA PFAS List of 75 Test Samples (Set 1)	2018-06-29	74	PFAS list corresponds to 75 samples (Set 1) submitted for initial testing screens conducted by EPA researchers in collaboration with researchers at the National Toxicology Program.
	Registered DSSTox "category substances" representing Per- and Polyfluoroalkyl Substances (PFAS) categories	2018-06-29	64	List of registered DSSTox "category substances" representing PFAS categories created using ChemAxon's Markush structure-based query representations.
EPAPFASINSOL	PFAS in EPA's Chemical Inventory Insoluble in DMSO	2018-06-29	43	PFAS chemicals included in EPA's expanded ToxCast chemical inventory found to be insoluble in DMSO above 5mM.
EPAPFASINV	PFAS in EPA's ToxCast Chemical Inventory	2018-06-29	430	PFAS chemicals included in EPA's expanded ToxCast chemical inventory and available for testing.
EPAPFASRL	EPA PFAS Cross-Agency Research List	2018-07-27	194	EPAPFASRL is a manually curated listing of mainly straight-chain and branched PFAS (Per- & Poly- fluorinated alkyl substances) compiled from various internal, literature and public sources by EPA researchers and program office representatives.
PFASEPA	PFAS_EPA List of Perfluorinated alkyl substances	2017-11-03	190	PFAS_EPA (Perfluorinated alkyl substances) is a manually curated listing of mainly straight-chain and branched PFAS substances
PFASEUOECD	PFAS Listed in OECD Global Database	2018-07-26	4725	OECD released a New Comprehensive Global Database of Per- and Polyfluoroalkyl Substances. (PFASs)listing approximately 4700 new PFAS
PFASGRACE	PFASforGrace	2017-02-18	35	A list of polyfluorinated chemicals of interest to Grace Patlewicz
PFASKEMI	PFAS List from the Swedish Chemicals Agency (KEMI) Report	2017-02-09	2397	Perfluorinated substances from a Swedish Chemicals Agency (KEMI) Report on the occurrence and use of highly fluorinated substances.
PFASMASTER	PFAS Master List of PFAS Substances	2018-07-26	5061	PFASMASTER is a consolidated list of PFAS substances spanning and bounded by the below lists of current interest to researchers and regulators worldwide.

Showing 1 to 10 of 11 entries (filtered from 96 total entries)

Desidence de la la la la

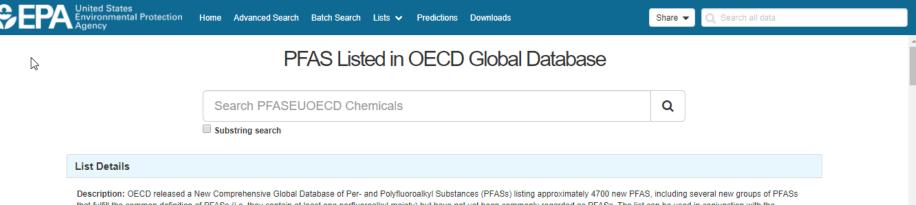
The OECD List of PFAS

http://www.oecd.org/chemicalsafety/portal-perfluorinated-chemicals/

The OECD releases a new list of PFASs

The OECD releases a new list of Per- and Polyfluoroalkyl Substances (PFASs) based on a comprehensive analysis of information available in the public domain. In total, 4730 PFAS-related CAS numbers have been identified and categorised in this study, including several new groups of PFASs that fulfil the common definition of PFASs (i.e. they contain at least one perfluoroalkyl moiety) but have not yet been commonly regarded as PFASs.

This work has been conducted under the OECD/UN Environment Global PFC Group in support of the Strategic Approach to International Chemicals Management (SAICM) and shifting to safer alternatives for PFASs.


The New Comprehensive Global Database of Per- and Polyfluoroalkyl Substances (PFASs) comes with a methodology report also detailing the major findings with respect to the total numbers and types of PFASs identified, the limitations, gaps and challenges identified in the development of the new list, and opportunities for improving the future understanding of PFASs production, use on the global market, and presence in the environment, biota, and other matrices.

The OECD List of PFAS

http://www.oecd.org/chemicalsafety/portal-perfluorinated-chemicals/

bescription: OECD releases a New Comprehensive Global Database of PE-ASS institutes (PEASS) institutes approximately 47/00 new PEAS, including several new groups of PEASS that fulfill the common definition of PEASS (i.e. they contain at least one perfluoroalkyl moiety) but have not yet been commonly regarded as PEASs. The list can be used in conjunction with the methodology report summarising the major findings with respect to the total numbers and types of PEASS identified, the limitations, gaps and challenges identified, and opportunities for improving the future understanding of PEASs production, use on the global market, and presence in the environment, biota, and other matrices.

