
Visualizing User Interactions with Simulation Tools
Nathan Denny

HUBzero
Purdue University

West Lafayette, IN, USA
ndenny@purdue.edu

Michael Zentner
HUBzero

Purdue University
West Lafayette, IN, USA

mzentner@purdue.edu

Gerhard Klimeck
Network for Computational Nanotechnology

Purdue University
West Lafayette, IN, USA

gekco@purdue.edu

Abstract—In order to improve user experiences with simula-
tion tools hosted by cyberinfrastructure, we endeavor to gain
a better understanding of how users interact with tools. The
dimensionality of these tools is often too large to be intuitively
understood. This paper presents two contributions to the study
of user behavior: the MEANDER algorithm for visualizing
sessions of user activity, and a scoring method (“searchiness”) for
characterizing a user’s behavior along an axis of “wildcatting”
vs. searching. The MEANDER algorithm uses graph heuristics to
squash a high dimensional path of exploration into a (distorted)
plane for rendering. The “searchiness” score is built upon the
same graph techniques.

Index Terms—cyberinfrastructure, user behavior, visualization

I. INTRODUCTION

As part of our ongoing research and development of cy-
berinfrastructure, we are interested in investigating how our
users interact with hosted simulation tools. By learning more
about our users and how they use our hosted tools, we hope
to enhance the users experience and ultimately improve upon
how science is done with cyberinfrastructure.

Our present investigation began with the hypothesis that user
interactions with tools could be broadly categorized along an
axis of wildcatting to searching. This axis is analogous to the
exploration vs. exploitation axis [1] [2] that is common in
several fields of management and economics.

As the saying goes, “seeing is believing.” To better un-
derstand user-tool interactions, we started by developing a
visualization algorithm that could show how a user interacted
with a particular tool. Our MEANDER algorithm uses graph
theory and heuristics to model and render a users sequence of
activity.

Using detailed activity logs from nanoHUB.org [3], we
generated thousands of MEANDER plots. Once we could
see user behavior and found several instances of the patterns
we anticipated, we worked toward developing a method for
automatically characterizing a users session behavior with
respect to our wildcatting vs. searching axis.

This paper includes an overview of the MEANDER algo-
rithm and our characterization method.

This material is based upon work supported by the Network for Compu-
tational Nanotechnology under US National Science Foundation grant nos.
EEC-0228390, EEC-1227110, EEC-0228390, EEC-0634750, OCI-0438246,
OCI-0832623 and OCI-0721680.

II. NOMENCLATURE

A tool is an executable software object that embodies a
simulation or model of some phenomenon of interest. In the
case of nanoHUB, many tools will model nano-electronic
systems or fine-grained material properties. A tool user is
a registered nanoHUB user that interacts with a tool in the
context of a tool session. A tool session is an instance of
allocated compute resources, typically a lease on a virtualized
machine that can last for a few minutes to a few days. While
tool sessions are somewhat arbitrary, they often conceptually
overlap with a particular purpose or question that motivates
the tool user. Within the context of a tool session, a tool user
can interact with the tool by issuing a query (or queries). A
query is an abstraction of the inputs to the model executed
by the tool, or the domain of the tools function. The query
is answered by an invocation of the tool. An invocation of
a tool is a single instantiated compute process that reads the
query and produces a result. We assume tools are ideal lambda
functions and thus have no state between invocations. The
result of the invocation is an abstraction of the output of the
tool, or the range of the tools function.

III. MEANDER
A MEANDER plot, such the one shown in Fig 1, is a

visual representation of a tool users session. Each invocation
is shown as a circle of various size and color. A line drawn
between circles signals a sequential relationship, where the one
invocation preceded another. The size of each circle reflects
the degree of change in the inputs, relative to the preceding
invocation. The color used to paint the circle is associated to
a specific, distinct “edit set” of changed arguments.

