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ABSTRACT

This work focuses on integrating crystal plasticity based deformation models and ma-

chine learning techniques to gain data driven insights about the microstructural proper-

ties of polycrystalline metals. An inhomogeneous stress distribution in materials leads

to the development of stress hotspots in polycrystalline metals under uniaxial tensile de-

formation. We simulate uniaxial tensile deformation in synthetic microstructures to get

full field solutions for local micromechanical fields (stress and strain rates). After identi-

fying stress hotspots by thresholding stress values, we characterize their neighborhoods

using metrics that reflect the local crystallography, geometry, and connectivity. This

data is used to create input feature vectors to train a random forest learning algorithm,

which predicts the grains that become stress hotspots. We are able to achieve an area

under the receiving operating characteristic curve (ROC-AUC) of 0.82 for hexagonal

close packed and 0.74 for face centered cubic materials. Inspired by the recent advances

in the deep learning field, we also explore using these techniques to automatically extract

long range microstructural descriptors. The results show the power and the limitations

of the machine learning approach applied to the polycrystalline grain networks.
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Chapter 1

Introduction

Computational methods for developing microstructure-property relationships constitute

an important part of materials and process design for high performance applications.

These methods incorporate knowledge about material physics, experimental calibration

and validation to help establish quantitative relationships between a material microstruc-

ture and the physical properties. In 2011, the Materials Genome initiative (MGI) was

established to develop materials at an accelerated rate with the help of collaborations

between material scientists and computer scientists [3]. The initiative aims to create a

materials innovation infrastructure which integrates experimental tools, computational

tools and digital data, to accelerate the materials development timeline from discovery

to deployment. This has actualized the field of materials informatics, fusing data driven

machine learning techniques with materials development. As a result, several data in-

frastructure platforms have come into existence [4], [5],[6]. Since then, there has been a

flurry of research on computational materials discovery to search for stable compounds

across the composition space [7], [8], [9], [10], [11]. However, understanding structure-

property relationships by integrating machine learning methods with experimental and

computational tools is an emerging area of research.

Metals and their alloys are widely used as structural materials. These mate-

rials require high toughness and ductility to maintain their structural integrity to meet

engineering standards. Ductile fracture is one of the most common modes of failure

in such materials, and has been widely researched [12], [13]. An important mechanism

1
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for ductile fracture in metals and their alloys is by the nucleation, growth and coa-

lescence of microscopic voids [14], [15]. The voids have a tendency to nucleate near

defects and discontinuities in the structure, such as second phase particles in a matrix,

near larger particles[16], twin boundaries, grain boundaries, vacancy clusters and slip

bands. It has been shown that void nucleation is induced by stress, and voids can grow

under stress by accumulating vacancies [17], [14]. Ductile inter-granular and faceted fail-

ures can also occur due to void nucleation resulting from the intersection of slip bands

with grain boundaries and other slip bands in Oxygen Free High thermal Conductivity

(OFHC) Copper [18], βTi alloys [19] and αTi-Al alloys. Ultimately, a complex interplay

of microstructural features determines damage nucleation in materials. The ability to

predict where voids could potentially form in a material during deformation, given its

microstructure, can be leveraged to develop new processing paths to design materials

more resistant to damage.

An applied stress on a polycrystalline material is heterogeneously distributed

[20] between the grains, creating regions of stress accumulations, so-called stress hotspots.

These regions are determined by the local characteristics in a microstructure. Rollett

et. al. [21] have shown that stress hotspots in face centered cubic, randomly oriented

equiaxed microstructures under uniaxial tension tend to form near the microstructural

features, such as grain boundaries, triple and quadruple junctions and usually form in

textures corresponding to maxima in Taylor factor as a function of orientation for that

loading condition.

To understand the parameters behind inhomogeneous distribution of applied

stress, we propose using statistical data mining methods to gain empirical relations

between local microstructural characteristics and the stress hotspots. However, building

a large dataset for statistical data mining through experiments is tedious and expensive.

Simulations reduce the cost and development time of new materials by circumventing

repetitive and expensive mechanical testing. Starting with the 3D microstructure of a

material, we want to predict where the material is most probable to fail, and process

it in a way to avoid the features causing these problems. The structure of a material

changes a lot by the time a fracture starts to form in it. Simulating deformation in

materials gives us the advantage of preserving both the initial and final structures, thus

enabling us to “turn back the clock” and correlate hot spots to initial features.
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Since void nucleation and stress hotspots are local events, it is important to

choose a deformation model which will give full field solutions of stress and strain fields at

each discretized point in a microstructure. We use the Elasto-Viscoplastic Fast Fourier

Transform based (EVPFFT) crystal plasticity model [22] to simulate deformation in syn-

thetic polycrystalline microstructures. The motivation is to find underlying microstruc-

tural characteristics that determine the formation of stress hotspots and use them to

predict probable failure sites in similar materials. We use statistical descriptors of mi-

crostructures describing the crystallography (orientation distribution function, Taylor

factor, Schmidt factor, n-point correlations), geometry (grain shape, grain boundary

types) and connectivity (transgranular network, deep learning) which have not been

used earlier to understand their correlation with hotspot locations.

The primary contributions of the present work is to explore new models for un-

derstanding structure-property relationships by developing microstructural descriptors

and using them to build statistical learning models which predict a physical phenomenon.

The models used here draw heavily from the field of machine learning and computer vi-

sion. It should be noted here that the models are developed using synthetic data, hence

we cannot expect accurate predictions about experimental data from them. Instead,

the work is dedicated towards developing an approach for generating microstructural

descriptors to understand structure-property relationships.

This dissertation is organized into related, self contained chapters, some of

which have been submitted for publication at the time of writing this thesis. Chapter

2 goes over the fundamentals of crystal plasticity, required to understand the dataset

generation process and the physics of plastic deformation. In Chapter 3, I give a broad

overview of machine learning techniques used in this work. Chapter 4 establishes and

applies the framework of stress hotspot prediction for face centered cubic materials. This

chapter shows how plastic deformation of ductile single phase polycrystals can be studied

using a data science based approach. Chapter 5 extends this approach to hexagonal close

packed (HCP) materials, which have a more complex deformation mechanism, and shows

the merits of using a data driven approach. Chapter 6 is dedicated to understanding the

feature selection techniques for getting data driven insights. Then we dive into applying

deep learning methods for stress hotspot predictions in Chapter 7. Finally, in Chapter

8, I discuss the open question of extracting multiscale microstructural descriptors from a
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deep learning framework, and attempt at identifying the future research directions and

goals stemming from this dissertation.



Chapter 2

Crystal Plasticity Fundamentals

In this dissertation, we study plastic deformation of single-phase metals to understand

where stress hotspots form. A computational model based on fundamentals of crystal

plasticity [20] is used to generate full field discrete solutions for stress and strain rate

micromechanical fields that develop inside polycrystalline microstructures. By using

artificially generated microstructures as an input, a dataset of hotspots can be built for

different materials and loading conditions. This chapter discusses the fundamentals of

crystal plasticity and the constitutive models which were used to build the dataset.

2.1 Crystallography

Crystallography is the study of the spatial arrangement of atoms in crystalline solids.

Crystalline solids have a periodic arrangement of atoms in space known as the crystal

structure. The periodicity of this arrangement allows us to define a smallest possible

repeating unit, the unit cell. The atoms or molecules are regularly arranged in three

dimensional space on a crystal lattice. The position of any vector r within the lattice

can be defined as:

r = ua + vb + wc (2.1)

where a, b and c refer to the crystal reference frame or the crystal axes/ basis vectors

and depend on the type of crystal under consideration. A combination of all possible

angle and directions of basis vectors in 3-D leads to seven crystal axes systems and the

5
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additional consideration of atomic arrangements leads to fourteen Bravais Lattices

[23]. The three most common crystal structures are face-centered cubic (FCC), body-

centered cubic (BCC) and hexagonal-close packed (HCP). The unit cells demonstrating

the atomic arrangement of these structures are illustrated in figure 2.1, where the

spheres represent atoms. The atoms in the structures are colored according to the sheet

of spheres they correspond to in the 3-D tiling.

(a) (b) (c)

[001]

(111) 
(010) 

(110) 

[100]

[010]

(d)

Figure 2.1: 3 common atomic arrangements in crystals: a) BCC unit cell b) FCC
unit cell and c) HCP unit cell. The unit cell for each case is outlined in solid black
lines. d) Schematic showing Miller indices of planes and directions in a cubic crystal

2.1.1 Miller Indices

Miller indices are used to specify the planes and directions in a crystal. The Miller

indices of directions in a crystal are denoted on the basis of lattice vectors in square

brackets [hkl], where h, k and l are integers. The notation < hkl > is used to denote

all directions related by symmetry. The Miller indices of a plane is defined using the

reciprocal of the plane’s intercept on the three crystal axes and are given as triplet of

three integer values (hkl). The family of symmetry related planes is denoted by {hkl}.

Figure 2.1d shows (110), (010) and (111) planes, and [100],[010] and [001] directions in

a cubic crystal.

2.1.2 Miller-Bravais Indices

In HCP materials, the crystallographic axes of the unit cell are not orthogonal. If

Miller indices are used to denote the crystal planes, the crystallographically equivalent

(symmetry related) planes have dissimilar Miller indices. By using four basis vectors

(a1, a2, a3 and c), three of which are coplanar ((a1, a2 and a3); the Miller-Bravais indices

for HCP planes can be derived such that symmetry related planes can be obtained via
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permutations of the indices. These indices are written as (hkil). Figure 2.2a shows the

new basis vectors and the Miller-Bravais indices for the crystallographic planes, with

the symmetry related planes highlighted in the same color. The Miller-Bravais indices

for directions are expressed as [uvtw]. Figure 2.2b shows the Miller indices and Miller-

Bravais indices for the basis vectors in HCP crystals.

a1

a2

𝑎3

c

(101(0)

(1(100)

(01(10)
(0001)

(a)

a1
21$1$0 / [100]

a2
1$21$0 	/ [010]

𝑎3
1$1$20 / [1$1$0]

c
0001 / [001]

120°

(b)

Figure 2.2: Schematic showing a) Miller-Bravais indices for planes in HCP crystals:
The green planes are related by 6-fold symmetry along the c axis, and belong to the
family of {101̄0} planes. b) Miller-Bravais indices for the basis vectors in HCP crystals
are shown in red. The corresponding Miller indices of the basis vectors is shown in

black.

2.2 Fundamentals of Crystal Plasticity

2.2.1 Slip Systems

Plastic deformation in materials occurs due to the movement of a large number of

dislocations. This movement causes the atoms to displace along a plane of one part of

the crystal relative to other under a shear stress. This phenomenon is known as slip

in materials. The shear stress required for dislocation motion to move the crystal by a

step is proportional to that distance i.e. the Burger’s vector. Hence, a small distance

between atoms is favorable for slip. Thus slip is preferred in close packed planes and

the dislocation movement occurs along the closest packed direction in that plane. This

configuration is known as the slip system of a crystal structure. For example, in FCC

materials the planes of {111} family are closest packed and the < 110 > crystallographic

directions are the slip directions. In BCC materials, the slip system is {110} < 111 >.



Chapter 2. Methods 8

HCP materials have multiple slip systems on the prismatic, basal and pyramidal planes.

Figure 2.3 demonstrates the different slip systems in these materials.

(a) BCC slip systems (b) FCC slip systems

(c) HCP slip systems

Figure 2.3: Schematic for different slip systems in the 3 crystal structures: BCC,
FCC and HCP. The slip planes are shaded and the slip directions are shown in red

arrows.

2.2.2 Critically Resolved Shear Stress

When a stress is applied to a material, the resolved shear stress in the crystal on the slip

plane in the slip direction determines whether a given slip system will be active. For

the case of uniaxial tensile deformation in a single crystal, the stress tensor is given by:

σ = σp̂⊗ p̂ (2.2)

where σ is the stress tensor, p̂ is the unit vector along the uniaxial tensile loading

direction, and σ is the stress magnitude. Since plastic deformation occurs on the slip
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systems, let us consider a slip system with slip plane normal unit vector n̂ and slip

direction unit vector ŝ. As can be seen from figure 2.4, the resolved shear stress on the

slip system is given by: τ = n̂ · σ · ŝ = σ(p̂ · n̂)(ŝ · p̂) We can see that: (p̂ · n̂) = cosφ

Figure 2.4: A single crystal under uniaxial tension, highlighting the resolved shear
stress τ on an arbitrary slip system

and (ŝ · p̂) = cosλ. The resolved shear stress on the slip system can be written as the

Schmid Law:

τ = σ cosφ cosλ (2.3)

The Schmid factor is thus defined as the cosine product, cosφ cosλ, which is a measure

of the optimal orientation of a slip system for deformation. Slip systems with higher

Schmid factor have higher resolved shear stress for the same applied tensile stress. Plas-

tic deformation occurs on the slip system where the resolved shear stress first exceeds

the critical value required for plastic deformation. This critically resolved shear stress

(CRSS), (τc) is a property of the crystal. As the material deforms, the CRSS increases

and a hardening law describes the evolution of τc with strain.

Once a slip system becomes active, the crystal rotates such that the slip di-

rection aligns with the loading axis and the corresponding Schmid factor becomes zero.

When multiple slip systems with different CRSS values are present, for example in HCP

materials with 3 deformation modes: prismatic slip, basal slip and pyramidal slip, a

plastic anisotropy is introduced. The slip modes with a lower CRSS are favored and

determine the crystal rotation. For HCP materials, there is an additional geometric

anisotropy due to the hexagonal crystal structure.
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2.2.3 Polycrystal Plasticity

Common materials used for engineering applications have a polycrystalline structure.

These polycrystals consist of “grains”, which are regions similar to a single crystal. A

grain is a three dimensional region in a polycrystal having the same phase, and the same

crystal orientations within a tolerance. Grain boundaries are two-dimensional regions

where two grains meet. For polycrystals, the deformation mechanism is more complex.

In addition to the multiple slip systems present in a grain, polycrystal deformation is

constrained by the neighborhood. These complex interactions lead to the development

of “texture” in polycrystals under deformation. The texture describes the orientation

distribution of individual crystals in a polycrystalline material [24].

2.2.3.1 Single Crystal Yield Surface

To understand the polycrystal plasticity and texture development in terms of single

crystals, the concept of single crystal yield surface was developed. The stress and strain

increment are symmetric 3x3 tensors, hence only consist of 6 independent components

(σij). During plastic deformation, the volume is conserved. Since hydrostatic stress

(σkk) causes volume change, the plastic work becomes independent of it, and is only a

function of the deviatoric stresses (σ
′
ij), of which only 5 components are independent.

σ
′
ij = σij −

1

3
σkkδij (2.4)

The Schmid law (equation 2.3) can be written in the 5 independent stress component

space as:

τ s = |ms
ijσij | (2.5)

where ms
ij is the Schmid factor for a given slip system s for the stress component σij .

Thus, the Schmid law in the 5 dimensional stress space (2.5) defines a hyperplane, at

a distance τ s from origin. During plastic deformation, to accommodate a plastic strain

increment with p components (p <= 5), p slip systems need to be activated i.e. the

resolved shear stress should be greater than or equal to the CRSS on p slip systems.
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Thus the minimum required constraints for plastic deformation to occur is given by:

|ms
ijσij |


= τ sc in p independent slip systems

<= τ sc in all others

(2.6)

The single crystal yield surface (SCYS) is defined by equation 2.6 as an inner en-

velope of all the facets corresponding to the slip systems. The SCYS determines the

shears that are activated in a grain in a polycrystal and depends on the CRSS ratios

between deformation modes, as well as the stress state. Even if the CRSS of a mode is

very high, it might be activated to complete the yield surface to achieve 5 independent

slip modes. The SCYS has been analyzed and derived in detail for BCC materials in

[25], for FCC materials in [26] and HCP materials in [27]. It has been shown [28] that

the SCYS is topologically invariant in certain domains of CRSS ratios, and leads to a

simplified analysis of deformation when slip modes harden at different rates. The CRSS

ratios is defined with respect to the basal slip resolved shear strength (τbasal) as:

CRSSRatio = Prismatic : Basal : Pyramidal =
τprismatic
τbasal

: 1 :
τpyramidal
τbasal

(2.7)

2.3 Crystal Plasticity Constitutive Models

With the understanding of polycrystal plasticity, various models have been developed

to predict the stress-strain response and the texture development in crystalline solids

during deformation. The Sachs model [29] for polycrystalline deformation, developed in

1928, assumes iso-stress conditions, i.e. all grains are subject to the same stress tensor;

and the activation of a single slip system. This model satisfies the stress equilibrium

between grains at the grain boundaries, but not the strain compatibility conditions, and

hence provides a lower bound prediction to macroscopic deformation of polycrystals.

The Sachs model also has the defect that gaps and overlaps develop immediately as

strain accumulates.

In contrast, the Taylor model [30] assumes iso-strain conditions, the simultane-

ous activation of multiple slip systems, and the same hardening rate for all slip systems

in the microstructure. The strain compatibility condition at grain boundaries is satisfied

by the existence of at least 5 active slip systems that minimize the plastic work. This full
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constraints (FC) model provides an upper bound on achieving a required deformation

under an applied load. The yield stress σ and plastic strain increment δε of a polycrys-

tal is determined on the basis of a suitable average of shear stress and strains in the

individual grains. The Taylor factor M links the macroscopic applied stress with the

individual shears in the grains as:

σ = Mτ (2.8)

δΓ = Mδε (2.9)

where τ is the CRSS of the slip system and δΓ is the sum of individual shear contributions

The Bishop Hill criterion in multiple stress states gives us a set of solutions

(vertices) that can be activated to accommodate the given stress. Note that the Bishop

Hill model applies only to cubic materials.

To find the slip rates on each slip system, instead of making an arbitrary choice

of the vertex that satisfies the external slip, a rate sensitive slip equation is solved. This

approach typically tries to “round the corners” of the single crystal yield surface. The

stress state is chosen based on the imposed strain rate tensor.

ε̇p(x) =
N∑
s=1

ms(x)γ̇s(x) = γ̇0

N∑
s=1

ms
ij

(
ms
kl : σ

′
kl

τ s

)n
sgn(ms

kl : σ
′
kl) (2.10)

The slip (shear) rate on the individual slip system s can then be calculated while avoiding

any assumptions to resolve ambiguity of which slip systems are activated.

γ̇(s) = ε̇0

∣∣∣∣∣m(s) : σc

τ (s)

∣∣∣∣∣ sgn(m(s) : σc
)

(2.11)

2.3.1 Mean Field Crystal Plasticity Models

To improve the agreement between experimental and calculated textures, a relaxed con-

straints Taylor model was developed by assuming that certain shear strain components

can be neglected as they generate very small displacements in volumes, for example, in

high aspect ratio grains, the shear strain in the short directions can be ignored. Es-

helby [31] derived the mean field homogenization problem in the form of an ellipsoidal

inclusion in an infinite matrix for elastic materials.
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The self-consistent models started with Hutchinson [32] in 1970 and were also

developed by Molinari and Canova [33] in 1987. This approach was then extended to

develop the viscoplastic self-consistent (VPSC) model at the Los Alamos National Lab-

oratory for the simulation of large plastic deformation in polycrystalline aggregates[33],

[34], [35] in 1993-1994. In this model, each grain is assumed to be an ellipsoidal inclusion

in a viscoplastic homogeneous equivalent medium, which represents the average envi-

ronment of that grain. The ellipsoidal grain behaves as a single crystal, deforming via

crystallographic slip and the slip rate is a function of the critically resolved shear stress

(CRSS) of that system. Thus the inhomogeneous microstructure is replaced via homoge-

nization with a macroscopically isotropic medium. These models generally overestimate

the texture[36]. Also, stress hotspots are a local phenomenon in the microstructure and

the VPSC model neglects the effect of local fields. To understand the microstructure-

property relationships better, a model that gives a full field solution to deformation is

used.

2.3.2 Image based Full Field Crystal Plasticity Models

With better computing resources, it has become possible to solve for micromechanical

fields that develop in a polycrystal. Both short-range and long-range grain interactions

are considered and the micromechanical fields are resolved on a discrete grid. Crystal

plasticity finite element models (CPFEM) were first developed in 1982[37] and have been

extensively used for predicting the texture and microstructure evolution of polycrystals.

FE methods generally scale as O(N2), where N is the number of degrees of freedom in

the system. The construction of meshes that conform to the grain boundaries in complex

microstructures is difficult and time consuming. This difficulty in meshing, along with

the large number of degrees of freedom required by CPFEM limits the use for complex

problems to a representative volume element (RVE) consisting of few hundred grains.

In contrast, fast Fourier transform (FFT) based techniques circumvent the

problems arising due to meshing in FEM simulations. FFT allows direct usage of mea-

sured or synthetic microstructure images due to the use of a regular grid. These algo-

rithms are computationally efficient and scale as O(NlogN), where N is the number of

discrete grid points. FFT does not require the calculation of the stiffness matrix since

it is an iterative procedure[38]. The simulations converge faster than FEM for the same
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geometry and resolution, while the predicted stress and strain distributions is compa-

rable to FEM[39]. For the elasto-viscoplastic case, it was shown that the FFT solver

converges much faster than FEM [40].

2.3.2.1 Crystal Plasticity simulations using FFT

Moulinec and Suquet originally proposed the use of Fast Fourier Transforms (FFT) in

crystal plasticity models for simulating elastic loading in linear and non-linear composites

[38]. This approach was then extended for polycrystals deforming in elastic [41], rigid

viscoplastic [42] and elasto- viscoplastic [22] regimes.

To perform this simulation, the input microstructure image is discretized on a

N1×N2×N3 grid of Fourier points as seen in figure 2.5. These Fourier points correspond

to the pixels in a 2D image and voxels in a 3D image. A polycrystal is represented by

a periodic unit cell, as required by the FFT algorithm. The resolution of the FFT grid

with respect to the synthetic microstructure is chosen according to [43] such that each

grain has atleast 20 FFT points. In this work, the synthetic microstructures consisting

of about 5000 grains each are discretized on a 1283 grid, and the smallest grains have

60 or more voxels. The sensitivity analysis for FFT simulations in the elastic regime

show that the stress-strain distributions are not very sensitive to the domain shape [44].

In the plastic regime, for a randomly textured material under uniaxial tension, it was

shown that a grid size of 1213 results in micromechanical fields that converge with higher

grid size outputs [44]. Hence the RVE chosen for our microstructures is optimal to avoid

grid size effects.

