####this program contains functions to calculate Sample Size using 'Corrected Method' - corrected Dupont's formula, input required is alpha, beta, pnot, psi, phi and M

CalcP1 = function(pnot,mycorr,oddsR)
{#function calculates the probability that a sampled case patient is exposed
 #Input:
 #pnot: probability that a sample control patient is exposed ,
 #mycorr: correlation coefficient for exposure in matched pairs of case-control patients (called phi in paper),
 #nmatch: number of controls per cases in the sample
 #oddsR: odds ratio
 #Output: myp1 is the probability that a sampled case patient is exposed
 qnot = 1-pnot;
 mydelta = sqrt(mycorr^2*(oddsR-1)^2 + 4*oddsR);
 mypiece1= 2*oddsR*pnot*(oddsR*pnot+qnot);
 mypiece2 = (oddsR-1)^2*pnot*qnot*mycorr^2;

 myp1 = 0.5*(mypiece1 + mypiece2 - (oddsR-1)*pnot*qnot*mycorr*mydelta)/((oddsR*pnot+qnot)^2 + mypiece2);

 return(myp1)
}
ExpVar = function(pnot,myp1,oddsR,mycorr,nmatch)
{#function calculates the expectation and variance for chi-square test
 #Input:
 #pnot: probability that a sample control patient is exposed
 #myp1 probability that a sampled case patient is exposed, would be derived from CalcP1
 #mycorr: correlation coefficient for exposure in matched pairs of case-control patients (called phi in paper),
 #nmatch: number of controls per cases in the sample
 #oddsR: odds ratio
 #Output:
 #2 dimensional vector of expectation and variance

 qnot=1-pnot;
 myq1=1-myp1;

 #p0plus is the probability that a control patient is exposed given that his matched case patient is exposed
 #p0minus is the probability that a control patient is exposed given that his matched case patient is not exposed

 myterm = mycorr*sqrt(pnot*qnot);

 p0plus = pnot + myterm*sqrt(myq1/myp1);
 p0minus = pnot - myterm*sqrt(myp1/myq1);

 #print(p0plus);
 #print(p0minus); these commands would print intermediate results if needed

 #tVector is the vector of probabilities of observing i (vector index) exposed subjects among a case patient and his nmatch controls.

 tVector = myp1*dbinom(c(1:nmatch)-1,size=nmatch,prob=p0plus) + myq1*dbinom(c(1:nmatch),size=nmatch,prob=p0minus);

 rho1<-p0minus/p0plus
 rho2<-(1-p0minus)/(1-p0plus)

 rhoa=c(rho1^((1:nmatch)-1))
 rhob=c(rho2^(nmatch-(1:nmatch)))

 OddsVector1 = oddsR*c(1:nmatch)/(((nmatch+1-c(1:nmatch))*rhoa*rhob) + ((oddsR)*c(1:nmatch)));
 OddsVector2 = oddsR*c(1:nmatch)*((nmatch+1-c(1:nmatch))*rhoa)/((((nmatch+1-c(1:nmatch))*rhoa) + ((oddsR)*c(1:nmatch))))^2;

 #myeOdds is used in the calculation of conditional mean, myvOdds is used in the calculation of conditional variance

 myvOdds = sum(tVector*OddsVector2);

 myeOdds =sum(tVector*OddsVector1);

 return(c(myeOdds,myvOdds))
}

ExpVarnull = function(pnot,myp1,oddsR,mycorr,nmatch)
{#function calculates the expectation and variance for chi-square test
 #Input:
 #pnot: probability that a sample control patient is exposed
 #myp1 probability that a sampled case patient is exposed, would be derived from CalcP1
 #mycorr: correlation coefficient for exposure in matched pairs of case-control patients (called phi in paper),
 #nmatch: number of controls per cases in the sample
 #oddsR: odds ratio
 #Output:
 #2 dimensional vector of expectation and variance

 qnot=1-pnot;
 myq1=1-myp1;

 #p0plus is the probability that a control patient is exposed given that his matched case patient is exposed
 #p0minus is the probability that a control patient is exposed given that his matched case patient is not exposed

 myterm = mycorr*sqrt(pnot*qnot);

 p0plus = pnot + myterm*sqrt(myq1/myp1);
 p0minus = pnot - myterm*sqrt(myp1/myq1);

 #print(p0plus);
 #print(p0minus); these commands would print intermediate results if needed

 #tVector is the vector of probabilities of observing i (vector index) exposed subjects among a case patient and his nmatch controls.