Fig. 1. MEANDER nanoHUB session 397899
Presented at Gateways 2018, University of Texas, Austin, TX, September 25–27, 2018.

https://gateways2018.figshare.com/

A. Example

For example, assume we have a simple tool that calculates
the volume of a rectangular solid. This example tool requires
inputs dx, dy, and dz, all of which are lengths. Furthermore,
assume a tool user that has, within a single tool session,
invoked our example tool four distinct times, with the input
arguments

query dx dy dz
q0 1 1 1
q1 1 2 3
q2 1 3 3
q3 1 4 4
q4 3 5 5

The vector q0 is the vector of default values and is a special
case that is the starting point in drawing the plot. If the tool
user did not invoke q0, this node is used in the plot algorithm,
but will be otherwise invisible when drawn.

In executing query q1, the user has (relative to the preced-
ing argument vector, q0) changed the arguments assigned to
parameters dy and dz. The edit set is therefore {dy, dz}, and
the size of the circle would be relative to the cardinality of
the edit set (in this case, 2). The edit sets and edit distances
for all queries are shown, below.

query edit set edit distance
q1 {dy, dz} 2
q2 {dy} 1
q3 {dy, dz} 2
q4 {dx, dy, dz} 3

The set of colors is the same size as the set of distinct edit
sets, {{dx, dy, dz} , {dy, dz} , {dy}}. The specific mapping of
color values to edit set is one-to-one, but otherwise arbitrary.
In our example, we have assigned red to {dx, dy, dz}, blue
to {dy, dz}, and gray to {dy}. We typically reserve black to
color the initial default node, if it is visible. Figure 2 shows a
possible MEANDER rendering of our example.

Fig. 2. MEANDER example plot

B. The Semantics of Distance

When comparing the arguments of two queries, we can
construct a general distance function between the parameters
that are scalar. So far, we have used a distance function that
is the log-scaled difference between the two values. For our
initial investigation, this method was sufficiently sensitive to
both small and large changes in value.

Beyond scalar values, the semantics of distance are not
clearly defined. What is the distance between True and False?

What is the distance between the chemical elements gold (Au)
and silver (Ag)?

If we know the context of the query, we might be able
to construct a function that captures the specific semantics
of distance. E.g. were we calculating momentum, the atomic
mass might be a good proxy for the distance between gold
and silver. However, in the general case, without any prior
knowledge of the application, the concept of distance between
discrete values is not obvious. For the results shown, we used
the size of the option set as the distance between all discrete
members in that set. This is somewhat arbitrary, but sufficient
for our purposes, here.

In both scalar and discrete values, we have so far defined
distances only for uni-dimensional comparisons. When the
query is considered in total as a vector, we must have some
reduction operation that produces a magnitude of distance.
There are many common methods of computing topological
distance. The “Manhattan” distance is the sum of the differ-
ences between the elements of the query vector. The “Cheby-
shev” distance is maximum distance between the arguments in
the query vector. In our current work we use the generalized
Euclidean distance . . .

∆d(p, q) =

√√√√ m∑
i=1

(qi − pi)2

. . . where p and q are queries with m parameters.

C. Edit Sets and Edit Distance

In addition to the semantic distance between two queries,
we are also interested in how many of the input arguments
were changed from one invocation to the next. The edit set,
(∆s) is the set of parameters that a tool user varied in query
qi, relative the preceding query, qj .

∆e = |∆s(qi, qj)|

The “edit distance” (∆e) provides additional context in
interpreting the semantic distance ∆d between invocations.
We have also contemplated edit distance as a coarse proxy for
the cognitive effort invested by a tool user.

D. Algorithm to Construct MEANDER Plot

The algorithm for constructing a MEANDER plot starts
with the set of input vectors extracted the user’s session log.
From these input vectors, we construct a complete graph (Kn)
where each input vector is a vertex in the graph. Each edge
in the graph is given an ideal length that is computed using a
general distance function. The vertices and edges are decorated
to visually represent changes made by the user in the sequence
of invoking the tool.

Given a sequence of queries Q = {q1, ..., qn}
1) Construct a complete graph Kn = {V,E} with each

qi ∈ Q becoming vertex vi ∈ V
2) Label each edge with an ideal length . . .