Source website: http://www.oecd.org/chemicalsafety/portal-perfluorinated-chemicals

A major effort was undertaken to register this list within DSSTox, adding chemical structures for as many PFAS entries as possible using both manual and auto-mapping (structures using CAS-matching) curation methods. The result is that approximately 1/3 of the list is curated at the highest two curation levels (DSSTox_High or DSSTox_Low) currently, whereas more than half of this list is registered at the Public_Low curation level (based on PubChem content). The PFASOECD list is undergoing continuous registration and curation.

Number of Chemicals: 4725

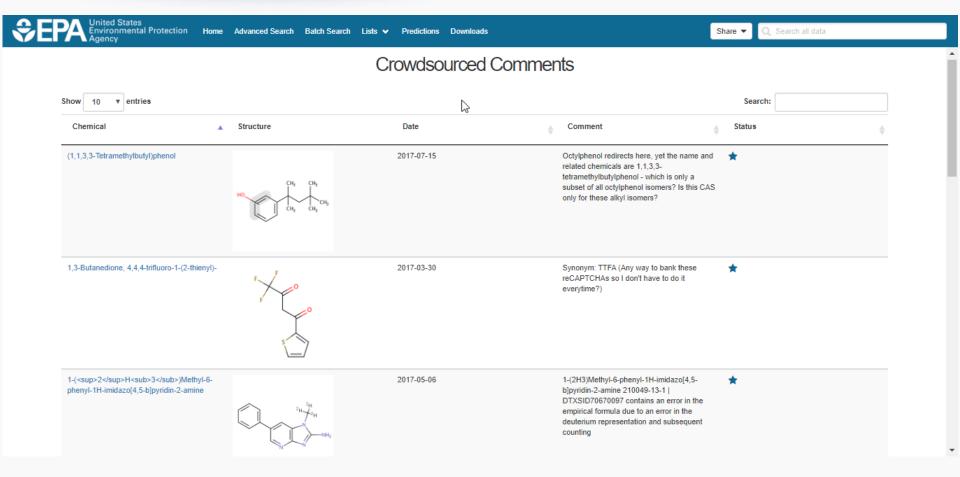
4725 chemicals						
Download / Send 👻	Show info:	DTXSID ×	CASRN × TOXCAST ×	•	Select all	
Sort by: DTXSID 👻	Û	Filter by:	Name or CASRN	Hide	Ŧ	

CROWDSOURCED ANNOTATION

How can be curate our data?

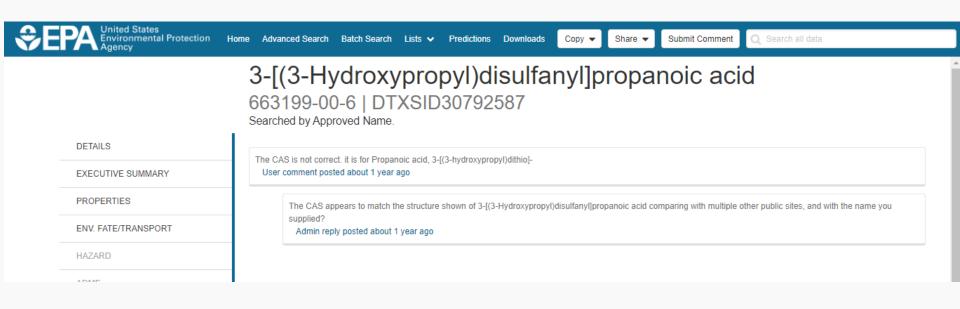
CREPA United States Environmental Protection Apency

- Crowdsourcing is well proven nowadays
- Comments can be added at a record level