 tVector = myp1*dbinom(c(1:nmatch)-1,size=nmatch,prob=p0plus) + myq1*dbinom(c(1:nmatch),size=nmatch,prob=p0minus);

 OddsVector1 = oddsR*c(1:nmatch)/(nmatch+1);
 OddsVector2 = oddsR*c(1:nmatch)*(nmatch+1-c(1:nmatch))/(nmatch+1)^2;

 #myeOdds is used in the calculation of conditional mean, myvOdds is used in the calculation of conditional variance

 myvOdds = sum(tVector*OddsVector2);

 myeOdds =sum(tVector*OddsVector1);

 return(c(myeOdds,myvOdds))
}

SSCCorrected = function(alpha,power,pnot,oddsR,mycorr,nmatch)
{#function derives the sample size for a matched case control study using 'Corrected Method'
 #Input:
 #power: either 0.8 or 0.9
 #alpha: type 2 error (2-sided),
 #pnot: probability that a sample control patient is exposed ,
 #mycorr: correlation coefficient for exposure in matched pairs of case-control patients (called phi in paper),
 #nmatch: number of controls per cases in the sample
 #oddsR: odds ratio
 #output: the sample size needed
 #uses functions CalcP1 and ExpVar
 #uses a chi-square test, all formulas from William Dupont (1988)

 ###derive myp1 from pnot, oddsR and mycorr (Appendix of paper)
 ##myp1 is the probability that a sampled case patient is exposed

 myp1=CalcP1(pnot,mycorr,oddsR);

 #############

 myout= ExpVar(pnot,myp1,oddsR,mycorr,nmatch)
 myeOdds = myout[1];
 myvOdds=myout[2];
 myeOdds
 #p1=p0 when oddsR=1 under the null

 myout1= ExpVarnull(pnot,myp1,1,mycorr,nmatch)
 mye1 = myout1[1];
 myv1 = myout1[2];
 myzbeta = qnorm(1-power,mean=0,sd=1,lower.tail=FALSE);
 myzalpha = qnorm(alpha/2,mean=0,sd=1,lower.tail=FALSE);

 mynum= (myzbeta*sqrt(myvOdds) + myzalpha*sqrt(myv1))^2; # numerator
 myden= (mye1 - myeOdds)^2;#denominator
 myN = mynum/myden;

 return(myN);
}

[bookmark: _GoBack]
##

####this program contains functions to calculate Sample Size using Dupont's (1988) original formula, input required is alpha, beta, pnot, psi, phi and M

CalcP1 = function(pnot,mycorr,oddsR)
{#function calculates the probability that a sampled case patient is exposed
 #Input:
 #pnot: probability that a sample control patient is exposed ,
 #mycorr: correlation coefficient for exposure in matched pairs of case-control patients (called phi in paper),
 #nmatch: number of controls per cases in the sample
 #oddsR: odds ratio
 #Output: myp1 is the probability that a sampled case patient is exposed
 #last modified: August 29th 2016
 qnot = 1-pnot;
 mydelta = sqrt(mycorr^2*(oddsR-1)^2 + 4*oddsR);
 mypiece1= 2*oddsR*pnot*(oddsR*pnot+qnot);
 mypiece2 = (oddsR-1)^2*pnot*qnot*mycorr^2;

 myp1 = 0.5*(mypiece1 + mypiece2 - (oddsR-1)*pnot*qnot*mycorr*mydelta)/((oddsR*pnot+qnot)^2 + mypiece2);

 return(myp1)
}
ExpVarD = function(pnot,myp1,oddsR,mycorr,nmatch)
{#function calculates the expectation and variance for chi-square test
 #Input:
 #pnot: probability that a sample control patient is exposed
 #myp1 probability that a sampled case patient is exposed, would be derived from CalcP1
 #mycorr: correlation coefficient for exposure in matched pairs of case-control patients (called phi in paper),
 #nmatch: number of controls per cases in the sample
 #oddsR: odds ratio
 #Output:
 #2 dimensional vector of expectation and variance

 qnot=1-pnot;
 myq1=1-myp1;

 #p0plus is the probability that a control patient is exposed given that his matched case patient is exposed
 #p0minus is the probability that a control patient is exposed given that his matched case patient is not exposed

 myterm = mycorr*sqrt(pnot*qnot);

 p0plus = pnot + myterm*sqrt(myq1/myp1);
 p0minus = pnot - myterm*sqrt(myp1/myq1);