E(qi, qj) = ∆d(qi, qj)

. . . for qi, qj ∈ Q, i 6= j
3) Decorate each vertex vj by assigning the visual size of

the vertex: ∆e(qi, qj)
4) Decorate each vertex by asigning a color from the color

map to each distinct change seen in the session.
5) Decorate edges, labeling edge E(qi, qj) as visible if
{qi, qj} is a subsequence of Q. Label all remaining
edges as invisible.

6) Serialize the graph structure into the “dot” language used
by graphviz

7) Call graphviz’ “neato” to perform the layout

E. Visualization and High Dimensionality

In our rectangular volume example, our queries had only
three parameters. Visualizing the spatial distribution of the
queries is straightforward for tools that have only 2 or 3
dimensions. Most of the tools available on nanoHUB.org are
much more complex. Take for example, nanofet. This common
tool on nanoHUB, has 53 numeric inputs and is not an unusual
case. A sequence of queries to nanofet would be beyond our
intuitive ability to visualize in 2D or 3D.

MEANDER renders a session with high dimesional queries
using a heuristic that squashes the high dimensional structure
into a plane. In general, it is not possible to compress high
dimensional spaces into lower dimensional spaces without
some distortion of distance. Therefore, the distances between
nodes in MEANDER plots are representative of the semantic
distance between the nodes, but should not be assumed to be
of any particular consistent scale or transformation.

Following the construction algorithm, the MEANDER graph
is fed into the graphviz [4] neato for layout. The neato layout
uses a spring model where edges can be assigned an ideal
length, but the layout can deform the length of an edge, if
needed. The layout of a spring model graph is an optimization
problem in minimizing the energy needed to deform the spring
edges [5]. For our purposes, we treat the neato layout process
as a black box.

IV. CHARACTERIZING ACTIVITY

MEANDER plots are dense in how much information is
packed into the visualization. We needed a simpler metric that
could be used to label the behavior seen in tool sessions and
to index those sessions for storage and retrieval. A simpler
metric could also be employed as input to reactive automation
that would help shape the users experience in new, productive
ways.

A. Searching vs. Wildcatting

From our nanoHUB MEANDER plots, we found many
excellent examples of what we see as wildcatting behavior
and searching behavior.

Wildcatting is a speculative survey of some space. Our
intuition of wildcat behavior would be a sequence of relatively
large moves over a large space. Wildcatting could be human

behavior to get a feel for a space, or it could be the result
of automation that is sampling a space to build a surrogate
model. Wildcatting behavior can be seen in the MEANDER
plot in Figure 3, where we see the user issuing queries that
are relatively far apart while altering the same two or three
arguments with each invocation.

Fig. 3. MEANDER nanoHUB pntoy session 401554

Fig. 4. MEANDER nanoHUB pntoy session 396749

In contrast to wildcatters, searchers are looking for local
extrema. We would expect a searcher to move to some
representative centroid point, then make relatively small ad-
justments in the topological neighborhood of the centroid.
If those adjustments are not fruitful, we might see the user
abandon the centroid, making a relatively large movement to
a new point where the refinement process is repeated. We see
searching behavior in Figure 4 where we find the user making
several small movements in the neighborhood of relatively
isolated centroid points.

B. “Searchiness” Metric

The MEANDER plot shows only the actual path of the
tool user’s activity. Beneath the MEANDER plot, the Kn

graph contains potentially all possible activity paths. From our
description of expected behavior of searchers and wildcatters,
in general searchers will favor shorter movements in semantic
space over longer movements. For the wildcatter we would
expect almost the opposite behavior. The total distance of the
shortest and longest (acyclic) path through the graph estab-
lishes an envelope of idealized, extreme behaviors. When we
plot the actual tool user activity and the envelope boundaries,
we can see in our examples, that the searcher stays close to
the ideal path. The ratio of the area between the user path and

the wildcat (upper bound) path to the area of the envelope
gives us our “searchiness” metric. Note that the “searchiness”
score will always be in the range [0, 1] ; however we typically
report these scores as a percentile.

