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A B S T R A C T

Vehicle routing problems are a broad class of combinatorial optimization problems that
seek to determine the optimal set of routes to be performed by a fleet of vehicles to satisfy
given transportation requests. They lie at the heart of transportation operations in supply
chains, and constitute one of the most important and intensely studied problems in
computational mathematics and operations research. Traditional methods to solve these
problems have focused on finding solutions in a deterministic context, in which all input
parameters are assumed to be known precisely and in advance, an assumption that is
difficult to justify in practical applications. Ignoring uncertainty can lead to solutions that
are infeasible or highly suboptimal, and may result in significant economic repercussions
when implemented in practice.

The primary goal of this thesis is to develop mathematical tools for the systematic
treatment of uncertainty in vehicle routing problems arising at the operational, tactical
and strategic levels of planning. A major distinguishing focus of our work is the use of
robust optimization, a paradigm for optimization under uncertainty that has received
only minor attention in this context. We argue and demonstrate that robust optimization
offers a flexible and computationally tractable way to deal with uncertainty in vehicle
routing problems. At the operational level, we develop a unified and scalable algorithm
to generate vehicle routes that can be feasibly executed when visiting customers with
unknown demands. At the tactical level, we study multi-period problems where the
goal is to serve customers whose service requests are not entirely known in advance.
We introduce a dynamic model which adaptively chooses which requests to serve in
each period, as a function of past realizations of the unknown service requests, and
develop an algorithm that significantly outperforms traditional methods. At the tactical
level, we also contribute the first exact algorithms to design vehicle routes that remain
consistent when satisfying variable demands across multiple time periods, and exposit
that modest increases in costs can be translated to high levels of service consistency.
Finally, at the strategic level, we present a method that enables distributors to postulate
generic scenarios of operational uncertainty when allocating long-term delivery time
windows to their customers.

The secondary goal of this thesis is to contribute to the broader field of optimization
under uncertainty, through the development of theory and algorithms, that are currently
lacking but are adequately motivated in vehicle routing applications. In particular, we
study dynamic two-stage robust optimization problems with mixed discrete-continuous
recourse decisions and present a finite adaptability approximation for their solution. We
characterize the geometry of these problems, and present an algorithmic scheme that
enjoys strong convergence properties both in theory as well as experiments.
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1
I N T R O D U C T I O N

The vehicle routing problem, or VRP for short, is simple to state:

Given a set of customers and a fleet of vehicles, determine the cheapest set
of vehicle routes to visit all customers using the given fleet. In particular,
decide which vehicle visits which customer and in what order so that all
routes can be feasibly executed at minimum cost.

The VRP lies at the heart of transportation operations in industrial and commercial
supply chains, and it is one of the most important and intensely studied optimization
problems in computational mathematics and operations research. However, while there
has been significant research done on efficient algorithms for solving the VRP, rapidly
changing business models and advances in technology are creating new challenges that
are yet unsolved.

In this thesis, we attempt to address the long-standing challenge of dealing with uncer-
tainty in the VRP. Traditionally, the VRP is stated as a deterministic problem, in which all
its input data (or parameters) are assumed to be clean, crisp and constant numbers that
are perfectly known in advance. Our objective is to relax this assumption and attempt to
answer the following question:

If the parameters needed to describe the VRP are not precisely known
at the time when it must be solved, how can we still determine a set
of routes that can be feasibly executed under the true (yet, unknown)
realization of the parameters?

To that end, we adopt a systems approach, and focus our attention individually to
uncertainty-affected routing problems that arise at the operational, tactical and strategic
levels of planning. It is natural therefore, that a broad theme of this thesis involves
the development of mathematical optimization tools for the systematic treatment of
uncertainty. In particular, a major focus of this work is the investigation of robust
optimization techniques, a paradigm for optimization under uncertainty which has only
received minor attention in the context of the VRP, and that too, only in the last five
years. As we shall argue and demonstrate in this thesis, robust optimization offers
a novel and promising approach to deal with uncertainty in the context of the VRP
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because of its simplicity, tractability, and modularity with respect to uncertain parameters.
Finally, in the course of our quest to solve the VRP under uncertainty, we also contribute
methodologically to the broader field of optimization under uncertainty, through the
development of robust optimization theory and algorithms, that are currently lacking
but are adequately motivated in our context.

In this introductory chapter, we first motivate and stress the need to study vehicle routing
problems under uncertainty in Section 1.1. In Section 1.2, we give a brief overview of
the basic components and characteristics of vehicle routing problems. In Section 1.3, we
describe the most common vehicle routing parameters that are subject to uncertainty,
the applications in which are uncertain as well as an overview of existing approaches
for handling uncertainty in vehicle routing problems. We identify several shortcoming
of these approaches and the associated challenges in addressing them in Section 1.4.
Addressing these challenges is the goal of this thesis for which an outline is presented in
Section 1.5.

1.1 the need to consider uncertainty in vehicle routing

The origins of vehicle routing date back to 1959 in the seminal work of Dantzig and
Ramser [95], who described a problem of finding the “...optimum routing of a fleet of
gasoline delivery trucks between a bulk terminal and a large number of service stations supplied
by the terminal.” Ironically, the authors proclaimed: “No practical applications of the method
have been made as yet.” Today, after almost sixty years since the publication of this paper,
applications of the VRP are ubiquitous. It spans a wide variety of industries and is
routinely solved on a daily basis by thousands of commercial distributors and logistics
service providers. Considering that business logistics costs currently account for 7.5%
of the United States gross domestic product, and that trucking alone is responsible for
transporting 75% of all goods (by value) [167], it is evident that the VRP thus plays an
important role in the economic well-being of the nation and the competitiveness, service
quality and sustainability of its manufacturing base.

Even beyond commercial distribution, the VRP finds applications in such diverse indus-
tries as waste collection, home health care and hospital services, passenger transportation,
service technician routing and postal and courier services, among several others [66, 132,
144]. Recently, it is also finding increasing application in the chemical industry, where
the goal is to integrate planning and scheduling activities at the plant level with logistics
activities at the supply chain level, such as the transportation of inbound raw material.
We refer to the textbooks by Toth and Vigo [255, 256], Golden, Raghavan and Wasil [133]
as well as the survey [162] for an overview of the wide breadth of applications of the
VRP.

Almost all of the aforementioned applications involve routing of vehicles in environ-
ments that include significant sources of uncertainty. Examples of such sources are
unpredictable traffic conditions, vehicle breakdowns, driver unavailability, missing or im-
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precise information on order volumes, and the lack of knowledge of whether a customer
(order) will even materialize at all. Section 1.3 provides examples of several industrial
applications that are laced with uncertainty. Ignoring the presence of these sources of
uncertainty can frequently lead to situations that are either infeasible or suboptimal. For
example, if order volumes are uncertain and become known only when customers are
visited, a planned route performed by a vehicle may turn out to be infeasible (i.e., may
fail to fulfill some orders) if the total observed order volume of the customers scheduled
on the route exceeds the carrying capacity of the vehicle. Whenever such a situation
occurs, additional costs must be incurred to recover a feasible schedule (for example, the
vehicle might have to be dispatched to a central depot to replenish its capacity and/or
customers might have to be compensated for poor service). Such situations are highly
undesirable, as they result in significant economic and reputational repercussions for
distributors, who already operate with fairly low profit margins.

The need for the systematic incorporation of uncertainty has been long recognized by both
academics and practitioners. A 2009 commemorative paper by Laporte [176], marking
the 50th anniversary of the seminal work of Dantzig and Ramser [95], stresses that
“time has probably come to develop algorithms better able to incorporate dynamic and stochastic
features that are so common in practice.” Yet, a 2014 survey [66] of several commercial
vehicle routing software packages found that none of the surveyed VRP tools “utilize
fully fledged stochastic VRP methods,” with only a few using simulation techniques to
assess the robustness of their generated plans. On the one hand, these software tools
are being used by thousands of companies to manage their vehicle fleets [66, 152]. On
the other, these tools are equipped with modern technologies such as global positioning
systems, tracking, telemetry and cloud computing, which collect significant amounts of
routing-related data that can be readily analyzed to learn a predictive model of future
uncertainty. Evidently, the consideration of uncertainty in the VRP is–and will continue
to be–enabled by these modern technological innovations. What remains are modeling
and algorithmic innovations that can help realize the huge potential for reducing global
transportation costs and positively impacting the society, economy and environment
at large. Incorporating uncertainty in the broader context of operations planning and
scheduling and mathematical optimization is also of fundamental theoretical importance.

1.2 basic components of vehicle routing problems

The preamble of this chapter provided a simple definition of the VRP. In practice,
however, numerous variants and extensions of the problem exist, reflecting the diversity
of operations and constraints encountered in real-world applications. Therefore, the
VRP is commonly regarded as a class of problems. From a methodological viewpoint,
however, it is useful to focus on a few basic variants that capture the features shared
by most vehicle routing problems encountered in practice. The goal of this section is
provide a brief overview of this basic, deterministic VRP. We do not provide references
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unless absolute necessary, and refer to [133, 255, 256] for a general introduction to basic
vehicle routing concepts and terminology.

The VRP is traditionally defined on a network (e.g., , road or transportation network)
whose nodes represent geographical locations and whose edges represent physical links
between these locations. The links have a certain travel cost associated with them. One of
the nodes in the network is the depot (or distribution center), in which a fleet of vehicles
is stationed, while the other nodes represent customer locations. The VRP consists of
designing routes, each to be performed by a single vehicle (refer to Figure 1.1), such that:

(i) each route starts and ends at the depot;

(ii) each customer is visited exactly once on a single route; and,

(iii) the total cost, defined as the sum of the travel costs along the links traveled by the
routes, is minimized.

The VRP generalizes the classical traveling salesman problem (TSP) [13], which calls for
the determination of a single, minimum cost route visiting all the nodes of the network
(i.e., a Hamiltonian cycle), refer to Figure 1.2.

Figure 1.1: Example of a vehicle routing problem (left) and its solution (right). The square
represents the depot, the circles represent customers, the thin gray lines represent the
network edges while the thick colored lines represent routes, each color denoting a
route performed by a different vehicle.

In the following paragraphs, we describe some common characteristics of the network,
vehicles, customers and planning horizon of the VRP, the typical operational constraints
(in addition to the above), and the most common objectives to be achieved in the
optimization.

network . The network is generally described through a graph, whose vertices
correspond to the depot and the customer locations. Its arcs correspond to the links (e.g.,
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Figure 1.2: Example of a traveling salesman problem (left) and its solution (right).

road sections) between these locations. Each arc is associated with a cost, representing
its length, and a travel time, which may be dependent on the vehicle which traverses it,
the period (or time of day) during which it is traversed, as well as the direction of travel
(the graph being directed in such cases).1

vehicles . The vehicle fleet represents the primary means to conduct services or
transport goods across the transportation network. Typical characteristics of a vehicle
include its:

• cost (per unit distance, per unit time or per route executed);

• capacity (e.g., maximum weight, or volume, or number of pallets);

• duration limit (e.g., representing hours of work government regulations);

• subsets of customer locations and arcs of the network which can be traversed by
the vehicle (e.g., due to access limitations, size regulations or driver qualifications).

The fleet may be given, or it may be part of the optimization problem, and it is typically
heterogeneous (i.e., the vehicles have different characteristics).

customers . The customers place service or transportation requests which require
the visit of a vehicle. Typical characteristics of a customer include its

• location (e.g., geographical coordinates in a road network);

• demand (e.g., amount of goods to be picked up, or delivered);

1 In practice, the actual road network is large but sparse; this network is transformed into a much smaller but
dense (often complete) graph. This is achieved by removing all nodes except the depot and customers (e.g.,
impertinent road junctions) and by defining the inter-customer and depot-to-customer arc costs and travel
times to be the weights of the corresponding shortest paths in the actual road network.
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• time window (e.g., days of the week or hours of the day during which the customer
is open or its location can be reached due to traffic limitations);

• service time (e.g., time required to deliver or pick up goods at the customer location);

• subset of vehicles that can be used to serve the customer (e.g., because of access
limitations)

Other characteristics which we do not consider include vendor-managed inventory
(where the demand of the customer is not exogenously specified, but controlled by the
distributor), split delivery (where the demand can be satisfied by multiple vehicles), and
optional requests (where the customer need not be served, but service results in a profit
or reward)

planning horizon. The planning horizon represents the time period of operation
over which routes will be designed and executed. The most common (often implicit)
assumption in the VRP is that the planning horizon is of an operational nature and spans
one period (e.g., one day). In practice, smaller or longer horizons are more appropriate
depending on the time period over which routes will be executed.

• Smaller, real time planning horizons (e.g., hours or minutes) are considered when
routes are dynamically modified during their execution (e.g., because of new or
canceled requests, or changed traffic conditions).

• Longer, multi-period planning horizons of a tactical nature (e.g., one or more weeks)
are common when multiple single-period routes are to be designed. In such cases,
the period or day in which a customer request must be served may be fixed
a priori or determined by the optimization. Moreover, the designed routes may
be implemented unchanged in a periodic or cyclic fashion over the course of a
longer horizon (e.g., several months) or constantly re-optimized in a rolling horizon
fashion over a shorter period (e.g., daily).

• Planning horizons of a strategic nature (e.g., several months or years) are more
appropriate for decisions such as locating depots, sizing and dimensioning ve-
hicle fleets as well as defining service policies (e.g., allocating time windows to
customers).

constraints . The designed routes must satisfy several operational constraints,
depending on the characteristics of the customers and the vehicles. The most common
constraints are:

• capacity constraints of vehicles: the total demand of the customers visited on a route
cannot exceed the vehicle capacity;

• duration limits of vehicles: the total duration of a route cannot exceed the duration
limit of the driver who executes it;
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• time window constraints of customers: customers can be served only within their
time windows on the day (or days) in which they are available;

Apart from these, other examples of constraints include: various forms of compatibility
constraints (e.g., ensuring that a vehicle can feasibly execute a customer order because of
size regulations, or driver qualifications), precedence constraints in pickup-and-delivery
problems ensuring that a pickup is always performed before the corresponding delivery,
and time-based consistency constraints in multi-period problems ensuring that visits are
performed at the same time (across periods).

objectives . The most common objective is to minimize the overall transportation
cost, which is often expressed as the sum of fixed costs (e.g., rental, capital amortization
or acquisition costs) associated with the used vehicles, and recurring costs (e.g., fuel,
labor or insurance costs) that is proportional to the total distance or duration traveled
by the vehicles. Other common extensions include minimizing the number of used
vehicles, balancing the routes (e.g., with respect to the total duration, or load, or number
of customers visited) as well as minimizing penalties associated with violations of the
soft constraints (e.g., violation of soft time windows).

algorithms . The VRP generalizes the TSP and is therefore strongly NP-hard [166].
Existing algorithms can be classified as either exact, if they compute an optimum so-
lution (or a lower bound on the minimum cost), or heuristic, if they cannot establish
(sub)optimality of their computed solutions. There exists a vast literature on both exact
and heuristic algorithms; see the recent surveys [182, 217, 228]. In the following, we only
describe the main ideas behind the most successful algorithms.

exact algorithms : The best exact algorithms are based on integer programming [86].
The two most common formulations are the two-index vehicle flow formulation,
originally proposed in [181], and the set partitioning formulation, originally proposed
in [33]. The primary decisions in the former are binary variables indicating if
an arc of the network is traveled by some vehicle and in the latter are binary
variables indicating if a feasible route is used in the final solution. They are both
exponential-sized, with the former featuring exponentially many constraints and
the latter exponentially many decisions. Therefore, and in contrast to typical
mathematical programming formulations, neither of these can be solved with off-
the-shelf software. Highly sophisticated custom algorithms, based on branch-and-cut
and branch-cut-and-price have been developed for solving these formulations and
they continue to be the subject of active research. We refer to [193] for an efficient
implementation of branch-and-cut for solving the two-index formulation and to [30,
210] for an efficient implementation of branch-cut-and-price for solving the set
partitioning formulation. These works focus on the Capacitated VRP variant in
which customers only feature demands and the only routing constraints are the
vehicle capacity constraints; however, similar ideas apply for other VRP variants.
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heuristic algorithms : The best heuristic algorithms are all based on metaheuris-
tics [60]. The two most common types of metaheuristic algorithms are local search
methods and population-based methods, although the latter intimately rely on the
former to achieve good performance. Local search methods start from an initial
(not necessarily feasible) current solution and at each iteration, move to another
solution in some appropriately defined neighborhood. The new solution need not
be improving (in terms of cost or feasibility) and therefore, care must be taken to
avoid cycling. The neighborhood definitions are generalizations of their classical
TSP counterparts [148, 190] and their size is typically quadratic or cubic (in the
number of customers and vehicles). In contrast to local search, population-based
methods evolve a population of solutions, stored in some memory structure, and
then appropriately combine them to generate new solutions that are used to update
the memory. We refer to [182] for a succinct survey of metaheuristics for the VRP.

1.3 parameter uncertainty in vehicle routing problems

The aforementioned characteristics of the network, vehicles and customers constitute
the input parameters of a VRP. In contrast to the routes, which represent the decisions
that need to made to set the operation in motion, these are not subject to selection.
In the majority of existing studies, the parameters are assumed to take some constant
values before optimization occurs. In practice, however, their true values are subject to
significant variability that are often revealed only after the operation takes place. Table 1.1
provides a non-exhaustive list of the parameters associated with the network, vehicles
and customers that are typically uncertain, along with some example applications in
which they are relevant. It should be noted here that customer requests are different
from their demands; the former represents the presence of an order (e.g., for goods or a
service), whereas the latter represents the size of the order (typically the amount of goods
requested). Similarly, the distinction between time-dependent travel times and uncertain
travel times is an important one; the former refers to deterministic, temporal variations
resulting from hourly, daily, weekly, or seasonal cycles in traffic volumes, whereas the
latter refers to accidents, weather conditions or other random events (e.g., see [195]).

The vast number of applications listed in Table 1.1 have spurred the development of
various approaches to deal with parameter uncertainty in vehicle routing problems. A
single, unified presentation of these approaches is a difficult task, however, given their
significant differences with regard to assumptions as well as terminology. Nevertheless,
we attempt to classify the various models as follows: (i) deterministic reoptimization
(Section 1.3.1), (ii) Markov decision processes (Section 1.3.2), (iii) stochastic programming
(Section 1.3.3), and (iv) robust optimization (Section 1.3.4). Of these, the first three have
received the widest attention, and there are several surveys and texts dedicated to their
review. Therefore, we only highlight the main ideas and provide appropriate references
in the relevant sections. The last approach (robust optimization) has received minor
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Table 1.1: Examples of uncertain parameters in vehicle routing problems.

Relevant to Parameter Example applications

Customers Demand vendor-managed inventory systems [71, 85], container
repositioning in maritime logistics [91], waste
transportation [205], goods distribution [116], design of shared
mobility systems [189], crude oil transportation [80], districting
and territory planning [147]

Request personalized on-demand transportation systems [40, 104],
long-haul truckload trucking [219], maintenance scheduling [61,
247], cargo requests in industrial shipping [82, 253], goods
distribution [116, 267]

Service time local truckload trucking [266], scheduling of service
technicians [144], courier delivery [245], orienteering
problems [15, 72]

Vehicles Availability urban freight distribution [188, 200, 201], dial-a-ride
systems [272]

Network Travel times sailing times in industrial and tramp shipping [6, 21], disaster
management and emergency planning [230, 261], city
logistics [141], dial-a-ride cab systems [224]

attention, and that too only in the last few years; therefore, we provide a comprehensive
review of the VRP literature that has used this approach.

Before we present the various approaches, it is important to define the time evolution of
information and associated extent of decision-making that is permitted in the application.
Specifically, one must establish (i) when the uncertain parameters reveal their true values
(if at all), and (ii) what new routing and assignment decisions can be made (or old ones
modified) in response to the revealed information. Often times, these are dictated by
the application and the underlying technological, logistical, or contractual infrastructure
(which partially explains the diverse assumptions and terminology).

1.3.1 Deterministic reoptimization

This approach solves a sequence of deterministic problems at time points that are
characterized by the revelation of new information. Specifically, at certain time points
(also called decision epochs), a deterministic problem is solved to determine the decisions
to be executed until the next epoch, and this process is repeated in a rolling horizon
fashion. The qualifier “deterministic” refers to the notion that optimization is performed
using only the past revealed values (and perhaps, the nominal or expected future values)
of the uncertain parameters, without explicitly modeling the uncertainty. For example, if
customer requests are unknown and revealed only during the execution of the vehicle
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routes, this approach might attempt to determine a ‘base routing plan’ that services
the already received orders and reoptimizes this base plan whenever a new request is
received. Variants of this idea include

(i) changing the frequency of reoptimization (e.g., periodically or continuously),

(ii) constraining the optimization using prespecified routing policies (e.g., first-come-
first-served) or local update heuristics (e.g., insertion into the existing plan),

(iii) incorporating uncertainty to a limited extent using anticipatory waiting strategies
(e.g., vehicle waits at the depot for as long as possible) or multiple plan approaches
(e.g., one amongst multiple solutions is chosen based on a simulation or consensus
function).

Deterministic reoptimization approaches are the most widely used methods to deal
with parameter uncertainty and are also referred to as (purely) online or dynamic and
deterministic approaches in the vehicle routing literature (e.g., see [35, 160, 184, 216]).

1.3.2 Markov decision processes

These approaches attempt to formulate the underlying vehicle routing problem under
uncertainty as a Markov decision process (MDP) (i.e., a discrete-time stochastic con-
trol process) [41, 220]. Broadly, they can be viewed as stochastic generalizations of the
deterministic reoptimization approaches described in the previous section, since they
incorporate an explicit stochastic model, in which the uncertain parameters are treated
as random variables that follow a known probability distribution. These approaches
attempt to determine a policy, which for each time point (that may be as frequent as
the evolution of the uncertain information), defines a function that maps the current
state of the system (e.g., positions of vehicles, their current load and previous observed
realizations of the uncertainty) to control actions (e.g., next customer to visit for each
vehicle), such that the expected value of the objective function (under the postulated
probability distribution) is optimized.

The optimal policy and corresponding optimal cost-to-go functions can be characterized
using Bellman’s equation; however, computing these is computationally intractable in
practice, because of the curse of dimensionality, and the often large state space. Therefore,
several simplifying assumptions are often made to obtain tractable solution algorithms.
These include

(i) making simplifying assumptions regarding the probability distribution (e.g., dis-
crete support, independence, sampled scenarios etc.),

(ii) restricting the set of possible decisions (e.g., prevent dynamic assignments of
customers to vehicles and only allow dynamic sequencing decisions),

(iii) computing heuristic policies by employing approximate dynamic programming (ADP)
techniques (e.g., approximating the cost-to-go functions via simulations and per-
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forming approximate policy iteration, or obtaining the optimal policy over a restricted,
often discretized, state space).

MDP-based approaches form a subset of so-called dynamic and stochastic approaches for
vehicle routing under uncertainty, and they are surveyed in [35, 184, 216, 260].

1.3.3 Stochastic programming

Similar to MDP, stochastic programming models the uncertain parameters as random
variables that follow a known probability distribution, and seeks to optimize a risk
measure (such as the expected value, or conditional-value-at-risk) of some cost function [58,
229]. The two basic modeling approaches in this category are two-stage recourse models
and chance-constrained models.

1. Two-stage recourse models.
This approach consists of modeling the problem in two stages. In the first stage, a
base plan, or a priori or here-and-now solution is designed, before the realizations of
the uncertain parameters are known. In the second stage, the first stage solution is
executed and recourse actions or wait-and-see decisions based on a predetermined
policy are taken in response to the revealed uncertain information.

For example, suppose that customer demands are uncertain and revealed only
upon visiting the customer locations. In a typical two-stage recourse model, the
planned solution corresponds to vehicle routes that are chosen before the uncertain
demands are revealed. Since it is possible that a vehicle may reach a customer and
not have sufficient capacity to serve its realized demand (referred to as a ‘route
failure’), recourse actions must be taken to ensure feasibility. A classical recourse
policy is to return to the depot upon failure, offload, and resume collections by
continuing along the planned route from the point of failure.

The two-stage recourse model may be viewed as a restriction of an MDP in which
the optimal policy is restricted to the class of predetermined recourse policies. For
example, a typical MDP model of stochastic demands imposes no planned solution,
and allows the vehicle to visit any location at any point of time (including the
depot even if there is no failure). Therefore, the MDP models typically give better
objective values. The tradeoff is that two-stage recourse models are computationally
more tractable than MDP models. Nevertheless, they are also affected by the curse
of dimensionality and tractable algorithms make several simplifying assumptions
regarding:

(i) the probability distribution (e.g., Gaussianity, discrete support, independence),

(ii) the operation (e.g., no more than a certain number of failures per route), or

(iii) the recourse policies (e.g., the recourse ‘action’ is to simply evaluate the sum
of incurred penalties of constraint violation)
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The models are typically formulated using extensions of the two-index vehicle
flow or set partitioning formulations (see Section 1.2) and solved using stochastic
programming based algorithms such as Benders’ or Lagrangean decomposition
(e.g., see [177]).

2. Chance-constrained models.
A traditional chance-constrained approach models the problem in a single stage;
the goal is to select a base plan, or a priori solution that satisfies all constraints with
a prespecified probability. In contrast to two-stage recourse models, in which route
failures are allowed and ‘repaired’ by taking recourse actions, chance-constrained
models assume that failures are not allowed (e.g., because drivers take the same
route every day on a routine basis), and seeks to limit its probability. However, sim-
ilar to two-stage recourse models, computation of this probability becomes rapidly
intractable for arbitrary distributions. Therefore, similar simplifying assumptions
(e.g., independent and identically distributed parameters, or Gaussianity) must be
made to obtain tractable solution algorithms.

The literature on stochastic programming approaches for vehicle routing problems is
surveyed in [73, 125].

1.3.4 Robust optimization

Compared to dynamic and stochastic programming, robust optimization is a more
recent approach for optimization under uncertainty, in which the model of parameter
uncertainty is not a probabilistic one, but rather deterministic and set-based. The goal is
to determine decisions that remain feasible for any realization of the uncertain parameters
in a given, prespecified uncertainty set. The motivation for this set-based approach is two-
fold. First and foremost, it overcomes the curse of dimensionality that plagues traditional
approaches and results in an optimization problem that is often as computationally
tractable as the original deterministic problem. Second, this approach may be the only
reasonable alternative if distributional information is not readily available (e.g., if there
is insufficient data to estimate distributions). Even if sufficient data is available, the
tractability benefits may make robust optimization more attractive than existing dynamic
and stochastic programming approaches. In such cases, it is possible to choose the
structure and size of the uncertainty set to provide a priori probabilistic guarantees on the
performance of the robust solution (similar to chance-constrained models in stochastic
programming), as well as incorporate additional information about the distribution (e.g.,
support, symmetry and moments) in the uncertainty set (which has led to the field
of distributionally robust optimization). Some examples of popular and well-motivated
classes of uncertainty sets are shown in Figure 1.3 (a precise definition of these sets is
provided in Chapter 2). We refer to [37, 42, 135] for an overview of the theory of robust
optimization.
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(a) Budget sets (b) Factor models (c) Ellipsoids

(d) Cardinality-constrained (Gamma) sets (e) Discrete sets

Figure 1.3: Examples of uncertainty sets; each dimension corresponds to an uncertain parameter.

Robust optimization has only recently started receiving attention in the context of vehicle
routing problems. Table 1.2 provides a comprehensive overview of papers that have
applied robust optimization to address parameter uncertainty in the VRP. Almost all
of the listed papers strive toward the goal of determining a set of vehicle routes that
satisfy their constraints (capacities in case of demand uncertainty, and time windows
and duration limits in case of service and travel time uncertainty) for all possible
realizations of the uncertain parameters from the considered uncertainty sets. The major
differences lie in their assumptions regarding the structure of the uncertainty sets and
the corresponding solution algorithms, which are often intimately tied to the structure
of the set. The majority of the papers assume that the uncertainty set is the cardinality-
constrained or gamma set, originally proposed in [57], and rely on algorithms that are
based on modifications or extensions of classical formulations of the deterministic VRP
(see Section 1.2).

All of the papers listed in Table 1.2 have focused on finding static solutions that cannot
adapt to observed values of the uncertain information. Allowing solutions to dynamically
adapt to the observed uncertainties will result in lower costs, whenever such adaptations
are technologically feasible. One reason for this shortcoming is that the early literature
on robust optimization theory models the problem in a single stage, and determines
a here-and-now solution that remains feasible for any realization of the parameters in
the chosen uncertainty set. Recent theoretical contributions allow the consideration of
dynamic two-stage and multi-stage models, in which recourse actions can be taken in
view of the revealed uncertain information, similar to recourse models in stochastic
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1.3 parameter uncertainty in vehicle routing problems

Table 1.2: Overview of robust optimization approaches to vehicle routing under uncertainty.

Reference Uncertainty in Uncertainty
set

Key features

[234–237] Travel costs Discrete various metaheuristics

[245] Service time Discrete insertion heuristic

[78] Service time Gamma arc routing, branch-and-cut

[207, 230] Travel times Interval reduces to deterministic VRP

[5, 6, 63, 254] Travel times Gamma path inequalities, branch-and-cut algorithm,
ant colony search, large neighborhood
search

[244] Demand Interval reduces to deterministic VRP

[109] Demand Interval detours-to-depot modeled using stochastic
programming, tabu search

[75, 243] Demand Gamma open routes, minimize infeasibility penalties

[215] Demand Gamma,
Budgets

branch-price-and-cut algorithm

[137, 138] Demand Polyhedra,
Budgets,
Factor models

connection to chance-constraints, robust
counterparts of classical formulations,
branch-and-cut algorithm, adaptive memory
programming

[7, 55] Demand +
Travel times

Gamma inventory routing, problem-specific decom-
position and heuristics

[153, 185] Demand +
Travel times

Gamma branch-and-price algorithm, variable neigh-
borhood search

[202, 264] Demand +
Travel times

Gamma uncertainty set-specific formulation, branch-
price-and-cut algorithm, insertion heuristic

[2, 159, 278] Demand +
Travel times

Moment
ambiguity set

distributionally robust optimization, new
risk measure, Benders’ algorithm

programming and Markov decision processes. However, these contributions are relatively
recent and multi-stage robust optimization is an active area of research. We defer the
literature review to Chapter 6. For now, we simply note that most contributions have
focused on models in which the recourse actions are continuous decisions, while the
literature on models in which the recourse actions include discrete decisions is relatively
sparse. It is these models that are most relevant to this thesis, as recourse actions in
vehicle routing problems are assignment and sequencing decisions, that are inherently
combinatorial and discrete-valued.
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1.4 challenges and limitations in existing approaches

1.4 challenges and limitations in existing approaches

In view of the shortcomings of existing approaches, we have identified several key
challenges in the modeling and solution of vehicle routing problems under uncertainty.
In fact, we have also identified gaps in general robust optimization methodology which
bear relevance not only to vehicle routing, but to a much wider class of mathematical
optimization problems. Specifically, we identify the following challenges that we would
like to address in this thesis.