 #print(p0plus);
 #print(p0minus); these commands would print intermediate results if needed

 #tVector is the vector of probabilities of observing i (vector index) exposed subjects among a case patient and his nmatch controls.

 tVector = myp1*dbinom(c(1:nmatch)-1,size=nmatch,prob=p0plus) + myq1*dbinom(c(1:nmatch),size=nmatch,prob=p0minus);

 OddsVector1 = oddsR*c(1:nmatch)/(((nmatch+1-c(1:nmatch))) + ((oddsR)*c(1:nmatch)));
 OddsVector2 = oddsR*c(1:nmatch)*((nmatch+1-c(1:nmatch)))/((((nmatch+1-c(1:nmatch))) + ((oddsR)*c(1:nmatch))))^2;

 #myeOdds is used in the calculation of conditional mean, myvOdds is used in the calculation of conditional variance

 myvOdds = sum(tVector*OddsVector2);

 myeOdds =sum(tVector*OddsVector1);

 return(c(myeOdds,myvOdds))
}

ExpVarnull = function(pnot,myp1,oddsR,mycorr,nmatch)
{#function calculates the expectation and variance for chi-square test
 #Input:
 #pnot: probability that a sample control patient is exposed
 #myp1 probability that a sampled case patient is exposed, would be derived from CalcP1
 #mycorr: correlation coefficient for exposure in matched pairs of case-control patients (called phi in paper),
 #nmatch: number of controls per cases in the sample
 #oddsR: odds ratio
 #Output:
 #2 dimensional vector of expectation and variance

 qnot=1-pnot;
 myq1=1-myp1;

 #p0plus is the probability that a control patient is exposed given that his matched case patient is exposed
 #p0minus is the probability that a control patient is exposed given that his matched case patient is not exposed

 myterm = mycorr*sqrt(pnot*qnot);

 p0plus = pnot + myterm*sqrt(myq1/myp1);
 p0minus = pnot - myterm*sqrt(myp1/myq1);

 #print(p0plus);
 #print(p0minus); these commands would print intermediate results if needed

 #tVector is the vector of probabilities of observing i (vector index) exposed subjects among a case patient and his nmatch controls.

 tVector = myp1*dbinom(c(1:nmatch)-1,size=nmatch,prob=p0plus) + myq1*dbinom(c(1:nmatch),size=nmatch,prob=p0minus);

 OddsVector1 = oddsR*c(1:nmatch)/(nmatch+1);
 OddsVector2 = oddsR*c(1:nmatch)*(nmatch+1-c(1:nmatch))/(nmatch+1)^2;

 #myeOdds is used in the calculation of conditional mean, myvOdds is used in the calculation of conditional variance

 myvOdds = sum(tVector*OddsVector2);

 myeOdds =sum(tVector*OddsVector1);

 return(c(myeOdds,myvOdds))
}

SSCDupont = function(alpha,power,pnot,oddsR,mycorr,nmatch)
{#function derives the sample size for a matched case control study using Dupont's original method (1988)
 #Input:
 #power: either 0.8 or 0.9
 #alpha: type 2 error (2-sided),
 #pnot: probability that a sample control patient is exposed ,
 #mycorr: correlation coefficient for exposure in matched pairs of case-control patients (called phi in paper),
 #nmatch: number of controls per cases in the sample
 #oddsR: odds ratio
 #output: the sample size needed
 #uses functions CalcP1 and ExpVar
 #uses a chi-square test, all formulas from William Dupont (1988)

 ###derive myp1 from pnot, oddsR and mycorr (Appendix of paper)
 ##myp1 is the probability that a sampled case patient is exposed

 myp1=CalcP1(pnot,mycorr,oddsR);

 #############

 myout= ExpVarD(pnot,myp1,oddsR,mycorr,nmatch)
 myeOdds = myout[1];
 myvOdds=myout[2];
 myeOdds
 #p1=p0 when oddsR=1 under the null

 myout1= ExpVarnull(pnot,myp1,1,mycorr,nmatch)
 mye1 = myout1[1];
 myv1 = myout1[2];
 myzbeta = qnorm(1-power,mean=0,sd=1,lower.tail=FALSE);
 myzalpha = qnorm(alpha/2,mean=0,sd=1,lower.tail=FALSE);

 mynum= (myzbeta*sqrt(myvOdds) + myzalpha*sqrt(myv1))^2; # numerator
 myden= (mye1 - myeOdds)^2;#denominator
 myN = mynum/myden;

 return(myN);
}

##

####this program contains functions to calculate Sample Size using 'New Approximation' method - approximating SS for 1:M study based on SS estimate from Dupont's formula for 1:1 study, input required is alpha, beta, pnot, psi, phi and M
source('SSCDupont.R')