Figure 2.5: Representative volume element: The black dots are the Fourier points
overlaid on an input microstructure image. Note that the actual grid is much finer than

shown here.
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At each Fourier point, the constitutive equations for stress equilibrium are

solved to give the relation between Cauchy stress and strain or strain–rate tensors. The

local mechanical response calculation is a simple product in Fourier space, calculated as

the convolution integral between the Green’s function of displacement and the heteroge-

neous force field. This approach solves for stress equilibrium, while satisfying the strain

compatibility conditions. The local stress and strain rate responses are calculated itera-

tively based on an augmented Lagrangian to satisfy the governing constitutive relations

at every discrete material point. FFT based methods have been developed for elastic,

plastic and elasto-viscoplastic constitutive behaviors of a polycrystal. In this work we

have used the elasto-viscoplastic formulation which is described in the next section.

2.3.2.2 Elasto-Viscoplastic Fast Fourier Transform (EVPFFT)

The FFT simulation takes in the microstructure image discretized on a regular Fourier

grid and material properties such as the elastic stiffness moduli tensor, and slip and

twinning systems for plastic loading. Note that in this work, we have ignored twin-

ning deformation. The model gives micromechanical outputs of stress, strain-rate and

orientation fields.

The FFT algorithm requires periodic boundary conditions. For experimentally

measured microstructures, this requirement is generally circumvented by the use of buffer

layers, which can be thought of as free space in a 3D volume, not undergoing any

deformation. In this work we have used synthetically generated microstructures with

periodic boundaries, thus making the use of buffer layers redundant.

The relationship between stress and strain in the elastic region at a material

point x is given by:

σij (x) = Cijkl (x) : εekl (x) in RVE (2.12)

where Cijkl is the elastic stiffness tensor of the representative volume element (RVE).

The total strain in a material is given by:

ε (x) = εe (x) + εp (x)

where εe is the elastic strain and εp is the plastic strain in the material.
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At small strains (elastic regime), the stress at any Fourier point x at time

t + ∆t can be described by the constitutive equation 2.13 using Hooke’s Law and an

Euler implicit time discretization.

σ (x) = C (x) :
(
ε (x)− εp,t (x)− ε̇p (x, σ) ∆t

)
(2.13)

where C(x) is the elastic stifness tensor, ε(x) is the total strain tensor, εp(x) is the plastic

strain tensor and ε̇p is the plastic strain rate tensor.

At large strains (plastic regime), the elastic strains are negligible compared to

the plastic strains and the following equation is solved at every material point x :

ε̇p(xd) =
N∑
s=1

ms
ij(x)γ̇s(x) = γ̇0

N∑
s=1

ms
ij(x)

(
ms
kl(x) : σ

′
kl(x)

τ s(x)

)n
sgn(ms

kl(x) : σ
′
kl(x))

(2.14)

Here the summation is over all the N slip systems, τs, ms and γ̇s are the critically resolved

shear stress (CRSS), symmetric Schmid tensor and local shear rate on the slip system s.

ε̇(xd) and σ
′
(x) are the strain rate and deviatoric stress tensors at the Fourier grid point

xd, γ̇0 is a normalization constant and n is the rate sensitivity exponent, which was set

as 10 for all the simulations. The strain rate field is calculated such that it minimizes

the average of local work satisfying the equilibrium and compatibility conditions.

For these simulations, the evolution of CRSS, τ s with accumulated shear strain

has been described using the Voce hardening law [45, 46] as follows:

τ s(Γ) = τ s0 + (τ s1 + θs1Γ)

(
1− exp

(
− Γ | θ

s
o

τ s1
|
))

(2.15)

The parameters τ0 and θ0 refer to the initial yield stress and the initial hardening rate.

(τ0 + τ1) is the back-extrapolated stress and θ1 is the asymptotic hardening rate. Γ is

the accumulated shear in the grains. However, τs does not depend on the temperature

or the loading rate. The Voce model is intended to fit a single stress-strain data set.

With an applied average strain E at a strain rate ε̇, assuming periodic boundary

conditions across the RVE, a small degree of homogenization is introduced in the model

by creating a reference medium with an initial homogeneous reference stiffness tensor
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Co as an average of all Cijkl (x) values in the polycrystal as:

Coijkl (x) =
1

Npoints

∑
Cijkl (x) (2.16)

The stress is then broken up into 2 components, an average stress field, determined using

the reference linear stiffness tensor; and a polarization field as :

σij (x) = Coijklεkl (x) + φij (x) (2.17)

The polarization field (φij (x)) is the local deviation from the average stress field (σij)

at a material point x, and can be calculated iteratively using the fluctuation in stiffness

and local strain [22].

The iterative elastic FFT formulation can be summarized as follows: At each

time step, the local fluctuations in stress and strain are calculated iteratively [42]. First,

the elastic strain at each grid point is initialized by the macroscopic average strain rate

calculated from the boundary conditions at that step. Then the following steps are

repeated until convergence at that time step:

• The local average stress is calculated using Hooke’s law from the local elastic strain.

• The polarization field is calculated using Green’s method and Fourier transform

and the stress equilibrium and convergence conditions are tested.

• The stress and strain fields are updated.

2.3.2.3 Viscoplastic Fast Fourier Transform (VPFFT)

The VPFFT formulation is valid for large strains only. It assumes that the elastic

strains are negligible compared to plastic strain and only the deformation in the rigid

viscoplastic regime is modeled. The constitutive law in this regime between deviatoric

stress and the plastic strain rate is the same as equation 2.14. Similar to EVPFFT,

the plastic strain and stress fields are obtained by solving the constitutive equation

iteratively at each time step, by applying the FFT algorithm. The advantage of VPFFT

is that, in large plastic strain regimes, a higher strain step increment can be used in the

boundary conditions, in comparison to EVPFFT. Hence to calculate final stress, strain
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and orientation fields at high plastic strain, with the same accuracy, VPFFT is faster

than EVPFFT.

2.3.3 Summary

Mean field models of crystal plasticity, due to the homogenization approach, cannot

account for neighboring grain interactions and the intragranular heterogeneity in the

micromechanical fields. Hence full field models are chosen for deformation simulations.

The image based elasto-viscoplastic fast Fourier transform (EVPFFT) crystal plasticity

formulation is chosen to simulate uniaxial tensile deformation in three-dimensional poly-

crystalline microstructures, for generating statistically significant datasets for machine

learning.



Chapter 3

Machine Learning Fundamentals

Machine learning techniques are well established and have been applied to different fields

such as financial services[47], [48], health care [49], [50], marketing and sales [51], [52],

robotics [53], [54] and transportation [55], [56]. Machine learning (ML) is a statistical

framework that automates analytical model fitting for data analysis such as finding

structure in data (clustering) and making data-driven predictions or decisions. These

techniques can be used to extract insights and correlations between different kinds of

attributes in data.

The basic idea of machine learning is to use features in an algorithm to be fit

to a target or a class. These features are individual measurable properties of the phe-

nomenon being observed [57]. Features can be of different kinds: numeric, categorical

(strings), timestamps, graph structures etc; and are processed to generate a D dimen-

sional numerical feature vector X. The feature set is then evaluated to get a reduced set

of features, to improve model generalization over unseen data. Given a training dataset

consisting of D dimensional N observations xdi , where i = 1, 2, ...N , d = 1, 2, ...D; to-

gether with the N corresponding target values yi , the goal of machine learning is to

predict the value of y for a new value of x.

Predicting stress hotspots is essentially a binary classification problem. Given a

location in a microstructure, we want to predict if a stress hotspot forms there (yi = 1), or

not (yi = 0). A feature vector X whose components are derived from the microstructural

descriptors is constructed. The target is a vector Y having information about the

19
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region being a hotspot. The goal of the machine learning algorithm is to fit a function

f (X) = Y which minimizes the error rate. The trained algorithm can then be used to

predict the outcome Y for previously unseen data.

In supervised learning i.e., when the dataset has the target Y labels, it is

generally split into training (∼ 60%), validation (∼ 20%) and test (∼ 20%) sets. The

models are trained on the training set and their performance is compared using the

validation set. The test set is used to get an estimate of the model performance on unseen

data. However, when the size of the dataset is not large, k-fold cross validation (CV) is

used in practice [58]. In this technique, the training sample is randomly partitioned into

k subsamples. Then (k-1) subsamples are used to train the model, which is validated

on the kth subsample. This process is repeated k times (the folds), such that each fold

is used exactly once for cross validation. The k results are then averaged to get the

validation estimation. In unbalanced datasets where one of the target class population

is small, stratified k-fold cross validation is used [59], where the k-folds are selected such

that they have approximately equal proportion of the class labels.

There are a wide variety of ML algorithms to choose from, but can be broadly

categorized into two kinds, feature based algorithms and deep learning algorithms. In

this dissertation, we have used two kinds of supervised machine learning algorithms:

random forest models and convolutional neural networks, which are explained in the

upcoming sections.

3.1 Machine Learning algorithms

3.1.1 Decision Tree Models

Decision Tree models are suited for problems where the target variable is discrete, such

as classification problems. For example, figure 3.1a shows a two-dimensional space par-

titioned into five regions on the basis of the two features x1 and x2. A decision tree

corresponding to this data partitioning is shown in figure 3.1b. At each tree node, the

split is decided based on the variable that maximizes the information gain [60], [61].

Tree models are easy to interpret; by following the leaf node up the tree, all the fea-

ture contributions can be understood. However, in decision tree models, the splits in
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the dataset are aligned with the axes, and hence large tree depths are required to fit

a generic decision boundary. Also, each leaf node in the tree is associated with a sin-

gle target value, and hence these models are prone to overfitting the training dataset.

Hence we switch to ”tree ensemble learning” models that generate many classifiers and

aggregate their result. We have used a random forest model in Chapter 4 and 5, which

is explained in the following section.
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(b) Decision tree corresponding to the par-
titioning

Figure 3.1: Schematic of a decision tree model

3.1.2 Random Forest Tree Models

The random forest (RF) algorithm is built on the concept of decision trees [62], [63].

These models are very fast and easy to fit, can handle both numerical and categorical

features and deal with missing or unbalanced data efficiently. The idea behind ensemble

learning is that combining weak learners results in a ”strong learner”. A decision tree

in itself is a weak model. Random forest utilizes ensembling to bring together a number

of weak decision trees. The schematic for random forest algorithm is shown in figure

3.2. The training data is bootstrapped (sampling with replacement) into n random

subsets. A decision tree is fit to each bootstrapped sample using a small random subset

of the feature space. This way 200-500 decision trees are grown, hence the name random

forest. The output from each of the decision trees is then voted or averaged to get a

final prediction. RF models prevent overfitting by using random subsets for both feature
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selection and data division. The RF algorithm was implemented in Python using the

All Data:
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Random 
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Random 
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Random 
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At each node:
• Select p << F features at 

random 
• Find a variable & its value that 
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𝑃"-(𝑌 = 𝑐|𝑋 = 𝒙)

Σ
𝑷𝝋(𝒀 = 𝒄|𝑿 = 𝒙)

Grow 200-500 trees this way

Figure 3.2: Schematic of the random forest algorithm.

scikit-learn implementation [64]. Some of the important model hyper-parameters for RF

are:

• max features: The number of features to consider when looking for the best split

for a decision tree. This parameter prevents overfitting. A rule of thumb is to keep

it smaller than
√
D, where D is the dimension of the feature vector.

• num estimators: The number of decision trees in the forest. This parameter needs

to be monitored on a neutral test set to prevent overfitting.

• max depth: The maximum depth of each decision tree. Increasing the tree depth

beyond an optimum will result in overfitting.

• random state: This parameter can be used to seed the random number generator,

so that the same random subsets are generated.

The model is trained on a set of hyperparameters, and the model performance on a test

dataset is compared to choose the best performing model hyperparameters. The RF

model outputs the probabilities of the sample to belong to a class, which can then be

thresholded to get predicted labels.
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3.1.2.1 Variable Importance

The RF algorithm can be used to determine variable importance, i.e which of the input

features most influences the target. The algorithm is such that it captures the predictors

which become important due to their interactions with other variables. The random

forest algorithm estimates the importance of a variable by comparing the increase in the

prediction error when the out-of-bag [65] data for that variable is permuted, while all

others are left unchanged [63]. Out-of-bag is the mean prediction error on each training

sample xi, using only the trees that did not have xi in their bootstrap sample.

For each of the trees in the forest, a predictor variable is permuted while all

others are left unchanged. Variable importance is estimated by looking at the difference

in prediction accuracy before and after permuting that feature. By randomly permuting

the predictor variable Xj , its original association with the response Y is broken. When

the permuted variable Xj , together with the remaining un-permuted predictor variables,

is used to predict the response, the prediction accuracy (i.e. the number of observations

classified correctly) decreases substantially, if the original variable Xj was associated

with the response. Thus, a reasonable measure for variable importance is the difference

in prediction accuracy before and after permuting Xj . The variable importance calcu-

lated this way is known as “Permutation Accuracy Importance (PAI)”. PAI along with

correlation coefficients can be used to gain insights into the physical problem. Another

application of PAI is the feature selection process, where we can discard the predictor

variables with the lowest PAI values. This model reduction helps in making the models

simpler and more interpretable.

3.1.3 Deep learning

Deep learning methods have recently outperformed many state of the art machine learn-

ing techniques in several fields such as computer vision[66], speech recognition[67], medi-

cal image segmentation[68], [69], [70], and video analysis [71] and require minimal feature

engineering by hand. Deep learning [55] utilizes neural networks to fit a function to the

dataset. It refers to biologically-inspired computational models that are ”composed of

multiple processing layers to learn representations of data with multiple levels of abstrac-

tion” [55]. These models have outperformed previous state-of-the-art tasks in different
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domains, which has led to a surge of interest in their applications. These methods

have found their way into the materials science domain, for automatic microstructure

classification [72], [73], predicting material properties from crystal structures [74], [75]

and predicting flow stress behaviour [76], [77]. Neural networks approximate a function

with a densely interconnected sets of simple function units (e.g. sigmoid). Each unit

takes real valued inputs, this input could consist of the output of other units. The

unit then produces a single real-valued output which might become input of many other

units. These models are incredibly complex and can produce highly non-linear decision

boundaries.

3.1.3.1 The Perceptron

The perceptron is the basic building block of neural networks. Figure 3.3b shows a single

layer perceptron, which is the simplest neural network possible. The output is obtained

from a series of functional transformations. First, a linear combination of the inputs (x)

is created as:

a(x,w,b) =
4∑
i=1

(wixi + bi)

where x is the input data, w is the weights matrix, and b is a bias or threshold value

that helps define the activation function, a(x), which is a linear classifier of the input

data. In order to learn non-linear decision boundaries, it is necessary to transform the

activations a(x) through a non-linear function activation function f(x) such that the

output of the neuron h(x) is obtained as:

h(x) = f(a(x,w,b))

Common choices of the non linear activation function are sigmoid function, rectified

linear unit (ReLu), leaky ReLu and hyperbolic tangent (tanh) functions, are shown in

Figure 3.3b. The output of the single layer perceptron is:

y(x,w,b) =


1, if h(x) > 0.

0, otherwise.

(3.1)

This process is known as forward propagation of information through the network. The

weights w and biases b are optimized through supervised learning via backpropagation
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using a gradient descent algorithm to minimize a loss function. The loss function repre-

sents the ”cost” associated with the difference between true labels and predicted output,

which can be a simple mean squared error function for regression tasks, or a cross entropy

error for classification tasks. The network training happens over a series of iterations

known as steps, where the weights are updated based on the backpropagated gradients.

An epoch of training is completed after the network backpropagates gradients for the

entire training data for optimizing the weights. Figure 3.4 shows how stacking multiple

perceptrons in a layer and stacking layers on layers, perceptrons can be constructed into

deep architectures known as multi-layer perceptrons or artificial neural networks. The

four nodes in the left side of the cartoon represent the input data. The middle layers

consisting of 7, 3 and 2 units respectively represent the three hidden layers of the net-

work. The output layer of this network has one unit. The number of units and number

of layers can be varied to build a complex neural network. The reader is referred to

Lecun et al. [55] for a detailed introduction to deep learning methods.
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Figure 3.3: a) Schematic of a single layer perceptron b) Different activation functions
in a perceptron

3.2 Model performance metrics

The test for a machine learning model is the validation error on new data. In this work,

predicting stress hotspots has been treated as a classification problem. The predicted

probabilities are thresholded and the labels are assigned. To choose the best threshold,



Chapter 3. Machine Learning Methods 26

Figure 3.4: Schematic of an artificial neural network constructed from perceptron
units

model performance needs to be compared. Some of the common performance measures

for such models are explained in this section.

3.2.1 Accuracy, Precision and Recall

Accuracy is the proportion of correct results achieved by a classifier. However, in imbal-

anced datasets, for example if only 10% of the dataset has the label 1, then predicting

all the labels as 0’s will still result in a 90% accuracy. This is because accuracy assumes

equal cost for false positive and false negative errors. Thus precision and recall are used

to compare model performance.

Precision =
TP

TP + FP
(3.2)

Recall =
TP

TP + FN
(3.3)

where TP, FP, TN, FN are the number of true positive, false positive, true negative

and false negatives for a set of predictions. Precision tells us the fraction of correctly

classified points out of those predicted to belong to a class. Recall tells us the fraction

of correctly classified points out of the total number of points in that class. These

measures can be used to compare model performance for each threshold value. In order

to compare the model performance across the range of probability thresholds, the area

under curve of receiving operator characteristic curve (AUC) metric is used, which is

explained below.
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3.2.2 Area Under Receiving Operator Characteristic Curve (AUC)

The receiving operator characteristic (ROC) curve is a plot of true positive vs false

positive rate, across the probability thresholds. Each probability threshold represents

different trade-off between FP and FN. The cost ratio is the slope of the ROC curve,

and the area under the curve represents the performance averaged over all thresholds

for a classifier. If the classifier is very good, the true positive rate will increase quickly

and the area under the curve will be close to 1. If the classifier is no better than random

guessing, the true positive rate will increase linearly with the false positive rate and the

area under the curve will be around 0.5.

AUC is independent of the fraction of the test population which is class 0 or

class 1 and is hence useful for evaluating the performance of classifiers on unbalanced

data sets. If the ROC curves of 2 classifiers intersect, it means that one of them is better

for some cost ratios. If the ROC curves of 2 classifiers do not intersect, the classifier

with higher AUC is better. Figure 3.5a shows the schematic of an ROC curve as the

threshold value for classifying a point label as 0 or 1 is increased from 0 to 1. In this

work, the trained models are evaluated using 5-fold cross validation AUC score.

Another metric for measuring model goodness in imbalanced datasets for binary

classification is the Matthews correlation coefficient (MCC) as it takes all the elements of

the confusion matrix (true and false positives and negatives) into account [78]. However,

this measure has not been used in this work.
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Figure 3.5: Schematic of 3.5a: the ROC curve and AUC metric. The diagonal line
represents random prediction, 3.5b: learning curve for the high bias case and 3.5c:

learning curve for the high variance case
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3.3 Model Generalization

The prediction error of a model can be decomposed into three kinds of errors: bias

(underfitting), variance (overfitting) and irreducible errors arising from noise in the data.

During supervised learning, understanding the trade-off between bias and variance helps

in diagnosing the models and generalizing them beyond the training dataset. The ability

of the model to approximate the data is related to bias, hence, if the model is not complex

enough, it will result in a bias or under-fitting the data. For example, trying to model

a quadratic relationship using a linear model results in an a prediction error related to

model bias. Variance is related to the sensitivity of the model to the training dataset.

A model with high variance overfits the training data to learn the random noise, and

hence performs worse on unseen test data.

Learning curves are diagnostic curves that can be used to improve model per-

formance by understanding the kind of error it is suffering from. Learning curves are a

plot of the prediction score on the training and cross validation datasets as a function

of the training dataset size. In models with high bias error, the cross-validation (CV)

performance initially increases, but then plateaus as the number of training examples

increases; the training performance initially decreases, but then plateaus at the level of

CV performance, which is usually lower than the desired performance level. Thus in

learning curves of high bias models, the training and CV performances are similar for a

range of training set sizes but lower than the desired performance. Expanding the fea-

ture space helps in correcting models with high bias error. In models with high variance

error, the training performance decreases with number of training examples, usually to

a level higher than high-bias case. The CV performance increases with the number of

training examples, but there is a gap between training and CV performances. Increasing

the size of the training dataset or using a smaller feature set helps in correcting models

with high variance error. Figure 3.5c and 3.5b show a schematic of how learning curves

can be used to diagnose model errors.
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Predicting Stress Hotspots in

Face Centered Cubic Materials

We investigate the formation of stress hotspots in polycrystalline materials under uni-

axial tensile deformation by integrating full field crystal plasticity based deformation

models and machine learning techniques to gain data driven insights about microstruc-

tural properties. Synthetic 3D microstructures are created representing single phase

equiaxed microstructures for generic copper alloys. Uniaxial tensile deformation is sim-

ulated using a 3-D full-field, image-based Fast Fourier Transform (FFT) technique with

rate-sensitive crystal plasticity, to get local micro-mechanical fields (stress and strain

rates). Stress hotspots are defined as the grains having stress values above the 90th

percentile of the stress distribution. Hotspot neighborhoods are then characterized us-

ing metrics that reflect local crystallography, geometry, and connectivity. This data is

used to create input feature vectors to train a random forest learning algorithm, which

predicts the grains that will become stress hotspots. We are able to achieve an area

under the receiving operating characteristic curve (ROC-AUC) of 0.74 for face centered

cubic materials modeled on generic copper alloys. The results show the power and

the limitations of the machine learning approach applied to the polycrystalline grain

networks.

4.1 Introduction

Ductile fracture is one of the most common modes of failure in materials and occurs by

the nucleation, growth and coalescence of microscopic voids. [17] established that these

29
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voids grow under stress by accumulating vacancies, and that void nucleation is induced

by stress . [20] show that an applied stress on a material is heterogeneously distributed

between the grains, creating regions of stress accumulations, so-called stress hotspots.

Stress distribution between grains is dependent on the local microstructural features

which in turn influence the location of void nucleation. We propose using machine

learning techniques to study the impact of microstructural features on stress hotspots.

Predicting damage nucleation is important because fracture ultimately defines the useful

lifetime of a material.