1. Dynamic robust optimization with discrete recourse decisions.
Two-stage robust optimization problems with discrete recourse actions and their
multi-stage variants are not fully understood and we lack efficient schemes for
their solution. A key challenge is to make some progress towards gaining a better
theoretical understanding of their geometry, as well as design efficient algorithms
with provable guarantees (at least for the two-stage version).

2. Dynamic robust optimization in vehicle routing problems.
All robust optimization approaches to vehicle routing problems have focused on
finding static solutions of single-stage models, in which no (discrete) recourse
actions can be taken in response to the revelation of uncertain information, prevent-
ing their applicability to problems in which routing decisions can be dynamically
adapted in a multi-stage fashion. Current approaches to such uncertainty-affected
routing problems are based on Markov decision processes and stochastic program-
ming, that are plagued by the curse of dimensionality, and are hence intractable.
A key challenge is to extend robust optimization to (at least) two-stage vehicle
routing models in a way that retains its computational tractability.

3. Uncertainty in customer requests.
Customer requests represent one of the most common sources of uncertainty in
practical applications (see Table 1.1). Yet, none of the existing robust optimization
approaches have attempted to address this uncertainty (see Table 1.2). This is
primarily because of the difficulties in representing and constructing an uncertainty
set of discrete-valued uncertain parameters. In contrast to demand and travel times,
that are continuous-valued and allow the reformulation of the corresponding robust
optimization problem to a finite-dimensional deterministic model, the presence
or absence of a customer order is a discrete event, providing more challenges for
robust optimization modeling and solution algorithms.

4. Unified, scalable methods for static robust routing.
It is becoming increasingly evident that designing a priori or static routes is most
tractably achieved via robust optimization as opposed to stochastic or chance-
constrained programming (at least for demand uncertainty). Yet, there is an evident
lack of a unified, flexible method that has the potential of being applied to a wide
range of problem settings. Specifically, the challenge is to design algorithms for
static robust routing that are modular with respect to (i) the choice of the uncertainty
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set, (ii) the solution algorithm (particularly in the case of metaheuristics), and to
an extent (iii) any side constraints in the underlying vehicle routing problem. In
keeping with the robust optimization paradigm, the challenge is also to ensure that
the method can scale to instances of practical size.

5. Explicit consideration of service consistency.
One of the primary drivers for research in static or a priori routing are its important
practical benefits. Notably, it results in regular or consistent routes that assign
the same driver to the same set of customers to serve them at roughly the same
time. Such consistent routes are easy to adapt to the realization of the daily
uncertainties. Moreover, this consistency help companies realize the important
goal of personalization of services while also improving driver productivity and
familiarity with their daily routes and territories. A key challenge is to explicitly
incorporate service consistency in solution algorithms for vehicle routing problems
as a means to hedge against variable demand and service times.

6. Strategic models in vehicle routing.
Strategic models in vehicle routing problems have not received a lot of attention,
with most papers focusing on traditional facility (e.g., depot) location and fleet
dimensioning models. Recently, there has been some work done toward strategically
allocating customers’ time windows, that are inherent to virtually all routing
problems. One challenge is that operational level information (such as customer
demand or travel times) is often not known with certainty at the strategic level,
and only scenario-based models are available to represent this uncertainty. The
challenge is to develop efficient, scalable, algorithms that can utilize the vast
arsenal of solvers for the deterministic VRP in an oracle fashion and that can scale
to virtually any number of postulated scenarios.

1.5 aims and outline of the thesis

The aim of this thesis is to develop mathematical tools for the optimization of vehicle
routing problems under uncertainty. To that end, we adopt a systems approach and aim
to address each of the six challenges highlighted in the previous section at the operational,
tactical and strategic levels of planning (see Table 1.3). A strong focus of our work is on
developing optimization algorithms that not only have strong theoretical guarantees but
are also simple to implement in practice. The aim is to enable the reinvention of many
algorithms that are proven to work well for deterministic vehicle routing problems in a
new capacity as algorithms for vehicle routing under uncertainty. Throughout the thesis,
we highlight the effectiveness of our proposed schemes via extensive experiments on
standard test cases from various application domains, and whenever applicable, compare
the performance of our algorithms as well as the obtained solutions against those of
other methods. In the following, we provide an overview of the remaining chapters of
the thesis.

16



1.5 aims and outline of the thesis

Table 1.3: Overview of chapters 2–6, listing which of the challenges are addressed in each chapter.

# Chapter title Challenges addressed

2 Operational routing under demand
uncertainty

Unified, scalable methods for static robust routing

3 Tactical planning under customer or-
der uncertainty

Dynamic robust optimization with discrete recourse
actions, Dynamic robust optimization in vehicle
routing, Uncertainty in customer requests

4 Tactical enforcement of service con-
sistency

Explicit consideration of service consistency

5 Strategic allocation of time windows Strategic models in vehicle routing

6 K-adaptability in two-stage robust
optimization

Dynamic robust optimization with discrete recourse
actions

In Chapter 2, we aim to develop a unified, scalable method to determine vehicle routes
that remain robust during their execution. We consider an extended model of the classical
VRP, where a mixed fleet of vehicles with different capacities, fixed and routing costs is
used to serve customers. This model includes as special cases, all variants of the so-called
heteregeneous and fleet size and mix problems studied in the literature, as well as problems
with general site dependencies and multiple depots. We consider uncertainty in customer
demands, and seek to determine a minimum-cost set of vehicle routes that remain
feasible for all anticipated demand realizations from a given uncertainty set. To solve this
problem, we develop robust versions of classical local search moves, that are at the heart
of all metaheuristic approaches (see Section 1.2), and establish that efficient evaluation
of the local moves under demand uncertainty can be achieved for five broad classes of
uncertainty sets. The proposed local search is shown to be modular by incorporating
it into two standard metaheuristics to determine robust solutions. The quality of the
metaheuristic solutions is quantified using a novel integer programming model that
provides lower bounds on the optimal solution. An extensive computational study on
literature benchmarks shows that the proposed method allow us to obtain robust routes
with minor additional effort compared to deterministic routes and that they are of high
quality, in general.

In Chapter 3, we study multi-period vehicle routing problems where the aim is to
determine a visit schedule and associated routing plan for each period using capacity-
constrained vehicles. We consider uncertainty in customer service requests, and allow
customers to place their requests dynamically over the planning horizon. To guarantee the
generation of routing plans that can flexibly accommodate potential requests that have not
yet been placed, we model future potential customer requests as binary random variables,
and we seek to determine a visit schedule that remains feasible for all anticipated
realizations of the requests. To that end, the planning process can be viewed as a multi-
stage robust optimization problem with binary recourse decisions. We approximate the
multi-stage problem via a non-anticipative two-stage model for which we propose a
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novel integer programming formulation and a branch-and-cut solution approach. To
investigate the quality of the solutions we obtain, we also derive a valid lower bound
on the multi-stage problem and present numerical schemes for its computation. Monte
Carlo simulations on a rolling horizon show that our approach is practically tractable and
generates high quality robust plans that significantly outperform existing approaches in
terms of both operational costs and fleet utilization.

In Chapter 4, we aim to explicitly incorporate service consistency constraints over a
tactical planning horizon. The goal is to identify the minimum-cost set of routes that
a single vehicle should follow during the multiple time periods of a planning horizon,
in order to provide consistent service to customers. The requirement for consistent
service corresponds to restricting the difference between the earliest and latest vehicle
arrival-times, across the multiple periods, to not exceed some given allowable limit. We
present two exact algorithms for this problem. The first is a branch-and-cut algorithm that
can solve three novel mixed-integer linear programming formulations of the problem.
The second is based on a decomposition of the problem into a sequence of classical
traveling salesman problems with time windows. Extensive computational experiments
show that the decomposition algorithm is better, as it can solve instances whose sizes
are representative–or even exceed–expected sizes of real-world distribution settings
involving a single vehicle. We empirically show that (i) arrival-time consistency can
be achieved with merely a small increase in total routing costs, and (ii) the cost of
implementing consistent routes can be reduced significantly if vehicles are allowed to
idle en route.

In Chapter 5, we study the strategic planning problem of assigning time windows to
customers. This problem can be viewed as a two-stage stochastic programming problem,
where time window assignments constitute first-stage decisions, vehicle routes adhering
to the assigned time windows constitute second-stage decisions, and the objective is
to minimize the expected routing costs. We develop a new scenario decomposition
algorithm to solve the sampled deterministic equivalent of this stochastic model. From
a modeling viewpoint, our proposed approach can accommodate general time win-
dow structures as well as general scenario-based models of uncertainty for several
routing-specific parameters, including customer demands and travel times, among oth-
ers. From an algorithmic viewpoint, our approach is easily parallelized, can utilize any
deterministic VRP solver as a black box, and can be easily modified as a heuristic for
large-scale instances. A comprehensive computational study demonstrates that our algo-
rithm strongly outperforms all existing solution methods, and quantifies the trade-off
between computational tractability and expected cost savings when considering a larger
number of scenarios during strategic decision-making.

In Chapter 6, we study two-stage robust optimization problems with mixed discrete-
continuous recourse decisions in both stages. Despite their broad range of applications,
these problems have posed two fundamental challenges: (i) they constitute infinite-
dimensional problems that require a finite-dimensional approximation, and (ii) the
presence of discrete recourse decisions prohibits duality-based solution schemes. We
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address the first challenge by studying a K-adaptability formulation that selects K
candidate recourse policies before observing the realization of the uncertain parameters
and that implements the best of these policies after the realization is known. We establish
conditions under which the K-adaptability problem remains continuous, convex and
tractable, and we contrast them to the corresponding conditions for the two-stage
robust optimization problem. We address the second challenge through a branch-and-
bound scheme that enjoys asymptotic convergence in general and finite convergence
under specific conditions. We illustrate the performance of our algorithm in numerical
experiments involving benchmark data from several application domains.

To aid readability, the nomenclature used in each chapter is summarized in an appendix
provided at the end of the chapter.
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2
O P E R AT I O N A L R O U T I N G U N D E R D E M A N D U N C E RTA I N T Y

In this chapter, we aim to develop a method that can tackle vehicle routing problems
in which the vehicles execute their routes over an operational horizon (e.g., one day),
but customer demands are unknown prior to dispatch. To deal with this uncertainty, we
shall seek to determine a minimum-cost set of routes that are robust; that is, the routes
must be such that the total demand of the customers served on any route must never
exceed the vehicle capacity for any realization of the customer demands from a given
uncertainty set.

To solve this problem, we develop robust versions of classical local search moves. The
evaluation of the local moves amounts to the solution of a convex optimization problem
in general but we establish that it can be done much more efficiently (in fact, in closed
form) for several broad classes of uncertainty sets. We illustrate the modularity of the
proposed local search by incorporating it into two standard metaheuristic algorithms.

The qualities of the metaheuristic solutions are quantified using a new integer program-
ming formulation that provides lower bounds on the optimal solution. Interestingly, we
show that efficient solution of this formulation via a branch-and-cut algorithm is enabled
by the same principles that underly the efficient evaluation of local moves in a heuristic
algorithm.

Finally, in addition to the algorithm, we show that our method is also modular in terms
of problem features. In particular, we study an extended model of the classical VRP, that
includes as special cases, all variants of the so-called heteregeneous and fleet size and mix
problems studied in the literature, as well as problems with general site dependencies and
multiple depots. An extensive computational study on literature benchmarks shows that
the proposed method is also scalable across instances of these variants.

The rest of this chapter is organized as follows. After further motivating and providing
some background in Section 2.1, Section 2.2 provides a mathematical definition of the
various VRP variants that we consider in this paper. Section 2.3 presents the various
classes of uncertainty sets, the closed-form expressions of the local moves as well as data
structures for their efficient computation. Section 2.4 presents the robust local search
and its incorporation into metaheuristics. Section 2.5 presents the integer programming
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formulation and branch-and-cut algorithm. Section 2.6 presents computational results;
and, Section 2.7 presents a summary of the key results from this chapter.

2.1 motivation and background

Vehicle routing problems involve the determination of cost-optimal transportation plans
for the distribution of goods and/or services between production facilities, distribution
centers and end customers. Despite their differences, a common goal of all vehicle routing
problems is to determine an optimal assignment of customer orders to vehicles, as well
as the optimal sequencing of customer orders served by individual vehicles. The most
common objective is to minimize the transportation cost, which is often expressed as the
sum of one time costs (e.g., rental or capital amortization costs of individual vehicles)
that is proportional to the size of the vehicle fleet, and/or recurring costs (e.g., fuel,
labor or insurance costs) that is proportional to the total distance or duration traveled by
individual vehicles.

The most widely studied variant of the vehicle routing problem is the Capacitated Vehicle
Routing Problem (CVRP) [176]. The CVRP aims to determine the optimal delivery of
goods from a depot to a set of customers using capacity-constrained vehicles. Tradi-
tionally, the literature on the CVRP makes two simplifying assumptions: (i) the vehicle
fleet is assumed to be homogeneous, fixed and stationed at a single depot, and (ii) the
problem data, such as customer demands and transportation costs, are assumed to be
precisely known when the problem is to be solved.

The aforementioned assumptions are often difficult to justify in practice. First, the vehicle
fleet is rarely homogeneous in most practical applications. We refer the reader to [151]
who provide an excellent overview of practical aspects of fleet sizing and dimensioning
that arise in real industrial applications. The authors argue that a vehicle fleet that is
acquired over a long period of time is often heterogeneous not only because the acquired
vehicles inherently have different physical characteristics, but also because they develop
different characteristics over their lifetimes (e.g., operating, maintenance and insurance
costs vary depending on the level of depreciation and usage). Moreover, distributors
typically want a diverse vehicle fleet, both due to operational constraints (e.g., physical
dimensions or compatibility constraints that restrict access of certain vehicles to certain
areas) as well as the inherent benefits of owning a versatile fleet.

Second, the assumption of deterministic problem data is unrealistic. Indeed, the pa-
rameters of a vehicle routing problem are often subject to significant uncertainty, and
their precise values are often only observed gradually during the execution of the trans-
portation plan. For example, travel and service times can vary due to unforeseen events
such as bad weather, mechanical breakdowns or traffic congestion. Similarly, customer
demands fluctuate from day to day and in fact, they may be uncertain even at the time
when the vehicles are to be dispatched. The motivation for taking into account this
uncertainty is particularly strong when making strategic or tactical fleet composition
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decisions. This is because, on the one hand, operational parameters such as customer
demands and travel times are often not known with certainty at the strategic level when
the fleet composition is to be decided. On the other hand, these long-term decisions often
involve significant amounts of capital investment; therefore, when customer demand is
higher than expected, external vehicle fleets must be leased over a short-term operational
horizon, which is also costly.

The goal of this chapter is to lift the aforementioned assumptions of fixed, homogeneous
fleets and deterministic parameters in vehicle routing problems. In particular, we study
a generalization of the CVRP, known as the Heterogeneous Vehicle Routing Problem
(HVRP), and focus our attention to problem settings where the customer demands
are subject to uncertainty. The HVRP model is very powerful, since it subsumes a
number of other problem variants, including but not limited to, the Fleet Size and Mix
and Multi-Depot Vehicle Routing Problems. The HVRP model was introduced in the
seminal work of [134], and since then, several papers have studied this problem. A
recent, comprehensive literature review of the HVRP and its numerous variants, solution
algorithms and applications can be found in [156, 170]. Among the 150 or so works
reviewed in these papers, only a single work [250] has attempted to address the effect of
uncertainty.

2.1.1 Our Contributions

In this chapter, we study the modeling and solution of the robust HVRP under customer
demand uncertainty. The goal is to determine a single set of vehicle routes and asso-
ciated fleet composition such that the total demand served on any route is less than
the associated vehicle capacity, under any realization of the demands in a prespecified
uncertainty set. Our work generalizes those of [137, 138] for the robust CVRP along
multiple directions. First, our work addresses not only the CVRP, but also all variants
of the HVRP and the Fleet Size and Mix vehicle routing problem that have been con-
sidered in the literature, as well as the Site Dependent and Multi-Depot vehicle routing
problems. Second, we consider three new families of practically-relevant uncertainty sets
in addition to the two considered in [137, 138] and discuss how each of these five sets
can be constructed using historical data. While these sets are well known in the robust
optimization community, they seem to be new in the context of vehicle routing.

Finally, we develop robust versions of classical local search moves. Specifically, we present
data structures that allow efficient evaluation of the local moves and establish time and
storage complexities of updating these structures. The proposed local search is both
modular and efficient: on the one hand, it can be incorporated into any metaheuristic
algorithm; on the other hand, its computational complexity is similar to that for the
deterministic problem. We also present a robust integer programming model that pro-
vides lower bounds on the optimal solution and allows us to quantify the quality of the
heuristic solutions. We elucidate, via an extensive computational study, the computa-
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tional overhead of incorporating robustness, the quality of the lower bounds from the
exact algorithm, as well as the tradeoff between robustness and costs for the considered
uncertainty sets.

2.2 robust heterogeneous vehicle routing

An undirected graph G = (V, E) with nodes V = {0, 1, . . . , n} and edges E is given. The
node 0 ∈ V represents the depot, whereas each node i ∈ VC := V \ {0} represents a
customer with demand qi ∈ R+. The depot is equipped with a heterogeneous fleet of
vehicles, which is composed of a set K = {1, . . . , m} of m different vehicle types. For each
type k ∈ K, mk vehicles are available, each of which has capacity Qk. Furthermore, each
vehicle of type k ∈ K incurs a fixed cost fk ∈ R+ if it is used and a routing cost cijk ∈ R+ if
it traverses the edge (i, j) ∈ E.

A route is a simple cycle in G that passes through the depot. We represent a route by
R =

(
r1, . . . , r|R|

)
, where rl ∈ VC represents the lth customer and |R| the number of

customers visited on route R. We use the notation i ∈ R to indicate that customer i is
visited on route R, that is, i = rl for some l ∈ {1, . . . , |R|}. If route R is performed by a
vehicle of type k ∈ K, then a cost equal to the sum of the routing costs and fixed cost
associated with that vehicle type is incurred, namely c(R, k) = fk + ∑|

R|
l=0 crlrl+1k, where

we have defined r0 = r|R|+1 = 0.

When the customer demands are known precisely, a set of routes R = (R1, . . . , RH) in
conjunction with a fleet composition vector κ = (κ1, . . . , κH) is said to define a feasible
HVRP solution (R,κ) if and only if the following conditions are satisfied:

(C1) The routes R1, . . . , RH partition the customer set VC. In other words, each customer
is visited on exactly one route.

(C2) The number of routes performed by vehicles of type k does not exceed their
available number, that is, ∑H

h=1 I[κh = k] ≤ mk for all k ∈ K, where I[E ] is the
indicator function that evaluates to 1 if the expression E is true and 0 otherwise.

(C3) The capacities of all vehicles are respected, that is, ∑i∈Rh
qi ≤ Qκh for all h ∈

{1, . . . , H}.
The cost of a feasible solution is defined to be the sum of the costs of its individual
routes, c (R,κ) = ∑H

h=1 c(Rh, κh). The goal of the HVRP is then to determine a feasible
solution of minimum cost.

The HVRP model generalizes several VRP variants that have been studied in the litera-
ture [29]. The distinguishing characteristics these variants are summarized in Table 2.1.

1. The classical Capacitated VRP (CVRP), in which a homogeneous fleet of v vehicles
of identical capacity Q are available at a central depot. The HVRP reduces to the
CVRP if we set m = 1, m1 = v, Q1 = Q and f1 = 0 (i.e., there are no fixed costs
associated with the vehicles).
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2.2 robust heterogeneous vehicle routing

2. The HVRP with no fixed costs ( fk = 0 for all k ∈ K) but with vehicle-dependent
routing costs, commonly denoted as the HVRPD.

3. The Fleet Size and Mix VRP with fixed costs, vehicle-dependent routing costs and
in which an unlimited number of vehicles of each type is available (mk = n for all
k ∈ K), commonly denoted as FSMFD.

4. The Fleet Size and Mix VRP with fixed costs, vehicle-independent routing costs
(cijk1 = cijk2 for all (k1, k2) ∈ K × K and (i, j) ∈ E) and in which an unlimited
number of vehicles of each type is available (mk = n for all k ∈ K), commonly
denoted as FSMF.

5. The Fleet Size and Mix VRP with no fixed costs ( fk = 0 for all k ∈ K), vehicle-
dependent routing costs and in which an unlimited number of vehicles of each type
is available (mk = n for all k ∈ K), commonly denoted as FSMD.

6. The Site Dependent VRP (SDVRP), in which each customer site i ∈ VC can only be
visited by a subset of vehicle types Ki ⊆ K, representing site-specific constraints.
There are no fixed costs ( fk = 0 for all k ∈ K) and the routing costs are vehicle-
independent but site-dependent. In other words, the routing costs are defined as
follows (where we have defined K0 = K):

cijk =

ĉij if k ∈ Ki ∩ Kj,

+∞ otherwise,
∀(i, j) ∈ E.

7. The Multi-Depot CVRP (MDVRP), in which a homogeneous fleet of vehicles are
stationed at m distinct depots. The vehicle capacities are identical (Qk = Q for
all k ∈ K), their number is unlimited (mk = n for all k ∈ K) and there are no
fixed costs associated with their use ( fk = 0 for all k ∈ K). The routing costs are
vehicle-independent and are represented by a (n + m) × (n + m) cost matrix ĉ,
where ĉn+k j represents the routing cost along the edge connecting the kth depot
and customer j ∈ VC, for all k ∈ K. In other words, we have:

cijk =

ĉn+k j if i = 0,

ĉij otherwise,
∀(i, j) ∈ E, ∀k ∈ K.

In practice, it is often the case that the customer demands are not known precisely when
the vehicles are to be dispatched. In such cases, one option is to replace the unknown
demands by their ‘nominal’ values (e.g., by considering a historical sample average) and
solve the original deterministic model. Unfortunately, this would often lead to situations
in which the constructed vehicle routes ‘fail’ during their execution (e.g., the vehicles
might exceed their carrying capacity in a pickup problem or fail to deliver the demanded
quantity in a delivery problem), particularly in situations that deviate from the nominal.
To prevent the occurrence of such situations, we adopt a robust optimization approach
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2.2 robust heterogeneous vehicle routing

Table 2.1: Distinguishing characteristics of the problem variants studied in the literature.

Variant Vehicle fleet Fleet size Fixed costs Routing costs

CVRP Homogeneous Limited Ignored Independent

HVRPFD Heterogeneous Limited Considered Dependent

HVRPD Heterogeneous Limited Ignored Dependent

FSMFD Heterogeneous Unlimited Considered Dependent

FSMD Heterogeneous Unlimited Considered Independent

FSMF Heterogeneous Unlimited Ignored Dependent

SDVRP Heterogeneous Limited Ignored Dependent

MDVRP Homogeneous Unlimited Ignored Dependent

and assume that the customer demands can take any values from an uncertainty set
Q ⊆ Rn

+. This uncertainty set should be chosen in a way that reflects the decision-
maker’s a priori confidence regarding the possible values that the customer demands may
take. Whenever historical data is available, as is the case in practice, statistical models
can be used to explicitly parameterize the size and shape of the uncertainty set over this
a priori confidence level. We shall revisit this matter in Section 2.3. For now, we shall only
assume, without loss of generality, that the uncertainty set is a non-empty, closed and
bounded subset of Rn

+.

For a given choice of the uncertainty set Q, the goal in the robust HVRP is to determine a
robust feasible solution of minimum cost. The solution (R,κ) is said to be robust feasible
if and only if it satisfies conditions (C1), (C2) and (D3).

(D3) The capacities of all vehicles are respected under any realization of the customer
demands from the uncertainty set, that is, ∑i∈Rh

qi ≤ Qκh for all h ∈ {1, . . . , H} and
all q ∈ Q.

By construction, the condition (D3) is equivalent to verifying if max
q∈Q

∑i∈Rh
qi ≤ Qκh is

satisfied for each route h ∈ {1, . . . , H}. In other words, the total load carried by any
vehicle must be less than its capacity under the worst-case realization of the customer
demands from the uncertainty set Q. Efficiently evaluating the worst-case load, and
hence, verifying condition (D3), is key to developing efficient (exact and heuristic)
algorithms for the robust HVRP. The efficient computation of the worst-case load is the
subject of the next section, whereas its integration into heuristic and exact methods is
discussed in Sections 2.4 and 2.5, respectively.
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2.3 efficient computation of the worst-case load

2.3 efficient computation of the worst-case load

Given a vehicle route R, we define its worst-case load as the optimal value of the following
problem:

max
q∈Q ∑

i∈R
qi. (2.1)

First, note that we can assume, without loss of generality, that the uncertainty set Q is
convex. This is because the objective function of problem (2.1) is linear and therefore,
we can equivalently replace the feasible region Q with its convex hull. Therefore, in
general, computing the worst-case load of a route requires the solution of a convex
optimization problem. Even if Q is a polyhedron, say in N dimensions and described by
M inequalities, then computing an optimal solution of problem (2.1) requires O(MN2)

arithmetic operations using interior point methods [62].

As we shall see later in Sections 2.4 and 2.5, this is extremely slow when used in the
context of a heuristic or an exact method where hundreds or even thousands of routes
are constructed every second, and their associated worst-case loads must be computed
in order to verify if condition (D3) is satisfied. It would be impractical to call a general-
purpose convex optimization solver to solve problem (2.1) in such cases. Furthermore, the
successive routes constructed by a heuristic method differ only marginally; therefore, if
we know the worst-case load of a route R, then we would like to compute the worst-case
load of routes R′ which are “almost similar” to R with minimal additional effort. It is
not clear how this can be achieved using a general-purpose solver.

Fortunately, it can be shown that the worst-case load can be efficiently computed for a
broad class of popular but practically-relevant uncertainty sets. Section 2.3.1 elaborates
on the structure of these sets, while Section 2.3.2 illustrates how the worst-case load can
be efficiently in such cases.

2.3.1 Uncertainty Sets

We note that if the uncertainty set is rectangular; that is, Q = {q1 : q ∈ Q} × . . .× {qn :
q ∈ Q}, then the optimal solution of problem (2.1) is attained when each customer
demand attains its worst realization individually (defined as q̄i = max{qi : q ∈ Q}),
irrespective of the other customer demands. However, this is a very conservative choice
as it is unlikely that all customer demands will simultaneously attain their maximum
possible values. Therefore, we only consider those cases where the uncertainty set is not
rectangular.
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2.3 efficient computation of the worst-case load

2.3.1.1 Budget sets

Consider the uncertainty set of the following form (see also Figure 2.1):

QB =

{
q ∈ [q, q̄] : ∑

i∈Bl

qi ≤ bl ∀l ∈ {1, . . . , L}.
}

(2.2)

This uncertainty set is formed by intersecting the n-dimensional hyperrectangle [q, q̄]
with the L ∈N budget constraints involving customer subsets Bl ⊆ VC. The lth budget
constraint imposes a limit bl ∈ R+ on the cumulative demand of the customers in the
set Bl . Observe that, by setting bl = ∑i∈Bl

q
i
, for all l ∈ {1, . . . , L}, the uncertainty set

reduces to a singleton QB = {q}, whereas by setting bl = ∑i∈Bl
q̄i, the uncertainty set

becomes the n-dimensional hyperrectangle [q, q̄]. To exclude empty sets, we shall assume,
without loss of generality, that q ≤ q̄ and ∑i∈Bl

q
i
≤ bl .

q1

q2

q3

Figure 2.1: Example of a budget uncertainty set with L = 3 budget constraints.

The budget set QB reflects the belief that the customer demand qi can individually
vary between q

i
and q̄i, but the cumulative customer demand over various subsets

cannot exceed a certain limit. Intuitively, this belief is rooted in the fact that unless the
customer demands exhibit perfect correlations, it is unlikely that they will attain their
maximum values simultaneously. Statistically, budget sets are motivated from limit laws
of probability, such as the central limit theorem. Indeed, if the customer demands are
independent random variables with means q0

i and variances σ2
i , for i ∈ VC, then under

mild technical conditions, the Lyapunov central limit theorem implies that for sufficiently
large |Bl |, the sum of the normalized customer demands in the set Bl converges in
distribution to a standard normal random variable. Stated differently, the inequality

∑
i∈Bl

qi ≤ ∑
i∈Bl

q0
i + Φ−1(γ)sl , where s2

l = ∑
i∈Bl

σ2
i ,

is satisfied with probability γ ∈ (0, 1), where Φ−1(·) denotes the inverse cumulative
distribution function of the standard normal random variable. One can verify that
this inequality can be incorporated as a budget constraint in the uncertainty set QB.
Thus, we can use standard statistical tools to estimate q0

i and σ, and control the size of
the uncertainty set using the probability level γ. The shape of the uncertainty set can
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2.3 efficient computation of the worst-case load

be controlled by selecting appropriate customer subsets Bl . For example, these could
represent geographical regions such as municipalities, counties or states.

In the most general case, computing the worst-case load (2.1) for the budget uncertainty
set amounts to solving a fractional packing problem, for which a (1 + ε)-approximate
solution can be computed in O(ε−2Ln) time, assuming L ≥ n [274]. A much more
efficient computation of the worst-case load is possible if we make the additional
assumption that the customer subsets Bl are pairwise disjoint, that is, Bl ∩ Bl′ = ∅ for
all l 6= l′. In the remainder of the chapter, we shall therefore assume that this additional
requirement is satisfied.

2.3.1.2 Factor models

Consider the uncertainty set of the following form (see also Figure 2.2):

QF =
{

q ∈ Rn : q = q0 + Ψξ for some ξ ∈ ΞF
}

, where ΞF =
{

ξ ∈ [−1, 1]F :
∣∣e>ξ

∣∣ ≤ βF
}

.

(2.3)

Here, q0 ∈ Rn
+, F ∈N, Ψ ∈ Rn×F and β ∈ [0, 1] are parameters that need to be specified

by the modeler. Note that e ∈ RF denotes the vector of ones.

q1

q2

q3

q0

Figure 2.2: Example of a factor model uncertainty set with F = 2 factors.