Fig. 5. MEANDER nanoHUB session 401554

Fig. 6. MEANDER nanoHUB session 396749

Figure 5 shows the envelope and actual user activity path
corresponding to the MEANDER plot in Figure 3. For this
session, our “searchiness” computation yields a score of about
54%. An ideal wildcatter would have an activity path that
tracked the upper bound of the envelope. In contrast, Figure
6, corresponding to the MEANDER plot in Figure 4, has a
searchiness score of 91%. The searchiness scores in these
two sessions are far enough aprt that we can confidently
characterize them as exhibiting different behavior.

V. APPLICATIONS AND FUTURE DIRECTIONS

Our ultimate goal is to use our metrics to improve our users
overall experience with nanoHUB. As of yet, we have no
deployed applications that use MEANDER graphs or activity
characterization. The following are two ideas that we have for
the future application of MEANDER.

When a user invokes a tool, the corresponding query is first
checked against the nanoHUB “Instant On” cache. Using a
hash of the query’s arguments, the cache can retrieve any
matching, previoulsy computed results. Improvements to the

Instant On service will use MEANDER methods to capture
the gist of the user’s session activity. The Instant On service
would then answer a result that exactly matches the query as
well as a set of suggested results that might be within the
scope of the user’s intentions.

A substantial fraction of our tool sessions are executed
in the context of some academic course. If given a course
roster that declares specific nanoHUB users as enrolled in
an academic course, MEANDER visualization and charac-
terization could help an instructor see how the students are
approaching solutions to assigned problems. By seeing the
search paths or wildcat fields of each student, the instructor
could make ongoing fine-grained adjustments to the content of
the course. MEANDER would then be part of a larger system
that provides highly targeted and individualized learning.

VI. CONCLUSION

Our MEANDER methods visualize and characterize user
interactions with simulation tools. MEANDER squashes a path
of activity through high dimensional space into a 2D plot that
can show how a user explores or surveys the domain of the
tool. Our “searchiness” metric characterizes user activity onto
an axis with wildcatting and searching at opposite extremes.
The two full examples given in this paper show the visualiza-
tion and characterization applied to actual logs of user activity.
These examples demonstrate the “searchiness” characteristic
differentiates our example wildcatter and searcher sessions. We
intend to publish additional details and findings in an expanded
version of this paper.

ACKNOWLEDGMENT

The authors would like to thank the Network for Compu-
tational Nanotechnology (NCN) for contributing data from
nanoHUB.org The authors would also like to specifically
thank Tanya Faltens and Lynn Zentner of the NCN for their
thoughtful comments and suggestions while developing the
MEANDER methods.

REFERENCES

[1] J. G. March, “Exploration and Exploitation in Organizational Learning,”
Organization Science, vol. 2, no. 1,, pp. 71–87, 1991. [Online].
Available: http://www.jstor.org/stable/2634940

[2] A. K. Gupta, K. G. Smith, and C. E. Shalley, “The Interplay
between Exploration and Exploitation,” The Academy of Management
Journal, vol. 49, no. 4, pp. 693–706, 2006. [Online]. Available:
http://www.jstor.org/stable/20159793

[3] Madhavan Krishna, Zentner Lynn, Farnsworth Victoria, Shivarajapura
Swaroop, Zentner Michael, Denny Nathan, and Klimeck Gerhard,
“nanoHUB.org: cloud-based services for nanoscale modeling, simulation,
and education,” Nanotechnology Reviews, vol. 2, no. 1, p. 107, 2013.
[Online]. Available: https://www.degruyter.com/view/j/ntrev.2013.2.issue-
1/ntrev-2012-0043/ntrev-2012-0043.xml

[4] E. R. Gansner and S. C. North, “An open graph visualization system
and its applications to software engineering,” Software - Practice and
Experience, vol. 30, no. 11, pp. 1203–1233, 2000.

[5] E. R. Gansner, Y. Koren, and S. North, “Graph Drawing by Stress
Majorization,” in Graph Drawing, ser. Lecture Notes in Computer
Science. Springer, Berlin, Heidelberg, Sep. 2004, pp. 239–250.
[Online]. Available: https://link.springer.com/chapter/10.1007/978-3-540-
31843-9 25