Modern texture analysis techniques, such as near field and far field High Energy

X-Ray Diffraction Microscopy (nf-HEDM, ff-HEDM) [79], have made three dimensional

characterization of microstructures possible. This kind of mesoscale microstructural

data, consisting of grain crystallography, centroids and strain fields, is well suited to

machine learning techniques. Following this trend, [80] have recently used decision trees

to find insights about the driving forces behind deformation twinning in a magnesium

alloy. However, stress hotspots are rare events; consisting of less than 10% of the material

volume and hence require a large dataset for statistical learning, which is not amenable

to the currently existing HEDM datasets. Instead, we meet this requirement by using

a simulation generated data set. Uniaxial tensile deformation is simulated in a number

of synthetic microstructures using an image based full field crystal plasticity Elasto-

Viscoplastic Fast Fourier Transform (EVPFFT) model [22]. Simulating deformation in

materials gives us the advantage of preserving both the initial and final structures, thus

enabling us to turn back the clock and correlate hot spots to initial microstructural

features. The techniques developed in this work are directly transferable to HEDM

datasets.

With the advent of material informatics, machine learning has been used to

search for stable compounds across composition space, extract correlations between

physical characteristics and observed properties and search for materials with useful

properties [80], [9]. Taking inspiration from these successes, we use data mining and

machine learning techniques at the mesoscale to build models which can be used to

predict the probable failure locations based on known data in similar materials. These

models help us gain insights about the characteristics in the local structure such as

texture and geometry, that allow stress hotspots to form, and how such regions can be

identified in a microstructure.
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In this chapter, plastic deformation of single phase face centered cubic (FCC)

polycrystals is studied to ascertain the local microstructural characteristics related to the

regions of high stress concentrations. A random forest learning algorithm is chosen for its

ease of use and interpretability of the machine learning framework. We use statistical

descriptors of microstructures describing the crystallography (orientation distribution

function, Schmid factor, misorientations) and geometry (grain shape, grain boundary

types) which have not been used earlier to understand their correlation with hotspot

locations. The objective is twofold: predict probable failure locations, and identify the

microstructural features that cause them, to facilitate microstructure engineering for

materials design.

4.2 Methods

4.2.1 Dataset Generation

4.2.1.1 Synthetic Microstructures

First, a dataset of synthetic microstructure images is built using Dream.3D [81]. Syn-

thetic equiaxed polycrystalline microstructures with about 5000 grains each and a mean

grain size of 2.7 microns are created for a set of representative textures in FCC ma-

terials shown in Figure 4.4a. These textures were selected from a number of common

FCC rolling texture components such as brass, copper and Goss components. For each

texture kind, six microstructure instantiations are created, thus resulting in about 30000

grains per crystallographic texture. The texture intensity is characterized by multiples

of random density (MRD) which is the intensity of a crystallite orientation with respect

to it’s intensity in a randomly textured material. For each texture studied here, the

texture intensity is varied from weakly textured (<10 MRD) to strongly textured (>30

MRD). The microstructures are discretized on a 128x128x128 grid, which allows the use

of image based crystal plasticity models.

The stress distribution in a microstructure is highly dependent on the crystal

system and the texture. Hence we keep the crystal system constant (FCC) and vary the

texture, while keeping the grain size distribution, slip system strength, slip hardening

rates, strain rate and other factors constant while simulating uniaxial tensile deforma-

tion.
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4.2.1.2 Simulating Uniaxial Tensile Deformation

Due to the homogenization approach, mean field models of crystal plasticity cannot

account for neighboring grain interactions and the intragranular heterogeneity in the

micromechanical fields. Hence a full field elasto-viscoplastic fast Fourier transform

(EVPFFT) crystal plasticity formulation [22] is chosen to simulate uniaxial tensile defor-

mation in the generated microstructures. This model takes in the microstructure image

discretized on a regular Fourier grid and the material properties such as the elastic stiff-

ness tensor and slip systems for plastic loading. The output is the stress, strain-rate and

orientation fields at each grid point. Since the EVPFFT model solves the constitutive

equations at each grid point, the grain size should not affect simulations as long as the

Fourier grid size is chosen such that the model converges. The boundary conditions on

the strain are chosen such that the material transitions into the plastic regime.

The Voce hardening law [45] is used to model the evolution of the critically

resolved shear stress (CRSS) of each slip system s, τ s, with accumulated shear strain as

follows:

τ s(Γ) = τ s0 + (τ s1 + θs1Γ)

(
1− exp

(
− Γ | θ

s
o

τ s1
|
))

(4.1)

The parameters τ0 and θ0 refer to the initial yield stress and the initial hardening rate.

(τ0 + τ1) is the back-extrapolated stress and θ1 is the asymptotic hardening rate. Γ is

the accumulated shear in the grains. The Voce hardening parameters were extracted as

shown in table B.1 by fitting the VPSC simulated stress-strain curve to representative

experimental stress-strain curves for FCC copper. Appendix A covers the details of

extracting these parameters.

4.2.1.3 Problem Formulation: defining stress hotspots

EVPFFT simulations result in a voxel-wise output for the Von Mises (VM) stress field,

as shown in Figure 4.1a. It is observed that the regions of high stress generally form in

clusters and intra-grain variations in stress values are small. Therefore, to minimize the

impact of numerical artifacts and small-scale fluctuations, this field is averaged grain-

wise to get the stress in each grain. The resultant stress distribution is thresholded

using the peak over threshold method [82] to select the critical stress threshold (Figure

4.1b). The grains having VM stress above the critical threshold are designated as stress

hotspots. The critical threshold grain averaged Von Mises stress value was found to lie
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(a) (b)

Figure 4.1: Cross sections of a microstructure showing (a) Von Mises Stress field and
(b) Stress hotspots obtained by thresholding on grain averaged stress field. The red

regions correspond to regions of high stress or stress hotspots.

between the 85th and 95th percentile. Hence the 90th stress percentile was chosen as a

cutoff throughout the dataset to keep the fraction of hotspots the same between all the

microstructures.

4.2.1.4 Relation Between Stress Hotspot locations

A spatial autocorrelation analysis was performed to determine if the location of a hot

grain has a role in the formation of another hotspot, i.e. if the hot grains are related

to each other. Two-point statistics are calculated between hot grains and normal grains

using the method described in [83]. We observe a high autocorrelation inside the coher-

ence length which represents the average size of the hotspots. Outside this length, we

find that the probability of finding a hotspot is constant in all directions, which means

that the hot grains are not correlated in space i.e. they are dispersed uniformly in the

microstructure. Thus stress hotspots (grains) are independent of each other and stan-

dard statistical approaches can be used without having to worry about the shadowing

effects of spatial correlation.

4.2.1.5 Effect of Microstructure evolution on Stress hotspots

As a material deforms, the grains tend to rotate towards the tensile axis, thus changing

their orientation. [22] have used the EVPFFT formulation to study hotspots formed

during uniaxial tensile deformation in polycrystalline FCC materials. It was observed

that in materials where the ”hard” and ”soft” directions in the elastic and plastic regimes

are different, the elastic hotspots become plastic cold-spots and vice-versa.

The constitutive model parameters for FCC materials represent a generic cop-

per alloy. For the single crystal elastic constants used in this work, the elastic anisotropy
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Evolution of Von Mises Stress with deformation steps in a cross section of FCC material
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Figure 4.2: Representative figure showing the Von Mises stress vs. location in the
microstructure at each deformation step. The bottom (blue) curve is at the lowest
strain (0.01%) and the top (blue) curve is at the maximum strain (4%). The red

arrows indicate how location of stress hotspots is not changing

parameter given by equation 4.2 ([84]) is A = 3.2.

A = (2× C44)/(C11 − C12) (4.2)

where C44, C11 and C12 are elements of the elastic constant tensor of a cubic

material. For A > 1; < 100 > and < 111 > are soft and hard elastic directions

respectively. This coincides with the plastic anisotropy of {111} < 110 > slip ([22]),

not taking the effect of strain rate into account. Hence, elastic hotspots should remain

plastic hotspots (and cold spots remain cold) as the deformation proceeds.

To verify this, the location of stress hotspots in the elastic and plastic regimes

was studied. A 128x128 cross section of the microstructure was divided into 196 10x10

regions. The Von Mises stress field was averaged in each 10x10 region, and is plotted at

each deformation step in Figure 4.2. It was found that the stress hotspots are stationary

in the crystal structures studied. That is, initial high stress regions remain high in

stress as deformation proceeds; likewise, low stress regions retained low stress values

throughout deformation.

4.2.1.6 Effect of Texture and Microstructure

We conducted two experiments. First we compared the location of stress hotspots in mi-

crostructures having the same grain structure but different texture templates applied to

it. In the second experiment, we compared the location of stress hotspots in microstruc-

tures having similar random textures, but stochastically different microstructures. All
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the microstructures have equiaxed grains and a lognormal grain size distribution with

mean grain size of 2.7 microns. We found that changing either the texture or the grain

structure has an impact on the macroscopic flow stress-strain response and the location

of hotspots.

4.2.2 Developing Microstructural Descriptors

Feature engineering is the process of using knowledge of the pertaining field (in this

case, deformation mechanics) to build features to be used by a machine learning al-

gorithm [85]. During material deformation, the loading condition and microstructure

are the most important factors that determine stress distribution in a microstructure.

For stress hotspot prediction, both crystallographic and geometric microstructural de-

scriptors form the domain knowledge based feature set. Crystallography and geometry

based microstructural representations to be used as features during machine learning

are developed in the next sections. Table A.3 lists the acronyms and descriptions of the

features used in this work.

4.2.2.1 Crystallographic Descriptors

The shear strain rate on a material point depends on the tensor dot product between the

Schmid tensor and the deviatoric stress tensor. These tensor quantities are determined

by the grain orientation, which is captured by the Euler angles [24], [86]. However, due to

the non-linearity of Euler space, there can be multiple Euler angles representing the same

orientation. Interpreting the results from Euler angle ranges associated with hotspots

is difficult even after reducing the Euler angle space to the fundamental zone. The

complex, non-linear, trigonometric relationship between the tensor quantities cannot be

captured directly by using Euler angles as features, and hence we develop the following

features to represent the grain crystallographic properties.

Distance from Inverse pole figure corners: A microstructural descriptor

based on the inverse pole figure (IPF) space is proposed to capture the relation between

the tensile axis direction and the grain soft and hard orientations resulting from the

anisotropy in elastic modulus. The loading direction is projected in the inverse pole

figure space in the fundamental zone. This ensures that every orientation is projected

into the same stereographic triangle. The distance of each projected point from the

three corners of the inverse pole figure describes the orientation of the loading direction
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w.r.t. the 3 crystal directions. Since this space is fixed, the Euclidean distance of the

projected point from the 3 corners of the inverse pole figure is invariant and is used as

a microstructural descriptor. This distance is an indicator of how close the tensile axis

is to the crystal directions in the inverse pole figure. Figure 4.3a shows a schematic

of the three distances in cubic materials. The features derived would be 001 IPF 0

: distance of the [001]sample direction from [111]crystal direction; 001 IPF 1: distance

of [001]sample from [001]crystal and finally, 001 IPF 2: the distance of [001]sample from

[101]crystal direction. Similarly, other directions in the sample frame were projected into

the crystal frame to get corresponding features of the form SampleDirection IPF x,

where x={0,1,2}.

Misorientation: [87] show that during aluminum bicrystal deformation, the

yield stress and the rate of work hardening increases with the orientation difference

between the crystals . Some misorientations correspond to ”special” grain boundaries

which could lead to enhanced properties with respect to corrosion, impurity segregation,

cracking, coarsening, diffusion and other properties affected by grain boundary proper-

ties [88]. Hence, the misorientations of grains with their 1st, 2nd and 3rd set of nearest

neighbors were calculated, and features like minimum, maximum and mean misorien-

tation for a grain were calculated from these lists. Figure 4.3b shows a schematic 2-D

microstructure with a grain, it’s 1st nearest neighbors and the average misorientation

calculation. The misorientation with the 1st nearest neighbors in 3D microstructures

was calculated using the ”Find Feature Neighbor Misorientations” filter in Dream.3D.

Slip Transmission Metrics: A geometric compatibility factor to measure

the ease of slip transmission between two grains is the mprime factor from [89], calculated

as a dot product between the slip plane normals and slip directions across a grain

boundary as seen in figure 4.3c. The m-prime factor lies in the range (0,1); a value of 0

indicates incompatible deformation across the grain boundary and a value of 1 indicates

co-planarity of slip systems between two grains. [90] show that this factor is related

to the local misorientation between the slip systems in different grains and can help in

predicting the slip transmission across different grains. This metric is calculated using a

filter in Dream.3D for FCC materials. The mprime factor is calculated between a grain

and all its contiguous neighbors. This list is averaged to get a single mprime value across

the grain boundaries of a grain.

Schmid Factor: The Schmid factor is a measure of the optimal orientation of

a slip system for deformation in a single crystal, and can be extended to polycrystalline
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materials [86].

Other Factors The Taylor factor [91] consists of information about the slip

occurring in each grain and the equivalent Von Mises stress and is calculated during

deformation. Since our goal is to correlate only the initial microstructural descriptors to

stress hotspots, the Taylor factor is not included in the feature set. Factors like stress

triaxiality, slip system activities, principal stress directions and Lode angle parameters,

are important in determining the stress state in a grain, but are dropped from the feature

space for similar reasons.
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Figure 4.3: Crystallographic descriptors used as features during machine learning.
(a) Schematic of an Inverse pole figure for a cubic crystal. The distance of the [001]
sample direction from the three crystal directions [001] (d2), [101] (d3) and [111] (d1)
in the standard stereographic triangle are used as a feature. (b) Schematic of average
misorientation ωavg for the reference (light blue) grain with respect to it’s N contiguous
neighbors (numbered 1 to 6) in a 2-D microstructure. ωi is the misorientation between
the reference grain and its ith neighbor grain. (c) Slip Transmission Factor (m-prime,
m′) is a function of the dot product of the slip plane normals (incoming normal nin
and outgoing normal nout), and the dot product of slip directions (incoming din and

outgoing dout). Adapted from [1]
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4.2.2.2 Geometrical Descriptors: Grains and their neighborhood

Material failure is highly dependent on microstructure. For example, cleavage fracture

in mild steels has been shown to have a grain size dependence [92], whereas during

ductile fracture under uniaxial tensile deformation, stress hotspots tend to form near

microstructural features and usually form in textures corresponding to maxima in Taylor

factor [21]. In this section, we develop a few microstructural descriptors describing the

grain geometry which are used in this work.

Shape averaged distance from special points: Due to the three-dimensional

polycrystal line grain structure, the grain boundary network consists of grain boundaries

where two grains meet; triple lines, where 3 grains and 3 boundaries meet; and quadruple

points, where 4 grains, 6 boundaries and 4 triple lines meet [93]. The grains closer to

these special points have a neighborhood with a higher local heterogeneity. The triple

junctions, depending on their crystallography, can impede or permit inter-granular dam-

age through them [94], and hence are an important microstructural descriptor. Rollett

et. al.[21] show that stress hotspots tend to form in grains closer to these special points

. Hence we use the average distance of each grain to the closest grain boundaries, triple

lines, and quadruple points as geometric features. A Dream.3D filter is used to calculate

the Euclidean distances for each voxel, which are then averaged per grain to form a grain

level feature.

Grain shape parameters: It has been shown that in severely plastically

deformed (SPD) materials, such as those produced by high pressure torsion (HPT), the

ductility is influenced by the grain aspect ratio [95]. In alpha-beta Titanium alloys,

the grain size, aspect ratios and grain size distribution have been shown to be related

to the flow stress [96]. The Hall-Petch and inverse Hall-Petch relationships describe

the relation between yield stress and grain size in a material [97]. In this work, we

have used equivalent spherical grain diameter and grain aspect ratio from a best fit

ellipsoid as features. They were calculated using a Dream.3D filter. The grains can also

be characterized by the number of contiguous neighboring grains, which is used as a

feature and calculated via Dream.3D.
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4.2.3 Machine Learning Methods

The EVPFFT simulations and the derived microstructural descriptors form a sample

on which machine learning models can be built and evaluated. The microstructural de-

scriptors are used as features to train machine learning algorithms for predicting stress

hotspots. The contribution of each microstructural feature in predicting hotspot for-

mation is studied to understand it’s impact. Predicting stress hotspots is a binary

classification problem. Given a grain in a microstructure, we want to predict if a stress

hotspot forms there. A feature vector X whose components are derived from the mi-

crostructural descriptors is constructed. ML methods can be used to extract insights

and correlations between the elements of X and the micromechanical outcome.

4.2.3.1 Model Performance Metrics

Once a model is trained, it’s performance can be evaluated by looking at the classi-

fication accuracy. However, for stress hotspot classification, predicting all the grains

as normal (non-hotspots) will still result in a 90% classification accuracy as only 10%

of the grains are hotspots. A better representation of the classification accuracy is the

two-dimensional confusion matrix, indexed in one dimension by the true class and in the

other by the predicted class. A correctly predicted hot grain is true positive; a misclassi-

fied hot grain is a false negative. The normal grains predicted as hot are false positives,

and the normal grains predicted normal are true negatives. We want the classifier to

correctly predict all hotspots, maximizing the true positives while minimizing the false

positives. Hence the area under the receiving operator characteristic curve (AUC) is a

good evaluation metric for such unbalanced datasets [98]. The area under the receiving

operator characteristic curve (AUC, described in section 3.2.2) is a good evaluation met-

ric for such unbalanced datasets [98]. If the classifier is no better than random guessing,

the true positive rate will increase linearly with the false positive rate and the area under

the receiving operating characteristic curve will be around 0.50. A good classifier has a

high true positives rate and a low false positive rate, and the AUC ∼ 1. A misclassified

hot grain (false negative) has a higher cost and hence the recall is important for hotspot

classification.
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4.2.3.2 Estimation of Model Generalization Error

A data-driven model should achieve good performance on the training data as well as

generalize well on unseen (test) data. We divide our dataset into training and test

(holdout) sets. During training, the model parameters are optimized using K-fold cross

validation (CV) ([99]). In this technique, the training sample is randomly partitioned

into k subsamples. Then (k-1) subsamples are used to train the model, which is val-

idated on the kth subsample. This process is repeated k times (the folds), such that

each fold is used exactly once for cross validation. The k results are then averaged to

get the validation estimation. To offset the effect of unbalanced data, stratified k-fold

cross validation is common ([59]), where the k-folds are selected such that they have

approximately equal proportion of the class labels. In this work, the grain-wise hotspots

are designated based on the crystal plasticity simulations and might be correlated within

a microstructure as they come from the same crystal plasticity simulation. Therefore,

to assess the generalization error during validation and test times, we perform stratified

sampling. The validation folds are created by selecting the grains from a randomly cho-

sen microstructure per texture class that is absent in the training data. This overcomes

the optimistic bias in generalization error from having correlated data from a single

simulation between training and validation. Once the model hyper-parameters are op-

timized, a second K-fold cross validation is run by using the entire training dataset

to construct the models and creating validation folds from the microstructures in the

holdout (test) dataset. This helps in getting an estimate of the generalization error on

unseen data. This technique is also known as nested cross-validation ([100]).

The generalization error can be understood by dividing it into bias and variance

errors. If the learning algorithm is too simple, it introduces a bias in the predictions,

whereas a very complex algorithm can overfit and learn the noise in the dataset, leading

to a higher variance in the predictions. Learning curves are diagnostic curves that can

help in understanding the trade-off between bias error and variance error, thus helping

the models to generalize beyond the training dataset. They are a plot of the model

evaluation metric on the training and cross validation datasets as a function of the

training dataset size.

The model performance generally increases with the training dataset size. If

there is a gap between training and validation error/ performance, the model is suffering

from high variance and collecting more data will help. On the other hand, the model
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suffers from bias when training and testing errors converge and are high, and a more

complex algorithm or more features are needed. These curves can be used to determine

the size of training dataset required.

4.2.3.3 Random Forest Model

Machine learning methods are often viewed as black box approaches linking inputs to

outputs using a complex set of functions. The main goals of this work is to understand

the microstructural attributes causing hotspot formation. Hence we choose a non-black-

box machine learning approach: a random forest (RF) algorithm which is described in

section 3.1.2. The number of decision trees, the number of features, and the depth of

the decision tree are some of the random forest model hyper-parameters. The hyper

parameters are chosen using a random grid search by comparing the cross validation

performance. The RF algorithm was implemented in Python using the scikit-learn im-

plementation [64]. Note that we tried a number of other tree based models like XGBoost

([101]) and Gradient Boosted trees [102] which did not result in an improvement in the

model AUC.

Our dataset was constructed for a set of representative textures as shown in

Figure 4.4a. For each texture kind, stochastically different datasets are created via

multiple microstructure instantiations. The location of stress hotspots is affected by

texture, geometry and the constitutive parameters. For materials consisting of equiaxed

microstructures under uniaxial tension, we compare two machine learning frameworks

to capture the variation caused by a texture kind:

• Partition models: a different RF model is trained for each texture kind and

the AUC score is reported using k-fold cross validation for each model (average of

validation performance on each microstructure in a texture kind).

• Mixed-model: a single RF model is trained on all the microstructures with

different textures, and the AUC score is reported using k-fold cross validation

(average of validation performance on 2 randomly chosen microstructures from

each texture kind).
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4.2.3.4 Feature Importance Metrics

Random forest models have an embedded metric known as the permutation accuracy

importance (PAI) [62, 65], which can be used to get feature importance scores to un-

derstand the contribution of each feature in predicting stress hotspots. However, this

metric is prone to correlation bias due to preferential selection of correlated features

during the tree building process [103]. The process of choosing the best feature selection

algorithm is discussed in Chapter 6, where we arrive at the FeaLect method [104] for

feature selection.

To gain data driven insights, we compute feature importances using state of

the art FeaLect method [104]. It is a robust feature selection method that computes

the feature importance using LASSO (L1) regularization [105]. We first oversample the

dataset to balance the population of the two classes. The oversampled dataset was

bootstrapped 100 times. In each random subset, various linear models are fitted using

the lars method [106], maintaining the regularization strength such that only 10 features

are selected by LASSO. Features are scored in each model depending on their tendency

to be selected by LASSO in each model. Finally, these relevance-orderings are averaged

to give the feature importance on an absolute scale. We used the R implementation of

FeaLect to compute our results [107].