The uncertainty set (2.3) stipulates that the unknown customer demands q are distributed
around a nominal demand vector q0, subject to an additive disturbance of Ψξ. This
disturbance is a linear combination of independent factors ξ1, . . . , ξF that reside in the
F-dimensional hypercube. Typically, one has F � n, so that the linear operator Ψ
allows us to model correlations in the (possibly high dimensional space of) customer
demands through correlations in the low-dimensional space of the factors. The matrix
Ψ is also known as the factor loading matrix and whenever historical data is available, it
can be constructed using statistical tools such as principal components analysis or factor
analysis. The constraint

∣∣e>ξ
∣∣ ≤ βF reflects the belief that not all of the independent

factors can simultaneously attain their extreme values. For example, setting β = 0 will
enforce that as many factors will be above 0 as there will be below 0, and the resulting
factor model has also been referred to as “zero-net-alpha adjustment” in portfolio
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optimization [76]. Similarly, setting β = 1 will reduce ΞF to an F-dimensional hypercube.
In general, whenever historical data is available, an appropriate value of β can be chosen
by combining a central limit law or tail bound with an a priori confidence level, as
discussed in Section 2.3.1.1.

2.3.1.3 Ellipsoidal sets

Consider the uncertainty set of the following form (see also Figure 2.3):

QE =
{

q ∈ Rn : q = q0 + Σ1/2ξ for some ξ ∈ ΞE

}
, where ΞE =

{
ξ ∈ Rn : ξ>ξ ≤ 1

}
.

(2.4)

Here, q0 ∈ Rn
+ and Σ ∈ Sn

+ are parameters that need to be specified by the modeler,
and Sn

+ denotes the cone of symmetric positive semidefinite matrices. Whenever Σ
is a diagonal matrix, we shall refer to the resulting uncertainty set as an axis-parallel
ellipsoidal set.

q1

q2

q0
q1

q2

q0

Figure 2.3: Example of an axis-parallel (left) and general (right) ellipsoidal set.

The uncertainty set (2.4) stipulates that the customer demands can only attain values in
an ellipsoid centered around a nominal demand vector q0. We note that if the matrix Σ
is singular, then this ellipsoid is degenerate. Otherwise, the set QE can be equivalently
represented as follows:

QE =
{

q ∈ Rn :
(
q− q0)> Σ−1 (q− q0) ≤ 1

}
.

This uncertainty set reflects the belief that the customer demand vector q is a multivariate
normal random variable with (unknown) mean µ and (unknown) covariance matrix Σtrue.
The resulting ellipsoid can therefore be identified as a confidence region for the unknown
mean µ. Stated differently, suppose D > n records of historical data are available, and q0

and Σ denote the associated sample mean and (unbiased) sample covariance, respectively.
Then, the inequality,(

µ− q0)> Σ−1(µ− q0) ≤ n
D− n

D− 1
D

H−1
n;D−n(γ),

is satisfied with probability γ ∈ (0, 1), where H−1
n;D−n denotes the inverse cumulative

distribution function of the F-distribution with parameters n and D− n. Thus, we can
control the size of the ellipsoidal uncertainty set using the probability level γ.
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2.3.1.4 Cardinality-constrained sets

Consider the uncertainty set of the form (see also Figure 2.4):

QG =
{

q ∈ [q0, q0 + q̂] : q = q0 + (q̂ ◦ ξ) for some ξ ∈ ΞG
}

,

where ΞG =
{

ξ ∈ [0, 1]n : e>ξ ≤ Γ
}

.
(2.5)

Here, q0 ∈ Rn
+, q̂ ∈ Rn

+ and Γ ∈ [0, n] are parameters that need to be specified by the
modeler. Note that e ∈ Rn denotes the vector of ones and (q̂ ◦ ξ) ∈ Rn denotes the
Hadamard product between vectors q̂ and ξ; that is, (q̂ ◦ ξ)i = q̂iξi for all i = 1, . . . , n.

q1

q2

q3

q0

q1

q2

q3

q0

Figure 2.4: Example of a cardinality-constrained set with Γ = 1 (left) and Γ = 2 (right).

The uncertainty set stipulates that each customer demand qi can deviate from its nominal
value q0

i by up to q̂i. However, the total number of demands that can simultaneously
deviate from their nominal values is bounded by dΓe; of these, bΓc customer demands
can maximally deviate up to q̂ while one customer demand can deviate up to (Γ− bΓc)q̂i.
For example, if we set Γ = 0, then the uncertainty set reduces to a singleton QG =

{q0}, whereas if we set Γ = n, then the uncertainty set becomes the n-dimensional
hyperrectangle [q0, q0 + q̂]. Observe that ΞG is the convex hull of the set

{
ξ ∈ [0, 1]n :

‖ξ‖0 ≤ Γ
}

, where ‖ξ‖0 counts the number of non-zero elements in ξ. Therefore, the
inequality e>ξ ≤ Γ may be interpreted as constraining the number of elements which may
simultaneously deviate from their nominal values, which explains the name “cardinality-
constrained”. This uncertainty set was originally proposed in [57] and is also popularly
referred to as a “budgeted” or “gamma” uncertainty set.

Using a similar argument as in [57], it can be shown that if the demand of each cus-
tomer i ∈ VC is a symmetric and bounded random variable q̃i that takes values in[
q0

i − q̂i, q0
i + q̂i

]
, then the actual worst-case load of any route R satisfies

Probability

(
∑
i∈R

q̃i ≤ max
q∈QG

∑
i∈R

qi

)
≥ 1− exp(−Γ2/2n).

In other words, if up to Γ customer demands actually deviate from their nominal values,
then the actual worst-case load of route R is bounded by the quantity max

q∈QG
∑i∈R qi,
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whereas even if more than Γ customer demands deviate from their nominal values, then
the actual worst-case load is bounded with very high probability. We note that a tighter
probabilistic bound has been established in [57]. In practice, one can use any of these
bounds to determine a suitable value of Γ.

2.3.1.5 Discrete sets

Consider the uncertainty set of the following form (see also Figure 2.5):

QD = conv
{

q(j) : j = 1, . . . , D
}

, (2.6)

where conv(·) denotes the convex hull of a finite set of points. Here, q(1), . . . q(D) ∈ Rn
+

are D ∈ N distinct realizations of the uncertain customer demands that need to be
specified by the modeler.

q1

q2

Figure 2.5: Example of a discrete uncertainty set with D = 15 data points.

The uncertainty set stipulates that the customer demands will take values inside the
convex hull of D a priori specified demand vectors in n-dimensional space. This set is
expected to be meaningful only if sufficient historical records are available; that is, if D
is sufficiently large. However, care must be taken to discard statistical outliers in order
to avoid becoming overly risk-averse. More generally, one may want to consider only a
small subset of all historically observed realizations by uniformly sampling a fraction
γ ∈ (0, 1) of the available realizations.

2.3.2 Closed-Form Expressions of the Worst-Case Load

The key result of this section is that the worst-case load of a vehicle route can be
computed in closed-form for each of the five classes of uncertainty sets described in the
previous section. This formalized in Proposition 2.1.

Proposition 2.1. Suppose R is a given route and S ⊆ VC is the set of customers visited on R.
Then, the worst-case load of route R over the uncertainty sets QB, QF, QE, QG and QD is as
follows.
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Table 2.2: Closed-form expressions of the worst-case load of a vehicle route.

Q max
q∈Q ∑

i∈R
qi

QB ∑
i∈S

q̄i −
L

∑
l=1

max

{
0, ∑

i∈S∩Bl

(
q̄i − q

i

)
−
(

bl − ∑
i∈Bl

q
i

)}
(2.7)

QF ∑
i∈S

q0
i −min

{
F

∑
f=1

∑
i∈S

Ψi f − λ + βF |λ| : λ ∈
{

0, ∑
i∈S

Ψi f`+ , ∑
i∈S

Ψi f`−

}}
,

(2.8)
where f1, . . . fF represents an ordering of the factors such that ∑

i∈S
Ψi f1 ≥ . . . ≥ ∑

i∈S
Ψi fF ,

and `+ = d(1 + β)F/2e, `− = max{1, d(1− β)F/2e}.

QE ∑
i∈S

q0
i +

∥∥∥∥∑
i∈S

Σ1/2
i

∥∥∥∥
2
, (2.9)

where Σ1/2
i denotes the ith column of Σ1/2 and ‖·‖2 denotes the `2-norm of a vector.

QG ∑
i∈S

q0
i +

min{|S|,bΓc}
∑
`=1

q̂g` + λ, (2.10)

where g1, . . . g|S| represents an ordering of the customers in S such that q̂g1 ≥ . . . ≥ q̂g|S| ,
and λ = (Γ− bΓc) q̂gbΓc+1 , if |S| ≥ bΓc+ 1 and 0 otherwise.

QD max

{
∑
i∈S

q(d)i : d = 1, . . . , D

}
(2.11)

Proof. The validity of the expressions for Q = QB and Q = QF has been shown in [137].

Suppose that Q = QE. In this case, the worst-case problem (2.1) can be reformulated as
follows:

∑
i∈S

q0
i + max

ξ∈Rn

{
∑
i∈S

ξ>Σ1/2
i : ξ>ξ ≤ 1

}
.

The above maximization problem is a convex optimization problem that satisfies Slater’s
constraint qualification (e.g., 0 ∈ Rn is strictly feasible). Therefore, the Karush-Kuhn-
Tucker conditions are both necessary and sufficient to characterize its optimal solution.
This leads to expression (2.9).

Suppose that Q = QG. In this case, the worst-case problem (2.1) can be reformulated as
follows:

∑
i∈S

q0
i + max

ξ∈Rn
+

{
∑
i∈S

q̂iξi : ξi ≤ 1 ∀i = 1, . . . , n,
n

∑
i=1

ξi ≤ Γ

}
.

The above maximization problem is an instance of a fractional knapsack problem with
n items, each with unit weight; the value of item i is q̂iI[i ∈ S]. It is well known (e.g.,
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see [97]) that this problem can be solved by a greedy algorithm that considers the items
in non-increasing order of their values per unit weight, i.e., in non-increasing order of
the q̂ values of the items in S. A straightforward application of this greedy algorithm
leads to expression (2.10).

Suppose now that Q = QD. Since QD is a bounded polytope and the objective function
of the worst-case problem (2.1) is linear, the optimal solution is attained at a vertex of
QD. This leads to expression (2.11) since the set of vertices of QD is a subset of the D
points that parametrize it.

Proposition 2.1 suggests that the worst-case load of a route can be computed much faster
by evaluating the associated closed-form expressions than by invoking a general-purpose
optimization solver. Furthermore, if we know the worst-case load of a route R that visits
a certain subset of customers S ⊆ VC, and we would like to calculate the worst-case load
of a route R′ that visits exactly one additional or fewer customer i ∈ VC, that is, if R′

visits S ∪ {i} or S \ {i}, then the worst-case load can be incrementally updated even faster
by using appropriate data structures. This is formalized in Proposition 2.2.

Proposition 2.2. The following time and storage complexities can be achieved for computing the
worst-case load of route that visits a set of customers S. Here, “incremental update” refers to the
complexity of updating the worst-case load when a single customer is added to or removed from S.

Table 2.3: Time and storage complexities for computing the worst-case load of a vehicle route.

Q From scratch Incremental update

Time Time Storage

QB O(|S|) O(1) O(L)

QF O(|S| F + F log F) O(F log F) O(F)

QE (axis-parallel) O(|S|) O(1) O(1)
QE (general) O(|S| n) O(n) O(n)
QG O(|S|) O(log(|S|))a O(n)b

QD O(|S|D) O(D) O(D)

a,b These can be optimized to O(log(Γ)) and O(Γ) respectively, if customers are only added to S.

Proof. • Consider Q = QB. The time complexity for the “from scratch” computation
follows directly from expression (2.7). To perform incremental updates, we store the
following quantities along with the customer set S: π = ∑i∈S q̄i, ρl = ∑i∈S∩Bl

(
q̄i − q

i

)
−(

bl −∑i∈Bl
q

i

)
for all l = 1, . . . , L, and z = maxq∈Q ∑i∈S qi. Initially, when S = ∅, we have

(π, ρl , z) = (0,−(bl−∑i∈Bl
q

i
), 0). Now, suppose that we would like to calculate the worst-

case load of a route visiting the customer set S′ = S∪{j}, where customer j participates in
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the budget lj; that is, j ∈ Blj . Then, we would perform the following O(1) update: πnew ←
πold + q̄j, ρnew

l ← ρold
l + (q̄j − q

j
), znew ← zold + (πnew − πold) − ([ρnew

lj
]+ − [ρold

lj
]+),

where [·]+ = max{·, 0}. If customer j does not participate in any budget, then we would
repeat the same steps except ρ is not updated. A similar update applies when S′ = S \ {j}
for some j ∈ S. We do not present this for the sake of brevity.

• Consider Q = QF. The time complexity for the “from scratch” computation follows
from the O(|S|) time to calculate ∑i∈S Ψi f for each of the F factors and the O(F log F)
time to compute the ordering f1, . . . , fF. To perform incremental updates, we store the
following quantities along with the customer set S: π = ∑i∈S q0

i , ρ f = ∑i∈S Ψi f for
all f = 1, . . . , F, and z = maxq∈Q ∑i∈S qi. Initially, when S = ∅, we have (π, ρ f , z) =

(0, 0, 0). Now, suppose that we would like to calculate the worst-case load of a route
visiting the customer set S′ = S ∪ {j}. Then, we would perform the following O(F log F)
update: πnew ← πold + q0

j , ρnew
f ← ρold

f + Ψj f for each f = 1, . . . , F, and znew ← πnew +

∑F
f=1 ξwc

f ρnew
fF

, where f1, . . . , fF is an ordering of the factors according to ρ f1 ≥ . . . ≥ ρ fF

and ξwc ∈ ΞF is defined by computing M = ∑F
f=1 I[ρnew

f ≥ 0] and N = F−M, and then:

Check F′ τ ς ξwc

M ≥ N M− N

b(F′ − bβF′c)/2c bβF′c+ τ

(eN , eς,−eτ ,−eN) if ς + τ = F′

(eN , eς, βF− bβFc,−eτ ,−eN) if ς + τ 6= F′

M < N N −M
(eM, eτ ,−eς,−eM) if ς + τ = F′

(eM, eτ ,−βF + bβFc,−eς,−eM) if ς + τ 6= F′

Here, edim denotes the vector of ones in Rdim. A similar update applies when S′ = S \ {j}
for some j ∈ S.

• Consider Q = QE, where QE is axis-parallel; that is, Σ = diag(σ2
1 , . . . , σ2

n) is a diagonal

matrix. In this case, the expression (2.9) simplifies to ∑i∈S q0
i +

√
∑i∈S σ2

i , which can be
computed in O(|S|) time. To perform incremental updates, we store the following quan-
tities along with the customer set S: π = ∑i∈S q0

i , ρ = ∑i∈S σ2
i and z = maxq∈Q ∑i∈S qi.

Initially, when S = ∅, we have (π, ρ, z) = (0, 0, 0). Now, to calculate the worst-case load
of a route visiting the customer set S′ = S ∪ {j}, we would perform the following O(1)
update: πnew ← πold + q0

j , ρnew ← ρold + σ2
j , znew ← πnew +

√
ρnew. A similar update

applies when S′ = S \ {j} for some j ∈ S.

• Consider now Q = QE, where Σ is a general matrix. In this case, expression (2.9)

can be written as ∑i∈S q0
i +

√
∑n

j=1

(
∑i∈S Σ1/2

ij

)2
, which can be computed in O(|S| n)

time. To perform incremental updates, we store the following quantities along with the
customer set S: π = ∑i∈S q0

i , ρl = ∑i∈S Σ1/2
il for all l = 1, . . . , n, and z = maxq∈Q ∑i∈S qi.

When S = ∅, we have (π, ρl , z) = (0, 0, 0). To calculate the worst-case load of a route
visiting the customer set S′ = S ∪ {j}, we would perform the following O(n) update:

πnew ← πold + q0
j , ρnew

l ← ρold
l + Σ1/2

jl for all l = 1, . . . , n, znew ← πnew +
√

∑n
l=1
(
ρnew

l

)2.
A similar update applies when S′ = S \ {j} for some j ∈ S.
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2.4 robust local search and metaheuristics

• Consider Q = QG. An examination of expression (2.10) reveals that we do not need to
sort the customers in S with respect to their q̂ values. Instead, we only need to identify the
subset of customers with the (bΓc+ 1)th largest q̂ values. This can be achieved in O(|S|)
time with a partition-based selection algorithm such as quickselect with an appropriate
pivoting strategy (e.g., see [90]). To perform incremental updates, we store the following
quantities along with the customer set S: π = ∑i∈S q0

i , s = min{|S| , bΓc}, array h+ =

[q̂g1 , . . . , q̂gs ] implemented as a binary min-heap, array h− = [q̂gs+2 , . . . , q̂g|S| ] implemented
as a binary max-heap, ρ+ = sum of entries of h+, ρ0 = q̂gs+1 , and z = maxq∈Q ∑i∈S qi.
Define h− = ∅ if |S| ≤ bΓc + 1 and ρ0 = 0 if s + 1 > |S|. When S = ∅, we have
(π, s, h+, h−, ρ+, ρ0, z) = (0, 0, ∅, ∅, 0, 0, 0). To calculate the worst-case load of a route
visiting the customer set S′ = S ∪ {j}, we perform the following updates: if sold < bΓc,
then snew ← sold + 1, hnew

+ ← hold
+ .insert(q̂j), ρnew

+ ← ρold
+ + q̂j; else if q̂j ≤ ρ0, then

hnew
− ← hold

− .insert(q̂j); else if q̂j < min(hold
+ ), then ρnew

0 ← q̂j, hnew
− ← hold

− .insert(ρold
0 );

else, hnew
+ ← hold

+ .delete(min(hold
+ )).insert(q̂j), ρnew

+ ← ρold
+ + q̂j −min(hold

+ ), ρnew
0 ←

min(hold
+ ) and hnew

− ← hold
− .insert(ρold

0 ). In all cases, we also update πnew ← πold + q0
j

and znew ← πnew + ρnew
+ + (Γ− bΓc)ρnew

0 . The overall time complexity is O(|S|) and is
dictated by the insertion and deletion operations in the heaps h+ and h−. Note that h−
was not used in determining the value of z. In fact, it is used only when updating the
worst-case load after a deletion has occurred. If the quantities are maintained only by
the addition of elements into initially empty structures, then h+ is sufficient and since its
size is at most bΓc, the overall time and storage complexities would be O(log(Γ)) and
O(Γ) respectively.

• Consider now Q = QD. The time complexity for the “from scratch” computation
follows directly from expression (2.11). To perform incremental updates, we store the
following quantities along with the customer set S: ρd = ∑i∈S q(d)i for all d = 1, . . . , D, and
z = maxq∈Q ∑i∈S qi. When S = ∅, we have (ρd, z) = (0, 0). To calculate the worst-case
load of a route visiting the customer set S′ = S ∪ {j}, we would perform the following
O(D) updates: ρnew

d ← ρold
d + q(d)j for all d = 1, . . . , D, znew ← max

{
ρnew

d : d = 1, . . . , D
}

.
A similar update applies when S′ = S \ {j} for some j ∈ S.

2.4 robust local search and metaheuristics

The vast majority of metaheuristics for solving large-scale instances of (deterministic)
vehicle routing problems are all based on local search. Section 2.4.1 illustrates how the
results from the previous section allow us to efficiently extend local search to the robust
setting. This robust version of local search can then be incorporated in a modular fashion
into any metaheuristic algorithm. To illustrate this, Section 2.4.2 provides details on
an Iterated Local Search (ILS) metaheuristic, while Section 2.4.3 provides details on an
Adaptive Memory Programming (AMP) metaheuristic.
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2.4.1 Robust Local Search

The basis of all local search methods is the repeated use of a set of elementary moves that
transform a current solution (R,κ) into a different, neighbor solution. The set of all solutions
that can be reached from the current one using a set Y of moves is called the neighborhood
of the current solution with respect to the move set, ΩY (R,κ). The two major building
blocks of all local search methods are therefore, the definition of the neighborhoods, and
the exploration of the neighborhoods using a search algorithm. The following paragraphs
describe some classical node-exchange and edge-exchange neighborhoods that involve the
deletion and re-insertion of nodes or edges [1, 120]. We note however, that our results
readily generalize to other neighborhoods as well (e.g., λ-interchange, ejection chains
etc.).

relocate neighborhood. The classical relocate neighborhood (also known as 1-0
relocate) consists of the set Ωrel (R,κ) of all solutions that can be obtained by relocating
a single customer from its current position in R to a new position. If the new position
lies on the same route as the current one, then the corresponding move is known as an
intra-route relocate move, whereas if the new position lies on a different route, then it is
referred to as an inter-route relocate or shift(1,0) move, see Figure 2.6. The size of this
neighborhood |Ωrel (R,κ)| is O(n2).

Figure 2.6: Example of an inter-route relocate move.

exchange neighborhood. The exchange neighborhood consists of the set
Ωexch (R,κ) of all solutions that can be obtained by swapping the positions of two
distinct customers in R. If the two customers lie on the same route, then the move is
known as an intra-route exchange move, whereas if they lie on a different route, then it
is referred to as an inter-route exchange or swap(1,1) move, see Figure 2.6. The size of
this neighborhood is also O(n2).

2-opt neighborhood. The 2-opt neighborhood consists of the set Ω2-opt (R,κ) of
all solutions that can be obtained by deleting two non-adjacent edges in R and replacing
them with two other edges. If the two deleted edges lie on the same route, then the
move is known as an intra-route 2-opt, whereas if they lie on a different route, then it is
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Figure 2.7: Example of an intra-route exchange move.

referred to as an inter-route 2-opt or cross or 2-opt? move, see Figure 2.6. The size of this
neighborhood is also O(n2).

Figure 2.8: Example of an inter-route 2-opt move.

The goal of a local search algorithm is to efficiently explore the given set of neighborhoods
to find improving neighbor solutions, i.e., solutions (R′,κ′) that are better than the current
one (R,κ). To formalize what we mean by “better”, we shall define the total penalized
cost of a solution, c̄ (R,κ), as the weighted sum of its transportation costs and worst-case
vehicle capacity violations:

c̄ (R,κ) = c (R,κ)+ ϕQ p (R,κ) = c (R,κ)+ ϕQ
H

∑
h=1

max

{
0, max

q∈Q ∑
i∈Rh

qi −Qκh

}
, (2.12)

where ϕQ is a large penalty coefficient. Therefore, a neighbor solution (R′,κ′) is said to
be improving if c̄ (R′,κ′) < c̄ (R,κ). By making ϕQ sufficiently large, this is equivalent
to lexicographically comparing p (R′,κ′) < p (R,κ) and only if these are equal, then
comparing if c (R′,κ′) < c (R,κ). We note that by doing this, we allow local search
to handle also infeasible solutions. Specifically, if the initial solution to local search
(e.g., obtained via a construction heuristic) satisfies the visit constraints (C1) and fleet
availability constraints (C2) but not necessarily the vehicle capacity constraints (D3), then
the local search algorithm will first attempt to find a robust feasible neighbor solution.
Once such a neighbor solution is found, the local search does not reenter the infeasible
region, thereafter admitting only those neighbor solutions that are feasible.

The above observations imply that even if we restrict our attention to the aforementioned
neighborhoods, every iteration of local search involves evaluating the total penalized cost
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2.4 robust local search and metaheuristics

of O(n2) neighbor solutions to find at least one improving neighbor solution (R′,κ′).
While the evaluation of the transportation cost c (R′,κ′) can be done in constant time
(by simply updating the current value of c (R,κ)), the evaluation of its robust feasibility,
i.e., p (R′,κ′), is not trivial, since it amounts to the solution of an inner optimization
problem. As such, intra-route moves are trivial to evaluate since they only alter the
positions of customers within a route, and not the actual set of customers itself, so that
p (R′,κ′) = p (R,κ) in such cases. On the other hand, inter-route moves, which account
for the majority of postulated moves, require us to recalculate p (R′,κ′). Fortunately,
whenever the uncertainty set Q is one of the five classes of sets described in Section 2.3.1,
we can employ the data structures described in Proposition 2.2 to efficiently update the
worst-case load of the affected routes (often in constant or sublinear time), and hence
efficiently compute p (R′,κ′). Specifically, since each of the aforementioned inter-route
moves can be broken down into elementary additions and removals of customers, we
can incrementally update the current p(R, k) value of an affected route R to obtain the
updated p(R′, k′) value, using the result stated in Proposition 2.2.

In the context of the HVRP, efficient evaluation of solutions allows us to further generalize
the aforementioned neighborhoods to modify also the fleet composition vector κ in
addition to the routes R. Specifically, whenever the fleet size is unlimited, every inter-
route move also modifies the vehicle type κh of each affected route Rh. The goal is
to minimize the worst-case vehicle capacity violation, i.e., κh = arg mink∈K p(Rh, k); if
robust feasibility (p(Rh, k) = 0) is possible using at least one vehicle type k ∈ K, then the
goal is to minimize the transportation cost, i.e., κh = arg mink∈K {c(Rh, k) : p(Rh, k) = 0}.
In other words, the inter-route moves modify the vehicle type κh to the one that can
feasibly perform route Rh under all realizations of the uncertainty at minimum cost. On
the other hand, whenever the fleet size is limited, every inter-route move only exchanges
the vehicle types of the affected routes (if doing so can lower c̄ (R,κ)). This ensures that
the fleet availability condition (C2) is never violated.

The above modifications apply to all neighborhoods. In addition to these, we can also
generalize the definition of specific neighborhoods. For example, prior to exploring the
relocate neighborhood, we can add an empty route to the current solution. The vehicle
type of this empty route is one with the largest capacity for which it is possible to do
so without violating condition (C2). This allows the relocation of a customer to its own
route, thus further expanding the search space.

Finally, we note that it is also possible to generalize the total penalized cost function c̄
for specific HVRP variants (see Table 2.1). For example, to ensure that site dependencies
are always respected in the SDVRP, we can generalize c̄ to also include a penalty term
for site violations:

c̄S (R,κ) = c̄ (R,κ) + ϕSs (R,κ) = c̄ (R,κ) + ϕS
H

∑
h=1

max

{
0, ∑

i∈Rh

I[κh /∈ Ki]

}
,
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where ϕS is a large penalty coefficient. We note that the performance of the local search
algorithm does not depend critically on the chosen values of the penalty coefficients ϕQ

and ϕS as long as they are sufficiently large when compared to the transportation costs.

2.4.2 Iterated Local Search

Iterated Local Search (ILS), as the name implies, refers to the repeated application of
local search to a current solution. The current solution may either be generated from
scratch using a construction heuristic or by perturbing a locally optimal solution. We refer
the reader to [191] for an introduction to this subject. Our specific ILS implementation
for the robust HVRP is described in Algorithm 1.

Algorithm 1 Iterated local search.

Input: χ, η, ν, ζ, and δ (user-defined parameters)
1: Start timer t,

(
RB,κB)← (∅, ∅)

2: while t < tlim do
3: (R,κ)← Construct Solution(η) . Construction phase
4: (R,κ)← Tabu Search((R,κ) , ν, ζ)
5: if c̄ (R,κ) < c̄

(
RB,κB) then

(
RB,κB)← (R,κ) end if

6: counter← 0, (R′,κ′)← (R,κ) . Perturbation phase
7: while counter < χ do
8: (R,κ)← Perturb Solution((R,κ) , δ)
9: (R,κ)← Tabu Search((R,κ) , ν, ζ)

10: if c̄ (R,κ) < c̄
(
RB,κB) then

(
RB,κB)← (R,κ) end if

11: if c̄ (R,κ) < c̄ (R′,κ′) then
12: counter← 0
13: (R′,κ′)← (R,κ)
14: else
15: counter← counter + 1
16: end if
17: end while
18: end while
19: return

(
RB,κB)

Algorithm 1 consists of two phases: a construction phase (lines 3–5) and a perturbation
phase (lines 6–17). The construction phase first constructs an initial solution (line 3) and
then improves it using an efficient local search algorithm called tabu search (line 4). The
perturbation phase iteratively perturbs this solution (line 8) and improves it using tabu
search (line 9). The perturbation phase terminates if it fails to encounter a solution that is
better than the best one found in the current iteration (R′,κ′) for more than χ attempts
(line 7). The ILS algorithm terminates after a pre-specified time limit tlim is reached
(line 2), at which point the best encountered solution

(
RB,κB) is returned (line 19). The
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parameters η, ν, ζ and δ are used as inputs to the construction heuristic, tabu search and
perturbation mechanisms, respectively, which we describe next.

construction heuristic . The procedure Construct Solution(η) works by grad-
ually inserting customers into an initially empty solution. At any given iteration, an
empty route is first constructed for each vehicle type k ∈ K. To ensure that the fleet
availability constraint (C2) is satisfied, this is done only if the number of routes of vehicle
type k in the current partial solution is less than its available number mk. Assuming this
is the case, we keep adding unrouted customers to this route until it is no longer possible
to do so (i.e., either because all customers have been routed or because the capacity
condition (D3) would be violated). Specifically, all customers that can be potentially
added to the route are first inserted into a restricted candidate list; a random customer
is then selected from this list and inserted into the position that greedily minimizes
the corresponding insertion cost. In our implementation, the restricted candidate list
is cardinality-based and fixed to a pre-defined size η. The parameter η determines
the extent of randomization and greediness during the construction process. Based
on empirical evidence, a value of η ∈ [1, 10] appeared to work well in our numerical
experiments.