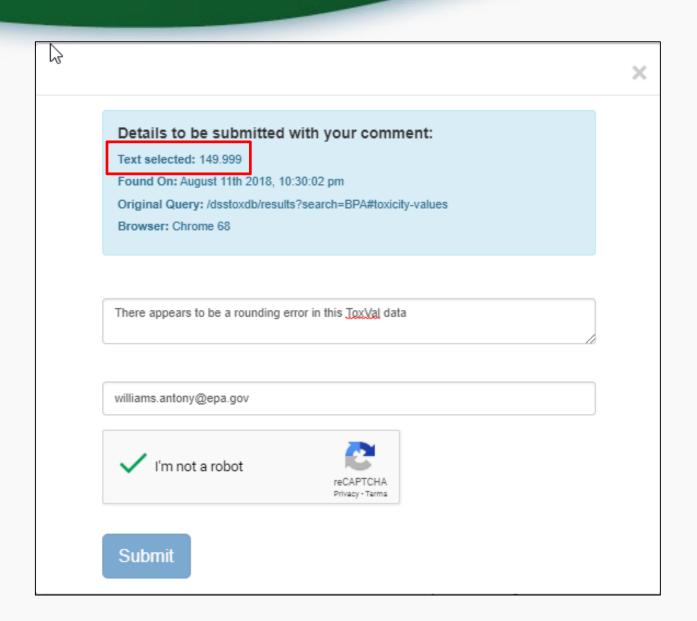
 Submitted comments are reviewed by administrators and responded to

Public Crowdsourced Comments


https://comptox.epa.gov/dashboard/comments/public_index

Reviewer comments are public

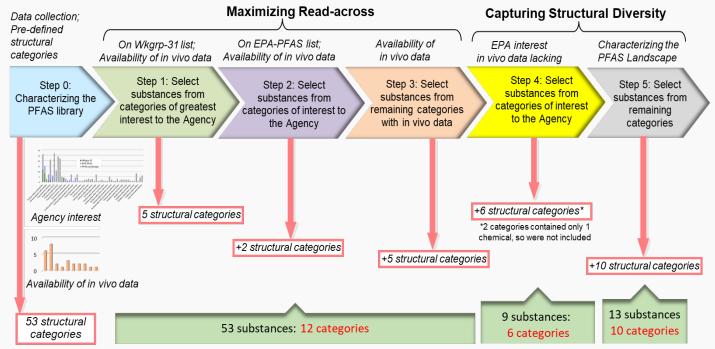
Crowdsourcing Comments Single Cell Commenting added



Highlight an alphanumeric text string

sessment class ‡	Value +	Units 🕈	Study type
	50	mg/kg- day	-
	149.999	mg/kg- day	chronic
	50	mg/kg- day	reproductive multigeneration
	500	ma/ka-	reproductive

Crowdsourcing Comments



FUTURE WORK

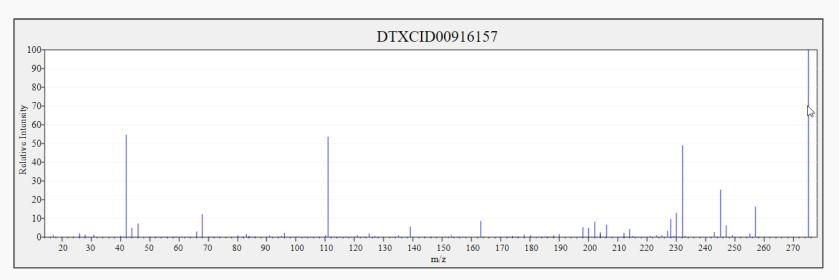
Work in progress

- Development of a high-throughput screening library and collection of physical samples (~400)
- 75 PFAS chemicals for screening based on categories, diversity, exposure considerations, procurability and testability, availability of existing toxicity data

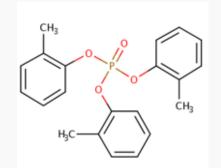
Work in Progress

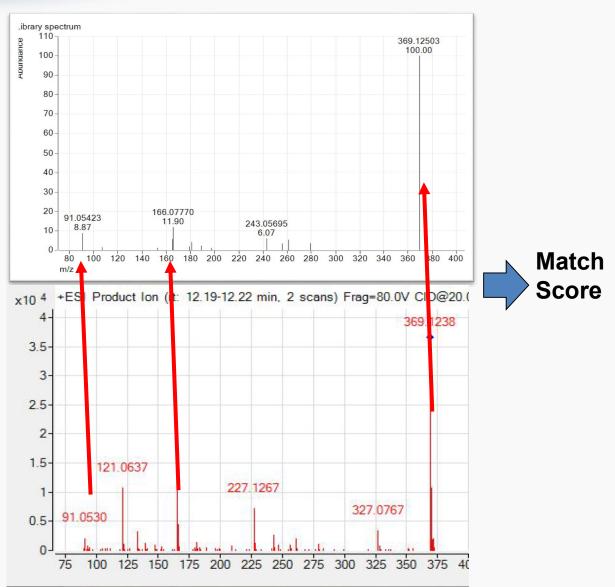
• CFM-ID

- Viewing and Downloading pre-predicted spectra
- Search spectra against the database
- Retention Time Index Prediction
- Structure/substructure/similarity search
- Generation of MS-ready structures:
 - Upload file, download results
 - Service based generation