#SSCNewApprox clculates sample size using the 'New Approximation', improving upon Dupont's SS estimates from M > 1'
SSCNewApprox = function(alpha,power,pnot,oddsR,mycorr,nmatch) {
 #myN.Dupont clculates sample size using Dupont's (1988) original formula
 myN.Dupont = ceiling(SSCDupont(alpha,power,pnot,oddsR,mycorr,1))

 myN.Approx = ceiling (((nmatch+1)/(2*nmatch))*myN.Dupont)
 return(myN.Approx)
}

##

####this program contains functions to generate simulated data using input myN,myM,myp0,myphi,mypsi

###Derive p0+ and p0-
CondPNot =function(myp0,myphi,mypsi)
{myp1 = CalcP1(myp0,myphi,mypsi);
myp0Plus = myp0+ myphi*sqrt((1-myp1)*(1-myp0)*myp0/myp1);
myp0Minus = myp0 - myphi*sqrt(myp1*(1-myp0)*myp0/(1-myp1));
myout=c(myp1,myp0Plus,myp0Minus);
return(myout)
}

#######################
#Simulation function (for one simulation)

myrunsim = function(myN,myM,myp1,myp0Plus,myp0Minus,myseed)
{ #function simulates one value of Y for simulated myN cases, each with myM controls
 #parmaters: myN number of cases, myM number of matched controls, myp1 is exposure rate of cases,
 #myp0Plus is probability of exposure of controls conditioned on the case being exposed,
 #myp0Minus is probability of exposure of controls conditioned on the case being unexposed,
 #myseedV is seed vector with seed for each simultation
 set.seed(myseed[1])
 #simulate myN cases
 myC= rbinom(myN,1,myp1);
 ExpCases = length(myC[myC==1]);
 NExpCases = myN-ExpCases;

 #simulate M controls for each exposed case
 myCtr = matrix(rep(0,myM*myN),nrow=myN,ncol=myM);
 for(i in 1:myM)
 {j=myseed[i+1];
 jj=j+10;
 set.seed(j);
 myCtr[myC==1,i]=rbinom(ExpCases,1,myp0Plus);
 set.seed(jj);
 myCtr[myC==0,i]=rbinom(NExpCases,1,myp0Minus)};

 myn1j = rowSums(myCtr);
 #number of exposed from all controls

 #y = number of matched set with case exposed and m-1 control exposed for m=1 to M
 #for M=3, 0 exposed, 1 exposed and 2 exposed

 myY=sum(myn1j[myC==1] %in% c(0:myM-1));
 myT = matrix(nrow=myM,ncol=1);

 for(i in 1:myM)
 {
 myT[i] = sum(myn1j[myC==1]==i-1) + sum(myn1j[myC==0]==i);
 #number of matched sets with case exposed and i-1 controls exposed or case unexposed and i controls exposed
 }
 myout = c(myY,myT);
 return(myout)
}

#############################
#Conditional mean and variance

myMeanVar = function(myM,myTm,mypsi)
{#Tm is a vector of size myM

 mydenom = c(1:myM) * mypsi+rep(myM,myM)-c(1:myM)+rep(1,myM);
 mynum1 = c(1:myM)*myTm *mypsi;
 mynum2=c(1:myM)*mypsi*myTm*(rep(myM,myM)-c(1:myM)+rep(1,myM));
 mymean = sum(mynum1/mydenom);
 myvar = sum(mynum2/(mydenom)^2);
 myout=c(mymean,myvar)
 return(myout)
}

##

#This program takes an input data of parameter values and outputs a data with true SS, and corresponding SS estimates from all SS formulae#

install.packages('doParallel')
library('doParallel')

#change to directory where output data and code are kept
setwd("")
#Source codes which contain functions for calculating sample sizes using formulae
source('SSCDupont.R')
source('SSCCorrected.R')
source('SSCNewApprox.R')
source('SimulateData.R')

#Create a data of parameter values for which true sample size is desired
#number of matched controls
myM=c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)
#oddsratior
mypsi=c(2)
#exposure prevalence in controls
myp0=c(0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5)
#correlation of exposure prevalences in controls and cases
myphi=c(0.1,0.2,0.3,0.4,0.5)