If a route was successfully constructed for at least one vehicle type, we select the
route R of vehicle type k for which the average cost per unit of carried load, defined
as c(R, k)/ maxq∈Q ∑i∈R qi, is minimized. If no route could be constructed, then any
remaining unrouted customer is inserted into an existing route (and corresponding
position) for which a randomly weighted sum of the capacity violation and insertion
cost is minimized. We remark that efficient computation of the average cost per unit of
carried load is enabled by the data structures described in Proposition 2.2.

tabu search . In principle, we can replace all calls to the Tabu Search((R,κ) , ν, ζ)

procedure by a simple local search algorithm that iteratively explores each pre-defined
neighborhood to determine an improving solution. However, doing so will result in
solutions that are only locally optimal with respect to the given neighborhoods, i.e., all
neighbor solutions (R′,κ′) ∈ ΩY (R,κ) in each of the pre-defined neighborhoods Y are
non-improving: c̄ (R′,κ′) ≥ c (R,κ). Tabu search [129] overcomes this shortcoming of
local search and enhances its performance in two important ways: (i) non-improving
moves are allowed, and (ii) improving moves may be disallowed. This enhancement is
achieved using a short term memory (also known as a tabu list) to keep track of the
most recently visited solutions in the search history and to prevent revisiting them for a
predefined number of local search iterations ν (the tabu tenure). Any potential solution
that has been visited within the last ν iterations is marked “tabu” (or forbidden) and
inserted into the tabu list, so that the algorithm does not cycle by repeatedly visiting the
same solutions. In fact, an admissible neighbor solution that is in the tabu list can be
visited only if certain aspiration criteria are met; specifically, the tabu status of a solution
is overridden only if it improves upon the best encountered solution. Moreover, the tabu
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search terminates if it performs ζ local search iterations without observing any further
improvement. Typical values for these parameters are ν ∈ [20, 40] and ζ ∈ [100, 500] and
in our implementation, we set ν = 30 and ζ = 500. Furthermore, we considered the set
of neighborhoods to be the (intra- and inter-route) 1-0 relocate, 1-1 exchange and 2-opt
neighborhoods. At each iteration, we randomly selected one of these neighborhoods
and traversed it in lexicographic order, applying pruning mechanisms based on both
feasibility and gain. The first improving neighbor solution replaced the current solution.
Since the size of each of these neighborhoods is O(n2), each iteration of tabu search itself
can take O(n2) time in the worst case, and its run time is largely dictated by the run
time of the local search algorithm described in the previous section.

perturbation mechanism . The procedure Perturb Solution((R,κ) , δ) attempts
to perturb the current solution (R,κ) such that the new solution cannot be encountered
by application of tabu search alone. In our implementation, we consider a perturbation
mechanism that first removes the route R of vehicle type k from the current solution
which has the maximum value of average cost per unit of carried load. In addition to this
route, the mechanism also removes any routes R′ that are “sufficiently close” to R, i.e.,
routes R′ for which distance(R, R′) := max(i,j)∈R×R′ cij < δ. Here, cij is any suitably
defined distance measure between customers i and j (e.g., geographical distance between
i and j), and in our implementation, we set cij = mink∈K cijk. If all routes R′ satisfy
distance(R, R′) ≥ δ, then the route R′′ which has the smallest distance to R is removed
from the current solution. All customers that were visited on the deleted routes are then
considered to be unrouted and are added back to the current partial solution using
the same greedy insertion procedure that was used in the construction heuristic. We
note that the parameter δ determines the extent of perturbation, with larger values of δ

corresponding to higher extents of perturbation.

2.4.3 Adaptive Memory Programming

Adaptive Memory Programming (AMP) is a metaheuristic that focuses on the exploitation
of strategic memory components. Based on the intuition that high-quality locally optimal
solutions share common features (e.g., common customer visiting sequences), AMP
attempts to exploit a set of long-term memories (in contrast to the short-term memory
used in tabu search) for the iterative construction of new provisional solutions. These
solutions are used to restart and intensify the search, while adaptive learning mechanisms
are applied to update the memory structures. We refer the reader to [92, 129] for a
general overview of this subject. Our specific AMP implementation for the robust HVRP
is described in Algorithm 2.

Algorithm 2 consists of two phases: an initialization phase (lines 2–7) and an exploitation
phase (lines 8–13). The initialization phase populates the reference set P with µ solutions
that are generated by first constructing an initial solution (line 3) and then improving it
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Algorithm 2 Adaptive Memory Programming.

Input: µ, η, ν, ζ, and θ (user-defined parameters)
1: Start timer t, P ← ∅,

(
RB,κB)← (∅, ∅)

2: while |P| < µ do . Initialization phase
3: (R,κ)← Construct Solution(η)
4: (R,κ)← Tabu Search((R,κ) , ν, ζ)
5: if c̄ (R,κ) < c̄

(
RB,κB) then

(
RB,κB)← (R,κ) end if

6: P ← P ∪ (R,κ)
7: end while
8: while t < tlim do . Exploitation phase
9: (R,κ)← Construct Provisional Solution(P , θ)

10: (R,κ)← Tabu Search((R,κ) , ν, ζ)
11: if c̄ (R,κ) < c̄

(
RB,κB) then

(
RB,κB)← (R,κ) end if

12: P ← Update Reference Set(P , (R,κ))
13: end while
14: return

(
RB,κB)

using tabu search (line 4). Once the initialization phase has completed, the exploitation
phase manipulates P by exploring search trajectories initiated using the provisional
solutions as starting points. Specifically, at each iteration of the exploitation phase, a
provisional solution is first constructed by identifying common features of the reference
solutions in P (line 9). This provisional solution is then further improved using tabu
search (line 10) and inserted into the reference set P (line 12). The AMP algorithm
terminates after a pre-specified time limit tlim is reached (line 8), at which point the
best encountered solution

(
RB,κB) is returned (line 14). The procedures Construct

Solution(η) and Tabu Search((R,κ) , ν, ζ) along with their associated parameters η, ν

and ζ are exactly the same as in ILS (see Algorithm 1). The parameters θ and µ are used
in the provisional construction and reference set update methods respectively, which we
describe next.

generation of provisional solutions . Provisional solutions are constructed
by identifying and combining elite components from the reference set P . We define an elite
component to be a route associated with a particular vehicle type whose edges appear
“sufficiently frequently” among the solutions in P . The overall procedure Construct

Provisional Solution(P , θ) works as follows. We first attempt to generate a route for
every vehicle type k ∈ K, assuming the number of routes of this type is less than mk
in the current solution. With probability θ, we construct a route using the members of
P , and with probability 1− θ, we use the mechanism outlined in the basic Construct

Solution(η) procedure. In the former case, we first assign a score to each route Rh =

(rh1, . . . , rh|R|) of vehicle type κh from the solution (R,κ) ∈ P as follows: score(Rh, κh) =

w (R,κ)∑|
R|

l=0 freq(rhl , rhl+1, k)I[rhl , rhl+1 /∈ current solution]. Here w (R,κ) refers to the
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weight of solution (R,κ) while freq(i, j, k) refers to the frequency with which edge
(i, j) ∈ E appears among all routes of vehicle type k. Specifically, these quantities are
defined as follows:

w (R,κ) =
max(R′,κ′)∈P c̄ (R′,κ′)− c̄ (R,κ)

max(R′,κ′)∈P c̄ (R′,κ′)−min(R′,κ′)∈P c̄ (R′,κ′)
,

freq(i, j, k) = ∑
(R′,κ′)∈P

H′

∑
h=1

I[κ′h = k]
|R′h|
∑
l=0

I[(r′hl , r′hl+1) = (i, j)].

The route R with the highest score is then determined to be the candidate route of
vehicle type k (after deleting those customers that have already been routed in the
current solution).

Among all generated routes, the candidate route of the vehicle type with the lowest value
of average cost per unit of carried load is then adopted in the current solution, and the entire
procedure repeats. At the end, if unrouted customers still remain, then they are inserted
into an existing route (and corresponding position) for which a randomly weighted sum
of the capacity violation and insertion cost is minimized, similar to the basic construction
heuristic. We recall that this is done so that the fleet availability constraints (C2) are
never violated.

reference set update method. In the initialization phase, the reference set P
is grown to contain up to µ different solutions. In the exploitation phase, the size of
P is kept constant by replacing older solutions with more recently encountered ones.
To ensure an appropriate balance between quality and diversity among the reference
solutions, the procedure Update Reference Set(P , (R,κ)) uses a simple rule that
replaces the worst solution (in terms of its total cost)

(
RW ,κW) whenever the candidate

solution to be inserted (R,κ) satisfies c̄ (R,κ) < c̄
(
RW ,κW).

2.5 robust integer programming model and branch-and-cut

The metaheuristic approaches described in the previous section determine high-quality
robust feasible solutions, in general. To precisely quantify the quality of these solutions
however, we need a lower bound on the optimal objective value of the robust HVRP. To
that end, Section 2.5.1 describes an integer programming (IP) formulation whose optimal
solution coincides with that of the robust HVRP, while Section 2.5.2 describes a branch-
and-cut algorithm for its solution. A lower bound on the optimal objective value can then
be obtained by recording the global lower bound of the associated branch-and-bound
tree after a given amount of time.
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2.5.1 Integer Programming Model

Our model is similar to the classical vehicle-flow formulation originally introduced in [180]
for the CVRP. The model uses binary variables yik to record if customer i ∈ VC is visited
by a vehicle of type k ∈ K and variables xijk to record if the edge (i, j) ∈ E is traversed
by a vehicle of type k ∈ K. To facilitate the description of the formulation, we define
Vk :=

{
i ∈ VC : maxq∈Q qi ≤ Qk

}
to be the subset of those customers that can be visited

by a vehicle of type k ∈ K under any customer demand realization q ∈ Q. For a given
S ⊆ Vk, we also define δk(S) to be the subset of all edges in E with one end point in S
and the other in Vk \ S. The complete formulation is as follows.

minimize
x,y ∑

k∈K
∑

i∈VC :(0,i)∈E
( fk/2)x0ik + ∑

k∈K
∑

(i,j)∈E
cijkxijk (2.13a)

subject to yik ∈ {0, 1} ∀i ∈ VC, ∀k ∈ K, (2.13b)

xijk ∈ {0, 1} ∀(i, j) ∈ E ∩ (VC ×VC), ∀k ∈ K, (2.13c)

x0ik ∈ {0, 1, 2} ∀i ∈ VC : (0, i) ∈ E, ∀k ∈ K, (2.13d)

∑
k∈K

yik = ∑
k∈K:i∈Vk

yik = 1 ∀i ∈ VC, (2.13e)

∑
j∈V:(i,j)∈E

xijk = 2yik ∀i ∈ VC, ∀k ∈ K, (2.13f)

∑
i∈VC :(0,i)∈E

x0ik ≤ 2mk ∀k ∈ K, (2.13g)

∑
(i,j)∈δk(S)

xijk + 2 ∑
i∈S

(1− yik) ≥ 2

⌈
1

Qk
max
q∈Q ∑

i∈S
qi

⌉
∀S ⊆ Vk, ∀k ∈ K.

(2.13h)

The objective function (2.13a) minimizes the sum of the fixed costs and transportation
costs; since the fixed costs are accounted on both the first and last edges of a route (i.e.,
both edges adjacent to the depot), the total must be divided by two to obtain the true
fixed cost. Constraints (2.13b)–(2.13d) enforce integrality restrictions. Constraints (2.13e)
stipulate that each customer must be visited by exactly one vehicle type; moreover,
it also requires that this vehicle type be such that it can feasibly visit this customer
under all possible demand realizations. Constraints (2.13f) enforce that if a customer is
visited by vehicle type k ∈ K, then there are exactly two edges adjacent to it that are
traversed by a vehicle of that type; moreover, if it is not visited by a vehicle of type k ∈ K,
then all edge variables adjacent to it are set to zero. Constraints (2.13g) ensure that no
more than mk vehicles of type k ∈ K are used. Constraints (2.13h) restrict subtours (i.e.,
ensure that no vehicles of type k ∈ K perform routes that are disconnected from the
depot) and also enforce that the worst-case load of routes of type k ∈ K are less than
the capacity Qk. We refer to these inequalities as robust heterogeneous rounded capacity
inequalities since they generalize the classical rounded capacity inequalities (RCI) for the
deterministic CVRP [193] (i.e., whenever Q and K are both singletons). Finally, we note
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2.5 robust integer programming model and branch-and-cut

that in the case of the SDVRP (see Table 2.1), the following additional constraint can be
added to formulation (2.13) to ensure that all site dependencies are respected:

yik = 0 ∀k /∈ Ki, ∀i ∈ VC. (2.13i)

Proposition 2.3 establishes the correctness of formulation (2.13).

Proposition 2.3. The feasible solutions of formulation (2.13) are in one-to-one correspondence
with robust feasible solutions of the HVRP.

Proof. Suppose (R,κ) is a robust feasible solution of the HVRP, i.e., it satisfies con-
ditions (C1), (C2) and (D3). Construct the solution (x, y) as follows: yik = ∑H

h=1 I[i ∈
Rh]I[k = κh] and xijk = ∑H

h=1 ∑|
Rh|

l=0 I[(i, j) = (rhl , rhl+1)]I[k = κh]. We claim that (x, y) is
a feasible solution of formulation (2.13). To see this, first observe that satisfaction of
constraints (2.13b)–(2.13f) follows from the definition of a route (see Section 2.2) and
from the fact that (R,κ) satisfies condition (C1). Similarly, constraint (2.13g) is satisfied
because (R,κ) satisfies condition (C2). Constraints (2.13h) are satisfied because of the
following reason. First, observe that we have:

∑
(i,j)∈δk(S)

xijk ≥ 2
∣∣∣ h ∈ {1, . . . , H} : κh = k and S ∩ Rh 6= ∅︸ ︷︷ ︸

:=Hk(S)=index set of routes of type k ‘crossing’ S

∣∣∣
= 2

⌈
1

Qk
∑

h∈Hk(S)
Qk

⌉

≥ 2

⌈
1

Qk
max
q∈Q ∑

h∈Hk(S)
∑

i∈S∩Rh

qi

⌉
= 2

 1
Qk

max
q∈Q ∑

i∈S∩(∪h∈Hk(S)
Rh)

qi

 ,

where the first inequality follows by construction of x while the second inequality follows
because (i) (R,κ) satisfies condition (D3) and (ii) the maximum operator is subadditive.
Second, we have:

2 ∑
i∈S

(1− yik) = 2
∣∣∣i ∈ S \

(
∪h∈Hk(S)Rh

)∣∣∣ ≥ 2

 1
Qk

max
q∈Q ∑

i∈S\(∪h∈Hk(S)
Rh)

qi

 ,

where the equality follows by construction of y while the inequality follows because (i)
each i ∈ S ⊆ Vk satisfies maxq∈Q qi ≤ Qk and, (ii) the maximum and ceiling operators
are subadditive. Finally, combining the above two expressions and using again the
subadditivity of the maximum and ceiling operators shows that inequalities (2.13h) are
satisfied.

Now, suppose that (x, y) is a feasible solution of formulation (2.13). Construct (R,κ)
as follows: (i) H ← 0; (ii) for every i ∈ VC, if ∑k∈K x0ik = 1 and i /∈ R1, . . . , RH, then
set H ← H + 1 and define κH = ∑k∈K kI[yik = 1] and RH to be the cycle that passes
through customer i in the subgraph of G induced by

{
(i′, j′) ∈ E : xi′ j′κH = 1

}
. We claim
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2.5 robust integer programming model and branch-and-cut

that (R,κ) is a robust feasible solution of the HVRP. To see this, first observe that
(R,κ) satisfies condition (C1) because of inequalities (2.13b)–(2.13f), and condition (C2)
because of inequality (2.13g). To see that condition (D3) is also satisfied for each route Rh,
h ∈ {1, . . . , H}: set S = Rh and k = κh in inequalities (2.13h). The left-hand side simplifies
to 2 while the right-hand side simplifies to 2d(1/Qκh)maxq∈Q ∑i∈S qie. Hence, we have
1 ≥ d(1/Qκh)maxq∈Q ∑i∈S qie, which implies that condition (D3) is satisfied.

2.5.2 Branch-and-Cut Algorithm

The number of variables in formulation (2.13) is O(mn2) but the number of constraints
is O(m2n). If we leave out the RCI constraints (2.13h) however, then the number of
remaining constraints is O(mn). Therefore, we can solve the formulation in a cutting
plane fashion by removing constraints (2.13h) and dynamically re-introducing them if
they are found to be violated by the solution of the current linear programming relaxation.
In fact, we can embed the cutting plane generation in each node of a branch-and-bound
tree to obtain a branch-and-cut algorithm. We refer to [193] for a general reference on
branch-and-cut in the context of vehicle routing. The performance of the branch-and-cut
algorithm can be improved by adding in each tree node, inequalities that are valid but
not necessary for the correctness of formulation (2.13). In the following, we describe
several such valid inequalities as well as the associated separation algorithms. We also
describe an effective preprocessing step that can reduce the number of variables in
formulation (2.13).

valid inequalities . Several valid inequalities have been proposed for flow-based
formulations of the deterministic HVRP in [27, 273]. Among these, the cover inequalities
and fleet-dependent capacity inequalities are particularly effective in obtaining strong lower
bounds. The validity of the inequalities for the robust HVRP formulation (2.13) can be
established by defining them for every possible customer demand realization q ∈ Q. To
describe these inequalities, we assume, without loss of generality, that the vehicle types
are sorted in increasing order with respect to their capacities: Q1 ≤ . . . ≤ Qm. We also
define sk(q) to be total demand of the customers for which a vehicle of type k is the
smallest one that can visit them, under a particular customer demand realization q ∈ Q.
Then, the following robust cover inequalities are valid for formulation (2.13).

m

∑
h=k

bαQhc+ min

1,
αQh − bαQhc

α
m
∑

h=k
sh(q)−

⌊
α

m
∑

h=k
sh(q)

⌋

 ∑

i∈VC :(0,i)∈E
x0ih ≥ 2

⌈
α

m

∑
h=k

sh(q)

⌉

∀α ∈ R+, ∀k ∈ K, ∀q ∈ Q.
(2.13j)
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2.5 robust integer programming model and branch-and-cut

Let us define δ(S) to be the set of edges in E with exactly one end point in S and one
end point in VC \ S. Then, the following robust fleet-dependent capacity inequalities are valid
for formulation (2.13).

∑
k∈K

∑
(i,j)∈δ(S)

xijk +
m

∑
h=k

⌈
2
(

Qh −Qk−1

Qk−1

)⌉
∑

i∈VC :(0,i)∈E
x0ih ≥

⌈
2

Qk−1
max
q∈Q ∑

i∈S
qi

⌉
∀S ⊆ VC, ∀k ∈ K \ {1}.

(2.13k)

The validity of the following generalized subtour elimination constraints and generalized
fractional capacity inequalities can also be easily verified. The term generalized refers to the
fact that these inequalities reduce to the classical subtour elimination constraints and
fractional capacity inequalities, respectively, in the case of the deterministic CVRP (i.e.,
when both Q and K are singletons). However, unlike the latter, these inequalities do not
dominate and are not dominated by the robust heterogeneous RCI constraints (2.13h).

∑
(i,j)∈δk(S)

xijk ≥ 2 max
v∈S

yvk ∀S ⊆ Vk, ∀k ∈ K. (2.13l)

∑
(i,j)∈δk(S)

xijk ≥
2

Qk
∑
i∈S

qiyik ∀S ⊆ Vk, ∀k ∈ K, ∀q ∈ Q. (2.13m)

In addition to the above, any valid inequality for the two-index vehicle flow formulation
of the deterministic CVRP that is defined over graph G = (V, E) with vehicle capacity
Q = maxk∈K Qk, can also be made valid for formulation (2.13) by defining it for all
q ∈ Q and by replacing the two-index variable xij with ∑k∈K xijk for all (i, j) ∈ E. In our
implementation, we used the comb, framed capacity and multistar inequalities in this
manner [193].

separation algorithms . Let (x̄, ȳ) be a fractional solution encountered in some
node of the search tree. The goal of a separation algorithm is to identify if a particular
member of a family of inequalities is violated by the current solution (x̄, ȳ). Consider
the robust heterogeneous RCI constraints (2.13h). For a particular vehicle type k ∈ K,
the identification of a customer set S ⊆ Vk for which the corresponding inequality is
violated by (x̄, ȳ) is nontrivial. In the deterministic CVRP, this is typically achieved by
a local search algorithm. For example, a greedy search algorithm is presented in [193];
this algorithm iteratively expands a (randomly initialized) set S = {s} with a customer
j for which the corresponding slack of the RCI constraint (i.e., difference between the
right-hand side and left-hand side) is maximized. In our implementation, we extend this
idea by using a tabu search procedure very similar to the one presented in Section 2.4.
The key difference is that a “solution” in the context of this local search algorithm is
simply a customer set S ⊆ Vk as opposed to an entire set of routes. Specifically, the
algorithm starts with a randomly selected customer set S ⊆ Vk and then iteratively
perturbs this set through a sequence of operations in which individual customers are
added or removed. In each iteration, the algorithm greedily chooses a customer whose
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inclusion or removal maximizes the slack of the corresponding robust heterogeneous RCI
constraint (2.13h). Similar to the argument in Section 2.4, computing this slack requires
the computation of the right-hand side which, in turn, requires the efficient computation
of the worst-case load over the current candidate set of customers S. This is achieved
by using the data structures described in Proposition 2.2. Finally, similar to Section 2.4,
the algorithm also maintains tabu lists of customers that have recently been added or
removed to avoid cycling and to escape local optima. The algorithm terminates if we
cannot maximize the slack of constraint (2.13h) for more than a pre-defined number of
consecutive iterations.

The separation algorithm for the robust fleet-dependent capacity inequalities (2.13k) is ex-
actly the same as above. The separation problem for the generalized subtour elimination
constraints (2.13l) is solved using the polynomial-time algorithm described in [113]. Sim-
ilarly, the separation problem for the generalized fractional capacity inequalities (2.13m),
under a particular demand realization q? ∈ Q, reduces to the separation problem of
the fractional capacity inequalities for the deterministic CVRP if we define the cus-
tomer demands to be q?i ȳik, which is known to be polynomial-time solvable [197]. In
our implementation, we restrict the separation to a particular realization defined by
q? ∈ arg maxq∈Q ∑i∈VC

q?i . Similarly, we separate the CVRP-based comb, framed capac-
ity and multistar inequalities using the CVRPSEP package [193] by only considering
q? ∈ Q. Finally, the robust cover inequalities (2.13j) are separated by enumerating
α ∈ {Q1, . . . , Qm, gcd(Q1, . . . , Qm)}, where gcd denotes the greatest common divisor,
and by considering only q? ∈ Q.

preprocessing . A simple method to reduce the number of vehicle types was pre-
sented in [81] for the deterministic HVRP. Suppose UB is a known upper bound on the
optimal objective value of formulation (2.13). For example, UB may obtained using the
metaheuristics described in Section 2.4. Suppose we enforce now that at least one vehicle
of type k ∈ K must be used, by adding the constraint ∑i∈VC

yik ≥ 1 to formulation (2.13).
If LB′k denotes a lower bound on the optimal value of this augmented problem and if
LB′k > UB, then we can delete vehicle type k ∈ K and all of its associated variables
from formulation (2.13), since the corresponding solution would be suboptimal. In our
implementation, we estimate LB′k by solving the augmented formulation using a branch-
and-cut algorithm and recording the global lower bound of the branch-and-bound tree
after 1 minute.

2.6 computational results

This section presents computational results obtained using the metaheuristic algorithms
described in Section 2.4 as well as the exact algorithm described in Section 2.5. Specifically,
Section 2.6.1 provides an overview of the benchmark instances used; Section 2.6.2
presents a detailed computational study using the ILS and AMP algorithms; Section 2.6.3
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illustrates the quality of the lower bounds obtained using the branch-and-cut algorithm;
and finally, in Section 2.6.4, we analyze the robust HVRP solutions in terms of their
robustness and objective value.

All algorithms were coded in C++ and compiled using the GCC 7.3.0 compiler. Each
run was conducted on a single thread of an Intel Xeon 3.1 GHz processor. In the
implementation of the ILS and AMP algorithms, the following parameter values were
used: ϕQ = 1000cQ−1

max, ϕS = 100c, χ = 10, η = 3, ν = 30, η = 500, δ = 0.5c, θ = 0.7 and
µ = 16, where we have defined Qmax = maxk∈K Qk and cij = max(i,j)∈VC×VC

mink∈K cijk.
An overall time limit of 1,000 seconds (tlim = 1000) was used. In the implementation of
the branch-and-cut algorithm, we used CPLEX 12.7 as the IP solver; all solver options
were at their default values with three exceptions: (i) general-purpose cutting planes and
upper bounding heuristics were disabled, (ii) strong branching was enabled, and (iii)
all valid inequalities described in Section 2.5.2 were added using user-defined callback
functions. An overall time limit of 10,000 seconds was used in this case.

2.6.1 Test Instances

All our instances are based on the following three benchmark datasets corresponding to
different variants of the deterministic HVRP.

(a) HVRP instances: We consider the twelve instances involving up to 100 customers
proposed in [134] and adapted by [81, 246]. The data of these instances can
be found at http://mistic.heig-vd.ch/taillard/problemes.dir/vrp.dir/vrp.
The instances for the different HVRP variants are obtained by changing the data of
the HVRPFD instances as follows, resulting in a total of 52 instances.

• HVRPD: Set fk = 0 for each k ∈ K.

• FSMFD: Set mk = n for each k ∈ K.

• FSMD: Set fk = 0 and mk = n for each k ∈ K.

• FSMF: Set mk = n for each k ∈ K and cijk = eij, where eij is the Euclidean
distance between nodes i ∈ V and j ∈ V.

(b) SDVRP instances: We consider the 13 instances containing up to 108 customers
that have also been considered by [29, 77, 88, 204]. The data of these instances can
be found at http://neumann.hec.ca/chairedistributique/data/sdvrp.

(c) MDVRP instances: We consider the 9 instances involving up to 160 customers that
have also been considered by [29, 87]. The data of these instances can be found at
http://neumann.hec.ca/chairedistributique/data/mdvrp.

For each deterministic HVRP benchmark, we construct five classes of uncertainty sets.
To ensure that the constructed sets are meaningful, we partition the customer set VC
into four geographic quadrants – NE, NW, SW, SE – based on the coordinates in the
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benchmark instance. Moreover, the customer demands specified in the benchmark are
taken to be their nominal values q0. We then construct the following uncertainty sets,
each of which is parametrized by scalars α, β ∈ [0, 1].

(a) Budget sets (originally proposed in [137]):

QB =

{
q ∈ [(1− α)q0, (1 + α)q0] : ∑

i∈Ω
qi ≤ (1 + αβ) ∑

i∈Ω
q0

i ∀Ω ∈ {NE, NW, SW, SE}.
}

.

This set stipulates that each customer demand can deviate by at most α · 100% from
its nominal value, but the cumulative demand in each quadrant may not exceed its
nominal value by more than β · 100%.

(b) Factor models (originally proposed in [137]):

QF =
{

q ∈ Rn : q = q0 + Ψξ for some ξ ∈ ΞF
}

, where ΞF =
{

ξ ∈ [−1, 1]4 :
∣∣e>ξ

∣∣ ≤ 4β
}

.

This set models the demand of customer i as a convex combination of 4 factors that
can be interpreted as quadrant demands with the weights reflecting the relative
proximity of customer i to the quadrant. Specifically, we set Ψi f = αq0

i ψi f / ∑4
f ′=1 ψ′i f ,

where ψi f denotes the inverse distance between customer i and the centroid of
quadrant f ∈ {1, 2, 3, 4}.

(c) Ellipsoids:

QE =
{

q ∈ Rn : q = q0 + Σ1/2ξ for some ξ ∈ ΞE

}
, where ΞE =

{
ξ ∈ Rn : ξ>ξ ≤ 1

}
.

We define Σ = (1− β)ΨΨ> + βdiag
(
αq0

1, . . . , αq0
n
)2, where Ψ is the factor loading

matrix defined above while diag(·) is a square diagonal matrix with (·) denoting
the entries along its main diagonal. When β = 0, QE is approximated as a 4-
dimensional ellipsoid centered at q0 and the columns of Ψ represent the directions
along its semi-axes. When β ∈ (0, 1), QE is a general n-dimensional ellipsoid
centered at q0. When β = 1, QE is an axis-parallel ellipsoid centered at q0 with a
semi-axis length of αq0

i along the ith dimension; that is, when β = 1, QE inscribes
the n-dimensional hyper-rectangle [(1− α)q0, (1 + α)q0].

(d) Cardinality-constrained sets:

QG =
{

q ∈ [q0, (1 + α)q0] : q = q0 + α(q0 ◦ ξ) for ξ ∈ ΞG
}

,

where ΞG =
{

ξ ∈ [0, 1]n : e>ξ ≤ βn
}

.

The set stipulates that each demand can deviate from its nominal value by up
to α · 100% but the total number of customer demands that can simultaneously
deviate is at most dβne.

(e) Discrete sets:

QD = conv
({

q0} ∪ {q(j) : j = 1, . . . , nint(βn)
})

.
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Here, nint(βn) denotes the nearest integer to βn. The points q(j) are generated by
uniformly sampling nint(βn) points from the n-dimensional hyper-rectangle [(1−
α)q0, (1 + α)q0]. Thus, the set approximates the customer demands as independent,
uniform random variables.

The deterministic HVRP benchmarks are characterized by a high vehicle utilization
under the nominal demands q0; that is, the unused capacity of the vehicles is small,
particularly in the case of problem variants with limited fleets (see Table 2.1). If the fleet
size and vehicle capacities are unchanged, then several benchmark instances become
infeasible in the presence of demand uncertainty. To alleviate this problem and conduct
a meaningful computational study, we increase the capacity of each vehicle type Qk in
each benchmark by 10% (unless explicitly stated otherwise), which suffices to guarantee
robust feasibility for α ≤ 0.1.

2.6.2 Performance of Robust Local Search and Metaheuristics

The results reported in this section are averages across 10 runs for each of the 74 test
instances. For the budget sets, factor models and general ellipsoids, we set (α, β) =

(0.1, 0.5), while for the cardinality-constrained and discrete sets, we set (α, β) = (0.1, 0.2).
We note that the axis-parallel ellipsoid is obtained by setting (α, β) = (0.1, 1).

Figure 2.9 shows the time per local search iteration for the different classes of uncer-
tainty sets described in Section 2.3. We note here that each iteration of local search
involves evaluating O(n2) neighbor solutions, see Section 2.4.1. We make the following
observations from Figure 2.9. First, the time per iteration correlates well with the time
complexities described in Table 2.3. Indeed, each local search iteration can be performed
much faster when the uncertainty set is a budget set or axis-parallel ellipsoid since the
worst-case load can be computed in constant time in such cases. In contrast, the local
search iterations are relatively slower when the uncertainty set is a discrete set or general
ellipsoid for which the worst-case load can only be computed in linear time (linear in
D = βn and n respectively). Second, the results are remarkably similar across the ILS
and AMP algorithms. This shows that the time per iteration is dictated by the chosen
uncertainty set and not by the overarching metaheuristic algorithm.