4.3 Results and Discussion

The FCC dataset consists of six different textures as shown in Figure 4.4a. Figure

4.4b shows the grain averaged stress distribution in each texture class. The distribu-

tions are all left-tailed; both the magnitude and sharpness of the stress peaks vary

with texture kind. The optimized RF model hyper-parameters are max depth=8 and

Table 4.1: Cross validation AUCs for FCC materials for mixed and partition models

Texture kind Partition Model AUC (%) Mixed Model AUC (%)

1 71.27± 1.25 72.07
2 73.91± 3.69 73.10
3 66.13± 2.74 67.83
4 73.61± 6.90 79.84
5 74.01± 3.25 76.31
6 72.65± 3.07 75.01

All 74.03± 3.72
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Figure 4.4: (a) Representative pole figures for six different FCC textures. (b) His-
tograms of grain averaged stress in with different textures of FCC materials and (c)

Learning curve for random forest model built on all textures of FCC materials
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Figure 4.5: ROC curves of the mixed microstructure model for validation microstruc-
tures in each representative FCC texture. The AUC is the area under this curve.

num estimators=1200. From table 4.1, it is seen that a single model (Mixed-Model) built

on all textures performs better at predicting hotspots than the set of Partition models

built on each texture class separately. Not only is the Mixed Model average AUC higher

than the average AUC for the Partition Models, but the Mixed Model also yields AUCs

equal to or higher than the Partition Models for each individual texture class. The
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Table 4.2: Pearson Correlation Coefficients between features and Stress hotspots for
FCC materials.

Feature Correlation
Coeffi-
cient

p-value

001 IPF 0 (Distance between loading direction and < 100 >) 0.070 0.0
001 IPF 1 (Distance between loading direction and < 110 >) -0.144 0.0
001 IPF 2 (Distance between loading direction and < 111 >) -0.169 0.0

Schmid Factor -0.299 0.0
Average Slip Transmission Factor m′ 0.038 0.0
Average Misorientation angle -0.556 0.0

Distance to nearest grain boundary -0.004 0.13
Distance to nearest triple junction -0.002 0.49
Distance to nearest quadruple point -0.002 0.312
Grain Size (NumCells) -0.003 0.275
FeatureBoundaryElementFrac 0.004 0.16

Figure 4.6: Variable importance in FCC materials: Both texture and geometry de-
rived microstructural features are selected by FeaLect algorithm. The importance scale

is arbitrary and set by Fealect

Mixed Model average AUC = 74.03 ± 3.72%, indicating hotspot prediction well above

random chance. This signals the existence of overarching rules causing stress hotspots,

independent of the individual textures. We find that adding a categorical feature de-

noting the texture kind does not result in an improvement in the model performance,

so the Mixed Model does not use texture class as a feature.
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The ROC curves (described in section 3.2.2) for the mixed microstructure

model computed using cross-validation on representative microstructures are shown in

Figure 4.5. We can see that the mixed microstructure model performs better on some

texture classes, but it performs much better than random chance denoted by the dashed

blue line.

From the learning curve for the mixed model shown in Figure 4.4c, since there

is a gap between the training and validation scores, we can conclude that the model is

suffering from bias, and the model performance can be improved by either increasing the

feature space, or by changing the model algorithm. It is difficult to argue whether we

have exhausted the space of important crystallographic features, but not many geometric

features have been utilized in these models. It is possible that since the model suffers

from bias, the missing features come from long range geometric features which are not

captured in the current feature set.

Figure 4.6 shows the feature importances for the mixed microstructure model

calculated using the FeaLect method. The FeaLect plot reveals the set of most important

features, which have minimum correlation between them. The Schmid factor of the

< 110 > {111} slip system is the most important feature. We calculated the Pearson

correlation [108] between the important features and stress hotspots (table 4.2), and

found that hotspots tend to form in grains with lower Schmid factor for FCC materials.

Another important crystallographic feature selected by FeaLect is (Figure 4.6)

the distance of the loading direction [001] from the Inverse pole figure corner representing

the < 100 > crystal direction (001 IPF 0). The elastic modulus for FCC materials is

anisotropic; it is highest along < 111 > and lowest along < 100 > crystal directions.

The distance from the 3 corners of the [001] inverse pole figure projection gives an

idea about the modulus of hot grains. From table 4.2 we can see that the individual

Pearson correlations between the hotspots and these features are very small. We see a

positive correlation for the distance of the loading direction from the < 100 > corner

(001 IPF 0) and negative for the others (001 IPF 1 and 001 IPF 2). Thus the hot

grains have a loading direction closer to the < 111 > and < 110 > corners as compared

to the < 100 > corner, i.e. hot grains have a higher elastic modulus.

The average misorientation and the slip transmission metric (m-prime) between

a grain and it’s nearest neighbors are the other selected texture derived features. From

table 4.2, we see that hot grains have lower average misorientation and a higher slip

transmission metric m-prime, i.e. they tend to be grains whose slip systems are more
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compatible with their neighbors in agreement with [109]. We take this result with a grain

of salt because dislocation movement occurs by a combination of active slip systems and

geometrically favorable slip transmission.

Among the geometry derived features, we see that grain size, shape averaged

distance from triple junctions and grain boundaries, grain aspect ratio and the fraction

of grain lying on the periodic boundary during simulation are important. From table 4.2,

we see that hotspots lie closer to grain boundaries, triple junctions and quadruple points

i.e. they form in smaller grains. This result is in agreement with [21] where stress hot

spots were found to lie closer to microstructural features. Note that although hot spots

form in smaller grains, all small grains are not equally probable to stress concentrations.

The grain size becomes important in association with crystallography derived features.

It has been shown that the stress field calculated by EVPFFT can spike at the

periodic microstructure boundaries, because voxels at the surface are different from the

interior [110]. The fraction of a grain lying on the periodic boundary is an important

feature in deciding stress hotspots, and captures this simulation artifact by pointing to

a numerical issue in the EVPFFT code.

Taken together, these results demonstrate that both crystallographic and ge-

ometric features contribute to the formation of stress hotspots. The power of machine

learning and ensembling based methods is in discovering a set of microstructural de-

scriptors that cannot be used individually to build a predictive model. The bench-

mark predictive power (AUC) of the mixed microstructure model is 74.03% compared

to around 52% for a model built on the best individual descriptor. As the materials

data science field progresses, we can start utilizing these methods to train models to

predict the spatial stress field that evolve due to a complex and collective interaction

between crystallographic and geometric parameters.

4.4 Conclusions

• Random forest models can predict stress hotspots with 74.03% AUC in FCC ma-

terials under uniaxial tension. The performance of a random forest model trained

for all textures in a material is comparable or better than models trained sep-

arately for each texture which signals the possibility of common factors causing

stress hotspots in a material.
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• Both texture and geometry derived features contribute to the predictive power

of the machine learning model. Grains that become stress hotspots tend to be

smaller in size, have high elastic modulus, lower average misorientation and have

slip systems more compatible with their neighbors.

• The model performance in all the cases can be increased by adding more de-

scriptive features. The geometry based features discussed describe some aspect of

the grain and it’s nearest neighborhood. Adding long range connectivity based

non-crystallographic features might result in an improvement in the model perfor-

mance.

• The feature importances can delineate the microstructural characteristics with

the highest impact. Using these insights, machine learning models can be used

to design experiments to develop an understanding about the different feature

contributions to the target problem.

4.4.1 Contributions

In this chapter, we have developed a machine learning framework to capture the effects

of changing material and texture parameters on stress hotspots. The microstructural

features developed in this work can be applied to a range of problems such as prediction

of active slip systems for a given texture and loading condition. These methods are

also applicable to HEDM obtained datasets. The feature importance plots are a useful

way of determining the most important factors when studying a complex problem with

many interacting parameters. As the materials science community moves towards a data

driven paradigm, it becomes all the more important to examine these techniques.



Chapter 5

Understanding Stress hotspots in

Hexagonal Close Packed

Materials

The crystal plasticity in hexagonal close packed materials is complex due to the ex-

istence of multiple deformation modes. We study the effect of preferred slip systems

and microstructural features that reflect local crystallography, geometry, and connectiv-

ity on stress hotspot formation in hcp materials under uniaxial tensile stress. Specif-

ically, we considered two cases, one without any preferred slip systems with critically

resolved shear stress (CRSS) ratio of 1:1:1, and second with the ratio of 0.1:1:3 for basal:

prismatic: pyramidal slip systems. Our random forest based machine learning models

achieve an AUC (area under curve) score of 0.82 for Equal CRSS and AUC of 0.81 for

Unequal CRSS case. The results show how data driven techniques can be utilized to

predict hotspots as well as pinpoint the microstructural features causing stress hotspot

formation in polycrystalline microstructures.

5.1 Introduction

In polycrystalline materials, an applied stress is distributed inhomogeneously, resulting

in stress concentrations, termed stress hot spots. An important mechanism for ductile

fracture in metals and their alloys is by the growth and coalescence of microscopic voids,

which nucleate near stress hotspots ([17]). In chapter 4, we concluded that for fcc materi-

als under uniaxial tensile deformation, stress hotspots tend to form near microstructural

48
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features and usually form in textures corresponding to maxima in Taylor factor. The

crystalline anisotropy, which determines the ”hard” and soft” directions; also plays an

important role. The elastic/ plastic behavior of hexagonal close packed (HCP) materials

is more complex due to the inherent anisotropy of a non-cubic crystal structure. HCP

materials deform plastically by slip on 4 slip systems: basal {0001}[1120], prismatic

{1010}[112], pyramidal < a > {1101}[1120] and pyramidal < c+ a >, each with differ-

ent critical resolved shear stress (CRSS) values [111]. The different slip systems in a hcp

crystal are shown in figure 5.1. (Deformation twinning also adds to the complexity but

has been ignored in this work.) Deformation textures developed in HCP materials vary

due to the unique slip and twinning systems that are activated based on the c/a ratio

and the CRSS of basal and non basal slip modes.

To understand polycrystal plasticity and texture development in terms of single

crystals, the concept of the single crystal yield surface (SCYS) was developed. The

SCYS determines the shears that are activated in a grain and depends on the CRSS

ratios between deformation modes, as well as the stress state. The SCYS has been

analyzed and derived in detail for BCC materials in [25], for FCC materials in [26] and

HCP materials in [27]. [28] showed that the SCYS is topologically invariant in certain

domains of CRSS ratios, and leads to a simplified analysis of deformation when slip

modes harden at different rates. The CRSS ratio is defined with respect to the basal

slip resolved shear strength (τbasal) as:

CRSSRatio ==
τprismatic
τbasal

: 1 :
τpyramidal
τbasal

(5.1)

where τprismatic and τpyramidal are the CRSS of prismatic and pyramidal slip systems

respectively. Even if the CRSS of a mode is very high, it might be activated to complete

the yield surface to achieve the 5 independent slip modes required by the Taylor and

Von-Mises criteria, resulting in a highly anisotropic macroscopic response [86, 91]. The

situation is worsened by the need to satisfy compatibility and equilibrium conditions be-

tween neighboring grains, and results in the material selecting a spatially inhomogeneous

solution to accommodate the macroscopic boundary conditions.

Changing the texture of the material will have the same effect of making some

slip systems more favorable than others. Hence in order to understand the evolution of

stress hotspots, it is necessary to look into a combination of all these variables: texture,

grain shape, c/a ratio, CRSS ratios, slip hardening, twinning, temperature and stress
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Figure 5.1: Schematic of the different slip systems in a hexagonal close packed struc-
ture: basal {0001}[1120], prismatic {1010}[112] and pyramidal < c + a >. When the
tensile axis lies in the (101̄1) pyramidal plane, the Schmid factor of prismatic < a >

slip is higher than the basal < a > slip.

state. In this work, we keep the temperature constant, and uniaxial tensile deformation

is constrained to occur only by 3 slip modes: prismatic, basal and pyramidal < c+ a >

without any twinning or anisotropic slip hardening. The microstructure consists of

equiaxed grains and the c/a ratio is fixed. Thus, we can vary the CRSS ratio and

crystallographic texture to analyze their impact on stress hotspot formation.

In chapter 4, we used ML methods to analyze stress hotspots in FCC materials.

Our model was based on local microstructural features that describe the crystallography

( Euler angles, Schmid factor, misorientations) and geometry (grain shape, grain bound-

ary types). The target to was predict whether a grain becomes a stress hotspot based on

a feature vector X whose components are the local microstructural descriptors. In this

chapter, we extend this approach to study stress hotspots in HCP materials as a func-

tion of texture and compare them among two different HCP materials: an ideal Equal

CRSS ratio case where the CRSS ratio is 1 : 1 : 1 and an Unequal CRSS ratio case of

0.7 : 1 : 3. We then compare the performance of machine learning models and delineate

the microstructural features that contribute the most in predicting stress hotspots.

5.2 Methods

5.2.1 Dataset Generation

We use the Dream.3D package [81] to generate a dataset of synthetic polycrystalline

microstructures with a mean grain size of 2.7 microns consisting of ∼ 5000 grains each.

We study 8 representative textures shown in Figure 5.2. For each representative texture,

9 stochastic microstructure instantiations were created, resulting in ∼ 45000 grains per
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Figure 5.2: Representative textures for 8 different HCP textures, the corresponding
scale bars show the texture intensity in MRD

texture. The texture intensity for each microstructure instantiation varied from weak

(<5 MRD) to strong (>30 MRD), where MRD (multiples of random density) denotes

the intensity of a crystallite orientation with respect to a randomly textured material.

The microstructures were then discretized on a 128×128×128 grid to facilitate

the use of EVPFFT (elasto-viscoplastic fast Fourier transform): an image based crystal

plasticity formulation [22] to simulate uniaxial tensile deformation. The constitutive

model parameters for HCP materials represent a general alpha-titanium alloy and are

summarized in appendix B table B.2. The EVPFFT model uses the Voce hardening

law [45] to model strain hardening as follows:

τ s(Γ) = τ s0 + (τ s1 + θs1Γ)

(
1− exp

(
− Γ | θ

s
o

τ s1
|
))

(5.2)

where for a given slip system s, τ0 is the initial yield stress and and θ0 is the

initial hardening rate. (τ0 + τ1) is the back-extrapolated stress and θ1 is the asymptotic

hardening rate. Γ is the accumulated shear in the grains. The Voce hardening param-

eters were extracted by fitting the VPSC code [34] generated stress-strain curve to the

experimentally obtained curve as shown in the appendix (table B.1).
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5.2.2 Microstructural Descriptors

The dataset generated consists of voxelwise representation of the stresses in each mi-

crostructure. The spatially resolved stress field is then averaged grain wise to minimize

the impact of numerical artifacts and small-scale fluctuations. The resultant Von Mises

stress distribution is then thresholded above 90th percentile to designate stress hotspots

following the same procedure as in chapter 4 section [82]. This results in 10% of the

grains designated as stress hotspots.

Stress distribution in a microstructure is affected by crystallography as well as

grain neighborhood and geometry. Hence we develop microstructural features describing

the crystallography, geometry and connectivity of grains; and use these as input features

to a machine learning algorithm that predicts whether a grain is hot or not. We have

developed a number of microstructural features in chapter 4. Along with those features,

we include additional HCP material specific features describing the crystallography and

geometry to be used in this paper.

The crystallographic descriptors include distance from inverse pole figure cor-

ner, which quantifies a grain’s orientation with respect to the [001], [010] and [100] direc-

tions in the sample frame; features quantifying the misorientation between a grain and

it’s neighbors such as minimum, median, mean etc. and Schmid Factors for each of the

basal, prismatic and pyramidal slip systems for each grain. Due to inherent anisotropy

in HCP materials, the orientation of the HCP c-axis with respect to the tensile axis is

also a good descriptor.

The geometry based descriptors include shape averaged Euclidean distance

from special points such as grain boundaries, triple junctions and quadruple points.

Features based on grain shape include grain size, equivalent diameter, volume, number

of contiguous neighbors, number of neighbors, grain aspect ratio and surface area to

volume ratio. Table A.3 lists the acronyms and descriptions of the features used in this

work.

We now have datasets for Equal CRSS and Unequal CRSS consisting of grain-

wise labels denoting a stress hotspot, and grain-wise features for each microstructure.

Each dataset has 72 microstructures (8 representative texture kinds and 9 microstruc-

tures per texture). Although both the Equal and Unequal CRSS ratio data sets represent

HCP materials with the same c/a ratio, constitutive parameters are different, so they

fundamentally represent different materials. Hence a machine learning model is built
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for each case to predict whether a stress hotspot forms in a given grain.

5.2.3 Machine Learning Methods

Since the stress distribution in a microstructure is impacted by a complex interplay of

crystallography, geometry and connectivity, we want to build a predictive model which

minimizes the assumptions about which features cause hotspot formation. Machine

learning models present this opportunity by providing a statistical framework to create

connections between the target to be predicted (hotspot) and the features describing it

[112].

In this work, we utilize a decision tree based model known as the random forest

(RF) algorithm [62, 65] to build our classification model. RF models are very fast and

easy to fit, can handle all kinds of features (numerical, categorical) and deal with miss-

ing features or data effectively. RF models also provide the importance of the predictor

variables [65], which help us gain additional insights into which microstructural descrip-

tors most impact hotspot formation. The model hyper-parameters include the number

of decision trees, number of features and the depth of the decision trees. The hyper

parameters are chosen using a random grid search by comparing the cross validation

performance. The model was implemented using the Scikit-learn library in Python [64].

The RF model has been described in detail in section 3.1.2

The aim is to classify the grains as ”hot” or normal, which is an unbalanced

binary classification problem. Hence we use the area under the receiving operator char-

acteristic curve (AUC) metric to compare model performance [98]. If the classifier is

no better than random guessing, the AUC will be around 0.50. A good classifier has

an AUC ∼ 1. Since varying the texture also has an impact on the location of stress

hotspots (chapter 4), we build two kinds of models for each case: Partition models

and Mixed-model as described in chapter 4. We compare the performance of these

two kinds of models in HCP materials and contrast it with our result for FCC materials

where Mixed-models performed better than Partition models.

Finally, we use the FeaLect method ([104]) to extract feature importances from

the dataset, which is then used to derive data driven insights. FeaLect is a state of the

art feature selection algorithm that is robust to correlation between the features, and

selects the subset of features most highly correlated to the target but least correlated

to one another. First the dataset was oversampled to balance the population of the two
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Table 5.1: Cross validation AUCs (%) for mixed and partition models in equal and
Unequal CRSS ratio case of HCP materials

Texture kind
Equal CRSS Unequal CRSS

Partition
model AUC

Mixed model
AUC

Partition
model AUC

Mixed model
AUC

1 87.47± 0.67 87.84 71.87± 0.65 71.73
2 66.20± 8.65 77.93 86.61± 0.75 85.78
3 74.89± 6.44 90.51 72.52± 3.35 75.94
4 69.89± 11.82 78.27 83.20± 5.07 82.89
5 83.22± 11.98 89.79 76.78± 3.74 73.72
6 79.89± 10.03 86.12 77.62± 6.46 87.61
7 73.39± 8.52 64.19 85.31± 1.78 85.43
8 85.48± 0.51 85.37 87.76± 0.61 86.22

All 77.55± 7.66 82.50± 8.22 80.21± 6.33 81.18± 5.94

classes. It was then bootstrapped into 100 subsets. In each random subset, linear models

are fitted using least angle regression (LARS) method ([106]) with the regularization

strength such that only 10 features are selected in each model. Features are scored on

their tendency to be selected in each model. Finally, these scores are averaged to give

the feature importance on an absolute scale. We used the R implementation of FeaLect

to compute our results ([107]).

5.3 Results and Discussion

For the equal CRSS material, the ratio of basal< a > : prismatic< a >: pyramidal<

c+ a > CRSS is 1:1:1. It is worth noting that this CRSS ratio is not observed in α-Ti,

and represents an ideal HCP material with isotropic slip systems. Figure 5.3a shows

the representative grain averaged stress distribution in each texture class for the Equal

CRSS ratio case: the stress distributions are all right tailed.

For the Unequal CRSS ratio case, uniaxial tensile deformation is simulated

with the same microstructure set as the Equal CRSS ratio case, but using different

constitutive parameters. The CRSS ratio chosen is basal< a > : prismatic< a >:

pyramidal< c + a > = 1: 0.7 : 3. This CRSS ratio is selected to better represent

α-Ti ([113]). It was observed that due to the inhomogeneity in CRSS values, texture

heavily influences the macroscopic response. Figure 5.3b shows the grain averaged stress

distribution in each texture class. The stress distributions change character between

different textures.
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(a) (b)

(c) (d)

Figure 5.3: Histograms of grain averaged stress with different textures in HCP ma-
terials with (a) Equal CRSS ratio and (b) Unequal CRSS ratio. The corresponding
learning curves for Mixed-Micro model in HCP materials with (c) Equal CRSS ratio

and (d) Unequal CRSS ratio

Table 5.2: Pearson Correlation Coefficients between features and Stress hotspots for
HCP materials

Feature
Equal CRSS Unequal CRSS

Correlation
Coefficient

p-value Correlation
Coefficient

p-value

theta 0.002 0.27 -0.0029 0.1083
phi 0.089 0.0 0.1276 0.0

Basal < a > Schmid 0.5428 0.0 -0.3933 0.0
Prismatic < a >Schmid -0.5567 0.0 0.490 0.0
Pyramidal < a > Schmid -0.0629 0.0 0.490 0.0
Pyramidal < c+ a > Schmid 0.1181 0 -0.1777 0.0

GBEuc -0.0027 0.14 -0.0084 0.0
TJEuc -0.0024 0.20 -0.0094 0.0
QPEuc -0.0021 0.25 -0.0052 0.005
Equivalent Diameter -0.0023 0.22 -0.0087 0.0



Chapter 4. HCP Materials 56

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Micro1 (AUC = 0.88)
Micro2 (AUC = 0.79)
Micro3 (AUC = 0.91)
Micro4 (AUC = 0.79)
Micro5 (AUC = 0.90)
Micro6 (AUC = 0.86)
Micro7 (AUC = 0.70)
Micro8 (AUC = 0.86)

(a) Equal CRSS ratio case
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(b) Unequal CRSS ratio case

Figure 5.4: ROC curves of the mixed microstructure model for validation microstruc-
tures in each representative HCP texture for both the CRSS ratio cases. The AUC is

the area under this curve.

Partition and Mixed random forest models were computed for both the CRSS

ratio cases separately. The optimized model hyper-parameters are: max depth=8 and

num estimators=1200. Table 5.1 reports the AUC score using 9 fold cross validation for

Partition models and 8 fold cross validation for Mixed models. It is found that Mixed

models perform comparably or better than the Partition models for both the datasets.