#create a dataset of all combinations of specified parameter values
Mpsi<-merge(myM,mypsi)
p0phi<-merge(myp0,myphi)
names(Mpsi)<-c("myM","mypsi")
names(p0phi)<-c("myp0","myphi")
Mpsip0phi<-merge(Mpsi,p0phi)
Mpsip0phi<-Mpsip0phi[order(Mpsip0phi$myp0),]

Mpsip0phi$myPower=rep(0,nrow(Mpsip0phi))
Mpsip0phi$myN=rep(0,nrow(Mpsip0phi))
Mpsip0phi$myN.Approx=rep(0,nrow(Mpsip0phi))
Mpsip0phi$myN.Dupont=rep(0,nrow(Mpsip0phi))
Mpsip0phi$myN.corrform=rep(0,nrow(Mpsip0phi))
nasim<-rep(0,nrow(Mpsip0phi))

#perform simultations
nsim=5000;

#Use parallel programming, when running in cluster
cl<-makeCluster(16)
registerDoParallel(cl)

#getDoParWorkers()

alt2<-foreach (j=1:nrow(Mpsip0phi), .combine=rbind) %dopar% {
 myPower=0
 myM=Mpsip0phi$myM[j]
 mypsi=Mpsip0phi$mypsi[j]
 myphi=Mpsip0phi$myphi[j]
 myp0=Mpsip0phi$myp0[j]
 myp1=CalcP1(myp0,myphi,mypsi)
 ###Derive p0+ and p0-
 myout0 = CondPNot(myp0,myphi,mypsi)
 myp0Plus = myout0[2];
 myp0Minus=myout0[3];

 #myN.Dupont clculates sample size using Dupont's (1988) original formula
 myN.Dupont = ceiling(SSCDupont(0.05,0.8,myp0,mypsi,myphi,myM))

 #myN.Approx clculates sample size using the New Approximation, improving upon Duponts SS estimates from M > 1
 myN.Approx = ceiling(SSCNewApprox(0.05,0.8,myp0,mypsi,myphi,myM))

 #myN.corrform clculates sample size using the Corrected method, improving upon Duponts SS estimates from M > 1

 myN.corrform = ceiling(SSCCorrected(0.05,0.8,myp0,mypsi,myphi,myM))

 myNnew=round(myN.Dupont)
 while (myPower < 0.8) {
 #hold space
 myN=myNnew
 SimY = matrix(nrow=nsim,ncol=1);
 SimT = matrix(nrow=nsim,ncol=myM);
 myMeanVarVect = matrix(nrow=nsim,ncol=2);

 for(i in 1:nsim)
 { #myseed=rep(i,4)+c(1,101,202,303);
 myseed=rep(i,myM+1)+100*c(0:myM+1)+c(0:myM+1);
 myout= myrunsim(myN,myM,myp1,myp0Plus,myp0Minus,myseed)
 ###Derive p0+ and p0-
 myout0 = CondPNot(myp0,myphi,mypsi)
 myp0Plus = myout0[2];
 myp0Minus=myout0[3];
 SimY[i] = myout[1];
 SimT[i,] = myout[1:myM+1];
 myMeanVarVect[i,]= myMeanVar(myM,SimT[i,],1); #mean and variance under the null
 rm(myout);
 rm(myseed)
 }

 StandY = (SimY-myMeanVarVect[,1])/sqrt(myMeanVarVect[,2]);

 myPower = (sum(StandY>1.96,na.rm=T) + sum(StandY < -1.96,na.rm=T))/length(StandY[which(!is.na(StandY))]);
 if (myPower >= 0.4 & myPower < 0.5) myNnew=myN+10
 else if (myPower >= 0.5 & myPower < 0.6) myNnew=myN+5
 else if (myPower >= 0.6) myNnew=myN+2
 else myNnew=myN+20
 }
 nasim<-nsim-length(StandY[which(!is.na(StandY))])
 myPower=myPower
 myN=myN
 c(myM,mypsi,myphi,myp0,myPower,myN,myN.Dupont,myN.Approx,myN.corrform)
}

Mpsip0phi.out<-as.data.frame(alt2)

names(Mpsip0phi.out)<-c("myM","mypsi","myphi","myp0","myPower","myN","myN.Dupont","myN.Approx","myN.corrform")

#output a datset with true sample size and sample size estimated using Dupont's (1988) formula, 'New Approximation' and 'Corrected Method'
write.csv(Mpsip0phi.out,"Mpsip0phiout_trueSS.csv")