We note that the time limit of 1000 seconds is quite generous for all but the most difficult
instances. Indeed, in many cases, the metaheuristics have found good solutions in an
early stage of the search process and have spent the remaining time trying to improve
this solution. To see this, Figure 2.10 reports the percentage differences between the best
solution

(
RB,κB) (see Algorithms 1 and 2) at various time points relative to the overall

best solution (i.e.,
(
RB,κB) after 1000 seconds). We make the following observations

from Figure 2.10. First, for all uncertainty sets except the general ellipsoidal and discrete
sets, the metaheuristics have found solutions that are within 1% of the overall best after
10 seconds, and there is practically no improvement in the best solution after five minutes.
For the general ellipsoid and discrete sets, the solutions are within 2% of the overall
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Figure 2.9: Time per local search iteration under different classes of uncertainty sets (normalized
with respect to the deterministic problem). The top and bottom graphs show results for
the Iterated Local Search and Adaptive Memory Programming algorithms respectively.

best after 10 seconds. This indicates that it is probably better to restart the algorithm
with a different random seed, rather than improve the solution, at this point. Second,
and similar to Figure 2.9, the performance across the various uncertainty sets correlates
well with the complexities reported in Table 2.3, while the performance across the two
metaheuristics is similar.

Finally, to understand the sensitivity of the proposed metaheuristic algorithms to the
initial random seed, Figure 2.11 plots the average percentage differences of each run
relative to the overall best solution of the 10 runs, across all the 74 test instances. The
figure shows that both the ILS and AMP algorithms are fairly robust across all classes of
uncertainty sets. Indeed, the median deviation is less than 0.2% across all uncertainty
sets and in several cases, it is less than 0.1%.
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Figure 2.10: Average progress of the metaheuristic solutions under different classes of the uncer-
tainty sets. The top and bottom graphs show results for the Iterated Local Search
and Adaptive Memory Programming algorithms respectively. The graphs report the
average percentage differences relative to the overall best solution after 1000 seconds.
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2.6.3 Quality of Lower Bounds

Table 2.4 reports the quality of the lower bounds obtained using the IP formulation (2.13)
described in Section 2.5. Specifically, the entries report the guaranteed optimality gaps,
which is defined for a given instance as (zub − zlb)/zub × 100%, where zub is objective
value of the best solution found across all 10×2 runs of the ILS and AMP metaheuristics
after 1000 seconds, while zlb is the global lower bound of the branch-and-cut algorithm
after 10,000 seconds. The table shows that the lower bounds for a given uncertainty set
Q are very close to what one can expect for the deterministic problem (indicated by{

q0}). Indeed, the average optimality gap for the deterministic problem is 5.9%, while
the average optimality gap for the robust problem varies between 6.7% and 8.9%, on
average. Moreover, the lower bounding is particularly effective for the FSMFD, FSMF
and MDVRP variants, i.e., whenever the fleet size is unlimited and either fixed costs or
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Figure 2.11: Average deviation of the metaheuristic solutions (with respect to the best solution of
10 runs) under different classes of uncertainty sets. The top and bottom graphs show
results for the Iterated Local Search and Adaptive Memory Programming algorithms
respectively. The red mark corresponds to the median, the upper edge of the box to
the 75

th percentile, while the uppermost mark to the maximum of (74×10) runs not
considered outliers (which are indicated by green dots).
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homogeneous fleets are considered. In such cases, the average optimality gap is less than
5% across all uncertainty sets.

We note that the reported entries in Table 2.4 are very conservative and they are limited
by the lower bounds from the branch-and-cut algorithm rather than the upper bounds
from the metaheuristics. In fact, we believe that the metaheuristic solutions are near-
optimal. There are two reasons for this. First, the branch-and-cut algorithm was never
able to find a solution that was better than the provided metaheuristic solutions. Second,
we also used our metaheuristics to obtain solutions for all of the 74 original, deterministic
benchmarks by setting the vehicle capacities Qk to their original values. Table 2.5 reports
the aggregated results. For each problem variant, the column # reports the number
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Table 2.4: Guaranteed optimality gaps of the metaheuristic solutions (in percent) across all
benchmarks of the HVRP variants from Table 2.1 and across different classes of
uncertainty sets.{

q0} QB QF Qax
E Qgen

E QG QS

HVRPFD 7.25 9.91 9.03 9.03 8.10 11.89 9.10

HVRPD 11.56 13.42 13.23 13.12 12.59 14.73 13.12

FSMFD 3.98 6.43 5.22 6.38 4.95 7.49 6.64

FSMD 8.53 9.68 9.46 9.51 9.34 10.48 9.57

FSMF 2.98 5.65 4.45 4.96 3.72 6.68 5.36

SDVRP 5.30 7.06 6.74 5.90 5.84 7.60 6.19

MDVRP 3.58 5.24 4.86 4.71 4.61 5.80 4.85

All 5.91 7.93 7.28 7.38 6.74 8.92 7.58

of instances, Gap (%) reports the average percentage difference between the obtained
solution and the best known solution (BKS) taken from [214], BKS found reports the
number of instances for which the obtained solution matched the best known solution
and Time (sec) reports the average time to find the obtained solution. The table shows
that even under the deterministic setting, both metaheuristics are very competitive when
compared to existing algorithms for the HVRP (e.g., see [211]). The AMP algorithm is
superior to the ILS as it is able to match 64 out of 74 best known solutions with an
average gap of 0.1%.

Table 2.5: Summary of results obtained using the metaheuristic algorithms on the 74 original
benchmark instances of the deterministic HVRP.

ILS AMP

Best run Average Best run Average

# Gap
(%)

BKS
found

Gap
(%)

Time
(sec)

Gap
(%)

BKS
found

Gap
(%)

Time
(sec)

HVRPFD 8 0.19 5 0.31 325 0.19 6 0.30 283

HVRPD 8 0.21 6 0.38 271 0.00 8 0.20 184

FSMFD 12 0.10 8 0.18 244 0.02 9 0.12 192

FSMD 12 0.10 10 0.19 113 0.00 11 0.03 134

FSMF 12 0.09 9 0.20 221 0.02 10 0.10 242

SDVRP 13 0.07 9 0.22 274 0.00 12 0.17 189

MDVRP 9 0.10 4 0.23 228 0.01 8 0.17 183

All 74 0.12 51 0.23 234 0.03 64 0.14 198
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2.6.4 Price of Robustness for Different Classes of Uncertainty Sets

In this section, we quantify the average increase in total cost of the robust HVRP solution
compared to its deterministic counterpart. For each of the five classes of uncertainty
sets, we fix α = 0.1 and vary β between 0 and 1. For each case, we estimate the cost
of the robust solution for each of the 74 test instances using a single run of the AMP
metaheuristic under a time limit of 1000 seconds. We then compare the total cost
of the obtained solution with that of the deterministic instance (obtained by setting
(α, β) = (0, 0)). Figure 2.12 reports the results of this sensitivity analysis.

Figure 2.12: Average percentage increase in transportation costs relative to the deterministic
problem, over different classes of uncertainty sets with α = 0.1. The marked square
represents the cost increase when the uncertainty set is the n-dimensional hyper-
rectangle [(1− α)q0, (1 + α)q0] while the marked ellipse represents the cost increase
when the uncertainty set is the axis-parallel ellipsoid that inscribes this n-dimensional
hyperrectangle.
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Figure 2.12 offers several interesting insights. First, the robust solutions are only slightly
more expensive than their deterministic counterparts. Even when the uncertainty set is a
hyperrectangle where every customer can attain their worst realization independently,
one can obtain modestly expensive solutions (≈ 6%) at the benefit of being immunized
against a considerable random increase in customer demands (up to 10%). This cost
increase can be reduced to ≈ 2% by controlling the size and shape of the uncertainty set.
Second, taking into account the results in Figure 2.9, it appears that different uncertainty
sets offer different levels of tradeoff between cost, robustness and tractability. Indeed,
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while discrete sets offer the greatest flexibility in costs, they come at a considerable
increase in computational complexity. In contrast, the factor model also appears to
offer significant flexibility but at a far less increase in complexity. Finally, the added
computational burden in modeling a non-axis-parallel ellipsoid does not pay off in
terms of flexibility in transportation costs; indeed, the axis-parallel ellipsoids are only
marginally more expensive at the benefit of being extremely tractable in the context of
local search.

2.7 summary

In this chapter, we have attempted to address the challenge of dealing with operational
uncertainty during fleet dimensioning and route optimization. In particular, we have
studied a broad class of heterogeneous fleet vehicle routing problems where the customer
demands are not known precisely when the fleet composition and routes must be
decided. These problems are extremely practical since most industrial operations involve
heterogeneous fleets. We modeled the unknown customer demands as random variables
that can take values in any of five broad classes of practically-relevant uncertainty sets.
To hedge against this uncertainty, we aimed to determine a solution that is robust, i.e.,
remains feasible for all anticipated demand realizations. We elucidated that efficiently
computing robust solutions (both in a heuristic and exact manner) lies in the ability to
efficiently compute the worst-case loads of vehicle routes over the given uncertainty set.
With this insight, we capitalized on well-known local search algorithms in deterministic
vehicle routing and augmented them with appropriate data structures to generate robust
solutions. We illustrated that the proposed local search can be incorporated in any
metaheuristic implementation. Further, the quality of the metaheuristic solutions can
be quantified using lower bounds obtained from an augmented integer programming
formulation.

Our study offers several novel business insights. First, robust solutions can be obtained
with similar computational effort as deterministic solutions. While this is well known in
the context of mathematical programming, we have demonstrated that this is also true
in the context of metaheuristics. In fact, robust solutions can be obtained by augmenting
local search in a modular fashion, and thus it can be readily deployed in commercial
codes. Second, the tradeoff between robustness and cost is intimately related to the chosen
uncertainty set. While some uncertainty sets might offer greater modeling flexibility or
the ability to make better use of available data, they might not necessarily allow a smooth
variation in transportation costs as a function of their size. Moreover, the computational
tractability of incorporating them in the solution algorithm (whether exact or heuristic)
must also be carefully assessed before making a choice.
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2.8 appendix : nomenclature

n Number of customers

m Number of vehicle types

G = (V, E) Undirected graph with node set V and edge set E

VC Set of customer nodes

K Set of vehicle types

mk Number of available vehicles of type k ∈ K

Qk Capacity of vehicle type k ∈ K

cijk Routing cost of vehicle type k ∈ K along edge (i, j) ∈ E

R = (r1, . . . , r|R|) Vehicle route where rl ∈ VC for all l ∈ {1, . . . , |R|}
c(R, k) Cost of executing route R using vehicle type k ∈ K

R = (R1, . . . , RH) Set of H vehicle routes R1, . . . , RH

κ = (κ1, . . . , κh) Fleet composition vector, where κ1, . . . , κH ∈ K

c (R,κ) Cost of the HVRP solution (R,κ)

c̄ (R,κ) Total penalized cost of the HVRP solution (R,κ)

qi Uncertain demand of customer i ∈ VC

Q Uncertainty set of customer demands

q, q̄, L, B, b Parameters used to define budget sets QB

q0, F, Ψ Parameters used to define factor models QF

q0, Σ Parameters used to define ellipsoidal sets QE

q0, q̂, Γ Parameters used to define cardinality-constrained sets QG

D, q(1), . . . , q(D) Parameters used to define discrete sets QD

α, β Parameters used to define the uncertainty sets in Section 2.6

χ, µ, η, ν, ζ, δ, θ Parameters used in Algorithms 1 and 2(
RB,κB) Best/incumbent solution in Algorithms 1 and 2

P Reference set of solutions in Algorithm 2

Vk Set of customers i ∈ VC for which maxq∈Q qi ≤ Qk, where k ∈ K

δk(S) Subset of edges with one end-point in S ⊆ Vk and other in Vk \ S

yik Binary variable ∈ {0, 1} indicating if customer i ∈ VC is visited
by a vehicle of type k ∈ K

xijk Integer variable ∈ {0, 1, 2} recording the number of times edge
(i, j) ∈ E is traversed by a vehicle of type k ∈ K

e Vector of ones

I[E ] Indicator function taking a value of 1 if the expression E is true
and 0 otherwise
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The following tables report the best solutions found for each of the benchmark in-
stances and uncertainty sets that we have considered in this chapter. The budget sets,
factor models and general ellipsoids correspond to the setting of (α, β) = (0.1, 0.5), the
cardinality-constrained and discrete sets correspond to (α, β) = (0.1, 0.2), while the
axis-parallel ellipsoid corresponds to (α, β) = (0.1, 1.0). In each table, “Inst” denotes the
instance numbered as per the original dataset, n and m denote the number of customers
and vehicle types respectively, while the quantity reported under uncertainty set Q is
the best found solution for that instance and setting of the uncertainty set.

Table 2.6: Summary of results for the HVRPFD instances.

Inst n m
{

q0} QB QF Qax
E Qgen

E QG QS

13 50 6 2,929.54 3,183.32 3,136.73 3,061.73 3,093.55 3,185.09 3,047.35

14 50 3 9,584.67 10,106.67 10,103.02 9,600.38 9,605.91 10,106.67 9,599.48

15 50 3 2,761.41 3,065.29 2,965.21 2,941.70 2,941.70 3,065.29 2,934.85

16 50 3 3,085.06 3,265.41 3,238.55 3,145.47 3,221.38 3,265.41 3,134.01

17 75 4 1,960.59 2,076.96 2,067.28 2,001.71 2,013.99 2,076.96 1,991.14

18 75 6 3,524.34 3,748.68 3,709.86 3,628.33 3,662.54 3,745.10 3,618.75

19 100 3 9,693.23 10,420.34 10,420.34 9,701.73 9,748.98 10,420.34 9,701.64

20 100 3 4,469.86 4,795.14 4,731.65 4,599.16 4,714.54 4,834.17 4,612.88

Table 2.7: Summary of results for the HVRPD instances.

Inst n m
{

q0} QB QF Qax
E Qgen

E QG QS

13 50 6 1,432.57 1,517.84 1,502.24 1,481.13 1,482.49 1,517.84 1,468.83

14 50 3 584.38 606.67 603.02 596.53 597.54 606.67 596.63

15 50 3 961.41 1,015.29 1,012.64 991.70 991.70 1,015.29 984.85

16 50 3 1,085.06 1,144.94 1,133.16 1,120.57 1,121.38 1,144.94 1,110.41

17 75 4 1,009.48 1,061.96 1,052.28 1,021.50 1,023.99 1,061.96 1,020.28

18 75 6 1,761.88 1,823.58 1,812.32 1,783.93 1,788.38 1,823.58 1,777.02

19 100 3 1,093.23 1,120.34 1,120.34 1,101.64 1,116.47 1,120.34 1,101.64

20 100 3 1,472.97 1,534.17 1,533.62 1,501.53 1,514.39 1,534.17 1,508.31
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Table 2.8: Summary of results for the FSMFD instances.

Inst n m
{

q0} QB QF Qax
E Qgen

E QG QS

3 20 5 986.93 1,144.22 1,118.76 1,106.84 1,106.65 1,144.22 1,092.59

4 20 3 6,377.28 6,437.33 6,432.25 6,413.06 6,413.06 6,437.33 6,392.34

5 20 5 1,167.40 1,322.26 1,298.72 1,287.48 1,287.48 1,322.26 1,249.08

6 20 3 6,416.11 6,516.47 6,500.82 6,499.74 6,499.74 6,516.47 6,470.82

13 50 6 2,711.61 2,964.65 2,935.40 2,906.68 2,873.24 2,964.65 2,908.96

14 50 3 8,582.05 9,126.90 8,644.00 8,618.16 8,618.16 9,126.90 8,618.16

15 50 3 2,450.82 2,634.96 2,608.61 2,590.47 2,591.86 2,634.96 2,591.93

16 50 3 2,906.71 3,168.92 3,137.50 3,061.09 3,070.34 3,168.92 3,052.39

17 75 4 1,872.49 2,004.48 1,969.64 1,932.82 1,946.09 2,004.48 1,925.47

18 75 6 2,918.45 3,153.09 3,100.08 3,056.88 3,064.50 3,152.16 3,063.70

19 100 3 8,094.97 8,662.86 8,649.99 8,132.14 8,409.14 8,662.86 8,134.19

20 100 3 3,839.11 4,165.91 4,138.25 4,046.05 4,085.22 4,168.44 4,054.18

Table 2.9: Summary of results for the FSMF instances.

Inst n m
{

q0} QB QF Qax
E Qgen

E QG QS

3 20 5 887.99 954.37 949.79 921.23 927.96 951.61 918.63

4 20 3 6,327.60 6,437.33 6,432.25 6,413.06 6,413.06 6,437.33 6,379.27

5 20 5 919.86 1,005.27 980.57 961.63 963.63 988.63 949.85

6 20 3 6,353.72 6,516.47 6,500.82 6,499.74 6,499.74 6,516.47 6,448.52

13 50 6 2,223.70 2,399.20 2,365.21 2,305.17 2,327.57 2,406.36 2,304.11

14 50 3 8,562.41 9,119.03 8,644.00 8,618.16 8,618.16 9,119.03 8,618.16

15 50 3 2,360.49 2,586.37 2,561.65 2,475.63 2,492.99 2,586.37 2,463.19

16 50 3 2,506.66 2,721.40 2,697.88 2,610.03 2,646.51 2,720.43 2,612.59

17 75 4 1,621.25 1,734.53 1,712.24 1,658.29 1,680.08 1,734.53 1,657.43

18 75 6 2,195.13 2,369.65 2,322.62 2,272.55 2,294.51 2,369.65 2,267.88

19 100 3 8,094.97 8,662.86 8,649.99 8,129.33 8,382.79 8,662.86 8,135.02

20 100 3 3,714.44 4,043.97 3,973.46 3,862.99 3,911.89 4,060.73 3,874.70
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Table 2.10: Summary of results for the FSMD instances.

Inst n m
{

q0} QB QF Qax
E Qgen

E QG QS

3 20 5 555.66 623.22 609.51 604.02 604.02 623.22 585.02

4 20 3 369.77 378.70 373.24 369.77 373.24 380.71 373.24

5 20 5 713.62 742.87 737.36 736.90 736.90 742.85 721.00

6 20 3 391.42 414.66 415.03 396.26 405.46 406.19 396.26

13 50 6 1,405.87 1,491.86 1,488.78 1,468.28 1,471.82 1,491.86 1,460.06

14 50 3 575.63 603.21 601.71 583.94 588.64 603.21 583.94

15 50 3 944.96 999.82 997.98 979.40 985.19 999.82 974.59

16 50 3 1,078.67 1,131.00 1,114.78 1,110.88 1,111.69 1,131.00 1,107.74

17 75 4 1,006.50 1,036.54 1,029.75 1,017.52 1,020.50 1,038.60 1,016.64

18 75 6 1,746.53 1,800.80 1,795.02 1,778.61 1,785.58 1,800.80 1,775.35

19 100 3 1,073.71 1,106.17 1,101.07 1,084.54 1,099.69 1,105.44 1,093.74

20 100 3 1,468.79 1,530.52 1,525.33 1,495.31 1,514.46 1,533.24 1,497.01

Table 2.11: Summary of results for the SDVRP instances.

Inst n m
{

q0} QB QF Qax
E Qgen

E QG QS

1 50 3 609.52 640.32 634.19 621.50 624.77 640.32 623.37

2 50 2 563.85 598.10 593.59 569.45 577.70 598.10 569.45

3 75 3 899.90 954.32 938.11 908.95 922.33 954.32 908.95

4 75 2 806.72 854.43 843.73 831.60 836.25 854.43 825.27

5 100 3 963.09 1,003.57 993.64 977.14 978.00 1,003.57 976.01

6 100 2 965.86 1,028.52 1,016.95 987.88 1,000.59 1,028.52 983.46

7 27 3 391.30 391.30 391.30 391.30 391.30 391.30 391.30

8 54 3 664.46 664.46 664.46 664.46 664.46 664.46 664.46

9 81 3 948.23 948.23 948.23 948.23 948.23 948.23 948.23

10 108 3 1,189.69 1,218.75 1,218.75 1,208.74 1,208.74 1,218.75 1,200.34

13 54 3 1,150.31 1,194.18 1,194.18 1,162.85 1,171.58 1,194.18 1,171.58

14 108 3 1,873.74 1,960.88 1,960.88 1,886.53 1,908.76 1,960.88 1,889.59

23 100 3 764.19 803.29 803.29 781.81 784.83 803.29 781.81

61



2.9 appendix : detailed tables of results

Table 2.12: Summary of results for the MDVRP instances.

Inst n m
{

q0} QB QF Qax
E Qgen

E QG QS

1 50 4 560.63 576.87 570.81 570.81 570.81 576.87 575.36

2 50 4 464.35 473.53 473.01 464.48 464.48 473.22 464.48

3 75 5 623.79 640.65 635.93 629.86 630.98 641.19 629.67

4 100 2 951.28 999.21 997.20 973.68 982.38 999.21 978.74

5 100 2 725.55 750.03 747.29 731.27 741.44 750.03 732.17

6 100 3 838.00 876.50 871.47 864.49 867.39 877.26 865.93

7 100 4 843.30 881.97 871.31 855.39 860.65 881.97 855.55

12 80 2 1,290.93 1,318.95 1,314.36 1,314.36 1,314.36 1,318.95 1,301.68

15 160 4 2,463.14 2,505.42 2,505.42 2,505.42 2,505.42 2,505.42 2,492.55
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3
TA C T I C A L P L A N N I N G U N D E R C U S T O M E R O R D E R U N C E RTA I N T Y

The previous chapter considered problems in which the vehicles visit a fixed set of
customers (with variable order size) that are all known in advance. In this chapter, we
study problems in which the customers who will be visited over a tactical planning
horizon are not fully known in advance. Specifically, customers can place their requests
dynamically in any period, and the aim is to determine a visit schedule and associated
routing plan for each period without the precise knowledge of the customer base.
Naturally, a key challenge is to generate routing plans that can flexibly accommodate
potential requests that have not yet been placed.

To tackle this problem, we model future potential customer requests as binary random
variables, and seek to determine a visit schedule that remains feasible for all anticipated
realizations of the requests. The planning process can therefore be viewed as a multi-
stage robust optimization model, where the (discrete recourse) decision to serve requests
on each day of the horizon is a function of all the orders that have been received up to
that day. However, since solving this model is generally intractable, we approximate it
via a non-anticipative two-stage model for which we propose a novel solution approach.
We investigate the quality of the solutions we obtain in two ways: (i) theoretically, we
derive a valid lower bound on the multi-stage model, and (ii) empirically, we perform
Monte Carlo simulations on a rolling horizon to show that it significantly outperform
existing approaches in terms of both operational costs and fleet utilization.

The remainder of this chapter is structured as follows. Section 3.1 provides background
information, in terms of the industrial application that motivated this work as well
as related literature. Section 3.2 provides a mathematical definition of the problem
that we are contemplating, the uncertainty set, the multi-stage robust optimization
model, as well as the two-stage models that provide conservative (i.e., upper bound)
and progressive (i.e., lower bound) approximations of the latter. Section 3.4 presents an
integer programming formulation of the conservative two-stage model and discusses its
solution through a branch-and-cut algorithm, while Section 3.5 presents a scheme for
the computation of lower bounds via the progressive approximation. Finally, Section 3.6
presents computational results on benchmark problems, while we summarize the key
results from this chapter in Section 3.7.
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3.1 background

Traditional variants of the VRP are of an operational nature and the typical setting
involves routing within a single period, e.g., a work day. However, several transportation
problems arising in practice are of a tactical nature, since they involve the routing of
vehicles over multiple service periods, e.g., a week. This is particularly the case when
customers may dynamically place service requests on any given day of the week, and
each request specifies a set of future days during which service can take place. At the end
of each day, the distributor must make scheduling decisions to assign a visit day to each
unfulfilled service request, along with the standard routing decisions, so as to minimize
the long-term transportation costs. The tactical plan is implemented in a rolling horizon
fashion: only routes of the first day are executed while new service requests are received;
unfulfilled requests at the end of the first day and new requests accumulated during the
day constitute the new portfolio of orders to be considered for scheduling the following
day. Such decision-making setups are typical in systems in which services are provided
by appointment, and the following section describes one such system.

3.1.1 Industrial Motivation

Our research is motivated by the business setting of an industrial gases company, whose
main production process involves separating air into its components, primarily nitrogen,
oxygen and argon, which are then used for a wide variety of industrial, medical, retail
and other purposes. After production, these gases are filled in cylinders that are to be
transported to the customers using trucks. Distribution operations involve receiving
orders from customers during the day. In addition to the order volume, customers in
certain markets specify earliest and latest acceptable visit dates at the time of placing
their order. The resulting “day windows” are allowed to be open, so that the distributor
does not need to commit to a delivery date at the time of order placement. Therefore, on
any given day of operation, the goal is to decide which unfulfilled orders to serve and
which ones to leave for future days. The delivery schedules themselves are generated by
solving a traditional VRP, considering constraints on the number of trucks, their capacity,
as well as driver availability.

During this decision-making process, it is crucial to anticipate future customer orders and
explicitly hedge against their underlying uncertainty. Indeed, ignoring the possibility
that customers will place orders in the future can lead to infeasible situations, e.g.,
the number of vehicles required may be more than what is available. This situation
could arise because too many orders were postponed until their latest acceptable dates,
and huge costs must now be incurred to recover feasible schedules (e.g., additional
vehicles must be commissioned or drivers must be paid overtime). The alternative is
to serve orders beyond their acceptable dates; however, this is typically avoided, since
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it is perceived as poor customer service and has a negative impact on the company’s
reputation.

The above description of the VRP is representative of the problem and its complexities at
other companies as well as industries. Relevant examples include scheduling of main-
tenance personnel [61, 247, 257], blood delivery to hospitals [9, 149], food distribution
and collection [100, 267], courier services [18], auto-carrier transportation [89], as well
as distribution operations arising in city logistics [14]. Fortunately, companies that are
faced with such operations often have significant amounts of historical data, which can
be used to obtain demand forecasts and provide information regarding calls for service
in future time periods. The objective of this work is to contribute a decision support
methodology that can use this information and generate risk-averse schedules for the
tactical planning of multi-period vehicle routing operations.

3.1.2 Related Work

A tactical level multi-period routing problem was first introduced by Angelelli, Grazia
Speranza, and Savelsbergh [11] and Angelelli, Savelsbergh, and Grazia Speranza [12],
who considered the problem in which a number of customer requests are received at
the beginning of each day, and each of these requests must be served using a single
uncapacitated vehicle either in the day it was received or in the following day. The
decision-maker must thus decide at the beginning of each day which unfulfilled requests
to serve during that day and which ones to postpone to the future so as to minimize
the sum of total routing costs across the planning horizon. The problem was extended
in [267] (where it was referred to as the Dynamic Multi-Period VRP) and in [32] (where
it was referred to as the Tactical Planning VRP); in both cases, the authors considered
multiple capacitated vehicles and the possibility for customers to request a service day
window spanning more than two days. Further extensions to these problems include
the consideration of arrival-time windows within each visit day [19] as well as inventory
holding costs at customer service locations [14]. We remark that these multi-period
routing models are closely related to the Periodic VRP [118, 156], in which customers
specify allowable visit day combinations and service frequencies over a short-term
planning horizon (typically one week) and the decision-maker attempts to meet these
service requirements while minimizing routing costs. A key difference is that the Periodic
VRP is a strategic decision-making problem because, in practice, the weekly routing plan
is operated unchanged over the course of several months and all information (customer
demand, in particular) is available at the beginning of the planning horizon.

In all of the aforementioned works, decisions are determined through the solution of
deterministic optimization problems by considering only some nominal scenario of
future customer orders (e.g., taking into account only those service requests that have
already been placed and ignoring the potential for customers to place new or augmented
service requests at some future point in time). As we have already discussed, such
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decisions can create situations which can either be infeasible, or too expensive in terms
of transportation costs. Therefore, in the remainder of this section, we only review those
papers that explicitly treat uncertainty in vehicle routing problems.

One option for taking into account the uncertainty in future service requests is stochastic
programming, which models the uncertain parameters of an optimization problem as
random variables with known probability distributions [58]. Over the last four decades,
there has been a rich development of stochastic programming models for several variants
of the VRP under uncertainty. Gendreau, Jabali, and Rei [125] provide an excellent
overview of the existing models for a variety of uncertain parameters; we mention here
only those papers which study the case of uncertain customer orders, which is known
in the literature as the VRP with Stochastic Customers (VRPSC). The VRPSC is typically
formulated as a two-stage model, where the first stage decisions (designed before the
realization of customer orders) consist of designing feasible vehicle routes that visit all
potential customer requests, while the second stage recourse decisions (selected after
the realization of customer orders) consist of following the designed vehicle routes,
while skipping those customer requests that did not materialize. This model was first
introduced by Jaillet [158] for the case of a single vehicle, and since then, solution
approaches have been proposed for that model as well as its extensions by Bertsimas
[50], Gendreau, Laporte, and Séguin [126], and Laporte, Louveaux, and Mercure [178].
We remark that the VRPSC is an operational model with a planning horizon of a single
time period.

In the context of multi-period VRPs, the study by Albareda-Sambola, Fernández, and
Laporte [8] considers probabilistic descriptions of customer order uncertainty. The
authors assume that on any given day, the probability of a potential customer requesting
service at any point in the future is known precisely. However, rather than model the
problem as a stochastic program, the authors utilize this information to formulate an
ad-hoc Prize Collecting VRP over the known customer orders, which aims to decide at
the beginning of each day which requests to serve along with the actual vehicle routes;
the prize for each known customer order is heuristically set according to a function
that increases with respect to the order’s temporal proximity to its service deadline and
decreases with respect to its spatial proximity to uncertain future orders.

The tactical planning multi-period VRP that we study in this chapter may also be
classified as a VRP of dynamic nature, because not all customer requests that will be
served over the planning horizon are known in advance, being gradually realized during
the execution of the tactical plan. There is a huge body of literature on dynamic VRPs,
and we refer the reader to [35] for a survey of these problems. A key difference between
the traditional family of dynamic VRPs and tactical planning VRPs is that the former are
of an operational nature, and are characterized by a high degree of dynamism [183]; that is,
the frequency at which new information is obtained and reacted upon is significantly
higher (of the order of hours and minutes, as opposed to days), thereby reducing the
time available for optimization computations and, hence, the solution strategy (and,
often, the solution quality). Moreover, the primary decisions often involve real-time
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re-routing of vehicle schedules during their execution (e.g., see [39, 227]) or re-scheduling
multiple trips using the same vehicle (e.g., see [22, 169]) rather than serving all pending
customer orders. Similarly, the typical objective is to maximize the number of customer
orders served and minimize service times, rather than optimize transportation costs.
Nevertheless, in the context of multi-period VRPs, such decision-making setups have been
studied by [10], who devised purely “online” re-optimization approaches that ignore
uncertainty, and more recently by [258], who used approximate dynamic programming
techniques that explicitly account for customer order uncertainty. In both cases, the
authors consider a variant of the multi-period VRP in which the decision-maker may
additionally choose to incorporate an arriving customer order into the vehicle schedule
currently in execution or postpone its service to the next day.