This is a surprising positive result, as it eliminates the need for training different models

for each material texture class. The benchmark predictive power (AUC) of the mixed

microstructure model is 82.5±8.22% and 81.18±5.94% in the Equal and Unequal CRSS

ratio cases respectively. The ROC curves (described in section 3.2.2) for both the CRSS

ratio cases are shown in Figure 5.4. From Figure 5.4, we see that the RF models perform

differently between corresponding representative textures for each CRSS ratio case. This

means that it is easier to predict stress hotspots in certain textures. However, note that

the texture having better model prediction for Equal CRSS case does not transfer to

Unequal CRSS case. For example, Micro3 has an AUC of 0.91 in Equal CRSS whereas

it has an AUC of 0.77 in Unequal CRSS case.

The learning curves for the mixed models for the two datasets are shown in

figure 5.3c and 5.3d. The training and validation model performance seem to converge

in both cases which means the model performance can be improved by either increasing

the feature space, or by using a more complex model algorithm.

Figure 5.5 shows the feature importances for the mixed-microstructure model

calculated for the Equal CRSS and Unequal CRSS ratio cases using the FeaLect algo-

rithm. In the case of an Equal CRSS ratio (green bars), the basal Schmid factor is the
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Figure 5.5: FeaLect variable importance in HCP materials showing selected features
for Equal CRSS (green) and Unequal CRSS (blue)

most important feature, followed by the HCP-c axis orientation (sinθ) and the pyrami-

dal < a > Schmid factor. We calculated the Pearson correlation between the important

features and stress hotspots (table 5.2), and found that hotspots tend to form in grains

with higher polar and azimuthal angle of the HCP-c axis, which translates to grains with

higher basal Schmid factor, which is proportional to the cosine of theta. The elastic mod-

ulus for HCP materials (Ti) has a angular behavior which is captured by θ. The elastic

modulus is highest along < 0001 > direction and lowest in the [0001] plane. Hence

hotspots form in grains with lower elastic modulus. This shows the power of feature

selection to capture physical effects, since in the absence of heterogenous slip systems,

the stress distribution is impacted by the directionality in elastic modulus which in turn

is dependent on theta. This trend is similar to our result in FCC materials from chapter

4; when the material has homogenous deformation modes, the most important features

are those which couple the the loading direction and the crystallography. The geometry

derived features come next on the feature importance plot, and we found that hotspots

lie closer to grain boundaries, triple junctions and quadruple points i.e. form in smaller

grains (table 5.2). This result is in agreement with our FCC results (4) and [21] where

stress hot spots were found to lie closer to microstructural features.

For the Unequal CRSS ratio material, from figure 5.5 (blue bars), we see that

the set of important features are HCP c-axis orientation (phi, theta, basal Schmid fac-

tor), grain size, pyramidal < c+ a > Schmid factor and shape averaged triple junction
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distance per grain. The top 3 important features include the grain size (equivalent diam-

eter) in contrast to materials with homogenous deformation modes. From the Pearson

correlation coefficients (table 5.2), we observe that hotspots lie closer to grain bound-

aries, triple junctions and quadruple points, form in grains with low basal and pyramidal

< c + a > Schmid factor and prefer a high prismatic < a > Schmid factor. In the fol-

lowing section, we explore the effect of competing slip systems to better understand the

feature importance results.

5.3.1 Role of competing slip systems in stress hotspot formation

Equal CRSS Unequal CRSS

Figure 5.6: Cross section of a randomly textured 3-D equiaxed microstructure show-
ing the Von Mises stress distribution under different SCYS topology regimes for a

microstructure with random texture.

To compare the effect of the competing slip systems on stress hotspot formation

in HCP materials, the set of microstructures with random texture is selected. Figure

5.6 shows the cross section of one of these microstructures, with the spatially resolved

Von Mises stress field in the Equal and Unequal CRSS ratio cases. It can be observed

that stress hotspots are more pronounced when a limited number of slip systems is

available (Unequal CRSS), and for the same microstructure, hotspot location changes

with available slip systems. It was found that the skewness of the grain averaged stress

histogram for the Equal CRSS case is 0.085 and for the Unequal CRSS case it is an order

of magnitude larger, 0.85; that is, when slip systems are limited, a heavy tailed stress

distribution is observed. Due to the high CRSS for pyramidal < c+ a > slip compared

to prismatic < a > slip, some grains, due to their orientation, are at a disadvantage,

because they cannot provide the necessary deformation modes required to close the
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(b) Unequal CRSS ratio case: The correla-
tion between corresponding slip activities and
Schmid factors is highlighted. There is a
strong positive correlation between pyramidal

slip fraction and stress hotspot formation.

Figure 5.7: Correlation matrix for slip activities and Schmid factors

yield surface. In such grains, the stress climbs very high and there is no clear yield, thus

causing the heavy tail.

The grain population was sorted by stress values and divided into 10 bins, each

having 10% of the grains. Hence the last bin corresponds to the grains which are stress

hotspots. The relative slip activities in each slip system were then compared between

these bins, and the mean value of the slip activities in each bin was compared for the

Equal and Unequal CRSS cases. We found that the Equal CRSS ratio hotspots have high

basal slip fractions, whereas the Unequal CRSS ratio hotspots have higher pyramidal

slip fraction. The number of active slip systems was found to be similar in both cases,

thus following the single crystal yield surface (SCYS) criterion.

To further understand the slip activities, a correlation matrix between the slip

activity and the corresponding Schmid factors is plotted in figure 5.7a and 5.7b. A

strong positive correlation between slip activity and the corresponding Schmid factors

is observed for the Equal CRSS ratio case, and the correlation is weak for the Unequal

CRSS ratio case. The strong correlation in the equal slip case could be due to a more

isotropic yield surface. Because the CRSS for all slip systems is the same, many slip

systems are activated at the same stress, and the Schmid factor becomes important. In

the Unequal CRSS case, the number of available slip systems is smaller, and even if the

CRSS of a mode is very high, it might be activated to complete the yield surface to
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(a) Starting texture: Random, MRD 0-1.6

(b) Stress Hotspot Texture: Equal CRSS, MRD 0-4

(c) Stress Hotspot Texture, Unequal CRSS, MRD 1 - 7.5

Figure 5.8: Pole figures of the initial random texture, hot grains in Equal CRSS case
and hot grains in Unequal CRSS case. Note that different scale bars.

achieve 5 independent slip modes.

Figure 5.8 shows the pole figures for the starting microstructure and the hot

grains. Starting with a random texture (figure 5.8a), we notice that hotspots form in

completely different textures in the two cases.

For the Equal CRSS case, (figure 5.8b), it can be observed that the hotspot

loading direction (the z-axis in the sample reference frame) has no preference to align

with the (101̄0) or (112̄0) planes. However, the loading direction aligns with the [101̄1]

pyramidal pole as seen from the (0001) and (101̄1) pole figure. When this happens, the

loading direction lies in the pyramidal plane as shown in figure 5.1. In this orientation,

the Schmid factor favors prismatic slip, so if basal slip is becoming active in these grains,

it should mean they have a higher stress.

For the Unequal CRSS case, from the set of hotspot pole figures (figure 5.8c), we

can see that there is no preference for the loading direction to align with the prismatic

and pyramidal planes. The c-axis aligns with the sample y-axis which means these

grains have a low elastic modulus. Since the c-axis is perpendicular to the tensile axis,

the deformation along the tensile direction can be accommodated by prismatic slip, and
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if pyramidal slip is occurring, it requires a very high stress. From the comparison of pole

figures of hot grains, the dominant slip modes cannot be predicted with confidence.

5.4 Conclusions

• Stress hotspots can be predicted with 82.5% AUC in HCP materials with Equal CRSS

ratio, and 81.18% AUC in HCP materials with Unequal CRSS ratio using random

forest models. We observe that the performance of Mixed-models is comparable to

or better than Partition-models. This could mean the existence of common factors

independent of the macro-texture which cause stress hotspots in a material.

• A change in material composition will result in altered constitutive parameters, and

consequently, the mechanical response. This changes the microstructural descriptors

needed, and hence models need to be built for each material.

• Contrasting stress hotspot formation for Equal vs Unequal CRSS ratios in materials

with random texture, we observe:

– Stress hotspots are more pronounced when a limited number of slip systems is avail-

able (Unequal CRSS), and for the same microstructure, hotspot location changes

with available slip systems.

– Stress hotspots in the Equal CRSS ratio case have high basal slip fractions and

strong positive correlation between slip activity and corresponding Schmid factors,

which could be due to an isotropic yield surface.

– Stress hotspots in the Unequal CRSS ratio case have higher pyramidal slip fraction

and weak correlations between corresponding slip activities and Schmid factors.

This could be due to the limited number of slip systems.

– A comparison between the feature importance results reveals that the macro-texture

(HCP c-axis orientation) mainly determines stress hotspots in the Equal CRSS ratio

case. In the Unequal CRSS ratio case, both crystallography and geometry based

features are required to predict stress hotspots.

5.4.1 Contributions

We have successfully demonstrated the applicability of a data driven approach for pre-

dicting stress hotspots in different kinds of HCP materials. Using feature importance
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plots, we are able to gain objective insights on how hotspot formation varies with ma-

terial parameters such as CRSS ratio. Hence the framework used in this work is not

limited to predicting stress hotspots in HCP materials, but can be extended to vari-

ous polycrystalline materials, and a wide range of structure-property relationships in

materials.



Chapter 6

Feature Selection Techniques

The first step in constructing a machine learning model is defining the features of the

data set that can be used for optimal learning. In this work we discuss feature se-

lection methods, which can be used to build better models, as well as achieve model

interpretability. We applied these methods in the context of stress hotspot classification

problem, to determine what microstructural characteristics can cause stress to build up

in certain grains during uniaxial tensile deformation. The results show how some fea-

ture selection techniques are biased and demonstrate a preferred technique to get feature

rankings for physical interpretations.

6.1 Introduction

Statistical learning methods are gaining popularity in the materials science field, rapidly

becoming known as ”Materials Data Science”. With new data infrastructure platforms

like Citrination [4] and the Materials data curation system [5], machine learning (ML)

methods are entering the mainstream of materials science. Materials data science and

informatics is an emergent field aligned with the goals of the Materials Genome Ini-

tiative to reduce the cost and time for materials design, development and deployment.

Building and interpreting machine learning models are indispensable parts of the process

of curating materials knowledge. ML methods have been used for predicting twinning

deformation [80], phase diagrams [114] and guiding experiments and calculations in com-

position space [10, 115]. Machine learning models are built on learning from ”features”

or variables that describe the problem. Thus, an important aspect of the machine learn-

ing process is to determine which variables most enable data driven insights about the

63
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problem.

Dimensionality reduction techniques (such as principal component analysis(PCA)

[116], kernel PCA [117], autoencoders [118], feature compression from information gain

theory [119]) have become popular for producing compact feature representations [120].

They are applied to the feature set to get the best feature representation, resulting

in a smaller dataset, which speeds up the model construction [121]. Dimensionality

reduction has been used by material scientists to establish process-structure-property

relationships and for exploratory data analysis to understand trends in a multivariate

space [122]. For example, ranking based feature selection methods such as information

gain and Pearson correlation have been used during construction of predictive models for

fatigue strength of steel [123]. Kalidindi et al. [124] have used 2-point correlations and

PCA to describe microstructure-property relationships between local neighborhoods and

the localizations in microstructural response. Dey et al. [125] used PCA to analyze the

features that cause outliers when predicting bandgaps for new chalcopyrite compounds.

Broderick et al. [126] demonstrate how a compact representation (via PCA) makes it

easy to visually track the different chemical processing pathways for interpenetrating

polymer networks (IPNs) due to changing composition versus changing polymerization.

However, dimensionality reduction techniques change the original representation of the

features, and hence offer limited interpretability [120]. An alternate method for better

models is feature selection. Feature selection is the process of selecting a subset of the

original variables such that a model built on data containing only these features has the

best performance. Feature selection avoids overfitting, improves model performance by

getting rid of redundant features and has the added advantage of keeping the original

feature representation, thus offering better interpretability [120].

Feature selection methods have been used extensively in the field of bioinfor-

matics [127], psychiatry [128] and cheminformatics [129]. There are multiple feature

selection methods, broadly categorized into Filter, Wrapper and Embedded methods

based on their interaction with the predictor during the selection process. The filter

methods rank the variables as a preprocessing step, and feature selection is done before

choosing the model. In the wrapper approach, nested subsets of variables are tested

to select the optimal subset that work best for the model during the learning process.

Embedded methods are those which incorporate variable selection in the training algo-

rithm.
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We have used random forest models to study stress hotspot classification in

FCC (4) and HCP (5) materials. In this paper, we review some feature selection tech-

niques applied to the stress hotspot prediction problem in hexagonal close packed mate-

rials, and compare them with respect to future data prediction. We focus on two com-

monly used techniques from each method: (1) Filter Methods: Correlation based feature

selection (CFS) [130], and Pearson Correlation [108]; (2) Wrapper Methods: Fealect [104]

and Recursive feature elimination (RFE) [120] and (3) Embedded Methods: Random

Forest Permutation accuracy importance (RF-PAI) [65] and Least Absolute Shrinkage

and Selection Operator (LASSO) [105]. The main contribution of this article is to raise

awareness in the materials data science community about how different feature selection

techniques can lead to misguided model interpretations and how to avoid them. We

point out some of the inadequacies of popular feature selection methods and finally, we

extract data driven insights with better understanding of the methods used.

6.2 Methods

An applied stress is distributed heterogenously within the grains in a microstructure[20].

Under an applied deformation, some grains are prone to accumulating stress due to their

orientation, geometry and placement with respect to the neighboring grains. These

regions of high stress, so called stress hotspots, are related to void nucleation under

ductile fracture [17]. Stress hotspot formation has been studied in face centered cubic

(FCC) [131] and hexagonal close packed (HCP) [132] materials using a machine learning

approach. A set of microstructural descriptors was designed to be used as features in

a random forest model for predicting stress hotspots. To achieve data driven insights

into the problem, it is essential to rank the microstructural descriptors (features). In

this paper, we review different feature selection techniques applied to the stress hotspot

classification problem in HCP materials, which have a complex plasticity landscape due

to anisotropic slip system activity.

Let (xi, yi), for i = 1, ..., N be N independent identically distributed (i.i.d.)

observations of a p-dimensional vector of grain features xi ∈ Rp, and the response

variable yi ∈ 0, 1 denotes the truth value of a grain being a stress hotspot. The input

matrix is denoted by X = (x1, ..., xN ) ∈ RN×p, and y ∈ [0, 1]N is the binary outcome.

We will use small letters to refer to the samples x1, ..., xN and capital letters to refer to

the features X1, ..., Xp of the input matrix X. Feature importance refers to metrics used
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by various feature selection methods to rank, such as feature weights in linear models

or variable importance in random forest models.

6.2.1 Dataset Studied

We use the Unequal CRSS Ratio dataset generated in chapter 4 representing a Titanium

like HCP material with CRSS ratio of basal< a > : prismatic< a >: pyramidal< c+a >

= 1: 0.7 : 3. This dataset contains grain-wise values for equivalent Von Mises stress,

and the corresponding Euler angles and grain connectivity parameters.

The grains having stress greater than the 90th percentile of the stress distri-

bution were designated as stress hotspots, a binary target. Thirty four variables to be

used as features in machine learning were developed. These features (X) describe the

grain texture and geometry and have been summarized in table A.3. We note that these

features are not a complete set, and there are long range effects causing stress hotspots.

We have taken the first order microstructural descriptors to build stress hotspot pre-

diction models and understand that these models can be improved upon by adding the

missing features.

The microstructures contained in this dataset represent eight different kinds

of textures, and we validate the machine learning models by leave one texture out val-

idation. This divides the dataset into ∼ 85% training and ∼ 15% validation. Note

that since only 10% of the grains are stress hotspots, this is an imbalanced classification

problem. Hence, the model performance is measured by the AUC (area under curve), a

metric for binary classification which is insensitive to imbalance in the classes. An AUC

of 100% denotes perfect classification and 50% denotes no better than random guessing

[98].

We first build a decision tree based random forest model [65] for stress hotspot

classification using all the thirty four variables. We then rank and select the variables

using different feature selection techniques. The selected variables are then used to

build random forest models and we observe the improvement in model performance

(as described in chapter 4), as well as understand the physics behind stress hotspot

formation. The feature rankings are then used to gain insights about the physics behind

stress hotspot formation.
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6.2.2 Feature Selection Methods

6.2.2.1 Filter Methods

Filter methods are based on preprocessing the dataset to extract the features X1, ..., Xp

that most impact the target Y . Some of these methods are:

Pearson Correlation [108]: This method provides a straightforward way

for filtering features according to their correlation coefficient. The Pearson correlation

coefficient between a feature Xi and the target Y is:

ρi =
cov(Xi, Y )

σ(Xi)σY

where cov(Xi, Y ) is the covariance, σ is the standard deviation [108]. It ranges between

(−1, 1) from negative to positive correlation, and can be used for binary classification

and regression problems. It is a quick metric using which the features are ranked in

order of the absolute correlation coefficient to the target.

Correlation based feature selection (CFS) [130]: CFS was developed

to select a subset of features with high correlation to the target and low intercorrelation

among themselves, thus reducing redundancy and selecting a diverse feature set. CFS

gives a heuristic merit over a feature subset instead of individual features. It uses

symmetrical uncertainty correlation coefficient given by:

r(X,Y ) = 2.0× IG(X|Y )

H(X) +H(Y )

where IG(X|Y ) is the information gain of feature X for the class attribute Y . H(X) is

the entropy of variable X. The following merit metric was used to rank each subset S

containing k features:

MeritS =
krcf√

k + k(k − 1)rff

where rcf is the mean symmetrical uncertainty correlation between the feature (f ∈ S)

and the target, and rff is the average feature-feature inter-correlation. To account for

the high computational complexity of evaluating all possible feature subsets, CFS is

often combined with search strategies such as forward selection, backward elimination

and bi-directional search. In this work we have used the scikit-learn implementation

of CFS [133] which uses symmetrical uncertainity [130] as the correlation metric and

explores the subset space using best first search [134], stopping when it encounters five
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consecutive fully expanded non-improving subsets.

6.2.2.2 Embedded Methods

These methods are popular because they perform feature selection while constructing

the classifier, removing the preprocessing feature selection step. Some popular algo-

rithms are support vector machines (SVM) using recursive feature elimination (RFE)

[135], random forests (RF) [65] and Least absolute shrinkage and selection operator

(LASSO)[105]. We compare LASSO and RF methods for feature selection on the stress

hotspot dataset.

Least Absolute Shrinkage and Selection Operator (LASSO) [105]:

LASSO is linear regression with L1 regularization [105]. A linear model L is constructed

L : minw∈Rp

N∑
i=1

1

2N
||yi − wT · xi||22 + λ||w||1

on the training data (xi, yi), i = 1...., N , where w is a p dimensional vector of weights

corresponding to each feature dimension p. The L1 regularization term (λ||w||1) helps in

feature selection by pushing the weights of correlated features to zero, thus preventing

overfitting and improving model performance. Model interpretation is possible by rank-

ing the features according to the LASSO feature weights. However, it has been shown

that for a given regularization strength λ, if the features have redundancy, inconsistent

subsets can be selected [136]. Nonetheless, Lasso has been shown to provide good pre-

diction accuracy by reducing model variance without substantially increasing the bias

while providing better model interpretability. We used the scikit-learn implementation

to compute our results [64].

Random Forest Permutation Accuracy importance (RF PAI) [65]:

The random forest is a non linear multivariate model built on an ensemble of deci-

sion trees. It can be used to determine feature importance using the inbuilt feature

importance measure [65]. For each of the trees in the model, a feature node is ran-

domly replaced with another feature node while keeping all others nodes unchanged.

The resulting model will have a lower performance if the feature is important. When

the permuted variable Xj , together with the remaining unchanged variables, is used to

predict the response, the number of observations classified correctly decreases substan-

tially, if the original variable Xj was associated with the response. Thus, a reasonable

measure for feature importance is the difference in prediction accuracy before and after
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permuting Xj . The feature importance calculated this way is known as Permutation

Accuracy Importance (PAI) and was computed using the scikit-learn package in Python

[64].

6.2.2.3 Wrapper Methods

Wrapper methods test feature subsets using a model hypothesis. Wrapper methods can

detect feature dependencies i.e. features that become importance in presence of each

other. They are computationally expensive, hence often use greedy search strategies

(forward selection and backward elimination [137]) which are fast and avoid overfitting

to get the best nested subset of features.

Fealect Algorithm [104]: The number of features selected by Lasso depends

on the regularization parameter λ, and in the presence of highly correlated features,

LASSO arbitrarily selects one feature from a group of correlated features [138]. The set

of possible solutions for all LASSO regularization strengths is given by the regularization

path, which can be recovered computationally efficiently using the Least Angles Regres-

sion (LARS) algorithm [106]. It was shown that LASSO selects the the relevant variables

with a probability one and all other with a positive probability [136]. An improvement

in LASSO, the Bolasso feature selection algorithm was developed based on this property

[136] in 2008. In this method, the dataset is bootstrapped, and a LASSO model with

a fixed regularization strength λ is fit to each subset. Finally, the intersection of the

LASSO selected features in each subset is chosen to get a consistent feature subset.

In 2013, the FeaLect algorithm, an improvement over the Bolasso algorithm,

was developed based on the combinatorial analysis of regression coefficients estimated

using LARS [104]. FeaLect considers the full regularization path, and computes the

feature importance using a combinatorial scoring method, as opposed to simply taking

the intersection with Bolasso. The FeaLect scoring scheme measures the quality of each

feature in each bootstrapped sample, and averages them to select the most relevant

features, providing a robust feature selection method. We used the R implementation

of FeaLect to compute our results [107].

Recursive Feature Elimination (RFE) [135]: A number of common ML

techniques (such as linear regression, support vector machines (SVM), decision trees,

Naive Bayes, perceptron, e.t.c) provide feature weights that consider multivariate inter-

acting effects between features [120]. To interpret the relative importance of the variables
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from these model feature weights, RFE was introduced in the context of support vector

machines (SVM) [135] for getting compact gene subsets from DNA-microarray data.

To find the best feature subset, instead of doing an exhaustive search over all

feature combinations, RFE uses a greedy approach, which has been shown to reduce

the effect of correlation bias in variable importance measures [139]. RFE uses back-

ward elimination by taking the given model (SVM, random forests, linear regression

etc.) and discarding the worst feature (by absolute classifier weight or feature ranking),

and repeating the process over increasingly smaller feature subsets until the best model

hypothesis is achieved. The weights of this optimal model are used to rank features.

Although this feature ranking might not be the optimal ranking for individual features,

it is often used as a variable importance measure [139]. We used the scikit-learn imple-

mentation of RFE with random forest classifier to come up with a feature ranking for

our dataset.