Predicted Mass Spectra

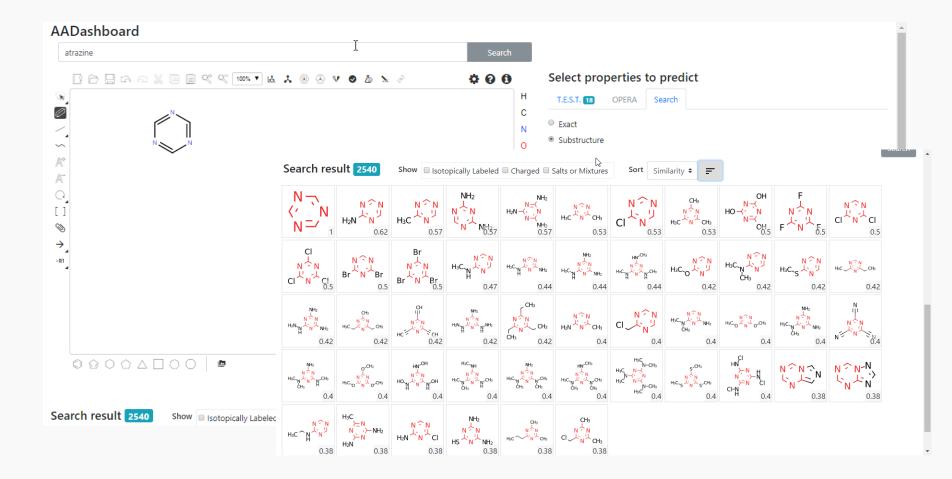
http://cfmid.wishartlab.com/


- MS/MS spectra prediction for ESI+, ESI-, and EI
- Predictions generated and stored for >700,000 structures, to be accessible via Dashboard

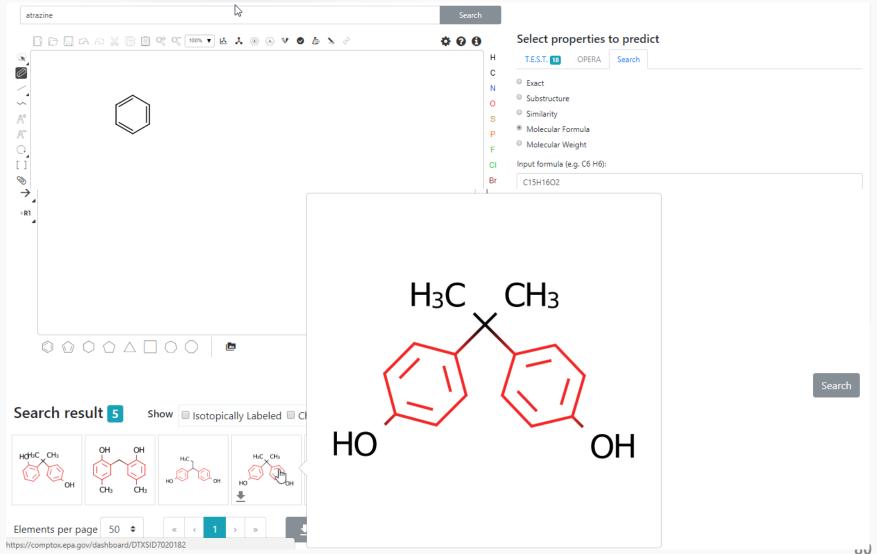

Predicted Mass Spectra

Library Fragmentation Spectra (20eV)

Observed Fragmentation Spectra (20eV)


Search Expt. vs. Predicted Spectra

Separation United States Environmental Protection Home	Advanced Search Ba	atch Search Lists ✔ Predictions Downloads	Share 🔻	Q. Search all data
		Mass Search <u>± Min/Max</u> Mass Da <u>±</u> Error Da ppm		
		Molecular Formula Search Molecular Formula		
		Mass or Formula must be entered before searching spectrum Ionization Type ESI+ T		
		Spectra Input Single Energy Multiple		
		Peak Match Window: 0.02 Da ppm Search		


Prototype Development

Prototype Development