In contrast to the above approaches, robust optimization is an alternative framework
that could be used for decision-making under uncertainty in this context. Similar to
stochastic programming, robust optimization models the uncertain parameters of an
optimization problem as random variables, but instead of describing them stochastically
via probability distributions, it requires only knowledge of their support. The basic
robust optimization problem consists of determining a solution that remains feasible for
any realization of the uncertain parameters over this prespecified support, also referred
to as the uncertainty set. We refer the reader to [36] and [51] for a detailed review of the
robust optimization literature.

Over the last decade, several classical variants of the VRP under uncertainty have
been studied through the lens of robust optimization. In particular, these include the
classical Capacitated VRP under demand uncertainty [109, 137, 138, 207, 244] and the
VRP with Time Windows under travel-time uncertainty [6]. Apart from these VRP variants,
robust optimization has also been used to address some related arc routing problems
under service-time uncertainty [78] and inventory routing problems under demand
uncertainty [55, 239]. On a related note, Jaillet, Qi, and Sim [159] proposed a new risk
measure, called the requirements violation index, as a criterion to evaluate how well a
candidate VRP solution meets its constraints under a distributionally robust model of
uncertainty, in which parameters are described via (possibly ambiguous) probability
distributions. However, in contrast to robust optimization, which determines a minimum-
cost solution subject to a budget constraint on the uncertainty, their method determines
a minimum-risk solution subject to a budget constraint on the cost. Moreover, their
approach requires the uncertain attribute (e.g., vehicle load) to be an affine function
of the underlying uncertainties (e.g., customer demand). Recently, Zhang et al. [278]
generalized this requirement to piecewise affine functions, and addressed travel-time
uncertainty. To the best of our knowledge, none of the aforementioned approaches
addresses uncertainty in customer orders. This is particularly challenging in the context
of robust optimization because uncertain parameters such as demand and travel times are
typically modeled as continuous (as opposed to discrete) random variables, allowing the
reformulation of the corresponding robust optimization models to a finite-dimensional
deterministic model, which can be solved relatively efficiently. In contrast, the presence
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or absence of a customer order is a discrete event, providing more challenges for robust
optimization modeling and solution approaches.

In recent years, robust optimization has also been extended to solve multi-stage decision-
making problems, in which a sequence of uncertain parameters is observed over time
and the decision-maker can take recourse actions whenever the value of an uncer-
tain parameter becomes known. Besides faithfully modeling the dynamic nature of
decision-making processes in practice, multi-stage problems are essential to mitigate
the conservatism of traditional single-stage (also known as static) robust optimization
problems. However, while multi-stage problems involving continuous recourse decisions
have been well studied [38, 79], the literature on robust optimization with discrete re-
course decisions is relatively sparse. Zhao and Zeng [280] have developed a generalized
column-and-constraint generation framework to address two-stage problems in a fully
adaptive fashion, in which the resulting first-stage solution is no more conservative than
any other robust feasible solution. Other approaches are concerned with the design of
conservative approximations of the true multi-stage problem and fall into one of three
categories: (i) decision rule approaches, which model the recourse decisions as explicit
functions of the uncertain parameters [45, 54], (ii) K-adaptability approaches in which
the decision-maker designs K sets of discrete recourse decisions in the first-stage and
implements the best design after observing the realization of uncertain parameters [52,
145], and (iii) uncertainty set partitioning approaches, which simulate the recourse nature
of discrete decisions by designing separate sets of decisions for different, pre-specified
subsets of the uncertainty set [53, 218].

3.1.3 Our Contributions

In this chapter, we study the modeling and solution of the multi-period VRP under
customer order uncertainty, casting it as a multi-stage robust optimization model. To
that end, we model uncertain customer orders as binary random variables that have
realizations in an uncertainty set of finite (but possibly very large) cardinality, where each
member of the set corresponds to a combination of customer orders that might potentially
realize over the planning horizon. This set constitutes a flexible representation, allowing
us to capture practically meaningful scenarios that adhere to underlying correlations
linking customer requests, and can be easily regressed from historical data without
requiring detailed probability distributions.

However, since the numerical solution of a multi-stage model can prove challenging
in practice, we propose to approximate it with a tractable, non-anticipative two-stage
counterpart. We also devise a partially-anticipative two-stage model that provides lower
bounds on the optimal value of the multi-stage model, and establish conditions under
which the solutions provided by the two models coincide. Finally, we conduct a thorough
computational study to elucidate the numerical tractability of our algorithm, the approxi-
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mation quality of the non-anticipative two-stage model, and the closed loop performance
of the solutions provided by this model in a rolling horizon simulation.

The solution of the two-stage model is aided by algorithmic efficiencies that we propose
to improve the generalized column-and-constraint generation framework [280] for two-
stage robust optimization problems with binary recourse decisions. These improvements
are particularly suited in cases when there are no second-stage costs; that is, when the
recourse problem is a mere feasibility problem.

3.2 problem definition

Let Π denote a (possibly infinite) time horizon, whose elements represent time periods
(days).1 On any given day d ∈ Π, a number of customers place a service request.
The set of all customers who can request service during Π is assumed to be known
and denoted by N. Each i ∈ N is associated with quantities qi ∈ R+, ei ∈ Z+ and
`i ∈ Z+, where 1 ≤ ei ≤ `i, which have the following meaning: if i places a service
request on day d, then a demand quantity qi must be delivered to i no earlier than ei
days after d, and no later than `i days after d; that is, service must be provided in
the day window {d + ei, . . . , d + `i}.23 For notational convenience, we shall define the
width of this day window to be wi := `i − ei + 1. Any such pair v = (i, d) represents a
customer order that is associated with demand quantity qv ≡ qi and service day window
Pv ≡ {d + ei, . . . , d + `i}.4

Let G = (N′, E) denote an undirected graph with nodes N′ = N ∪ {0} and edges E.
Node 0 represents the unique depot, which is equipped with m homogeneous vehicles,
each of capacity Q ∈ R+ and available on every day of the horizon. We denote the set of
vehicles as K = {1, . . . , m}. Each vehicle incurs a traveling cost cij ∈ R+, if it traverses the
edge (i, j) ∈ E. We define cii = 0 for all i ∈ N. For ease of notation, given two customer
orders u = (i, d) and v = (j, d′), we let cuv mean the same thing as cij.

Let 0 ∈ Π denote the (end of the) current time period, and V0 ⊆ {(i, p) ∈ N ×Π : p ≤ 0}
the set of pending orders, i.e., orders that were received in the past but have not yet been
served. Similarly, for any p ≥ 1, let Vp = N × {p} denote the set of potential future orders
that may be received in period p ∈ Π. Our goal is to determine a feasible visit schedule

1 Throughout the chapter, the terms days and periods are used interchangeably.
2 The requirement 1 ≤ ei is typical in many operations, where orders cannot be served on the same day in

which they were placed. This is often due to the fact that available vehicles have already been loaded earlier
in the day, and have departed the depot to serve other customers before the time the order is placed.

3 We remark that our proposed method allows the service period to be defined as any subset of Π, and not
necessarily consecutive days constituting a window. However, for ease of exposition, we do not present this
generalization.

4 Observe that, as per this definition, if a customer i places a service request more than once during the
horizon, on days d and d′, then the orders (i, p) and (i, p′) are treated independently. Thus, although it
is possible to associate different demand quantities qid and qid′ to these orders, we do not consider this
possibility for ease of exposition.
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(S1, S2, . . . , ) over the future horizon {1, 2, . . . , } that services all pending orders in V0

as well as future orders from {Vp}p≥1, in a way that minimizes long-term costs; here,
Sp denotes the set of orders selected to be served on day p. In view of this goal, we
shall restrict our attention to a finite planning horizon P = {1, . . . , h} consisting of the
h ≥ 1 subsequent days, and attempt to determine a visit schedule (S1, . . . , Sh) over P.
The cost of this schedule is determined by computing a vehicle routing plan that services
the orders in Sp, for each p ∈ P. Before we formally describe our model, we remark
that, in practice, the computed schedule (S1, . . . , Sh) will be implemented in a rolling
horizon fashion: only the vehicle routes corresponding to S1 will be executed; new orders
received on day 1 will be recorded, V0 will be updated, and the entire procedure will be
repeated over the updated horizon {2, . . . , h + 1}. Therefore, in the following sections,
we shall only focus on the modeling and solution procedure of the planning problem
over P. We shall return to the rolling-horizon context in Section 3.6, where we evaluate
the performance of our proposed method using rolling horizon simulations.

Because of the finiteness of the planning horizon P, we can make some simplifying
assumptions without loss of generality. First, we shall assume that the day window Pv,
of any pending order v = (i, d) ∈ V0, is updated so that it satisfies Pv = {max{1, d +

ei}, . . . , d + `i}.5 Second, we shall assume that the set of all (pending and potential)
orders V := V0 ∪ V1 ∪ . . . ∪ Vh is preprocessed such that any order v ∈ V satisfies
d + `i ≤ h;6 along with the requirement that customers cannot be served on the day they
requested service, i.e., ei ≥ 1, this means that Vh = ∅. These assumptions imply that,
after preprocessing, we have Pv ⊆ P for all orders v ∈ V.

3.2.1 Uncertainty Model

In practice, it is unlikely that all potential future orders from {Vp}p∈P will materialize
(i.e., be received) during the planning horizon. Therefore, these orders are uncertain in
the context of the current planning problem. To capture this uncertainty, we model the
presence (or absence) of future orders as binary random variables ξ, and assume only
that their support Ξ ⊆ {0, 1}|V| is known. Specifically, ξv (equivalently referred to as
ξid) is an uncertain parameter attaining the value of one, if the order v = (i, d) ∈ V
materializes (i.e., customer i places an order on day d), and zero otherwise. Note
that ξv = 1 for all v ∈ V0, and hence, these components of ξ are deterministic. For
notational convenience, we define ξ0 := (ξv)v∈V0

and ξ p := (ξv)v∈Vp
to be the restriction

of the vector ξ to those orders that are known to be pending at the beginning of the
planning horizon and to those orders that can potentially materialize in period p ∈ P,
respectively. We also define ξ [p] :=

(
ξ0, . . . , ξ p) as the parameter restriction up to period

p; and, Ξ[p] :=
{

ξ [p] ∈ {0, 1}|V0|+...+|Vp| : ξ ∈ Ξ
}

as the corresponding projection of Ξ,

5 v ∈ V0 is an unfulfilled order. Therefore, if d+ ei < 1, then its day window has to be shrunk to {1, . . . , d+ `i}.
6 Orders v for which d + `i > h will be served outside the horizon and can be safely removed from

consideration.
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for all p ∈ {0, 1, . . . , h}. Finally, we denote by ξ̂ the nominal realization of the uncertain
parameters, which corresponds to the scenario where only the pending orders need to
be served and no other customer orders are received during the planning horizon; that
is, ξ̂v = 1, if v ∈ V0, and 0 otherwise. Throughout the chapter, we shall assume that the
support Ξ, also referred to as the uncertainty set, satisfies the following conditions:

(C1) The uncertainty set Ξ is non-empty. In particular, ξ̂ ∈ Ξ.

(C2) The pending customer orders are a part of every uncertainty realization. Stated
differently, Ξ[0] = {1}, where 1 ∈ R|V0| denotes the vector of ones.

(C3) For each order v ∈ V, we have max{ξv : ξ ∈ Ξ} = 1.7

We remark that, due to the finiteness of {0, 1}|V|, every uncertainty set which satisfies
the above conditions admits a polyhedral description of the form:

Ξ =

{
ξ ∈ {0, 1}|V| : ξ0 = 1, ∑

p∈P
Apξ p ≤ b

}
, where Ap ∈ Rr×|Vp| and b ∈ Rr

+. (3.1)

constructing the uncertainty set from data . We provide some guidance
on how an uncertainty set can be constructed in practice, including when historical data
might be available. We focus our attention to the class of budgeted uncertainty sets which
have the following form:

ΞB =

{
ξ ∈ {0, 1}|V| : ξ0 = 1, ∑

v∈Bl

ξv ≤ bl for l ∈ {1, . . . , L}
}

(3.2)

Here, L ∈ N, Bl ⊆ V \V0 and bl ∈ N are parameters that need to be specified. The lth

inequality imposes a limit bl on the total number of customer orders that can be received
from the set Bl , and thus represents a budget of uncertainty. Observe that, by setting bl = 0,
for all l ∈ {1, . . . , L}, the uncertainty set ΞB = {ξ̂} reduces to a singleton, corresponding
to the nominal realization. As the values of bl increase, the size of the uncertainty set |ΞB|
enlarges and more scenarios of future service requests are considered. When bl = |Bl | for
all l ∈ {1, . . . , L}, ΞB becomes a hypercube and all potential future orders are considered.
We shall refer to ΞB as a disjoint budget uncertainty set, if the sets {Bl}L

l=1 are disjoint; that
is, Bl ∩ Bl′ = ∅ for l 6= l′. The disjoint budget structure will play an important role later,
both in gaining a better theoretical understanding as well as enabling efficient algorithms.
Practical examples of (not necessarily disjoint) budgets that are motivated in the context
of the multi-period VRP are presented in the following.

(a) Budget of orders received during the planning horizon. This is obtained by setting L = 1
and B1 = V \V0. Here, b1 represents the maximum total number of orders received
during the planning horizon. Observe that this is precisely the cardinality-constrained
uncertainty set proposed by Bertsimas and Sim [57], and thus the latter constitutes
a special case of (3.2).

7 This condition can always be ensured by removing redundant orders (e.g., from customers who may never
place a service request on a particular day) from consideration.
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(b) Budgets of orders received on individual days. This is obtained by setting L = h and
Bp = Vp for all p ∈ P. Here, bp represents the maximum number of orders received
on day p.

(c) Budgets of orders received from individual customers. This is obtained by setting L = |N|
and Bi = {(i, p) ∈ V : p ∈ P} for all i ∈ N. Here, bi represents the maximum
number of orders placed by customer i during the planning horizon.

The budget parameter b in each of the above cases can be computed either from domain
knowledge or using statistical models. As an example of the latter, consider the following
two cases.

− Independent orders (as in case (b)). Suppose that ξv, v ∈ Bl , are independent binary
random variables with probabilities αv ∈ [0, 1], that have been estimated from
data. Then, the sum ∑v∈Bl

ξv follows a Poisson binomial distribution with parameters
(αv)v∈Bl . If F denotes its cumulative distribution function, then the inequality

∑
v∈Bl

ξv ≤ F−1(γ) (3.3)

is satisfied with probability γ. The above inequality can be incorporated as a budget
by setting bl = F−1(γ). If |Bl | is large enough, then one can also employ a limit law,
such as the central limit theorem, to argue that the inequality

1
σl

∑
v∈Bl

(ξv − αv) ≤ Φ−1(γ), where σ2
l = ∑

v∈Bl

αv(1− αv) (3.4)

is satisfied with probability γ. Here, Φ is the cumulative distribution function of
the standard normal random variable (see also [34]). It is easy to see that this
inequality can also be incorporated as a budget by appropriately defining bl .

− Dependent orders (as in case (a) or case (c)). If ξv, v ∈ Bl , are dependent binary random
variables, then one can use tail bounds of ∑v∈Bl

ξv, obtained via simulations, to
determine values for the budget parameter bl . For example, in case (c), in which
Bi is a set of temporally distributed orders from customer i, one can simulate the
following kth order autoregressive logistic model to determine bi. Here, ai0, . . . , aik
are parameters to be estimated from data.

αip =
1

1 + exp(ai0 + ∑k
j=1 aijξi,p−j)

(3.5)

Remark 3.1. In all of the aforementioned cases, the resulting budget sets ΞB can be updated
in a rolling horizon context. For example, if customer i has just placed a service request, then
the budget ∑v∈Bi

ξv ≤ 0 can be imposed to reflect the expectation that i is unlikely to place an
order in the next planning horizon. More generally, the probabilities α in (3.3), (3.4) and logistic
coefficients a in (3.5) can be estimated in a Bayesian fashion, to obtain improved estimates of the
budget parameters b.
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The aforementioned uncertainty sets exploit the binary-valued nature of the uncertain
parameters ξ. We remark that there exists a large body of work on uncertainty set
construction for general robust optimization problems with continuous-valued uncertain
parameters. We refer interested readers to [36, 56, 135] for theory, applications and
practical recommendations regarding this subject.

3.2.2 Multi-Stage Adaptive Robust Optimization Model

We first describe the deterministic version of the problem. In this regard, let ξ ∈ Ξ denote
a given realization of customer orders over the planning horizon. Given any subset
of orders S ⊆ V, let CVRP(S, ξ, t) denote the optimal objective value of an instance of
the Capacitated Vehicle Routing Problem with nodes {i ∈ S : ξi = 1} ∪ {0}, travel costs
c, demands q, and using at most t vehicles of capacity Q located at the depot node
0. Similarly, let BPP(S, ξ) denote the optimal objective value of an instance of the Bin
Packing Problem, where the bin size is Q and the items are the elements of {i ∈ S : ξi = 1}
with corresponding weights qi.8 Finally, let ∆p := {v ∈ V : p ∈ Pv} denote the set of all
(pending and potential) customer orders that can be serviced in period p ∈ P of the
planning horizon; and, let F := {(S1, . . . , Sh) : Sp ⊆ ∆p ∀ p ∈ P, Sp ∩ Sp′ = ∅ ∀ p, p′ ∈
P : p 6= p′, ∪p∈PSp = V} denote the set of feasible assignments of customer orders
to periods; that is, for each partition S = (S1, . . . , Sh) of V such that S ∈ F , Sp is the
(possibly empty) subset of orders assigned to period p. For a given vector ξ ∈ Ξ, the
deterministic problem is:

minimize
S

∑
p∈P

CVRP(Sp, ξ, m)

subject to (S1, . . . , Sh) ∈ F .
(DET (ξ))

Existing solution methods for the multi-period VRP (e.g., see [32, 267]) attempt to solve
the deterministic problem DET (ξ̂) corresponding to the nominal realization ξ̂, and
effectively assume that no orders other than the currently pending ones will be serviced
during the planning horizon. The consequence of this assumption is that the determined
solution S can become infeasible under customer order realizations other than the
nominal (refer to Section 3.2.5 for a discussion and to Section 3.3 for an illustrative
example). Therefore, in the following, we present a robust optimization model that
explicitly hedges against customer order uncertainty.

In this adaptive, multi-stage robust optimization model, the goal is to select the set of
customer orders to be served in period 1 in a here-and-now fashion, whereas the set of
customer orders to be served in period p, where p > 1, can be selected later at the end
of period p− 1 in a wait-and-see fashion, using observations of the uncertainty realized

8 Note how this is equivalent to an instance where the items are the elements of S, albeit with weights qiξi,
i ∈ S.
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up to the time of optimization.9 In other words, order assignment decisions for periods
p ∈ P \ {1} are allowed to depend on ξ [p−1] (the customer order realizations up to the
previous period), and are obtained through functions S̃p(·) that map ξ [p−1] to sets of
customer orders to be served in period p. These functions are said to constitute a robust
feasible solution if, for all possible realizations ξ ∈ Ξ, they evaluate to capacity-feasible
order assignments, i.e., if S̃p(ξ) can be partitioned into m (possibly empty) capacity-
feasible vehicle routes, for each p > 1. Amongst all such robust feasible solutions, the
decision maker may seek to determine the one that minimizes the cost under a specific
realization of future customer orders. In particular, if we select this realization to be the
nominal scenario ξ̂, we result into the following multi-stage robust optimization model:

minimize
S

CVRP(S1, ξ̂, m) + ∑
p∈P\{1}

CVRP(S̃p(ξ̂
[p−1]), ξ̂, m)

subject to S̃p : Ξ[p−1] 7→ 2∆p ∀ p ∈ P \ {1}
(S1, S̃2(ξ

[1]), . . . , S̃h(ξ
[h−1])) ∈ F ∀ ξ ∈ Ξ

BPP(S̃p(ξ
[p−1]), ξ) ≤ m ∀ p ∈ P \ {1} ∀ ξ ∈ Ξ.

(MSRO)

Remark 3.2. Even though decisions implicit in the evaluation of BPP(S̃p(ξ [p−1]), ξ) are made
with full knowledge of the vector of customer order realizations ξ over the entire planning
horizon, they still satisfy the non-anticipativity requirement. This is because S̃p(ξ [p−1]) ⊆ ∆p

and, hence, can only contain orders from
p−1⋃
q=0

Vq. Therefore, the wait-and-see decisions implicit in

BPP(S̃p(ξ [p−1]), ξ) can only depend on customer order realizations up to period p− 1, ξ [p−1], for
each ξ ∈ Ξ.

Given the computational challenges for the numerical solution of problemMSRO stem-
ming from the discrete nature of the functional variables S̃p(·) and the non-anticipativity
requirement across multiple periods, in the following, we propose models to bound
MSRO from above and below via conservative and progressive approximations, re-
spectively.

3.2.3 Two-Stage Conservative Approximation

This section presents a non-anticipative, two-stage approximation of MSRO. In this
model, the goal is to pre-select the set of (pending as well as potential) customer orders
that will be served in each period of the planning horizon, irrespectively of whether the
potential customer orders will actually be placed or not. In other words, the decision
to serve the subset Sp of customer orders, in each future period p ∈ P, is made in a
here-and-now fashion, whereas the feasibility of the selected order subsets can be verified

9 Note how this process obeys the non-anticipativity principle, which is required for the resulting solution to be
implementable in practice.
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later in a wait-and-see fashion. As a result, the bin-packing decisions associated with
verifying the feasibility of the selected order assignments are allowed to depend on the
actual customer order realizations. Consequently, an assignment of orders to periods
S ∈ F is said to be robust feasible in this two-stage model if, for all customer order
realizations ξ ∈ Ξ and all periods p ∈ P, the subset of customer orders selected to be
served in period p, Sp, can be partitioned into m capacity-feasible vehicle routes. By
a similar argument as in Remark 3.2, this partition of Sp can only depend on ξ [p−1],
for each ξ ∈ Ξ. Therefore, solutions determined in this manner are non-anticipative by
construction, and they can be implemented in practice. The relevant upper-bounding
two-stage robust optimization model can be cast as follows:

minimize
S

∑
p∈P

CVRP(Sp, ξ̂, m)

subject to (S1, . . . , Sh) ∈ F
BPP(Sp, ξ) ≤ m ∀ p ∈ P \ {1}, ∀ ξ ∈ Ξ.

(T SRO)

3.2.4 Two-Stage Progressive Approximation

This section presents an anticipative, two-stage approximation ofMSRO. Similar to the
multi-stage model, the goal is to select the set of customer orders to be served in period 1
in a here-and-now fashion, whereas the set of customer orders to be served in period p,
where p > 1, can be selected later in a wait-and-see fashion. However, in contrast to the
multi-stage model, the order assignment decisions for periods p ∈ P \ {1} are allowed to
depend on the entire vector of future customer order realizations ξ (not just on the order
realizations up to the previous period, ξ [p−1]), and are obtained through functions S̃p(·)
that map ξ to subsets of customer orders to be served in period p. Consequently, solutions
determined in this manner are anticipative by construction. The relevant lower-bounding
two-stage robust optimization model can be cast as follows:

minimize
S

CVRP(S1, ξ̂, m) + ∑
p∈P\{1}

CVRP(S̃p(ξ̂), ξ̂, m)

subject to S̃p : Ξ 7→ 2∆p ∀ p ∈ P \ {1}
(S1, S̃2(ξ), . . . , S̃h(ξ)) ∈ F ∀ ξ ∈ Ξ

BPP(S̃p(ξ), ξ) ≤ m ∀ p ∈ P \ {1} ∀ ξ ∈ Ξ.

(T SRO)

3.2.5 Relationship between Two-Stage and Multi-Stage Models

As already alluded, the optimal value of model T SRO provides a conservative approxi-
mation (upper bound) to the optimal value of modelMSRO, while the optimal value of
model T SRO provides a progressive approximation (lower bound). This is formalized
in Proposition 3.1.
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Proposition 3.1. For any uncertainty set Ξ, let DET(ξ̂), TSRO, MSRO and TSRO denote the optimal
objective values of problems DET (ξ̂), T SRO,MSRO and T SRO, respectively. Then, we
have

0 ≤ DET(ξ̂) ≤ TSRO ≤ MSRO ≤ TSRO. (3.6)

Therefore, the approximation gap of T SRO with respect toMSRO can be upper bounded as
follows:

0 ≤ TSRO− MSRO

MSRO
≤ TSRO− TSRO

TSRO
. (3.7)

Although both T SRO and T SRO are two-stage models, their key difference is that the
former is non-anticipative and provides a causal policy which only relies on information
observed up to the respective day when the solution is to be implemented. The latter
model lacks this property and, thus, the customer assignments S̃p(ξ) may potentially
be selected using future knowledge of customer order realizations. The consequence
of assuming future knowledge is that the solutions determined by the model T SRO
may become infeasible during actual implementation. We remark, however, that the
ability to obtain a valid lower bound using model T SRO is valuable inasmuch as it
allows us to establish an upper limit on the potential loss of approximation provided
by the non-anticipative model T SRO. This is made further evident by the fact that
the inequalities in Proposition 3.1 are strict, in general, making the conservatism of a
solution an important issue. Nevertheless, as Propositions 3.2 and 3.3 show, there still
exist some settings when the two-stage models T SRO and T SRO approximate the
multi-stage modelMSRO well.

Proposition 3.2. For any uncertainty set Ξ, we have TSRO = MSRO = TSRO, whenever any of
the following conditions hold:

(i) The planning horizon spans two time periods, i.e., h = 2.

(ii) All customer orders v ∈ V satisfy (a) |Pv| ≤ 2, and (b) 1 ∈ Pv, if |Pv| = 2.

Proposition 3.3. If problem T SRO is infeasible, then so is MSRO, whenever any of the
conditions listed in Proposition 3.2 or any of the following conditions hold.

(i) The uncertainty set is a hypercube, i.e., Ξ =
{

ξ ∈ {0, 1}|V| : ξ0 = 1
}

, where 1 ∈ R|V|

denotes the vector of ones.

(ii) The uncertainty set is stage-wise rectangular and disjoint budgeted, i.e., Ξ =
{

ξ ∈
{0, 1}|V| : ξ0 = 1, ∑i∈Clp

ξip ≤ blp, ∀l ∈ {1, . . . , Lp}, ∀p ∈ P
}

, where for each p ∈ P,

we have Lp ∈ Z+, Clp ⊆ N and Clp ∩ Cl′p = ∅ for l 6= l′; and, all customers i ∈ N with
wi ≥ 2 satisfy `i ≥ h, while all customers i ∈ N with wi = 1 satisfy ei = 1.

The settings referenced in Propositions 3.2 and 3.3 correspond to cases where cus-
tomers don’t have much flexibility in their day windows. For instance, condition (ii)

76



3.3 example illustrating the decision dynamics of the models

of Proposition 3.3 states that the two-stage model T SRO is a good approximation of
the multi-stage modelMSRO, if “flexible” customers (those with at least two feasible
service days, wi ≥ 2) request service sufficiently in advance of the end of their day
window (`i ≥ h), while “inflexible” customers (those with exactly one feasible service
day, wi = 1) request service only one day in advance (ei = 1). Moreover, it can be shown
that these results may fail to hold if the conditions stated in the above propositions
deviate only slightly. We do not present the relevant counterexamples for the sake of
brevity.

It must be mentioned that all four models provide an order assignment for the next
day, i.e, day 1 (assuming the model has a feasible solution). We also note that, since
each of these models ignores information beyond the planning horizon, none of them
can guarantee feasibility in a rolling horizon context, in which they will be used (see
Section 3.6.5). However, it should be highlighted that the solutions determined by
models DET (ξ̂) and T SRO can also become infeasible in a folding horizon context, in
which solutions are determined through models that are instantiated on successively
smaller subsets of the planning horizon and updated to reflect the actual realization
of the uncertainty. This is in contrast to model T SRO, which provides guarantees of
robust feasibility in this manner, and the example in Section 3.3 also illustrates this point.

Finally, we remark that, unlike the multi-stage model, whose numerical solution is
challenging to compute, we can develop efficient numerical schemes for models T SRO
and T SRO. In the following sections, we will provide such schemes and use them to
quantify the gap between their objective values for a wide range of problem instances in
our numerical experiments.

3.3 example illustrating the decision dynamics of the deterministic

and two-stage robust optimization models

Consider the instance shown in Figure 3.1 with n = 6 customers and m = 1 vehicle of
capacity Q = 4. Note that, for the sake of simplicity, every order from a given customer
i ∈ N always has the same demand qi and day windows {d + ei, . . . , d + `i} (assuming
the order was placed on day d).

Suppose that the set of pending orders at the end of the current day, i.e., day 0 ∈ Π,
is V0 = {(1,−3), (2,−1), (3, 0), (4,−2)}; that is, customers 1, 2 and 4 have respectively
placed orders on days −3, −1 and −2 that are still pending, while customer 3 has just
placed an order on day 0. There are currently no pending orders from customers 5
and 6. Suppose that there are h = 4 days in the planning horizon, and assume that every
customer can potentially place an order on any day of the planning horizon. Assume
also that we are given a budgeted uncertainty set stipulating that each customer will
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Figure 3.1: Example instance. The number q next to customer i denotes its demand, while the
curly braces denote the day window associated with a service request placed on day
d. The number above edge (i, j) denotes its transportation cost, cij. Note that node
triplets (1, 0, 3), (2, 0, 6) and (4, 0, 5) are collinear; therefore, the direct connections
(1, 3), (2, 6) and (4, 5) exist and have cost c13 = c26 = c45 = 20. The edges (1, 2), (1, 4),
(3, 5) and (3, 6), which are not shown in this figure, are also assumed to exist and
have cost c12 = c14 = c35 = c36 = 18. Any remaining edges are assumed to not exist,
i.e., direct connection between them is not possible.

place at most one order during the planning horizon, and additionally, that no more
than a single order will be placed on any given day of the horizon:

Ξ =
{

ξ ∈ {0, 1}|V| : ξ0 = 1, ξ51 + ξ52 + ξ53 ≤ 1, ξ61 + ξ62 ≤ 1, ξ5p + ξ6p ≤ 1 ∀p ∈ {1, 2}
}

.