6.3 Results and Discussion

Table 6.1 shows the feature importances calculated using filter based methods: Pearson

correlation and CFS; embedded methods: Random Forest (RF), Linear regression, Ridge

regression (L2 regularization) and LASSO regression and finally wrapper methods: RFE

and Fealect . The shaded cells denote the features that were finally selected to build RF

models and their corresponding performances are noted. The input data was scaled by

minimum and maximum values to [0,1]. Figure 6.1 shows the correlation matrix for the

features and the target.

Pearson correlation can be used for feature selection, resulting in a good model.

However, this measure has implicit orthogonality assumptions between variables, and the

coefficient does not take mutual information between features into account. Additionally,

this method only looks for linear correlations which might not capture many physical

phenomenon.

The feature subset selected by CFS contains features with higher class corre-

lation and lower redundancy, which translate to a good predictive model. Although we

know grain geometry and neighborhood are important to hotspot formation, CFS does

not select any geometry based features and fails to provide an individual feature ranking.
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Table 6.1: Variable Importance Measures using different methods for HCP mate-
rials with Unequal CRSS. The gray shaded cells denote the features selected by the
corresponding technique. The features describing grain geometry are shaded in green.

Features Pearson CFS RFE
Random
Forest

Regression
Fealect

Linear Ridge LASSO

cosφ -0.29 1 1 53.43 27.37 27.36 26.01 245.0
Schmid 1 -0.39 0 1 0.15 22.72 22.69 14.78 145.00
EquivalentDiameters -0.01 0 1 0.05 0.15 0.15 0.08 79.47
GBEuc -0.01 0 1 0.12 0.22 0.22 0.12 71.47
Schmid 4 -0.18 0 1 0.31 7.29 7.31 10.35 41.27
Neighborhoods -0.01 0 22 0.01 0.10 0.10 0.00 5.53
sinθ 0.48 1 1 8.74 74.78 74.61 52.99 5.00
TJEuc -0.01 0 2 0.07 0.97 0.97 0.44 4.93
sinφ 0.14 1 16 0.03 80.46 79.96 19.17 1.0
AvgMisorientations 0.31 0 1 8.95 32.08 32.09 32.05 0.83
NumNeighbors -0.01 0 23 0.01 0.18 0.17 0.03 0.50
Schmid 3 0.12 0 9 0.03 4.05 4.04 0.00 0.0
Min mis 0.09 0 1 0.72 3.46 3.46 2.19 0.0
AvgC Axes 1 0.00 0 1 0.22 0.09 0.09 0.00 0.0
Max mis 0.17 0 4 0.02 0.86 0.86 0.03 0.0
NumCells -0.01 0 18 0.04 1.3e6 0.11 0.21 0.0
Schmid 2 0.49 0 1 26.80 38.03 37.83 8.37 0.0
KernelAvg -0.01 0 25 0.0 0.22 0.22 0.00 0.0
010 IPF 1 -0.07 0 5 0.01 0.49 0.49 0.00 0.0
φ 0.13 1 3 3.4 66.42 65.94 7.68 0.0
001 IPF 0 0.00 0 11 0.03 0.58 0.57 0.00 0.0
001 IPF 2 0.09 0 21 0.01 0.21 0.24 0.19 0.0
010 IPF 0 0.00 0 12 0.01 0.76 0.76 0.23 0.0
100 IPF 0 0.00 0 10 0.01 0.13 0.13 0.00 0.0
001 IPF 1 0.16 0 15 0.01 0.17 0.14 0 0.0
100 IPF 1 0.07 0 14 0.02 1.10 1.10 0.00 0.0
QPEuc -0.01 0 6 0.02 0.57 0.57 0.00 0.0
AvgC Axes 0 0.00 0 7 0.03 0.34 0.34 0.05 0.0
θ 0.00 1 24 0.02 0.04 0.04 0.00 0.0
FeatureVolumes -0.01 0 13 0.04 1.3e6 0.11 0.00 0.0
010 IPF 2 -0.04 0 17 0.01 0.79 0.79 0.00 0.0
AvgC Axes 2 0.00 0 8 0.01 2.9e4 0.07 0.00 0.0
100 IPF 2 0.04 0 19 0.01 1.21 1.20 0.00 0.0
cosθ 0.00 1 20 0.01 2.9e4 0.07 0.00 0.0

Random Forest model AUC without feature selection: 71.94%

Random Forest model AUC with selected features (%)

training 84.02 82.51 84.24 83.82 84.20 84.19 84.31 84.28
validation 80.46 80.45 80.73 80.19 80.72 80.61 80.83 80.75
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Figure 6.1: Pearson Correlation matrix between the target (EqVonMisesStress) and
all the features

Linear regression, ridge regression and Lasso are highly correlated linear mod-

els. A simple linear model results in huge weights for some features (NumCells, Fea-

tureVolumes), likely due to overfitting, and hence is unsuitable for deducing variable

importance. Ridge regression compensates for this problem by using L1 regularization,

but the weights are distributed among the redundant features, which might lead to in-

correct conclusions. LASSO regression overcomes this problem by pushing the weights

of correlated features to zero, resulting in a good feature subset. The top five ranked fea-

tures by LASSO with regularization strength of λ = 0.3 are : sinθ, AvgMisorientations,

cosφ, sinφ and Schmid 1. The first geometry based feature ranks 10th on the list, which

seems to underestimate the physical importance of such features. A drawback of deriving

insights from LASSO selected features is that it arbitrarily selects a few representatives

from the correlated features, and the number of features selected depends heavily on the

regularization strength. Thus the models become unstable, because changes in training



Chapter 5. Feature Selection Techniques 73

subset can result in different selected features. Hence these methods are not ideal for

deriving physical insights from the model.

Random forest models also provide an embedded feature ranking module. The

RF-PAI importance seems to focus only on the hcp ’c’ axis orientation derived features

(cosφ, sinθ,), average misorientation and the Prismatic < a > Schmid factor, while

discounting most of the geometry derived features. RF-PAI suffers from correlation bias

due to preferential selection of correlated features during tree building process [103].

As the number of correlated variables increases, the feature importance score for each

variable decreases. Often times the less relevant variables replace the predictive ones

(due to correlation) and thus receive undeserved, boosted importance [140]. Random

forest variable importance can also be biased in situations where the features vary in their

scale of measurement or number of categories, because the underlying Gini gain splitting

criterion is a biased estimator and can be affected by multiple testing effects [141]. From

Figure 6.1, we found that all the geometry based features are highly correlated to each

other, therefore deducing physical insights from this ranking is unsuitable.

Hence, we move to Wrapper based methods for feature importance. Recursive

feature elimination (RFE) has been shown to reduce the effect of the correlation on the

importance measure [139]. RFE with underlying random forest model selects a feature

subset consisting of two geometry based features (GBEuc and EquivalentDiameter),

however, it fails to give an individual ranking among the features.

FeaLect provides a robust feature selection method by compensating for the

uncertainty in LASSO due to arbitrary selection among correlated variables, and the

number of selected variables due to change in regularization strength. Table 6.1 lists

the Fealect selected variables in decreasing order. We find that the top two important

features are derived from the grain crystallography, and geometry derived features come

next. This suggests that both texture and geometry based features are important. Us-

ing linear regression based methods such as these tell us which features are important

by themselves, as opposed to RF-PAI which indicates the features that become im-

portant due to interactions between them (via RF models) [120]. The Fealect method

provides the best estimate of the feature importance ranking which can then be used to

extract physical insights. This method also divides the features into 3 classes: informa-

tive, irrelevant features that cause model overfitting and redundant features [104]. The

most informative features are: cosφ, Schmid 1, EquivalentDiameter, GBEuc, Schmid 4,
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Neighborhoods, sinθ and TJEuc. The irrelevant features are sinφ and AvgMisorienta-

tions (which cause model overfitting). The remaining features are redundant.

A number of selected features directly or indirectly represent the HCP c-axis

orientation, such as cosφ, sinθ and basal Schmid factor (Schmid 1), which is propor-

tional to cosθ. It is interesting that pyramidal < c + a > Schmid factor (Schmid 4)

is chosen as important. From Figure 6.1, we can see that hot grains form where θ, φ

maximize sinθ and sinφ i.e. θ ∼ 90, φ ∼ 90. This means that the HCP c-axis orienta-

tion of hot grains aligns with the sample Y axis, which means these grains have a low

elastic modulus. Since the c-axis is perpendicular to the tensile axis (sample Z); the

deformation along the tensile direction can be accommodated by prismatic slip in these

grains, and if pyramidal slip is occurring, it means they have a very high stress [132].

This explains the high importance of the pyramidal < c+ a > Schmid factor. From the

Pearson correlation coefficients in Figure 6.1, we can observe that the stress hotspots

form in grains with low basal and pyramidal < c + a > Schmid factor, high prismatic

< a > Schmid factor, and higher values of sinθ and sinφ.

From Figure 6.1, we can see that all the grain geometry descriptors do not have

a direct correlation with stress, but are still selected by Fealect. This points to the fact

that these variables become important in association with others. We analyzed these

features in detail in [132] and found that the hotspots lie closer to grain boundaries

(GBEuc), triple junctions (TJEuc), and quadruple points (QPEuc), and prefer to form

in smaller grains.

There is a subtle distinction between the physical impact of a variable on the

target vs. the variables that work best for a given model. From table 6.1, we can see

that a random forest model built on the entire feature set without feature selection has

an AUC of 71.94%. All the feature selection techniques result in an improvement in the

performance of the random forest model to a validation AUC of about 81%. However, to

draw physical interpretations, it is important to use a feature selection technique which:

1) keeps the original representation of the features, 2) is not biased by correlations/

redundancies among features, 3) is insensitive to the scale of variable values , 4) is stable

to the changes in the training dataset, 5) takes multivariate dependencies between the

features into account, and 6) provides an individual feature ranking measure.
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6.4 Conclusions

In this work, we have surveyed different feature selection techniques by applying them

to stress hotspot classification problem. These techniques can be divided into three

categories: filter, embedded and wrapper. We have explored the most commonly used

techniques under each category. It was found that all the techniques lead to an improve-

ment in the model performance, and are suitable for feature selection to build a better

model. However, when the aim is to interpret the model, and understanding which fea-

tures might be more causal than others, it is essential to note the limitations of different

techniques. We found that in the presence of correlated features, the FeaLect method

helped us to determine the underlying importance of the features. We find that:

• All feature selection techniques result in ∼ 9% improvement in the AUC metric

for stress hotspot classification.

• Correlation based feature selection and Recursive feature elimination are compu-

tationally expensive to run, and give only a feature subset ranking.

• Random forest embedded feature ranking is biased against correlated features and

hence should not be used to derive physical insights.

• Linear regression based feature selection techniques can objectively denote the

most important features, however have their flaws. These methods can be affected

by the scale of features, correlation between them, and the dataset itself.

• The Fealect algorithm can compensate for the variability in LASSO regression,

providing a robust feature ranking that can be used to derive insights.

• Stress hotspots formation under uniaxial tensile deformation is determined by a

combination of crystallographic and geometric microstructural descriptors.

• It is essential to choose a feature selection method that can find this dependence

even when features are redundant or correlated.



Chapter 7

Predicting Material Failure Using

Deep Learning

This chapter focuses on integrating crystal plasticity based deformation models [22] and

3D convolutional neural networks (CNNs) to divide the grains in a microstucture based

on the stress buildup formed during a uniaxial tensile deformation. We use the dataset

developed in Chapter 5 for HCP materials with Unequal CRSS ratio to demonstrate how

deep learning can be applied to such problems and comment on the future applications

of this approach.

7.1 Introduction

In this thesis, we have predicted stress hotspots using random forest models from mi-

crostructural descriptors engineered based on material science knowledge. These descrip-

tors are derived from the grain orientations and geometry and do not contain any long

range information about the microstructure, but in polycrystals, long range interactions

between individual grains and grain boundaries impact microstructural properties such

as abnormal grain growth [142], intergranular crack propagation [143], [88], intergranu-

lar corrosion [144] and liquid metal embrittlement[145]. In appendix C, through the use

of power laws for neighborhood graphs [146], [147], we have demonstrated that stress

hotspots have a different neighborhood compared to the normal grains. We also found

that the second nearest neighbors of a hot grain are more probable to be hot themselves,

which hints at some kind of medium range order between stress hotspots[148]. We also
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used graph kernels and spectral methods to extract features from the transgranular net-

work and found that they were important in determining stress hotspots. However all

the spectral and graph kernel features we developed could describe the neighborhoods

containing only the nearest neighbors, due to the computational complexity associated

with the densely connected microstructure network, which prevented us from engineering

truly long range descriptors.

Convolutional neural networks (CNNs) have enjoyed recent success in image

recognition problems in domains spanning computer vision [149], [66], [150], [151], [152],

medical image segmentation [70], [68], video analysis [153] and natural language pro-

cessing [154], [155], [156]. Because these networks are invariant to small input variations

and geometric transformations [157], CNNs have celebrated success in tasks related to

2D images, video, text, speech and 3D volumetric data. A typical CNN architecture

contains alternating sets of convolutional layers with non-linearity and pooling layers,

which can represent multiscale features of the image thus providing automatic feature

extraction. This architecture has been shown to work for data that has a local structure

such as images, where pixels that are spatially or temporally nearby are highly corre-

lated [157]. Figure 7.1 shows a typical CNN architecture consisting of an input layer,

multiple hidden convolutional layers and an output unit. A convolutional layer extracts

the local features at each stage by restricting the receptive field of the kernel used for

convolution. The inputs and outputs of convolutional layers are known as feature maps.

In each convolutional layer, a kernel is rastered over the input image to get the feature

map which contains information about the local features. This map is fed to a nonlin-

earity such as a rectified linear unit (ReLu) [158] and passed to a pooling layer which

subsamples adjacent rectangular regions (cuboidal regions for 3D data) in the feature

maps to single values, bringing down the feature map size. This reduces the total num-

ber of parameters in the CNN and prevents overfitting[157]. The convolutional layers at

successive stages have a larger receptive field, because a small area in a pooled feature

map corresponds to a large area in the input image, hence they will capture high-level

global context. The final learning task is performed using fully connected layers stacked

on top. The network is then trained end to end, which helps in in learning hierachical

features of an image [159], [160].

Notice that the stress hotspot classification problem is similar to the semantic

image segmentation problem from the field of computer vision. We have 3D microstruc-

tures with voxelwise microstructural descriptors containing information about the grain
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Input Image
64x64

Pooling
Convolution

+ Non Linearity

Feature Map
4@64x64

Kernel
3x3

Feature Map
4@32x32

Feature Map
20@16x16

Convolution
+ Non Linearity

+ Pooling

Fully Connected Layers

Output
(5 classes)

2x2

1000 5

Figure 7.1: A typical CNN architecture showing an input image, 2 sets of convolu-
tional, nonlinearity and pooling layers and a fully connected multilayer perceptron at

the end to classify the input image into 5 classes.

orientation (Euler angles) and grain size, and we want to segment this microstructure

to find grains where stress hotspots form. Hence CNNs are an obvious choice for ex-

tracting the multiscale features of a microstructure, based on the texture and geometry

information. In this chapter, we develop CNN architectures for the dataset developed in

Chapter 5 for HCP materials with Unequal CRSS ratio and comment on the applications

and future work in this direction.

7.1.1 Previous Work and Challenges

The availablity of massive labeled datasets and capability of graphic processing unit

(GPU) computing has revolutionized the field of deep learning [161]. In 2012, Krizhevsky

et al. presented AlexNet, a breakthrough CNN architecture, to classify natural images

into 1000 classes, which halved the existing error rate to 16% [66]. Since then, there has

been a flurry of successful CNN architectures such as VGG [162], GoogLeNet [163] and

ResNet [164] for image classification. ResNets [164] have shown compelling accuracy

and convergence behaviors on image recognition tasks. By using identity mappings as

the skip connections and after-addition activation, residual units can allow signals to be

directly propagated from one block to other blocks.

However, semantic segmentation of images and 3D data is still a nascent area

in computer vision, as it is a high level task of understanding and labeling the entire im-

age. Some recent efforts for semantic segmentation with interesting model architectures

include fully convolutional nets (FCN) [150], DenseNets [165], U-Nets [166] and Pixelnet

[167] for 2D image segmentation; VoxResNet [68] for volumetric brain segmentation and

ShapeNet [168] for object classification in non-Euclidean manifolds. V-net [169] uses 3D-

CNNs for volumetric medical image segmentation of MRI volumes. They use a series
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of convolution layers followed by de-convolution layers, with identity skip connections

between convolutional and deconvolutional layers for fine feature forwarding. VoxRes-

Nets have demonstrated impressive results on brain segmentation from MRI scans using

an architecture with 25 volumetric convolutional layers and 4 deconvolutional layers,

making it the deepest 3D convolutional architecture so far [68].

3D segmentation is challenging because of the dataset size causing an exponen-

tial memory increase and the intensive computations with 3D convolutions and deconvo-

lutions. We face more challenges due to the dense nature of our data. The 3D datasets

for both natural and medical images is sparse, only small regions of the image are of in-

terest, whereas, the microstructures do not contain empty spaces. Current segmentation

efforts utilize the state of the art pretrained networks from natural image classification,

by extracting features and fine tuning the classification part of the network architecture,

which also helps overcome the limited amount of training data [169], [170]. This kind of

transfer learning approach [171] is currently not possible for us because we want to use

neural networks, trained end-to-end, voxel-to-voxel, that take the microstructure and its

physical properties as the input, and predict stress hotspots, a physical phenomenon.

7.2 Dataset

We used the dataset of 56 synthetic microstructures generated in Chapter 5 for HCP

materials with Equal CRSS ratio between the three deformation modes. The dataset

generation is described in section 5.2.1 and Appendix B. Each microstructure is dis-

cretized on a 128x128x128 grid, and each voxel is associated with a set of Euler angles

that represent it’s orientation with respect to the sample Z direction (tensile axis). A

uniaxial tensile stress upto a total strain of 2% was applied in Z direction resulting in a

spatially resolved stress field.

The stress values in the voxels are averaged grainwise to get rid of simulation

artifacts from local instabilities during FFT calculations i.e. Gibbs oscillations. The

resultant Von Mises stress distribution is then thresholded above the 90th percentile to

designate stress hotspots following the same procedure as in chapters 4 and 5. This

results in 10% of the grains designated as stress hotspots. We also experimented with

multi-class classification by dividing the grains into 5 classes. The grains were divided

into 5 equally spaced stress bins (equal bin sizes). Since this results in some classes

having small populations, we also divided the grains into 5 equal frequency bins, each
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containing 20 percent of the grain population sorted by stress values. Thus three kinds

of voxelwise target data were used: 1) grain-wise stress hotspots, 2) five equally spaced

stress bins and 3) five equal population stress bins.

Since the Euler angles represent the grain orientations in a highly nonlinear

space with lots of degeneracy, two completely different sets of Euler angles can represent

the same orientation. Thus we took the grain-wise features which were found important

in chapter 5 and used principal component analysis (PCA) with whitening [172] to reduce

dimensions, extracting four principal components which explain 94.5% of the variance.

We also tested using fundamental zone quaternions to describe the grain orientation.

Thus three kinds of voxelwise input data were used: 1) PCA reduced grainwise features,

2) Euler angles and 3) Quaternions in the fundamental zone.

7.2.0.1 Data Augmentation

Original Image
size: 128*128*128

Rotation along Sample Z
size :80*80*128

8 crops from each rotated image
size: 64*64*64

Figure 7.2: Data Augmentation Pipeline

Since there are only 56 microstructures, we implemented a data augmentation

pipeline as shown in Figure 7.2. It is not physical to rotate the microstructures along

the X and Y axes as it changes the grain association with the tensile axis. Hence

each microstructure was rotated about the tensile stress axis (Z), and the new grid

positions are interpolated. Rotations of r degrees result in N rot = 360/r number of

microstructures. Only the central sphere which is free of edge effects is kept in the rotated

data set; resulting in microstructures of size 80×80×128. Each of these microstructures

were then sliced into 8 overlapping cubes to get 56×N rot× 8 = 448×N rot samples.

Due to the interdependencies between the Euler axes, linear interpolation in Euler space

results in unexpected effects [173]. To avoid this, we used 90 degree rotations about

sample Z for data augmentation. For 2D neural networks, to a obtain 2D dataset, image
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slices from the 3D microstructure were taken along the Z direction. There are 128 Z

slices, and we selected 16 equally spaced slices, as adjacent slices are very similar.

7.3 Model Development and Results

We have attempted both 2D pixelwise segmentation and 3D voxelwise segmentation.

With the 3D neural net architectures, we tried out 4 kinds of experiments : voxelwise

Hotspot segmentation, voxelwise segmentation into 5-classes based on stress bins, vox-

elwise regression and grainwise segmentation into 5-classes based on stress bins. With

the 2D neural net architectures, we have tried out pixelwise segmentation into 5-classes

based on stress bins.

The convolutional layers used the Leaky ReLu [158] activation function and

a dropout regularization layer [174] with a rate of of 0.8. The output of each convo-

lutional layer was fed to a batch-normalization layer [175], before progressing to the

next layer. For regression tasks, the networks try to minimize the Huber loss function

[176] and report the model performance with the mean squared error (MSE) metric.

For imbalanced binary classification with grainwise stress hotspot segmentation, we use

the weighted cross entropy loss function and report the AUC performance metric. For

5-class classification experiments, where we predict Equally spaced stress bins and equal

population stress bins, we used the softmax cross entropy loss function and report model

performance with mean class accuracy. The model architectures and results are sum-

marized in Table 7.1. We used Tensorflow as the framework for this project, and had

access to 3 Tesla K80 GPUs which helped us accelerate training.

We tried out 4 neural net architectures for 3D voxelwise segmentation: Fully

convolutional networks (3D-FCN), Convolutional networks with upsampled hypercolumns

(3D CNN-hypercolumns), Residual networks with upsampled hypercolumns (3D Resnet)

and Residual networks with upsampled hypercolumns and grainwise predictions (3D

Resnet-grainwise). For 2D pixelwise segmentation, we have used 2D Residual networks

with hypercolumns upsampled from unpooling, with varying depth, and attempted 5-

class classification.
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7.3.1 3D neural network architectures

We first implemented a 3D fully convolutional architecture (3D-FCN) inspired from

Long et al. [150]for voxelwise Hotspot segmentation. After 3 convolutional and 2 max-

pooling layers, an input of size 128× 128× 128 results in an output of size 32× 32× 32,

which is upsampled via 2 deconvolutional layers to size 128×128×128. Then a sigmoid

activation is applied to produce class probabilities which are fed to a weighted binary

cross entropy loss function. From Table 7.1, we can see that this 3D-FCN network does

not converge and has an AUC of 0.51 in validation data. Figure 7.4a shows the predicted

output. The output is patterned, which means that the deconvolutional layers are not

learning useful representations. High frequency checkerboard-like artifacts are common

with using deconvolutional layers which can be overcome with better upsampling strate-

gies [177] such as resizing the image via bilinear interpolation [178] or using sub-pixel

convolutions [179]. Since we have a 3D dataset, upsampling using interpolations will be

computationally expensive.