Observe that potential orders from customers 1–4 as well as a potential order from
customer 6 on day 3 are not considered, since their day windows would fall outside the
current planning horizon.

ordering of optimal objective values : Upon solving the example instance
using the corresponding models, we obtain the optimal objective values of DET(ξ̂) = 70,
TSRO = 84, and TSRO = 88. This demonstrates that the inequalities (3.6) are strict, in
general. The optimal solutions to these models are depicted in Figure 3.2. The structure of
the solutions can be intuitively understood as follows. The deterministic model DET (ξ̂)
ignores uncertainty and assigns the pending orders in a way that optimizes the cost of
routing them; only 1 unit of demand is served on day 1. The two-stage model T SRO
considers uncertainty (albeit in an anticipative manner) and serves 2 units of demand on
day 1; this frees up some of the vehicle capacity in future time periods, but incurs higher
routing cost. The non-anticipative two-stage model T SRO frees up even more of the
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3.3 example illustrating the decision dynamics of the models

vehicle capacity in future time periods, serving 3 units of demand on day 1, but incurs
the highest routing cost.
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Day 2
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Day 2

Day 3

0 1

2

3

4

Day 3

Day 1

Day 2

Figure 3.2: From left to right, the graphs illustrate the optimal routes passing through the set of
pending orders, corresponding to models DET (ξ̂), T SRO and T SRO, respectively.
In case of T SRO, the routes depict the evaluation of the optimal policy under the
nominal scenario, ξ̂. Note that, in all these solutions, no pending order is assigned to
be served on day 4.

folding horizon scheme : The folding horizon scheme can be described as follows:
we implement only the routes of day 1, and then we re-solve the resulting (h− 1)-period
problem using the model of interest; in doing so, the model is updated to reflect the
realization of customer orders that were received at the end of day 1. This process is
then continued until the last time period. Figures 3.3, 3.4 and 3.5 respectively illustrate
the performance of the solutions determined by models DET (ξ̂), T SRO and T SRO
in a folding horizon scheme. In these figures, for each day p of the planning horizon,
shaded nodes denote new orders received during day p, solid arrows denote planned
routes serving pending orders (as in Figure 2), while patterned nodes and dashed arrows
represent pending orders served and routes executed in the past, respectively.

Figure 3.3 shows that the solution determined by the deterministic model becomes
infeasible under the realization in which customers 6 and 5 respectively place orders on
days 1 and 2.

0 1
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Day 2
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End of Day 2

Day 3 infeasible

Day 2

Day 1

Figure 3.3: Implementation of solutions determined by the deterministic model in a folding
horizon scheme. The instance becomes infeasible under the scenario where ξ61 =
ξ52 = 1.
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3.3 example illustrating the decision dynamics of the models

Similarly, Figure 3.4 shows that when the route determined by the anticipative two-stage
model T SRO is implemented on day 1, the resulting model to be solved at the end of
day 1 becomes robust infeasible if customer 6 places an order on day 1. To illustrate this,
note that the service day window of this newly received order is {2, 3}, and hence, the
order must be served on either day 2 or day 3. If the former were to be chosen, then
Figure 3.4a shows that the instance becomes infeasible under the realization in which
customer 5 places an order on day 3. Moreover, if the latter were to be chosen, then
Figure 3.4b shows that the instance becomes infeasible under the realization in which
customer 5 places an order on day 2, and the same is true for the the equivalent solution
in which the order from customer 3 is assigned on day 4.
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(a) The order received from customer 6 on day 1 is served on day 2. The instance becomes
infeasible under the scenario where ξ53 = 1.
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(b) The order received from customer 6 on day 1 is not served on day 2. The instance becomes
infeasible under the scenario where ξ52 = 1.

Figure 3.4: Implementation of solutions determined by the anticipative two-stage model T SRO
in a folding horizon scheme.

In contrast to the above, the solution to the non-anticipative two-stage model T SRO
remains robust feasible in the context of the folding horizon. Pending orders from cus-
tomers 1 and 3 are served on day 1. It is then trivial to verify that the customer order
assignment S2 = {(4,−2), (5, 1), (6, 1)}, S3 = {(2,−1), (5, 2)} and S4 = {(5, 3), (6, 2)} re-
main capacity-feasible under every realization admitted by the uncertainty set. Figure 3.5
illustrates this for the particular realization in which customers 6 and 5 respectively place
orders on days 1 and 2.
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Figure 3.5: Implementation of solutions determined by the non-anticipative two-stage model
T SRO in a folding horizon scheme. The depicted order assignments would be
implemented under the scenario where ξ61 = ξ52 = 1.

3.4 solution method

In the previous section, we characterized the solutions to problem T SRO by the subset
of customer orders selected to be served on any given day. In practice, however, we
shall use mathematical models to describe these solutions through integer variables and
numerical methods to obtain their optimal values. Section 3.4.1 describes an integer
programing formulation of model T SRO, while Section 3.4.2 elaborates on a branch-
and-cut framework for its numerical solution.

3.4.1 Mathematical Formulation

Recall that a solution to model T SRO is an assignment of customer orders to days. In
the following, we shall describe these assignments through binary variables yvp that
record whether a customer order v ∈ V is selected to be served in period p ∈ P. In
particular, these variables will enforce the following definition:

yvp = 1⇐⇒ v ∈ Sp (3.8)

Note that any feasible assignment S ∈ F induces unique values for yvp through this
relationship. Conversely, whenever the binary variables yvp, v ∈ V, p ∈ P satisfy the
equation

∑
p∈P

yvp = ∑
p∈Pv

yvp = 1 ∀ v ∈ V, (3.9)

requiring each customer order to be served exactly once during the planning horizon
within its day window, the values of yvp also induce a unique assignment of customer
orders to days, and we shall denote this assignment by S(y).

In order to evaluate the cost of the solutions under scenario ξ̂, we will use integer
variables xuvp to indicate whether a vehicle serves order v ∈ V0 immediately after order
u (or the depot 0) in period p ∈ P. To simplify notation, we define

E0 =
{(

(i, d), (j, d′)
)
∈ V0 ×V0 : (i, j) ∈ E or i = j, d 6= d′

}
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3.4 solution method

as the subset of edges which cover the pending customer orders and over which it
is sufficient to define routing variables x in order to evaluate the objective function
of model T SRO. Furthermore, given a set of customer orders S ⊆ V0, we define
E0(S) = {(u, v) ∈ E0 : u, v ∈ S, u 6= v} as the set of edges that connect orders in
S. Following standard vehicle routing modeling techniques, we derive the following
integer programming formulation that is valid for the deterministic model under the
nominal scenario DET (ξ̂). We will use it as a basis in order to derive a valid formulation
for T SRO.

minimize
x,y ∑

p∈P
∑

v∈V0

c0vx0vp + ∑
p∈P

∑
(u,v)∈E0

cuvxuvp (3.10a)

subject to yvp ∈ {0, 1} ∀ v ∈ V, ∀ p ∈ P (3.10b)

x0vp ∈ {0, 1, 2} ∀ v ∈ V0, ∀ p ∈ P (3.10c)

xuvp ∈ {0, 1} ∀ (u, v) ∈ E0, ∀ p ∈ P (3.10d)

∑
p∈P

yvp = ∑
p∈Pv

yvp = 1 ∀ v ∈ V (3.10e)

∑
v∈V0

x0vp ≤ 2m ∀ p ∈ P (3.10f)

x0vp + ∑
u:(u,v)∈E0

xuvp = 2yvp ∀ v ∈ V0, ∀ p ∈ P (3.10g)

∑
p∈P

∑
(u,v)∈E0(S)

xuvp ≤ |S| −
⌈

1
Q ∑

i∈S
qi

⌉
∀ S ⊆ V0. (3.10h)

The objective (3.10a) consists of minimizing the total cost of routing the pending orders
V0 across the planning horizon; equations (3.10e) stipulate that each known customer
order must be served exactly once within its day window; constraints (3.10f) require that
no more than m vehicles depart from the depot on any given day; equations (3.10g) state
that, if customer order v ∈ V0 is served on day p ∈ P, then there must be exactly two
edges incident to v on day p. Finally, constraints (3.10h) restrict subtours, requiring that
each customer order is served by a vehicle that departs from and returns to the depot, as
well as enforce the vehicle capacity restrictions by imposing applicable lower bounds on
the number of vehicles that serve a set of orders S ⊆ V0.

In order for the binary variables yvp in the above formulation to induce a customer order
assignment S(y) that is robust feasible in T SRO we must be able to serve Sp(y) using
at most m vehicles. We show that the following robust cover inequalities characterize the
subsets of customer orders that can be served in any period p ∈ P, Sp(y), such that S(y)
is robust feasible in T SRO:

m + ∑
v∈S

(
1− yvp

)
≥ BPP(S, ξ) ∀ S ⊆ V, ∀ p ∈ P, ∀ ξ ∈ Ξ. (3.11)

Proposition 3.4. For any support Ξ and binary variables yvp, v ∈ V, p ∈ P, we have that

1. the robust cover inequalities (3.11) are necessary to induce a robust feasible customer order
assignment S(y) in T SRO; and
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3.4 solution method

2. in conjunction with equations (3.9), the robust cover inequalities (3.11) are sufficient to
induce a robust feasible customer order assignment S(y) in T SRO.

Constraints (3.11) require that for every set S ⊆ V that is a subset of the customer
orders selected to be served in period p, the bin packing value associated with S under
any realization ξ ∈ Ξ must be no more than the number of vehicles available. For any
candidate assignment Sp(y), the left-hand side of the constraint associated with period p
and S = Sp(y) evaluates to m, which implies that there exists a capacity-feasible partition
of Sp(y) into at most m components, for every realization ξ ∈ Ξ. The formulation for
T SRO, which we shall denote by T SRO IP, is obtained by appending constraints (3.11)
to formulation (3.10).

3.4.2 Branch-and-Cut Framework

We use a branch-and-cut algorithm to solve formulation T SRO IP. A branch-and-cut
algorithm embeds the addition of cutting planes within each tree node of a branch-
and-bound algorithm. The solution at the root node is obtained by solving the linear
programming (LP) relaxation consisting only of constraints (3.10e)–(3.10g) along with the
variable bounds. Since the number of constraints (3.10h) and (3.11) is exponential in the
size of the instance, we remove these inequalities and treat them in a cutting plane fashion
by dynamically reintroducing them whenever the node solution is found to violate them.
Section 3.4.3 describes other families of inequalities that are valid for the convex hull of
integer feasible solutions of formulation T SRO IP. Unlike constraints (3.10h) and (3.11),
these inequalities are not necessary to characterize the set of integer feasible solutions of
our formulation; however, they are capable of strengthening the LP relaxation in each
node and, therefore, can be used as cutting planes in order to expedite the search process.

Section 3.4.4 describes algorithms for solving the separation problems for inequali-
ties (3.10h), (3.11) and the other families of inequalities described in Section 3.4.3. When
violated inequalities are identified, the node solution is re-computed by adding all
violated inequalities to the LP relaxation and this procedure is iterated until no new in-
equalities are generated. If the final node solution happens to satisfy all of the integrality
constraints (3.10b)–(3.10d), then it is accepted as the new incumbent solution since, in
such cases, our algorithms for solving the separation problems for inequalities (3.10h)
and (3.11) are exact (i.e., they provide guarantees to identify a violating member, if
one exists). Otherwise, new sub-problems (i.e., nodes) are created by branching on an
integer variable whose value in the current node solution is fractional. The results in
Section 3.6 have been obtained by using the default branching strategy provided by the
solver. Finally, since all identified inequalities are valid globally (i.e., for all nodes of the
branch-and-bound tree), we add them to the LP relaxation of each open node of the tree.
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3.4.3 Valid Inequalities

3.4.3.1 Lifted Robust Cover Inequalities

Observe that, if the right-hand side of the robust cover inequality (3.11) is not greater than
m, then it is dominated by the trivial variable bounds: 0 ≤ yvp ≤ 1. On the other hand, if
its right-hand side is strictly greater than m, then the following proposition shows that it is
possible to lift the resulting robust cover inequality. This lifting result is analogous to the
lifting of valid cover inequalities for the 0− 1 knapsack polytope to the so-called extended
cover inequalities (see [24]). In this proposition, C(S) :=

{
v ∈ V \ S : qv ≥ max{qj : j ∈ S}

}
denotes the set of all customer orders with higher demand than any order in S ⊆ V.

Proposition 3.5. For a customer order subset S ⊆ V, suppose that BPP(S, ξ̃) ≥ m+ k is satisfied
for some ξ̃ ∈ Ξ, where k ∈N. Then, the following inequality is valid for formulation T SRO IP:

∑
v∈S

ξ̃v
(
1− yvp

)
− ∑

v∈C(S)
ξ̃vyvp ≥ k ∀ p ∈ P. (3.12)

3.4.3.2 Robust Cumulative Capacity Inequalities

These inequalities enforce that the cumulative demand to be served in period p ∈ P,
under any customer order realization ξ ∈ Ξ, does not exceed the total fleet capacity mQ.
Unlike the robust cover inequalities (3.11), they ignore bin packing considerations and
do not guarantee that the set of customer orders selected to be served in period p can be
packed into the available fleet. Nevertheless, it can be shown that they do not dominate
and are not dominated by the robust cover inequalities (3.11); that is, node solutions of
the branch-and-bound tree may violate them without violating inequalities (3.11) and
vice versa.

∑
v∈V

qvξvyvp ≤ mQ ∀ p ∈ P, ∀ ξ ∈ Ξ. (3.13)

3.4.3.3 Valid Inequalities from CVRP

The two-index vehicle flow formulation is one of the most popular formulations for the
CVRP. In this formulation, integer variables x′ij count the number of times edge (i, j)
is traversed by any vehicle in a solution of the CVRP. Several families of inequalities
are known to be valid for the corresponding convex hull of integer feasible solutions,
including the so-called rounded capacity, framed capacity, strengthened comb, multistar and
hypotour inequalities, among others (see [193]). The following proposition shows that any
such inequality can also be made valid for formulation (3.10) by disaggregating (across
periods) the corresponding edge variables that appear in the inequality.

Proposition 3.6. Let ∑(i,j)∈I λijx′ij ≤ µ be any inequality that is valid for the two-index
formulation of the CVRP instance defined on the subgraph of G with depot node 0, customers
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V0, demands qv, v ∈ V0 and vehicle capacity Q. Then, ∑p∈P ∑(i,j)∈I λijxijp ≤ µ is valid for
formulation (3.10).

Apart from the above inequalities, the following generalized subtour elimination con-
straints (3.14) and generalized fractional capacity inequalities (3.15) are also valid for formu-
lation (3.10). These inequalities enforce lower bounds on the number of edges between
S ⊆ V0 and its complement in time period p ∈ P, whenever at least one member of S is
served in period p. It can be shown that they do not dominate and are not dominated by
constraints (3.10h).

∑
(u,v)∈E0(S)

xuvp ≤ |S| − yvp ∀ S ⊆ V0, ∀ v ∈ S, ∀ p ∈ P. (3.14)

∑
(u,v)∈E0(S)

xuvp ≤ |S| −
(

1
Q ∑

v∈S
qvyvp

)
∀ S ⊆ V0, ∀ p ∈ P. (3.15)

3.4.4 Separation Algorithms

3.4.4.1 Robust Cover Inequalities

Since the bin packing problem is NP-hard, the separation problem for inequalities (3.11)
is also NP-hard, even if Ξ consists of a single element. This motivates the need for
separation heuristics. Nevertheless, as mentioned previously, in the context of a branch-
and-cut algorithm, the procedure to solve these separation problems must be exact if the
current node solution satisfies all of the integrality constraints (3.10b)–(3.10d). Otherwise,
a heuristic procedure to identify violated inequalities suffices. In the following, we
describe procedures to solve the associated separation problems separately for the cases
when the node solution is integral (i.e., satisfies (3.10b)–(3.10d)) or fractional. For the
remainder of this section, we shall assume that (x∗, y∗) is the current node solution for
which we want to identify violated robust cover inequalities.

We remark that we do not explicitly separate the lifted robust cover inequalities (3.12).
Instead, we use Proposition 3.5 to lift any identified violating member of (3.11) and add
the lifted form of the inequality to the current node solution.

fractional node solutions : Typically, fractional node solutions are encountered
much more frequently in the branch-and-bound tree than those with integral solutions.
Therefore, the separation procedures employed at such nodes must be computationally
efficient, although not necessarily exact. In this context, note that inequality (3.11) remains
valid if we replace its right-hand side with a lower bound. In the following, we attempt
to separate the following relaxed version of the robust cover inequalities (3.11), obtained
by replacing the optimal value of the bin packing problem with the so-called L1 lower
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bound [196]. We remark that, although the L1 bound of the bin packing problem may
deviate from its optimal value by up to 50% in the worst case, it is typically tight when
the item weights are sufficiently small with respect to the bin capacity.

m + ∑
v∈S

(
1− yvp

)
≥
⌈

1
Q ∑

v∈S
qvξv

⌉
∀ S ⊆ V, ∀ p ∈ P, ∀ ξ ∈ Ξ. (3.11

′)

Observe that there always exists a maximally violating member of the family of inequali-
ties (3.11

′) satisfying ξv = 1 for all v ∈ S. Indeed, consider a member of (3.11
′) defined

by S ⊆ V, p ∈ P and ξ ∈ Ξ such that ξv = 0 holds for some v ∈ S. Then, we can obtain a
more violated member defined by the same p and ξ but considering the subset S \ {v}:
the right-hand side of this inequality is the same as that of S, while its left-hand side
can only decrease with respect to S. With this observation, the separation problem for
inequalities (3.11

′), for a given p ∈ P, can be formulated as the following binary program,
where the variable zv ∈ {0, 1} indicates whether v ∈ S.

minimize
z∈{0,1}|V|,ξ∈Ξ

{
∑

v∈V
(1− y∗vp)zv : z ≤ ξ, ∑

v∈V
qvzv ≥ mQ + ε

}
(3.16)

If (3.16) happens to be infeasible, then no violations are possible for the given p ∈ P.
Otherwise, if m + ∑v∈S∗(1− y∗vp) > d∑v∈S∗ qv/Qe is satisfied, where S∗ = {v ∈ V : z∗v =

1} is defined by the optimal solution (z∗, ξ∗) of (3.16), then the member of (3.11
′) defined

by S∗ and realization ξ∗ corresponds to a most violated inequality. Note that, without
loss of optimality, we can fix to zero all variables zv such that y∗vp = 0. This is because
zv = 1 implies that the violation of the resulting inequality corresponding to S∗ would
only decrease with respect to that corresponding to S∗ \ {v}.
Observe that, for fixed ξ ∈ Ξ, (3.16) reduces to a standard knapsack problem, which
typically can be solved very efficiently by means of specialized algorithms [196]. In any
case, our computational experience with the instances solved in Section 3.6 suggested that
the optimal solution of problem (3.16) can be obtained very easily by using a commercial
integer programming solver, and the results in that section were therefore obtained in
this manner.

integral node solutions : For each p ∈ P, Sp(y∗) = {v ∈ V : y∗vp = 1} is the
candidate set of orders selected to be served in period p in the current node solution.
In order to identify violated inequalities in period p, it is sufficient to consider the
inequality for S = Sp(y∗). This is because: (i) for any subset of S, the left-hand side
of (3.11) evaluated at the current node solution remains the same as for S, while the
right-hand side can only decrease with respect to that for S; (ii) for any set S ∪ {v},
where v ∈ V is such that y∗vp = 0, the left-hand side of (3.11) evaluated at the current
node solution increases by one (with respect to S) while the right-hand side increases by
at most one. In either case, the magnitude of violation of the resulting inequality can
never increase with respect to that for S. Stated differently, the current node solution
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maximally violates the member of (3.11) corresponding to S = Sp(y∗), for given p ∈ P
and ξ ∈ Ξ. For this choice of S, the left-hand side of (3.11) evaluates to m and satisfaction
of the inequality is equivalent to checking if

m ≥ BPP(S, ξ∗), where ξ∗ ∈ arg max
ξ∈Ξ

BPP(S, ξ).

If m < BPP(S, ξ∗), then the inequality corresponding to set S, period p and customer
order realization ξ∗ is added to the current node solution. If no violations are found in
any p ∈ P, then the current node solution is guaranteed to satisfy each member of (3.11).

The computation of a maximizer of BPP(S, ξ) needs to be done as often as the branch-
and-bound tree encounters integral node solutions and, hence, it is crucial that this
can be done efficiently. For general supports Ξ, this requires the solution of a bilevel
integer program in which the (upper level) problem is to determine a scenario ξ ∈ Ξ
that maximizes the optimal value of the (lower level) bin packing problem BPP(S, ξ). It is
computationally difficult to solve this problem using existing methods (e.g., see [101, 248,
276]), since they typically do not address problems containing bilinear terms between
upper and lower level decisions. In order to address this and other limitations, we
present in Appendix 3.10 a numerically efficient solution procedure that improves upon
and extends the column-and-constraint generation framework [280] for solving such
problems. By formulating the lower-level bin packing problem as a feasibility problem,
the proposed procedure does not necessarily compute a maximizer of BPP(S, ξ). Instead,
it either certifies that BPP(S, ξ∗) ≤ m, or returns a realization ξ for which BPP(S, ξ) > m.
In either case, the exactness of the separation procedure is guaranteed.

We remark that the procedure presented above can address any uncertainty set Ξ that
satisfies the conditions (C1)–(C3) described in Section 3.2. It turns out that, for specially
structured disjoint budget uncertainty sets of the type shown in (3.2), we can compute a
maximizer of BPP(S, ξ) more efficiently, avoiding the solution of a bilevel program.

Proposition 3.7. Assume that the uncertainty set Ξ is of type (3.2) and disjoint budgeted.
Also, for any S ⊆ V and l = 1, . . . , L, assume that vl,1, vl,2, . . . , vl,|S∩Bl | represents an ordering
of the customer orders in the set S ∩ Bl according to non-increasing demand; that is, qvl,1 ≥
. . . ≥ qvl,|S∩Bl |

. Let J0 := V0 ∪ S \ ∪L
l=1Bl ; and, for l = 1, . . . , L, let Jl :=

{
vl,1, . . . , vl,jl

}
, where

jl = min{bl , |S ∩ Bl |}. Then, an optimal solution ξ∗ of max {BPP(S, ξ) : ξ ∈ Ξ} is given by

ξ∗v =

{
1, if v ∈ J0 ∪ J1 ∪ . . . ∪ JL

0 otherwise
for all v ∈ V.

With suitably chosen data structures, Proposition 3.7 shows that we can obtain a
maximizer ξ∗ of the right-hand side of inequality (3.11) for a given S ⊆ V in time
O(|S|+ ∑L

l=1 bl log bl) using a partial sorting algorithm. Once the maximizer is obtained,
a deterministic bin packing problem BPP(S, ξ∗) must be solved in order to check if a
violation exists. In our implementation, we solved these bin packing problems using the
exact algorithm MTP described in [196].
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3.4.4.2 Robust Cumulative Capacity Inequalities

For fixed p ∈ P, the separation problem for the robust cumulative capacity inequali-
ties (3.13) can be formulated as a binary program: max

{
∑v∈V qvy∗vpξv : ξ ∈ Ξ

}
. Here,

(x∗, y∗) represents the current node solution. If ∑v∈V qvy∗vpξ∗v > mQ is satisfied, where ξ∗

is the optimal solution of the binary program, then the inequality (3.13) corresponding to
period p and customer order realization ξ∗ is violated. As in the case of the robust cover
inequalities, for disjoint budget uncertainty sets, the solution of a binary program can
be avoided. In such cases, a slight modification of Proposition 3.7 allows us to compute
ξ∗ in time O(|V|+ ∑L

l=1 bl log bl). Specifically, we apply Proposition 3.7 to the set S = V
but, instead of ordering the elements in the set S ∩ Bl = V ∩ Bl = Bl by non-increasing
demand, we order them by non-increasing values of qvy∗vp.

3.4.4.3 Valid Inequalities from CVRP

Proposition 3.6 shows that any family of valid inequalities for the CVRP can be made
valid for formulation T SRO IP. Violated members of these families of inequalities
(including (3.10h)) can be identified using the same observation. Specifically, given the
current node solution (x∗, y∗), compute the corresponding two-index solution: x′∗ij =

∑p∈P x∗ijp for each (i, j). The resulting vector x′∗ can then be used as input to any
separation algorithm for the corresponding family of inequalities. In our implementation,
we used the CVRPSEP package [193] for separating inequalities (3.10h) along with the
framed capacity, comb, multistar and hypotour inequalities. 0. The generalized subtour
elimination constraints (3.14) can be separated in polynomial time by solving |V0|
maximum flow problems. We refer the reader to [113] for details, wherein a procedure
to generate more than one violated inequality is also described; the results in Section 3.6
were obtained using this procedure. The separation problem for the generalized fractional
capacity inequalities can also be solved in polynomial time because it reduces to the
separation problem for the standard fractional capacity inequalities for the CVRP after
modifying the customer demands to be qvy∗vp for each v ∈ V0. McCormick, Rao, and
Rinaldi [197] describe routines for solving the associated separation problems, which we
also used in obtaining the results of Section 3.6.

3.5 computation of lower bounds

Proposition 3.1 shows that we can bound from below the optimal value of modelMSRO
and, hence, of T SRO via the optimal value of T SRO. Therefore, using this value, we
can quantify how well T SRO approximatesMSRO. In this section, we discuss how
to numerically compute the optimal value of T SRO. The approach is a branch-and-
cut algorithm similar to that for solving T SRO and much of the discussion mirrors
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Sections 3.4.1 and 3.4.2; therefore, we only emphasize the aspects which differ in the two
cases.

3.5.1 Mathematical Formulation

Formulation (3.10) serves as the basis of an integer programming model for T SRO,
which we shall denote by T SRO IP. While the interpretation of binary variables yvp was
straightforward in T SRO IP, in the case of T SRO IP, variables yvp will indicate whether
customer order v ∈ V is selected to be served in period p ∈ P in the customer order
assignment obtained by evaluating the optimal solution policy under scenario ξ̂:

yv1 = 1⇐⇒ i ∈ S1

yvp = 1⇐⇒ i ∈ S̃p(ξ̂) for all p ∈ P \ {1}.
(3.17)

Note that any solution (S1, S̃2(·), . . . , S̃h(·)) of T SRO induces unique values for yvp

through this relationship. Conversely, whenever the binary variables yvp satisfy equa-
tion (3.9), their values induce a unique assignment on day 1, which we shall de-
note by S1(y), that would be common across all feasible customer order assignments
(S1, S̃2(·), . . . , S̃h(·)). However, rather than construct explicit functional forms of S̃p(·),
formulation T SRO IP only enforces the existence of one. The existence of a feasible
solution in T SRO is equivalent to the existence of feasible assignments for all real-
izations of the uncertainty, with the additional restriction that they must share the
same here-and-now assignment, S1(y). This, in turn, is equivalent to the existence of a
capacity-feasible and day window-feasible partition of the orders V \ S1(y) into h− 1
subsets, S̃2(ξ), . . . , S̃h(ξ), for each ξ ∈ Ξ.

Motivated by this observation, for any S ⊆ V \ {v ∈ V : Pv = {1}}, and for any ξ ∈ Ξ,
let BPPDW(S, ξ) denote the optimal value of an instance of the Bin Packing Problem with
Day Windows. In this problem, the bin size is Q, the set of days is P \ {1}, and the items
are the elements of S featuring weights qvξv and day windows Pv \ {1} for each v ∈ S.
Further, at least m (possibly empty) bins must be used used on each day p ∈ P \ {1}. The
requirement of using at least m bins on each day is necessary to disallow the case where
the optimal solution of the bin packing problem uses less than m(h− 1) bins overall, but
more than m bins on some day. We show that the following robust cover inequalities
characterize the sets of here-and-now customer order assignments that can be part of a
feasible solution in T SRO:

m(h− 1) + ∑
v∈S

yv1 ≥ BPPDW(S, ξ) ∀ S ⊆ V \ {v ∈ V : Pv = {1}} , ∀ ξ ∈ Ξ. (3.18)

Proposition 3.8. For any support Ξ and binary variables yvp, v ∈ V, p ∈ P, we have that

1. the robust cover inequalities (3.18) are necessary to induce a customer order assignment on
day 1, S1(y), that guarantees the existence of a feasible solution (S1(y), S̃2(·), . . . , S̃h(·))
in T SRO.
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2. in conjunction with equations (3.9), the robust cover inequalities (3.11) are sufficient to
induce a customer order assignment on day 1, S1(y), that guarantees the existence of a
feasible solution (S1(y), S̃2(·), . . . , S̃h(·)) in T SRO.

Constraints (3.18) require that, for every set S ⊆ V that is a subset of the customer
orders selected to be served on days other than day 1, the bin packing value associated
with S (considering day windows) under any realization ξ ∈ Ξ must be no more than
the total number of vehicles available over the planning horizon. For any assignment
S1(y), the left hand side of the constraint associated with S = V \ S1(y) evaluates to
m(h− 1), which implies that there exists a capacity feasible partition of V \ S1(y) into
h− 1 solutions, each containing at most m components, for every realization ξ ∈ Ξ. The
formulation for T SRO is obtained by adding constraints (3.18) to formulation (3.10).

Remark 3.3. The Bin Packing Problem with Day Windows can be viewed as a special case of the
well-studied Bin Packing Problem with Conflicts [161] and may be modeled as such, albeit
with an additional restriction that accounts for using at least m bins on each day. Indeed, given
any instance of the former, we can construct an instance of the latter by using the same set of
items, the same bin size and constructing the so-called “conflict graph” by defining edges (u, v)
whenever Pu ∩ Pv = ∅, for u and v in the set of items. However, without the additional restriction
of using at least m bins on each day, the resulting instance of the Bin Packing Problem with
Conflicts constitutes only a relaxation of the Bin Packing Problem with Day Windows.

3.5.2 Branch-and-Cut Framework

We use a branch-and-cut algorithm to solve formulation T SRO IP. The initial LP
relaxation consists of constraints (3.10e)–(3.10g) along with variable bounds. Con-
straints (3.10h) and (3.18) are removed and are dynamically reintroduced as cutting
planes whenever the node solution is found to violate them. The CVRP inequalities
described in Section 3.4.3.3 are valid for T SRO IP as well and can be used in the branch-
and-cut algorithm as cutting planes. Similarly, the robust cumulative capacity inequalities
described in Section 3.4.3.2 are also valid, albeit with a slight modification, as follows.

∑
v∈V

qvξv(1− yv1) ≤ m(h− 1) Q ∀ ξ ∈ Ξ. (3.19)

These inequalities enforce that the total demand to be served on days other than day 1,
under any customer order realization ξ ∈ Ξ, does not exceed the total fleet capacity avail-
able on those days. The procedure to solve the separation problem for these inequalities
is similar to that described in Section 3.4.4.2. Finally, it can also be shown that they do
not dominate and are not dominated by the robust cover inequalities (3.18).