Another set of architectures for semantic segmentation use models built on

multiscale features extracted from the multiple layers of a CNN, capturing both the

low-level and the high-level features. A hypercolumn is constructed by upsampling these

multiscale features to input size, and concatenating along the filter dimensions [151], as

shown in Figure 7.3b. The hypercolumns are then fed to a multilayer perceptron (MLP)

to get the pixelwise predictions. The Pixelnet architecture [167] used hypercolumns

computed on-the-fly using sparse upsampling on only 2% of the total pixels in the image,

which leads to faster training while avoiding overfitting. It also allows the use of more

multiscale features in the hypercolumns, and a multi-layer perceptron (MLP) with more

hidden units. During test time, the entire image is upsampled to get dense predictions.

Inspired by this architecture, we implemented a 3D CNN with upsampled hy-

percolumns (3D CNN-hypercolumns) and a MLP for voxelwise predictions. Instead of

using deconvolutional layers or interpolations for upsampling, we implemented a deter-

ministic upsampling approach by undoing the maxpool operations as shown in Figure

7.3a, similar to nearest neighbor interpolation. The hypercolumns are then fed to a

multilayer perceptron (MLP) to get pixel-wise classification or regression outputs.

Table 7.1 lists the results of 3D CNN-hypercolumns architecture with PCA

reduced features as input and different target tasks. We also tried regression to pre-

dict the grain averaged Von Mises stress with voxelwise PCA reduced features as input.
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Figure 7.3: a)Pooling and unpooling layers. For each pooling layer, the max locations
are stored. These locations are then used in unpooling layer [180].1. b) Hypercolumns

from upsampled convolutional layers. Figure reproduced from [151].
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Figure 7.4: Problems with 3D architectures. a) Checkerboard like artifacts in 3D-FCN
outputs b) Vanishing gradient problems in 3D-CNN-hypercolumns and c) Regression

output

Figure 7.4c shows the regression result on validation data after training the network

for 100 epochs. We noticed that the regression network tried to minimize the mean

squared error over all the voxels, which results in it predicting average stress values.

In all cases, the networks stopped training midway due to vanishing gradients as seen

in Figure 7.4b. This is a known problem with deep neural networks when using gra-

dient based training schemes during backpropagation[181]. As the number of layers in

the neural network increases, training them becomes harder due to vanishing gradients

during backpropagation [182], which is overcome through identity skip connections be-

tween different convolutional layers that effectively decomposes the deep network into

an ensemble of many short networks [164, 183]. Hence we introduced skip connections

1Reprinted by permission from Springer Customer Service Centre GmbH: Springer Nature, Artificial
Neural Networks and Machine Learning – ICANN 2016, “DeepPainter: Painter Classification Using
Deep Convolutional Autoencoders”, E. David and N. S. Netanyahu, Copyright 2016.
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between different convolutional layers in the 3D CNN-Hypercolumns architecture. The

hypercolumns were constructed from the output of all the convolutional layers in the

network, which are then fed to a multi-layer perceptron with 1000 hidden units. To

utilize the known grain structure of the 3D microstructure, we modified the architecture

to predict grainwise probabilities.

This 3D-Resnet-Grain-wise architecture is shown in Figure 7.5. The voxels

belonging to each grain in the hypercolumns input are reduced to a single value (maxi-

mum or average), to get a hypercolumn feature per grain. This grainwise input is then

fed to a multilayer perceptron with 1 hidden layer, to get grain-wise predictions. We

used the softmax cross entropy loss function for 5-class classification. During training,

sparse upsampling is used for hypercolumn construction, selecting only the indices of

the randomly chosen grains for upsampling. Since a 3D microstructure contains ∼ 5000

grains, we chose 300 grains (∼ 6%) to upsample. During validation and test times, we

upsampled the entire microstructure to get the predictions.

Upsampled
Hypercolumns

Conv3D   3x3x3   5à16
Leaky ReLu + Pool

64x64x64x5 images

U
psam

pled

Conv3D   1x1x1   16à64
Leaky ReLu + Pool

Conv3D   1x1x1   64à128
Leaky ReLu + Pool

Conv3D   2x2x2   16à48
Leaky ReLu + Pool

Conv3D   2x2x2   48à64
Leaky ReLu + Pool

Conv3D   2x2x2   64à128
Leaky ReLu + Pool

Unpool x 1

Unpool x 2

Unpool x 3

Unpool x 4

Maxpool Grain-wise Hypercolumns
300 x 256

Select 300 grains randomly

Concatenate into Hypercolumns
64 x 64 x 64 x 256

Multilayer Perceptron
1 hidden layer (1000 units)

Probabilities 300 x 5

32x32x32x16

16x16x16x48

8x8x8x64

Skip 
Connections

Feature Extraction

Classification

Figure 7.5: a) Neural Net architecture for 3D Resnet Grain-wise model

The input to the network are the voxelwise fundamental zone quaternions and

the grain size (64 × 64 × 64 × 5). Hence we feed both texture and local geometry

information to the network. We predict 5 equal population stress bins, each containing

20 percentile of the grain population. We first trained with network with only 1 original
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3D microstructure (128 × 128 × 128 × 5), which with data augmentation results in 32

input samples of size 64 × 64 × 64 × 5. The network was able to overfit the data,

hence it has the capacity to learn this dataset. Next, we trained this network with the

entire dataset (1224 augmented training samples), using Adagrad optimizer [184], for

50000 epochs. However the network is not able to optimize and the cross entropy loss

saturates at a value of 1.6 (Table 7.1). We think this could be due to the nature of

our dataset, since we are trying to predict a physical phenomenon from microstructural

descriptors, instead of segmenting areas based on pixels. Since two grains, belonging

to different classes in a microstructure could have the same quaternion descriptor, it

becomes hard for the CNN to distinguish between them. Instead we need to provide

spatially correlated data in the input, for the network to function as expected. This

can be done by adding voxelwise distance from the grain boundary, triple junctions

and quadruple points, as well as the voxelwise kernel average misorientations in the

input features. These voxelwise properties can be easily calculated using Dream.3D

filters. Another approach would be to separate the microstructure into grains and their

neighborhoods, and train the network on these patches to classify the grain. This is a

simpler problem than multi-class classification on the whole microstructure image.

7.3.2 2D neural network architectures

A 2D version of the 3D CNN-Hypercolumns with skip connections was implemented as

shown in Figure 7.6a. We used 2 versions with 13 and 18 convolutional layers respec-

tively. For constructing hypercolumns, 10000 pixels (24%) were chosen randomly, and

the outputs of the convolutional layers was upsampled at those locations. Note that

this architecture utilized shorter skip connections as compared to the 3D Resnet with

grainwise hypercolumn architecture.

We trained the 2D convolutional neural nets on slices of the 3D microstructure

taken perpendicular to the loading direction. We conducted experiments with different

kinds of inputs and outputs, which are summarised in Table 7.1. The best performing

network used pixelwise Euler angles as the input and classified the pixels into 5 equally

spaced stress bins. The network was trained for 170 epochs using Adagrad optimizer

[184]. From the confusion matrix (Figure 7.6c), we see that 46% of the pixels belonging

to Bin 1 (lowest stress) are predicted as Bin 2 and 3% are predicted as Bin 3. Most of

the confusion between classes occurs in adjacent bins. This makes sense, because our



Chapter 7. Deep Learning 86

T
a
b
l
e
7
.1
:

S
u

m
m

a
ry

o
f

co
n
vo

lu
ti

o
n

a
l

n
eu

ra
l

n
et

d
ev

el
o
p

m
en

t
eff

o
rt

s

A
rc

h
it

e
c
tu

re
#

C
o
n
v

la
y
e
rs

In
p

u
t

fe
a
tu

re
s

S
e
g
m

e
n
ta

ti
o
n

T
a
rg

e
t

#
T

ra
in

in
g

S
a
m

p
le

s
T

ra
in

in
g

T
e
st

R
e
m

a
rk

s

L
o
ss

M
et

ri
c

L
o
ss

M
et

ri
c

3
-D

A
rc

h
it

ec
tu

re
s

3D
-F

C
N

3
E

u
le

r
A

n
gl

es
G

ra
in

-w
is

e
st

re
ss

h
o
ts

p
o
ts

5
7
6

0
.1

2
0
.5

1
0
.6

9
9

0
.5

0
2

C
o
rr

el
a
te

d
o
u

tp
u

ts
o
b

se
rv

ed
3

P
C

A
re

d
u

ce
d

G
ra

in
-w

is
e

st
re

ss
h

o
ts

p
o
ts

5
7
6

0
.6

7
0
.5

1
0
.5

2
0
.5

0
3

3D
C

N
N

-
h
y
p

er
co

lu
m

n
s

6
P

C
A

re
d

u
ce

d
G

ra
in

-w
is

e
st

re
ss

h
o
ts

p
o
ts

1
4
4

0
.6

9
3

0
.5

1
8

0
.7

8
0
.4

7
2

V
a
n

is
h

in
g

g
ra

d
ie

n
ts

a
n

d
R

eg
re

ss
io

n
p

re
d

ic
ts

av
er

a
g
e

st
re

ss
6

P
C

A
re

d
u

ce
d

5
E

q
u

a
ll

y
sp

a
ce

d
b

in
s

1
4
4

1
.0

5
0
.3

4
5
7

1
.3

4
0
.2

9
1
7

6
P

C
A

re
d

u
ce

d
V

on
M

is
es

S
tr

es
s

1
4
4

1
2
.6

2
2
5
1

1
3
.7

6
2
4
3

3D
R

es
n

et
gr

ai
n

-w
is

e
4

Q
u

at
er

n
io

n
s

5
E

q
u

a
l

p
o
p

u
la

ti
o
n

b
in

s
2
4

0
.0

0
4

9
9
.4

8
%

1
.7

1
6
.9

%
C

a
n

ov
er

fi
t

b
u

t
n

o
t

g
en

er
a
li

ze
4

Q
u

at
er

n
io

n
s

5
E

q
u

a
l

p
o
p

u
la

ti
o
n

b
in

s
1
2
2
4

1
.6

1
3

1
6
.1

7
%

1
.6

0
8

1
9
.3

5
%

2
-D

A
rc

h
it

ec
tu

re
s

R
es

id
u

al
n

et
w

it
h

h
y
p

er
co

lu
m

n
s

13
E

u
le

r
A

n
gl

es
5

E
q
u

a
l

p
o
p

u
la

ti
o
n

b
in

s
3
0
7
2

1
.0

6
3
0
.4

6
%

1
.1

7
2
3
.2

4
%

H
ig

h
es

t
er

ro
r

in
H

o
ts

p
o
ts

(B
in

4
)

13
E

u
le

r
A

n
gl

es
10

E
q
u

a
l

p
o
p

u
la

ti
o
n

b
in

s
2
0
4
8

1
.6

1
1
9
.6

7
%

1
.6

2
2
1
.3

0
%

B
a
d

O
p

ti
m

iz
a
ti

o
n

18
Q

u
at

er
n

io
n

s
5

E
q
u

a
l

p
o
p

u
la

ti
o
n

b
in

s
1
2
8

0
.0

2
9
8
.3

%
1
5
.5

6
1
7
.4

5
%

C
a
n

ov
er

fi
t

sm
a
ll

d
a
ta

18
Q

u
at

er
n

io
n

s
5

E
q
u

a
l

p
o
p

u
la

ti
o
n

b
in

s
6
5
2
8

1
.6

1
2
0
.6

6
%

1
.6

0
2
1
.2

6
%

B
a
d

g
en

er
a
li

za
ti

o
n

13
E

u
le

r
A

n
gl

es
5

E
q
u

a
ll

y
sp

a
ce

d
b

in
s

2
0
4
8

0
.8

1
6
0
.5

%
1
.0

2
5
4
.9

5
%

B
es

t
re

su
lt

s
ye

t



Chapter 7. Deep Learning 87

classes are formed by dividing the grains into bins based on stress thresholds. Hence,

the pixels near the boundary of bin threshold have slightly different stress values, and

can change bin membership into adjacent bins on adjusting the threshold. We observe

that the model never predicts Bin 4 (highest stress). We argue this is because the bins

were equally spaced and hence the total pixels in Bin 4 available during training is very

small. As we can see, Bin 4 has only 32 out of 4096 pixels in the slice shown.

Conv2D     3x3     4à8
Conv2D     3x3     8à8

Conv2D     3x3     8à8   Pool

Conv2D     3x3     3à4  Pool

64x64x3 images

Conv2D     3x3     8à12
Conv2D     3x3     12à12

Conv2D     3x3     12à12  Pool

Conv2D     3x3     12à16
Conv2D     3x3     16à16

Conv2D     3x3     16à16  Pool

Conv2D     3x3     16à20
Conv2D     3x3     20à20
Conv2D     3x3     20à20

Concatenate into Hypercolumns
1000 x 60

Sparse U
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pled
by U

npooling
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Multilayer Perceptron
1 hidden layer (1000 units)
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Figure 7.6: a) Neural network architecture for a 2D Residual network inspired pixel-
wise segmentation model with 13 convolutional layers. b) Ground truth and predicted
classes for validation data c) Confusion matrix for validation data. The total number
of true labels in each bin are noted at the right, and total predicted labels per bin are

noted at the top.

7.4 Summary

We have explored different CNN architectures for voxelwise and pixelwise segmentation

of microstructures and have demonstrated the potential for CNNs for microstructure seg-

mentation based on physical phenomenon. During the process we have encountered sev-

eral roadblocks, which have helped identify the path for applying deep learning methods

for microstructure-property relationships. It has been challenging to train CNNs from

scratch for this kind of input. CNNs are complex models, and there are many parameters

which need to be optimized before sucessful results. The network has many parameters:
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number of convolutional layers, number of filters, filter size, skip connections, number

of fully connected units, upsampling method used (interpolations vs. deconvolutions),

features used for hypercolumn construction, strategy to derive grain-wise hypercolumns

from voxelwise data and training strategy to name a few. The 3D architectures explored

here saturate at a cross entropy loss of 1.6. We have achieved moderate success in 2D ar-

chitectures with voxelwise Euler angles as input and voxelwise 5 equal spaced stress bins

as target. Thus, we are positive that tweaking the CNN architectures will help in stress

hotspot prediction, and finally help develop multiscale microstructural descriptors.

This exploratory work has helped point out what is missing for applying ma-

chine learning techniques to the field of materials science. There are big opportunities

for developing standardized methods of representation and working towards a library of

microstructural features.



Chapter 8

Future work

In Chapter 4 and 5, data science techniques have been successfully applied to predict-

ing stress hotspots in single phase equiaxed microstructures with different constitutive

parameters, for FCC and HCP materials. The natural extension is to predict stress

hotspots in more complex microstructures such as dual phase materials (e.g. Ti-6Al-4V

alloys) and materials with bimodal grain size distributions. Dream.3D can be used to

generate synthetic 2-phase microstructures, and EVPFFT can simulate uniaxial tensile

deformation. This dataset can be used to develop more complex microstructural fea-

tures which contribute to stress hotspot formation. The current dataset can also be

evaluated to correlate strain hotspots and slip activities with microstructural descrip-

tors. The approach developed in this work can be extended to experimentally obtained

HEDM datasets for understanding physical phenomenon such as annealing, recrystal-

lization and other deformation phenomenon such as twinning. Another direction to

pursue would be the use of ensemble learning, where multiple kinds of machine learning

model predictions are averaged to get the final prediction.

In Chapter 7, we explored using deep learning techniques. Through the ex-

periments detailed in this chapter, it is clear that there is a need to include spatially

correlated information in the input data for the networks to function as expected. The

3D Resnet-grainwise architecture currently samples grains from a single microstructure

during each training step, which might not provide enough diversity in the training data.

This can be overcome by processing the input to divide each microstructure into patches

containing the target grain and its neighborhood, and train the network to classify the

central grain. Once a CNN learns the long range feature representations of the grain,

then instead of using a MLP on the hypercolumn features, a random forest model can
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be used to get an interpretable model with feature insights. Feature selection techniques

(from Chapter 3) can be used to tailor the convolutional layers to be selected for the

hypercolumn construction. The learnt hypercolumn features can also be studied for in-

terpretability. The important hypercolumn features can be studied to relate them with

the input microstructural features by starting with very simple microstructures, and

increasing complexity, to see the which hypercolumn features are affected.

The computer vision field has only recently evolved for complete scene un-

derstanding from coarse grained to fine grained inference, from image classification to

classification + localization and then semantic and instance segmentation. There are

different segmentation architectures in use today, with fully convolutional neural nets

(FCNs) being the most successful [150]. However, these networks leverage the progress

made in the computer vision field for segmentation by transferring the learned features

for related tasks by fine-tuning[185] and building the model on top. Similarly, transfer

learning has been used to take the features learnt for a simple task (image classifica-

tion), and apply them to progressively complex tasks [186], [170], [187], [152]. Hence, for

voxelwise segmentation to work, it might be necessary to break the segmentation into

simpler tasks, modifying the input to do only classification or regression on a related

task such as average grain size prediction. Once the network is optimized for the simpler

task, it cam be progressively optimized for more complex tasks.

Currently the neural networks that use quaternion math are restricted to ones

that take quaternion input [188] or predict quaternion output [189]. The recently devel-

oped deep quaternion networks [190] provide an interesting research direction for using

quaternion weight values. Quaternions can easily represent spatial orientations, and a

quaternionic neural network might be able to learn weights representing physical rela-

tionships between texture, anisotropy and the stress state. Another interesting avenue

to explore would be encoding the microstructure as a transgranular network and using

graph based approaches like graph convolutional neural networks [191], [192], [193], [194]

and markov random fields [195] which are used for outlier detection tasks.

Data driven techniques are abundant, and there is a strict need for their evalua-

tion and application in the materials science domain, to accelerate the materials develop-

ment cycle. Collaboration between computer scientists and material scientists can help

identify the problems that can be solved using state of the art data driven techniques,

and foster endless possibilies of new research directions. The results have demonstrated

the use of different data driven techniques for predicting physical phenomena, and have
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opened the doors to learning generic microstructural descriptors, which can be applied to

learn structure-property relationships in materials. Simulated data can be used to train

the models. We must, however, be cognizant of the fact that synthetic data can lead to

lower accuracy of developed models. Therefore the goal is not to achieve a particular

physical model, but developing an approach for generating microstructural descriptors

to understand structure-property relationships.



Appendix A

Constitutive Parameters: Face

Centered Cubic materials

The constitutive model parameters for FCC materials represent oxygen free high thermal

conductivity (OFHC) copper. The single crystal elastic constants for copper are given

in table B.2. FCC materials deform plastically by slip on twelve {111} < 110 > slip

systems. To obtain the actual values of CRSS and the Voce hardening parameters;

the Voce model was fit to an experimentally measured stress- strain curve for uniaxial

tension in OFHC copper [196] using the VPSC formulation. The results of the fitting

are shown in figure B.2. The Voce hardening parameters for this hypothetical case are

shown in table B.1. The boundary conditions correspond to uniaxial tension along Z,

with an applied strain rate component along the tensile axis ˙ε33 = 1s−1. The EVPFFT

simulation was carried out in 200 steps of 0.01%, up to a strain of 4%.

To understand how the most predictive features influence hotspot formation,

the distribution of these feature values in normal and hot grains is plotted as shown in

figure A.2. It can be seen that the feature distributions for hot and normal grains are

different for Schmid factor and the distance of tensile axis (sample Z [001]) from [111],

[110] and [100] crystal directions.

Table A.1: Single crystal elastic stiffness constants (in GPa) for Copper

Material C11 C12 C44

Copper 168.4 121.4 75.4
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Table A.2: Voce Hardening law parameters imitating Copper

CRSS
ratio

τ s0
(MPa)

τ s1
(MPa)

θs0 θs1

1:1:1 7.43 102.79 356.44 13.01

Table A.3: Feature name descriptions

Feature name
Abbreviation

Description Feature name
Abbreviation

Description

Schmid 0 Basal < a > Schmid factor 100 IPF x Distance from the corners of
the 100 Inverse pole figure

Schmid 1 Prismatic < a > Schmid fac-
tor

001 IPF x Distance from the corners of
the 001 Inverse pole figure

Schmid 2 Pyramidal < a > Schmid
factor

AvgC Axes x Unit vector components de-
scribing the c axis orienta-
tion for hcp

Schmid 3 Pyramidal < c+ a > Schmid
factor

Max mis Maximum misorientation be-
tween a grain and its nearest
neighbor

Surface area vol-
ume ratio

Ratio between surface area
and volume of a grain

Min mis Minimum misorientation be-
tween a grain and its nearest
neighbor

theta Polar angle of hcp c axis w.r.t
sample frame

AvgMisorientations Average misorientation be-
tween a grain and its nearest
neighbor

phi Azimuthal Angle of hcp c
axis w.r.t. sample frame

QPEuc Average distance of a grain
to quadruple junctions

TJEuc Average distance of a grain
to triple junctions

NumNeighbors Number of nearest neighbors
of a grain

GBEuc Average distance of a grain
to grain boundaries

Neighborhoods Number of grains having
their centroid within the 1
multiple of equivalent sphere
diameters from each grain

KernelAvg Average misorientation
within a grain

FeatureVolumes Volume of grain

Omega3s 3rd invariant of the second-
order moment matrix for the
grain, without assuming a
shape type

Equivalent Di-
ameters

Equivalent spherical diame-
ter of a grain

Surface Features 1 if grain touches the peri-
odic boundary else 0

AspectRatios Ratio of axis lengths (ba and
ca) for best-fit ellipsoid to
grain shape
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Experimentally Measured
VPSC fit

Figure A.1: VPSC simulation fit to the experimentally observed stress-strain curve
for OFHC Copper

Figure A.2: Histogram of the important features distinguishing hot and normal grains
in FCC



Appendix B

Constitutive Parameters:

Hexagonal Close Packed materials

The constitutive model parameters for HCP materials represent a general alpha-titanium

alloy having an equiaxed microstructure. The single crystal elastic constants are given

in table B.2. Only three slip systems are considered: basal {0001}[1120], prismatic

{1010}[112] and pyramidal < c+ a >. Two cases are considered based on the strength

of different slip systems i.e. having Equal and Unequal CRSS ratios. The Equal CRSS

case is hypothetical and is analyzed purely for model development and analysis. The

second case with the CRSS ratio of basal< a >: prismatic< a >: pyramidal< c + a >

= 1: 0.7 : 3 has the same single crystal elastic stiffness constants (table B.2). The

boundary conditions correspond to uniaxial tension along Z, with an applied strain rate

component along the tensile axis ˙ε33 = 1s−1. The EVPFFT simulation was carried out

in 200 steps of 0.01%, up to a strain of 2%.

To obtain the actual values of CRSS and the Voce hardening parameters; the

Voce model was fit to an experimentally measured stress- strain curve for uniaxial ten-

sion in α-Titanium [197] using the VPSC formulation. The results of the fitting are

shown in figure B.1 and table B.1 lists the CRSS values and hardening parameters ob-

tained for this CRSS ratio. Note that, for HCP materials; we have used 8 different kinds

of textures summarized in figure 5.2. The stress exponent is 10 for all cases.

To understand how the most predictive features influence hotspot formation

in HCP materials, the distribution of these feature values in normal and hot grains is
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Table B.1: Voce Hardening law parameters for α-Titanium

CRSS
ratio

Slip
System

τ s0
(MPa)

τ s1
(MPa)

θs0 θs1

0.7:1:3
Basal 82.8 36.7

406.3 4.6Prismatic 57.9 25.7
Pyramidal 248.5 110.1

1:1:1 All 100 50 500 10

Table B.2: Single crystal elastic stiffness constants (in GPa) for α-Titanium

Material C11 C12 C13 C33 C44 C66

α-Titanium
(approx.)

170 98 86 204 51 66

plotted as shown in figure B.3a for Equal CRSS and figure B.3b for Unequal CRSS ratio.

Equal CRSS: From the plot for ‘theta’ for hot grains, we can see that there

is a peak at high ‘theta’ values, where the elastic modulus is low i.e. undergoing more

plastic deformation. There are three more smaller peaks at near 64, 40 and 8 degrees,

which might be due to more complex effects of plasticity.

Unequal CRSS: the distribution of these feature values in normal and hot

grains is plotted as shown in figure B.3b

Figure B.1: HCP α-Titanium fit

Figure B.2: VPSC simulation fit to the experimentally observed stress-strain curve
for alpha-Titanium.
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(a) HCP Equal CRSS case

(b) HCP unequal slip case

Figure B.3: Histogram of the important features distinguishing hot and normal grains



Appendix C

Understanding Hotspot

Neighborhoods

Single point statistics such as the average grain size in a polycrystal are effective in-

dicators of the microstructure properties, but in polycrystals, long range interactions

between individual grains and grain boundaries impact the microstructural properties.

Local neighborhood and boundary mobility distribution has been shown to affect the

frequency of abnormal grain growth [142]. The grain boundary network topology is

important for development of high temperature superconductors, where current passes

when a network of grains with low angle misorientations exists [198]. Grain boundary

engineered materials have high fraction of special boundaries such that they resist in-

tergranular crack propagation [88, 143], intergranular corrosion [144] and liquid metal

embrittlement[145]. The network topology affects some properties more directly than

others [199], and the effect of network topology on stress concentrations has not been

studied yet. Hence we propose using microstructural descriptors based on grain connec-

tivity to understand the effect of long range interactions and grain topology on stress

hotspot formation.

C.1 Transgranular network

Both the grain boundary and the transgranular network have the same topological and

crystallographic information, but the representation chosen for analysis is based on

the problem at hand. For example, grain boundary network is used to study inter-

granular corrosion cracking [200], where damage propagation occurs along a contiguous
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grain boundary path. Transgranular network has been used to study super-conducting

polycrystals[201] and abnormal grain growth [72] because these problems involve trans-

port across grain boundaries.

Grain averaged representation of stress hotspots naturally leads to a trans-

granular network representation of a microstructure. This is an undirected graph G,

whose vertices (V ) correspond to each grain in the polycrystalline system, and the edges

(E ⊆ V × V ) connecting the contiguous grains (nodes) represent the grain boundaries.

This is the dual of the grain boundary network, as shown in figure C.1. In labeled graphs,

the vertices (nodes) and edges can be associated with discrete or continuous attributes,

so called labels. A walk is a sequence of vertices w = v1, v2, v3 . . . vn+1; vi ⊆ V traversed

in the graph such that an edge (vi, vi+1)∈ E. The length of the walk is the number of

edges in this sequence. A path is a walk in which vi 6= vj ⇔ i 6= j i.e. no vertex appears

twice. A cycle is a path with (vn+1, v1)∈ E i.e. a closed circuit walk where the walk

starts and ends at the same node. A graph G′ = (V ′, E′) is a subgraph of another graph

G = (V,E) iff V ′ ⊆ V and E′ ⊆ E∧ ((v1, v2) ∈ E′ → v1, v2 ∈ V ′). A clique is a subset of

nodes that are all connected to each other i.e. form a fully connected graph. Cliques of

size 3 (i.e. a triangle) form triple lines in 3-D microstructures and triple points in 2-D

microstructures. Cliques of size 4 only exist in 3-D microstructures and correspond to

quadruple points.

Figure C.1: A 2-d microstructure. The grain boundary network is shown in black.
It’s dual, the transgranular network (shown in green) is constructed with grains as the
nodes (drawn at grain centroids), and connections across each grain boundary. An ego

graph of radius 1 (only first nearest neighbors) is highlighted in red.
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We choose the transgranular representation for analyzing microstructure neigh-

borhood effects causing stress hotspots as it can directly model the crystallographic rela-

tionships between a grain and its surrounding neighbors. The nodes in the transgranular

network can be labeled with grain properties such as grain orientations, crystal struc-

tures, phases or the alignment of tensile axis with easy/hard directions i.e. amenability

to deformation. The edges can be labeled with grain boundary properties such as dif-

fusion coefficients, crystallographic misorientation, boundary curvature, mobility and

energy by the misorientation between grains.

The local microstructure neighborhood can be described by a subgraph derived

from the transgranular network. These subgraphs as known as ego graphs; an ego graph

of radius n consists of the grain in question, and it’s neighboring grains until nth order.

Figure C.1 shows an ego graph of radius 1. The impact on stress hotspots is studied by

comparing the subgraphs between grains in the following sections.

C.2 Comparing Grain Neighborhoods

Following the work of Akoglu et. al [146], the ego graph for each grain in the trans-

granular network is computed. For each egonet, the number of edges, nodes, sum of

edge weights and principal eigenvector and eigenvalues of the adjacency matrix are com-

puted. These form grain-level features, and can be used alongside crystallography based

features for stress hotspot prediction.

From the dataset of Unequal CRSS HCP materials developed in chapter 5, we

choose a microstructure with the representative initial structure shown in Figure C.2.

We construct transgranular networks on this microstructure, with unlabeled nodes and

edges labeled by the misorientation between the grains.

Akoglu et. al [146] developed rules for neighborhoods of real graphs, to help

pinpoint the nodes with anomalous neighborhoods. The density power law [146]

states the power law between the number of nodes (Ni) and the number of edges (Ei) )

of the neighborhood graphs:

Ei ∝ Nα
i , 1 ≤ α ≤ 2 (C.1)

where i is the ith egonet Gi for a node i of graph G. Figure C.3 shows the

density power law plots for neighborhoods of hot and normal grains. The slope, α for
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Figure C.2: Pole figure representing the texture of the microstructure chosen for
analysis using spectral features. The tensile direction is Z (out of plane)
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Figure C.3: Density power law. Plots show total count of nodes vs. total count of
edges in the egonet for all nodes (in log-log scales). The green line is least squares fit
on the median values (black stars). Hot grains have more clique like neighborhoods.

the neighborhood graphs of hot grains is higher than normal grains, which means that

the highly stressed grains have more number of edges i.e. are more connected.

According to the weight power law, the sum of edge weights (Wi) and the

number of edges (Ei) of the neighborhood graphs follow a power law:

Wi ∝ Eβi , β ≥ 1 (C.2)

Figure C.4 shows the weight power law plots for neighborhoods of hot and normal grains.

The slope, β for the neighborhood graphs of hot grains deviates from the weight power



Appendix C. Understanding Hotspot Neighborhoods 102

law equation C.2.

𝑺𝒍𝒐𝒑𝒆, 𝜷 = 𝟎. 𝟗𝟎𝟑𝟖 𝑺𝒍𝒐𝒑𝒆, 𝜷 = 𝟏. 𝟎𝟒𝟗𝟐

Figure C.4: Weight power law. Plots show total weight vs. total count of edges in the
egonet for all nodes (in log-log scales). The green line is least squares fit on the median
values (black stars). The neighborhood graphs for hot grains deviate from equation C.2

The eigenvector power law [146] states the power law between the principal

eigenvalue of weighted adjacency matrix (λi) and the total weight of an ego-graph (Wi):

λw,i ∝W γ
i , 0.5 ≤ γ ≤ 1 (C.3)

Figure C.5 shows the eigenvector power law plots for neighborhoods of hot and

normal grains. The slope, γ for the neighborhood graphs for hot grains is outside the

range specified by equation C.3. The normal grains have a uniform weight distribution

as γ is close to 0.5.

C.2.1 Effect of grain neighborhood on stress hotspots

Stress hotspots by themselves do not form a connected network (D), neither are they

spatially correlated as seen in section 4.2.1.4. However, the local neighborhood of hot

grains is different from normal grains as witnessed by the different power law constants in

the previous section. To quantify the influence of the neighbors, the grain neighborhood

ego graphs of radius 3 are studied. An ego graph of radius n is a subgraph of the network

built on a node and its nearest neighbors from 1st to the nth order.
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Figure C.5: Eigenvector power law. Plots show the principal eigenvalue vs. total sum
of weights in the egonet for all nodes (in log-log scales). The green line is least squares

fit on the median values (black stars).

The relationship between the probability of a grain and its nth nearest neigh-

bor being a hotspot is studied. Using the random forest models developed for Unequal

CRSS ratio HCP materials, we can predict the probability of each grain being a hotspot.

To understand the effect of neighbors, we construct a list of the probability of hotspot

formations (Photspot) for the first, second and third nearest neighbors of each grain. On

an average, in equiaxed polycrystalline microstructures consisting of ∼ 5200 grains; each

grain has 14.67 first nearest neighbors, 222.93 second nearest neighbors and 3377.10 third

nearest neighbors. For each class of neighbors, a list of the probability of hotspot for-

mation (Photspot) is calculated. Then for each grain, the following metrics are calculated

from the list for each class of neighbors to describe the hotspot potential: the mean,

standard deviation, sum, maximum probability, minimum probability, and the count of

the number of nth neighbors whose probability of being a hotspot is > 0.1, since 10% of

the grains have been designated as hotspots and the random chance of a hotspot is 0.1.

Table C.1 lists the mean value of these features over 80 different microstructures. Figure

C.6 shows the distribution of these features between the two classes. It is observed that

the features for the second nearest neighbors have a slightly different distribution.
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Figure C.6: Histogram of the neighbor probability based features distinguishing hot
and normal grains for 80 different kinds of microstructures
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Table C.1: Mean probability based feature values for nth nearest neighbors

Neighbor Order Feature Mean Value

1st

mean 1 0.099
std 1 0.118
sum 1 1.467
max 1 0.386
min 1 0.009
neigh 1 4.543

2nd

mean 2 0.099
std 2 0.125
sum 2 22.288
max 2 0.512
min 2 0.008
neigh 2 69.037

3rd

mean 3 0.099
std 3 0.127
sum 3 337.71
max 3 0.573
min 3 0.007
neigh 3 1045.95

mean_2
sum_2

std_2
neighbor_count_2

mean_3
sum_3

neighbor_count_3
std_3

max_2
neighbor_count_1

mean_1
max_3
min_2
min_1
sum_1

std_1
max_1

Average Pearson Correlation Coefficient

0.00  0.02   0.04   0.06   0.08   0.10   0.12   0.14   0.16   0.18

Figure C.7: Average absolute Pearson correlation coefficient averaged over 80 different
microstructures. The features derived from second nearest neighbors stack together at

the top.
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The Pearson correlation coefficient is calculated for these features being a hot

grain. Figure C.7 shows the average absolute Pearson correlation coefficient for sig-

nificant features averaged over 80 different microstructures. The features derived from

second nearest neighbors stack together at the top and hence play an important role

in hotspot determination. The correlation between hot grains and their first nearest

neighbors is minimal. The correlation is positive for all except that it varies between

positive or negative for standard deviation features. Hence the second nearest neighbors

of a hot grain are more probable to be hot themselves.

C.3 Summary

We have compared hotspot neighborhoods using ego graphs derived from the trans-

granular network. In section C.2, the power laws for the neighborhood graphs have

demonstrated that the neighborhood of hot grains is different from the normal grains.

The relationship between the probability of a grain and its nth nearest neigh-

bor being a hotspot is studied in section C.2.1. It was found that the second nearest

neighbors of a hot grain are more probable to be hot themselves (figure C.6 and C.7).

This finding hints at some kind of medium range order between stress hotspots [148]

and further analysis is required to arrive at robust conclusions.



Appendix D

Characterizing the Transgranular

Network

The theory of self-organized criticality (SOC) [202] for real life graphs argues that net-

works representing real physical phenomena exist just near their ‘critical point’. A rapid

change in behavior occurs near this critical point. For example, in percolation theory,

there exists a critical percolation threshold pc, when a fully connected path occurs in a

system, thus making it ‘percolating’ [203]. This kind of a critical parameter also exists

in other naturally occurring systems. For example, fractals are characterized by a motif,

and the pattern is similar to scaled copies of that motif; in freezing water, the crystal

size distribution is characterized by a power law. Phase changes in materials also occur

at a critical point, for example freezing and boiling points represent this phenomenon.

Thus, real world networks must exist just above this critical point in a ‘just connected’

state. For example, in a communication network, information flow is achieved at the

critical point, and adding any more connections would be suboptimal.

In section C.1, the transgranular network representation of the microstruc-

ture was discussed. The robustness of a network is its ability to withstand internal

and external failures and perturbations. This is a critical attribute for many systems

represented by networks, such as social networks, recommendation systems, computer

communication networks, gene/protein biological networks [204] and colloidal gels[205].

The network robustness is characterized by the number of connections between nodes.

If there are enough connections between the nodes, the network structure will be robust,

and might represent the load bearing part of the microstructure such as in colloidal gels

[205]. This idea is studied using percolation theory.
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(a) Subgraph induced on hot grains in a transgranular
network

(b) Cluster size distribution in the
subgraph.

Figure D.1: Cliques containing stress hotspots in a trangranular network form a
percolating network.

Finding a load bearing network in a material amounts to finding a rigid network,

which is related to the rigidity percolation problem [206, 207], different from the more

common concept of connectivity percolation. Finding a rigid network is complex, as it

depends on the structural details of the node connectivity, and not only on just finding

a connected path. The rigidity percolation problem in 2-dimensions has been studied

extensively for network glasses [208, 209], by counting the number of floppy modes.

The concepts from graph rigidity have been successfully applied to detect the rigidity

threshold in 2-D networks [210]. A fully connected network is rigid and over-constrained.

As the nodes and edges are deleted, the network becomes diluted, and the transition

from a floppy to a rigid network defines the rigidity percolation threshold. The rigid

network consists of a ‘spanning over-constrained region’ which forms the stress carrying

backbone [211]. However, characterization of load bearing networks in three dimensions

remains an open problem.

For transgranular networks, the first attempt at trying to identify a rigid net-

work is by looking at the subgraph formed by stress hotspots. The hot grains, being only

10% of the nodes, do not form a connected network. Figure D.1a shows the subgraph

induced on the hot grains, and figure D.1b shows the distribution of cluster sizes in this

subgraph. The majority of the subgraph consists of isolated nodes, and the size of the

largest connected component is 35 nodes. Hence a different approach is used to find a

connected network.

Cliques are maximal connected subgraphs i.e. a group of nodes that are directly

connected to all the nodes in that group. Figure D.2a highlights a clique in a toy social



Appendix D. Characterizing the Transgranular Network 109

Abe Bob

Carol Dale

George

FrankEllen

(a) Clique in a social net-
work

(b) Transgranular network where the grains be-
longing to cliques containing the hot grains are

colored red

(c) Stress distribution in the subgraph formed by cliques
containing hotspots and remaining grains

Figure D.2: Cliques containing stress hotspots in a transgranular network form a
single connected component.

network. The cliques containing hot grains are calculated and shown in figure D.2b.

This subgraph consists of about 76% of the total number of grains in the microstructure

and is connected i.e. forms one giant cluster. Figure D.2c shows the stress distribution

in the grains belonging to the subgraph and the remaining microstructure. The average

stress in the subgraph grains is higher than the remaining grains. These grains could be

related to the load bearing network in the microstructure.

In the context of transgranular networks, two different critical points need to be

investigated: the connectivity (percolation), and the rigidity threshold. In 2-D networks,

the rigidity threshold lies above the connectivity threshold, and the rigid network consists

of the stress carrying backbone. In 2-D, the rigidity threshold has been characterized

by comparing the network subgraphs to Laman graphs which describe the minimally

rigid systems of rods and joints in the plane [212]. However, the concept has not been
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Table D.1: Connectivity percolation thresholds for site and bond percolation in dif-
ferent lattices and dimensions [2]

Lattice Number of
nearest neigh-
bors

Site percolation Bond percolations

1d 2 1 1

2d Honeycomb 3 0.6962 0.65271
2d Square 4 0.592746 0.5
2d Triangular 6 0.5 0.34729

3d Diamond 4 0.43 0.388
3d Simple cubic 6 0.3116 0.2488
3d BCC 8 0.246 0.1803
3d FCC 12 0.198 0.119

4d Hypercubic 8 0.197 0.1601

5d Hypercubic 10 0.141 0.1182

6d Hypercubic 12 0.107 0.0942

7d Hypercubic 14 0.089 0.0787

generalized to three dimensional structures and there exist no metrics in the literature to

quantify the rigidity of the 3d network as the underlying mathematical theory becomes

invalid [213, 214].

Table D.1 lists the connectivity percolation threshold for site and bond per-

colation for various lattices in different dimensions. It can be observed that within a

given dimension, the percolation threshold decreases with increasing number of nearest-

neighbors. Since the 3-D grain structures studied in this work have an average of 14.67

nearest neighbors, the connectivity site percolation threshold should be less than 0.198.

Based on this notion, we start ‘shattering’ the graph [215] by using ’Islands in

the network’ approach. The Islands in the network function [216] takes a graph, and ap-

plies a threshold (“water level”), letting all edges or nodes above a certain value through,

and removing all others. At a certain threshold, when all links/nodes with that value

are dropped, the transgranular network disintegrates into a number of smaller, discon-

nected clusters. Above this critical fraction, there exists a giant connected component,

spanning through the entire microstructure. This critical fraction corresponds to some

sort of a phase transition or a percolation threshold.

Since we are trying to find the load-bearing network, it must consist of grains

with high stress. Hence, the nodes in the transgranular network are thresholded on

stress values, and the remaining nodes are used to find the connected components (the

clusters). At each stress threshold, the nodes below the threshold stress are deleted
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Threshold 265 MPa, # Nodes: 2.79% Threshold 259 MPa, # Nodes: 34.23%

Threshold 256 Mpa, # Nodes: 71.55%
Critical

Threshold 254 Mpa, # Nodes: 83.98%

Figure D.3: The largest connected component in the transgranular network for dif-
ferent stress threshold values. The red nodes are stress hotspots

and the graph structure is studied. The resultant largest connected component in this

thresholded graph for some stress thresholds are shown in figure D.3. The hot nodes in

the transgranular network are colored red. The stress threshold and the percentage of

total nodes in the giant connected component are indicated. The critical stress threshold

is 256 MPa and the corresponding giant connected component has 71.55% of the total

grains in the microstructure. Above this threshold, a single giant component spans

the microstructure. Below this threshold, the graph consists of multiple clusters, each

with its own mechanical properties. Since this threshold is way above the connectivity

threshold for site percolation in 3D, this might be related to the rigidity transition.

To find out the critical stress threshold, the largest cluster size and the number

of clusters is plotted against the stress threshold in figure D.4. It can be observed that

the network undergoes a phase transition, from a set of small, disconnected clusters

to a giant cluster (connected component), consisting most of the nodes of the network.

Appel et. al. [215] have shown that the critical point is best determined from the effective

diameter vs. number of edges in graph. From figure D.4, we can see that the critical

diameter for this graph is 72 at 3057 edges. The critical threshold is shown by a vertical

line. In figure D.4 only one critical point is observed, which is well above the connectivity

percolation threshold. It is hypothesized that this point might correspond to the rigidity
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Figure D.4: Nodes below the threshold stress are deleted and the graph structure
was studied. The critical point for connectivity percolation is shown by a vertical line.

transition because the giant connected component consists of highly stressed grains, an

indicator of the ‘stress carrying backbone’ in the microstructure.

D.1 Summary

In this chapter, the transgranular representation of the microstructure has been used to

study the relationship of stress hot spots with the load bearing network, and understand

the effect of grain neighborhood on hotspot formation.

It has been shown that the rigid load bearing network in a material should

consist of a spanning over-constrained region which forms the stress carrying backbone

[211]. The subgraph induced on the stress hotspots is not connected and hence disre-

garded as a load bearing network. The subgraph formed by the cliques containing the

hot grains forms one giant connected component and consists of about 76% of the total

number of grains in the microstructure. It is yet to prove if this forms a rigid network.

The grains are thresholded on stress values and the induced subgraphs are

studied. A phase transition like event happens at 71.55% remaining node as seen in

figure D.3 and D.4. It is hypothesized that this point might correspond to the rigidity

transition because the giant connected component consists of highly stressed grains,

an indicator of the ‘stress carrying backbone’ in the microstructure. However, further

analysis needs to be conducted to prove this hypothesis.
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[34] R. A. Lebensohn and C. N. Tomé. A self-consistent anisotropic approach for the

simulation of plastic deformation and texture development of polycrystals: Appli-

cation to zirconium alloys. Acta Metall. Mater., 41(9):2611–2624, 1993. (Cited on

pages 13 and 51.)
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