The remainder of this section describes our separation procedures for the robust cover
inequalities (3.18) employed within the branch-and-cut algorithm. We shall assume that
(x∗, y∗) is the current node solution for which we want to identify violated inequalities. If
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the current node solution happens to be fractional, i.e., does not satisfy constraints (3.10b)–
(3.10d), then we can relax the robust cover inequality (3.18) and replace its right-hand
side with a valid lower bound. For example, the L1 bound described in Section 3.4.4.1
is a valid lower bound for the bin packing problem with day windows as well, and
the procedure described therein can be utilized to solve the separation problems of the
corresponding relaxed version of inequalities (3.18). Similarly, Remark 3.3 shows that
we can utilize lower bounds to the bin packing problem with conflicts [127] to derive
valid relaxations of the robust inequalities (3.18). However, preliminary computational
experiments showed that these lower bounds are typically weak and that it does not pay
off to expend additional computational effort in separating the relaxed inequalities as
they are almost never violated.

On the other hand, if the current node solution happens to be integral, i.e., satisfies
constraints (3.10b)–(3.10d), then the separation procedure for the robust cover inequali-
ties (3.18) must be exact. In such cases, S1(y∗) = {v ∈ V : y∗v1 = 1} is the candidate set of
customer orders selected to be served on day 1. By a similar argument as in Section 3.4.4.1,
it can be shown that the current node solution maximally violates the member of the
family of inequalities (3.18) corresponding to S = V \ S1(y∗), for given ξ ∈ Ξ. For this
choice of S, the left-hand side of (3.18) evaluates to m(h − 1) and satisfaction of the
inequality is equivalent to checking if

m(h− 1) ≥ BPPDW(S, ξ∗), where ξ∗ ∈ arg max
ξ∈Ξ

BPPDW(S, ξ).

If m(h− 1) < BPPDW(S, ξ∗), then the inequality corresponding to set S and customer order
realization ξ∗ is violated. The computation of ξ∗ requires the solution of a bilevel integer
program, for which we use the procedure described in Appendix 3.10. By formulating
the bin packing problem as a feasibility problem, the procedure either certifies that
BPPDW(S, ξ∗) ≤ m(h− 1), or returns a realization ξ for which BPPDW(S, ξ) > m(h− 1),
thus guaranteeing the exactness of the separation procedure.

3.6 computational experiments

This section presents computational results obtained using the branch-and-cut algorithms
described in Sections 3.4.2 and 3.5.2 on benchmark instances from the literature. Specifi-
cally, in Section 3.6.1, we present the characteristics of the test instances; in Section 3.6.2,
we present a summary of the numerical performance of our algorithm; in Section 3.6.3,
we present detailed tables of results outlining the effect of the various inequalities; in
Section 3.6.4, we analyze the approximation quality of our two-stage model; and finally,
in Section 3.6.5, we study the performance of the proposed robust optimization model
in a rolling horizon simulation framework, and we compare it to the performance of
the deterministic model as well as two decision approaches that are popular among
practitioners.
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The algorithms were implemented in C++ using the C callable library of CPLEX 12.7
and compiled with the GCC 5.1.0 compiler. The experiments were conducted on a
single-core of an Intel Xeon 3.1 GHz processor with a software imposed memory limit of
6 GB. In the implementation of the algorithms, all CPLEX-generated cutting planes were
disabled because enabling them increased overall computation times; all other solver
options were left at their default values. Interested readers can freely download our code
implementation, datasets used, and associated user instructions in the following link:
http://gounaris.cheme.cmu.edu/codes/mpvrp.

3.6.1 Test Instances

Our instances are derived from the standard CVRP benchmark instances in the so-called
A, B, E, F, M and P datasets,10 which are usually adopted to generate benchmark instances
for several variants of the vehicle routing problem. The number of customer nodes in
these CVRP instances range from 12 to 199. From each of these CVRP instances, we
generate a single multi-period VRP instance using the procedure described in Baldacci
et al. [32]. Since the work of Baldacci et al. [32] does not study the problem in the context
of the longer (possibly infinite) time horizon Π, we interpret the resulting five-period
VRP instance (i.e., h = 5) as a possible instantiation of the deterministic model to be
solved at the end of day 0 of the longer horizon. Specifically, we let V0 be the set of
pending orders as specified in Baldacci et al. [32], and we let N be the set of customers in
the original CVRP instance. For each i ∈ N, qi is set equal to the demand in the original
instance; ei is sampled uniformly in [ρi, h], where ρi is the first day of the day window
{ρi, . . . , δi} as specified in Baldacci et al. [32];11 and, `i is set to be ei + wi − 1, where the
width wi is set equal to the original width, δi− ρi + 1, if ρi > 1, and is uniformly sampled
in [δi, 3] otherwise. In the resulting instance, the average width of a day window (= wi) is
2, and the average number of days elapsed between the day at which an order is placed
and the first feasible service day (= ei) is 3.5, which are similar to the corresponding
values (2.5 and 2.5 respectively) in the real world case study of [267]. Finally, we note
that we set the vehicle capacity Q equal to the value in the original CVRP instance, and
we round the transportation costs c up to the nearest integer.

To construct meaningful uncertainty sets Ξ, we assume that each customer i ∈ N can
place a service request on any day of the horizon with probability α ∈ [0, 1]. We then

10 See [193] for references to the original sources of these datasets.
11 We allow for the possibility that ei 6= ρi, since the effective day window might have been shrunk in the

context of the longer horizon Π (see footnote 5).
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consider the following budgeted uncertainty set, which is parameterized by α as well as
scalars β, γ ∈ [0, 1]:

Ξ =


ξ ∈ {0, 1}|V| :

ξ0 = 1,

∑
v∈Vp

ξv ≤ bp := αnp + Φ−1(γ)
√

α(1− α)np ∀ p ∈ P,

∑
p∈P

∑
v∈Vp

ξv ≤ β ∑
p∈P

bp


. (3.20)

In this set, np :=
∣∣Vp
∣∣ and Φ is the cumulative distribution function of the standard

normal random variable. The budget constraint for period p ∈ P is based on the central
limit theorem (3.4) and stipulates that at most bp orders will be received in that period
with probability γ. In addition, the overall budget imposes that only a fraction β of the
periods receive their maximum share of orders. Observe that we recover the deterministic
problem by setting α = 0 or β = 0 since in this case, the uncertainty set Ξ becomes a
singleton. On the other hand, setting β = 1 results in an instantiation of a disjoint budget
uncertainty set, since the last inequality becomes redundant in this case.

3.6.2 Computational Performance

Table 3.1 summarizes the computational performance of the branch-and-cut algorithm
of Section 3.4.2 across each of the 95 benchmark instances for various settings of (α, β)

and Φ−1(γ) = 1 (which corresponds to γ ≈ 0.85). For each setting of (α, β), Feasible (#)
reports the number of instances (out of 95) which remained feasible in T SRO, Proven
optimal (#) denotes the number of feasible instances for which an optimal solution was
found, while Nodes (#) and Time (sec) respectively report the number of branch-and-
bound tree nodes and solution time required, averaged across the same instances. For
those feasible instances which could not be solved within two hours, Gap (%) reports the
average residual gap (defined as ub−lb

ub × 100%, where ub is the global upper bound and
lb is the global lower bound of the branch-and-bound tree). Finally, No incumbent (#)
reports the number of instances for which the algorithm could neither prove infeasibility
nor find a feasible solution in two hours. We make the following three observations from
Table 3.1.

1. For a fixed value of β, as the value of α increases, the number of instances which
remain feasible in T SRO decreases. This is because the set S of feasible solutions of
model T SRO is monotonous with respect to the uncertainty set Ξ; that is, S(Ξ) ⊆
S(Ξ′), if Ξ ⊇ Ξ′. Therefore, any robust feasible solution under the uncertainty level
(α, β) is also feasible under the uncertainty levels (α′, β′), where α′ ≤ α and β′ ≤ β.
Consequently, it is possible that if Ξ becomes too large, the space of robust feasible
solutions becomes empty; that is, S(Ξ) = ∅.

2. The computational effort involved in solving the robust model is similar to the
effort involved in solving the deterministic model. Indeed, if we consider only the
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58 instances that remain feasible for all values of (α, β), the deterministic model
can be solved for 53 instances using an average time of 380 seconds (the average
gap for the unsolved instances being 4.7%). Similarly, the robust model (averaged
across all values of α > 0) can be solved for 51 instances using an average time of
330 seconds (the average gap for the unsolved instances being 4.4%).

3. In the context of disjoint budget sets, the branch-and-cut method reliably de-
termines a robust feasible solution, if one exists. Indeed, Table 3.1 shows that
incumbent solutions are almost always found for the case of β = 1, as opposed
to β = 0.5, and the corresponding optimality gaps are also smaller. This is in line
with Proposition 3.7, which demonstrates that verifying robust feasibility can be
done by solving a deterministic bin packing problem, in such cases.

Table 3.1: Summary of computational performance under a time limit of two hours (averaged
across all 95 instances for each value of α).

α
Feasible Proven optimal Residual gap No incumbent

(#) (#) Nodes (#) Time (sec) (#) Gap (%) (#)

Deterministic (β = 0)

0.0 95 68 3,914 447.8 27 5.35 0

General budget set (β = 0.5)

0.2 82 65 3,105 332.1 17 4.31 6

0.4 64 57 3,188 453.5 7 6.33 7

0.6 59 52 4,296 537.9 7 6.08 3

0.8 58 49 5,274 333.5 9 4.73 1

Cardinality-constrained set (β = 0.5)

1.0 58 49 3,170 282.0 9 3.71 1

Disjoint budget set (β = 1)

0.2 73 60 3,363 322.4 13 5.24 0

0.4 64 56 4,350 387.5 8 5.86 0

0.6 60 50 3,751 348.9 10 4.32 0

0.8 58 51 3,458 365.6 7 3.63 1

Hypercube (β = 1)

1.0 58 51 3,904 316.2 7 5.94 0

Tables 3.2 and 3.3 summarize the computational performance as a function of the
number of pending orders |V0|. We observe that, across all settings of (α, β) that we
considered, all instances with up to 50 pending orders (i.e., |V0| ≤ 50) can be solved
(to proven optimality or infeasibility) within the imposed time limit. Across instances
with |V0| > 50, about 54% of the instances can be solved and the average gap over the
remaining unsolved (but feasible) instances is 4.9%. These experiments show that the
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two-stage robust model T SRO and the corresponding branch-and-cut method described
in Section 3.4.2 are promising for practical applications.

Table 3.2: Summary of computational performance under a time limit of two hours (averaged
across all settings of (α, β) for each instance).

|V0| (#)
Feasible Proven optimal Residual gap No incumbent

(#) (#) Nodes
(#)

Time
(sec)

(#) Gap (%) (#)

[1, 50] 539 464 464 1,380 84.4 0 – 0

[51, 100] 451 248 142 11,633 1,320.7 106 4.25 15

[101, 150] 33 15 2 1,585 1,289.4 13 9.72 2

[151, 200] 22 2 0 – – 2 14.78 2

All 1045 729 608 3,775 377.1 121 5.01 19

Table 3.3: Summary of computational performance across a representative set of instances. Opti-
mally solved instances are indicated with an asterisk (along with their computation
times); optimality gaps for unsolved instances for which a feasible solution was found
are indicated in round brackets; provably infeasible instances are denoted by “Inf”;
and, instances for which neither infeasibility could be proved nor a feasible solution
could be found are denoted by “NI” (i.e., “No incumbent”).

Instance β = 0
α (β = 0.5) α (β = 1)

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

E-n51-k5 78.5* 56.6* 56.4* 55.6* 53.6* 53.9* 55.8* 55.6* 53.9* 53.4* 54.0*

E-n76-k10 (2.3%) (2.6%) NI NI Inf Inf (2.9%) Inf Inf Inf Inf

E-n101-k8 (3.3%) (2.4%) (2.8%) (2.3%) (5.0%) (3.5%) (2.0%) (3.9%) (3.3%) (3.3%) (3.0%)

M-n151-k12 (7.5%) NI NI Inf Inf Inf (15.1%) Inf Inf Inf Inf

M-n200-k16 (14.8%) NI Inf Inf Inf Inf Inf Inf Inf Inf Inf

3.6.3 Effect of Valid Inequalities

In order to gain some insight about the effect of various inequalities discussed in Sec-
tion 3.4.3, Table 3.4 reports six characteristic optimality gaps at the root node (computed
with respect to the final incumbent solution), as follows: (G0) the gap obtained using
the initial linear relaxation, as described in the preamble of Section 3.4.2; (G1) the gap
obtained after separation of the rounded capacity inequalities (RCI) (3.10h); (G2) the
gap obtained after separation of the RCI and robust cover inequalities (3.11), (3.11

′);
(G3) the gap obtained after separation of the RCI, robust cover and cumulative capacity
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inequalities (3.13); (G4) the gap obtained after separation of the RCI, robust cover, cu-
mulative capacity and CVRP inequalities (see Proposition 3.6); and finally, (G5) the gap
obtained after separation of all inequalities, including the generalized routing-related
inequalities (3.14)–(3.15).

Table 3.4: Root node gaps (%) obtained after various levels of separation of valid inequalities
(averaged across all settings of α and all instances for which a feasible solution was
found).

β
Necessary cuts Strengthening cuts

G0 G1 G2 G3 G4 G5

0.0 40.2 12.7 12.7 12.7 12.3 5.3

0.5 38.7 12.5 12.5 12.5 12.2 5.1

1.0 38.5 12.7 12.7 12.6 12.3 5.4

We observe from Table 3.4 that the initial relaxations are very weak (gaps G0 ≈ 40%),
but they improve significantly, to roughly 13%, when the necessary RCI and robust cover
inequalities are added as cutting planes. The addition of the strengthening inequalities
further reduces the gaps to about 5%, on average. Evidently, the routing-related RCI,
other CVRP-based inequalities and their generalized versions are very effective and
important at the root node. We note, however, that the robust cover and cumulative
capacity inequalities are also effective, albeit at deeper nodes of the search tree. To see
this, Table 3.5 reports the number of different families of inequalities identified during the
entire branch-and-cut algorithm. In order to obtain meaningful statistics, we only average
across the “hard” instances; that is, those which could not be solved within 300 seconds.
We observe from this table that the fraction of robust cover and cumulative capacity
inequalities as a percentage of the total number of cuts, is comparable to the fraction
of routing-related inequalities, indicating that they are essential for the computational
efficiency of the branch-and-cut algorithm.

Table 3.5: Time spent in separation algorithms and number of different families of cuts added
(averaged across all settings of α and all instances with solution time > 300 seconds).

β
Sep time Cuts Necessary cuts (%) Strengthening cuts (%)

(%) (#) RCI Robust cover Cum capacity CVRP GSEC/GFCI

0.0 11.1 19,119 69.3 0.0 0.0 7.2 23.5

0.5 34.8 16,360 50.0 11.5 16.9 5.5 16.1

1.0 15.0 18,539 60.4 10.0 6.5 5.0 18.1

Table 3.5 also reports the time spent in separation algorithms as a percentage of the
total computation time (see Section 3.4.4). It is evident that separation time is a major
component of the total computing time in the robust setting, especially in the case of
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uncertainty sets for which Proposition 3.7 is not applicable (as is the case for β = 0.5),
since in such cases, we must resort to a column-and-constraint generation algorithm to
verify robust feasibility of candidate solutions.

Finally, Table 3.6 summarizes the overall performance of the branch-and-cut algorithm
with and without the valid inequalities described in Section 3.4.3. The different rows
represent increasingly aggressive levels of cut separation in the algorithm. At the bare
minimum, when no cuts except the necessary RCI and robust cover inequalities are
separated at only integral nodes of the branch-and-bound tree, only 289 out of 729

instances can be solved to optimality and the average gap for the remaining 440 instances
is 27%. In contrast, 608 out of 729 instances can be solved when all possible inequalities
are separated at all tree nodes, with the remaining unsolved instances proved to be
within 5% of their optimal values.

Table 3.6: Summary of computational performance with and without the valid inequalities
described in Section 3.4.3 (averaged across all 729 instances from Table 3.2 for which a
feasible solution was found).

Separation intensity
Proven optimal Residual gap

(#) Nodes
(#)

Time
(sec)

(#) Gap (%)

Only necessary cuts at only integral nodes 289 240,540 550.0 440 27.31

Only necessary cuts at all nodes 540 9,124 694.6 189 9.26

Necessary and strengthening cuts at all nodes 608 3,775 377.1 121 5.01

3.6.4 Approximation Quality and Price of Robustness

Since the two-stage robust model T SRO is a conservative approximation to the fully
adaptive multistage robust modelMSRO, the corresponding solution thus obtained is
feasible–but may not be optimal–for the fully adaptive model. In this section, we aim to
estimate the approximation quality of the solutions provided by the two-stage robust
model T SRO. Proposition 3.1 shows that this quantity can be bounded from above as
follows:

(
TSRO− TSRO

)
/TSRO, where TSRO is the optimal objective value of the two-stage

robust model T SRO. Section 3.5 shows how to obtain TSRO through a branch-and-cut
method similar to the one described in Section 3.4.2. Since obtaining the globally optimal
value TSRO through this branch-and-cut method may be computationally challenging, we
employ a large time limit of 12 hours and estimate TSRO using the global lower bound
of the branch-and-bound tree at termination, thus ensuring that the corresponding
estimate is always lower that the optimal value of the fully adaptive multi-stage model.
Similarly, we estimate TSRO using the global upper bound of its branch-and-bound tree
at termination (i.e., using the objective value of the incumbent from Section 3.6.2). This
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guarantees that the reported values of the approximation gap in Table 3.7 are conservative
estimates of the true values.

Table 3.7 also reports average values of the price of robustness, which is the increase
in cost of the optimal solution of the two-stage robust model T SRO over that of the
deterministic model under the nominal realization, DET (ξ̂), and is defined as follows:(
TSRO− DET(ξ̂)

)
/DET(ξ̂). As before, if the optimal objective value of the deterministic

model is not available, we estimate it with the corresponding global lower bound of
the branch-and-bound tree at termination, thus ensuring that the reported values of the
price of robustness are upper bounds to the true values.

Table 3.7: Price of robustness and guaranteed approximation gap under different settings of
(α, β), averaged across the 58 instances from Table 3.1 which remain feasible under the
highest setting of (α, β) = (1, 1).

α 0.2 0.4 0.6 0.8 1.0

General budget set (β = 0.5)

Price of robustness 0.32 0.40 0.62 0.96 1.05

Approximation gap 0.28 0.37 0.58 0.92 1.01

Disjoint budget set (β = 1)

Price of robustness 0.32 0.53 0.93 0.96 1.31

Approximation gap 0.28 0.50 0.89 0.82 0.92

We make the following observations from Table 3.7. First, the average price of robustness
varies between 0.3% to 1.3%, implying that, for the considered benchmark instances,
solutions which are robust against vehicle capacity violations can be obtained at marginal
cost increases above the deterministic solutions. Second, the two-stage model T SRO
provides a good approximation of the multi-stage fully adaptive modelMSRO, since
the average approximation gap is consistently less than 1%, on average. Furthermore,
across instances for which T SRO was infeasible (not shown in Table 3.7), the two-stage
model T SRO was also infeasible for about 53% and 85% of the instances, under β = 0.5
and β = 1 respectively, implying that the corresponding multi-stage modelMSRO was
also infeasible for these instances. This supports the claim in Proposition 3.3 that the
two-stage model T SRO is expected to provide a good approximation of the multi-stage
model, and especially so in the case of disjoint budget uncertainty sets, where β = 1.

3.6.5 Comparison with Existing Methods using Rolling Horizon Simulations

In this section, we aim to study the performance of the various models in real-time
operations. To achieve this goal, we develop a rolling horizon simulation platform to
mimic the daily operations faced by distributors, where information about uncertain
customer orders is revealed sequentially over time. We conduct Monte-Carlo simulations
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of four different models over a 30-day horizon, that is, |Π| = 30. At the end of each day
p ∈ Π of the simulation, the selected model is solved by considering the set of all orders
pending up to (and received on) day p, to determine the set of orders as well as the
routes that will be executed on day p + 1. Then, the actual transportation cost incurred
on day p + 1 is recorded, the time horizon rolls forward, and the same procedure is
repeated at the end of day p + 1. For each simulation, we consider the following decision
approaches:

(i) Early policy, which always serves each pending order on the first day of its day
window,

(ii) Late policy, which always serves each pending order on the last day of its day
window,12

(iii) Deterministic model DET (ξ̂) with a five-day planning horizon (h = 5), and

(iv) Robust model T SRO with a five-day planning horizon (h = 5) and budgeted
uncertainty set.

In the case of the deterministic and robust models, the planning horizon shrinks in the
last five days of the simulation. We note that the early and late policies are very popular
in industry because of their simplicity, and they resemble current industrial practices.
Hence, it is natural to benchmark our proposed method against these approaches.

Each of the above decision-making models ignores information beyond its current plan-
ning horizon. Therefore, it is possible that the selected model can become infeasible on
some day of the simulation, as the fleet size and vehicle capacities are limited. To mone-
tize infeasibility in such cases, we consider a per-unit penalty cost M of commissioning
additional vehicles and solve the following penalized model to recover implementable
routes:

minimize
S,θ

∑
p∈P

CVRP(Sp, ξ̂, m + θp) + M ∑
p∈P

θp

subject to (S1, . . . , Sh) ∈ F , θ ∈ Z
p
+

BPP(Sp, ξ) ≤ m + θp ∀ p ∈ P, ∀ ξ ∈ Ξ,

Here, θp is a slack variable representing the number of additional vehicles required
on day p ∈ P. In practice, M is typically very large and hence, we can equivalently
solve the penalized model by lexicographically minimizing the number of additional
vehicles first, and then minimizing the vehicle routing cost. Specifically, in the first
phase, we determine the minimum total number of additional vehicles that need to be
commissioned, Θ?, by solving the above model without the routing-related CVRP terms
in the objective function. In the second phase, we solve the same model by setting M = 0,
but with an additional constraint on the total number of additional vehicles that can be
used, ∑p∈P θp ≤ Θ?. In the simulation, the final cost recorded is the sum of the routing

12 We note that this is equivalent to the deterministic model DET (ξ̂) with a planning horizon of one day
(h = 1).
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cost on day 1, CVRP(S1, ξ̂, m + θ1), and the incurred penalty cost Mθ1 associated with
commissioning θ1 additional vehicles. We note that, in the above optimization model, F
and Ξ are singletons and P = {1} for the early and late policies, whereas Ξ is a singleton
for the deterministic model.

For our simulations, we randomly select 10 instances from Section 3.6.1 consisting of
up to 50 customers, |N| ≤ 50. For each instance, customer orders are simulated as
independent Bernoulli processes with probabilities ∈ {0.25, 0.30, 0.35}, which represent
low, medium and high levels of customer demand. For each combination of test instance,
decision-making model and probability level, we carry out 100 rounds of simulations.
We emphasize that the same realization of customer orders are used in each round of
the simulation to ensure a fair comparison between the different models. For the robust
model T SRO, we select the uncertainty set (3.20) with β = 0 and various levels of
γ ∈ {50%, 85%, 90%, 95%}. The value of α is chosen to be the same as the corresponding
probability level, although this can be easily replaced by a quantity statistically estimated
from (and updated using) data, whenever it is available. We set M = 100c̄, where c̄ is the
maximum value of the travel costs cij across all (i, j) ∈ E, and a time limit of two hours
per optimization run.

Table 3.8 summarizes the simulation performance of the early, late, deterministic (“Det”)
and robust approaches for various ordering levels α. For each approach, each setting of
α and each of the 10 test instances, we compute the average total cost, worst-case total
cost, average routing cost and average penalty cost incurred over the simulation horizon
(the average and worst-case being taken across the 100 simulation rounds), and then
normalize each of them with respect to average total cost incurred by the deterministic
model. The average (across the 10 test instances) of these normalized quantities are
then reported in columns Total cost avg, Total cost wc, Routing cost avg and Penalty
cost avg, respectively. The table also reports for each approach and each setting of α,
the percentage of simulations in which penalties were incurred, averaged across the 10

instances, in column Penalty freq avg (%). We make the following observations from
Table 3.8.

1. The early and late policies are strongly outperformed by the deterministic and
robust models. Compared to the latter, they incur about 50% and 220% more cost
under the lowest and highest ordering levels, respectively. This is because they
are “myopic”: they ignore not only uncertain future information, but also existing
knowledge of the pending orders (except their first or last feasible service days). In
contrast, the deterministic and robust models “look ahead” to serve geographically
close orders with overlapping day windows in the same route.

2. The robust model at γ = 50% achieves the best overall performance. The outper-
formance with respect to the deterministic model is particularly pronounced at
higher ordering levels. Indeed, at α = 0.35, it incurs a total cost which is about 5%
lower on average and 26% lower in the worst-case, and it experiences a 49% lower
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Table 3.8: Summary of simulation performance (averaged across 100 rounds for each of 10 test
instances).

Robust (γ)

Decision approach Early Late Det 50% 85% 90% 95%

α = 0.25

Total cost avg 151.6 148.9 100.0 99.7 99.9 99.9 100.1

Total cost wc 370.0 369.3 126.7 111.4 111.8 111.9 111.8

Routing cost avg 119.6 116.5 99.7 99.7 99.9 99.9 100.1

Penalty cost avg 31.9 32.4 0.3 0.0 0.0 0.0 0.0

Penalty freq avg (%) 16.1 16.3 0.2 0.0 0.0 0.0 0.0

α = 0.30

Total cost avg 226.1 225.5 100.0 98.4 99.0 99.2 99.5

Total cost wc 558.3 581.6 177.9 123.6 135.3 136.5 147.3

Routing cost avg 116.7 113.6 97.8 98.1 98.5 98.6 98.6

Penalty cost avg 109.5 111.9 2.2 0.3 0.5 0.6 0.9

Penalty freq avg (%) 43.8 44.5 1.5 0.2 0.4 0.4 0.7

α = 0.35

Total cost avg 336.2 326.0 100.0 95.4 97.0 97.1 97.2

Total cost wc 741.9 702.2 214.1 158.8 170.5 169.2 182.7

Routing cost avg 106.7 103.8 89.8 90.5 90.7 90.6 90.6

Penalty cost avg 229.5 222.2 10.2 4.9 6.3 6.5 6.6

Penalty freq avg (%) 63.4 63.5 9.0 4.6 5.7 5.9 5.9

Note. Costs are normalized with respect to the “Total cost avg” entry of the “Det” column, for each α.

frequency of infeasibility. Moreover, these savings come at the price of incurring
only 0.9% higher routing costs, on average.

3. Choosing a higher value of γ does not necessarily translate to lower frequencies of
infeasibility. While it is true that a larger uncertainty set leads to a higher probability
of being feasible in a folding horizon context (all else being equal), this is not true
in a rolling horizon context. This is because (i) the models ignore information
beyond the current planning horizon, which is revealed only when time rolls
forward, and (ii) on a particular day p > 1, the models do not necessarily solve the
same problem, since their previous decisions lead to different instantiations of the
problem parameters (e.g., the set of pending orders). A similar discussion can be
found in [135] in the context of general robust optimization problems.
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3.7 summary

In this chapter, we studied the robust multi-period VRP under customer order uncer-
tainty, in which customers call-in to request service over a short-term planning horizon,
specifying a set of days during which the service can take place. The decision-maker
aims to select a visit schedule over the planning horizon that remains feasible for all real-
izations of uncertain customer orders, which were modeled as binary random variables
supported on a finite uncertainty set. The true multi-stage decision-making process was
approximated from above and below by two two-stage robust optimization models. For
each approximation, an integer programming formulation was derived and a numeri-
cally efficient branch-and-cut solution technique was presented. Extensive computational
experiments conducted on a number of test instances derived from standard benchmark
datasets showed that robust feasible solutions can be obtained with a computational
effort similar to that for nominal solutions, and that are of high quality, on average. A
rolling horizon simulation study further showed that the robust solutions outperform
the nominal solutions in terms of reducing the frequency of vehicle capacity violations
while incurring only marginally higher routing costs.
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3.8 appendix : nomenclature

Π Time horizon

m Number of vehicles available on each day d ∈ Π

K Set of vehicles available on each day d ∈ Π

Q Capacity of each vehicle

N Set of customers

N′ Set of customers and the depot N ∪ {0}
G = (N′, E) Undirected graph with node set N′ and edge set E

v = (i, d) Order placed by customer i ∈ N on day d ∈ Π

Pv Day window of order v = (i, d), given by {d + ei, . . . , d + `i}
qi, qv Demand of customer i ∈ N or any order v = (i, ·)
cij, cuv Routing cost along (i, j) ∈ E or between u = (i, ·) and v = (j, ·)
h Length of planning horizon

P Set of days in planning horizon

V0 Set of pending orders at the end of day 0 ∈ Π

E0 Set of edges in E covering customers with a pending order

E0(S) Subset of edges in E0 covering orders in S ⊆ V0

Vp Set of potential orders that can be received on day d ∈ Π

V Set of pending and potential future orders = V0 ∪V1 ∪ . . . ∪Vh

F Set of all assignments of customer orders in V to periods in P

∆p Set of orders in V that can be visited on day p ∈ P

Sp Subset of orders in ∆p selected to be served on day p ∈ P

ξv, ξip Binary random variable associated with order v = (i, p)

ξ̂ Nominal realization defined as ξ̂v = 1 if v ∈ V0 and 0 otherwise

Ξ Uncertainty set of customer orders

L, B, b Parameters used to define budget uncertainty sets ΞB

yvp Binary variable ∈ {0, 1} indicating if order v ∈ V is served on
day p ∈ P

xuvp Binary variable ∈ {0, 1} indicating if order u ∈ V0 is served after
order v ∈ V0 on day p ∈ P

x0vp Integer variable ∈ {0, 1, 2} recording the number of times edge
(0, i) ∈ E0 is traversed on day p ∈ P, where v = (i, ·)

θp Integer variable recording the number of additional vehicles re-
quired on day p ∈ P

α, β, γ Parameters used to define the uncertainty sets in Section 3.6
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CVRP(S, ξ, m) Optimal value of a capacitated vehicle routing problem (defined
in Section 4.2)

BPP(S, ξ) Optimal value of a bin packing problem (defined in Section 4.2)

BPPDW(S, ξ) Optimal value of a bin packing problem with day windows
(defined in Section 3.5)

DET (ξ̂) Deterministic model

MSRO Multi-stage robust optimization model

T SRO Non-anticipative two-stage robust optimization model

T SRO IP Integer programming formulation of T SRO
T SRO Anticipative (lower bounding) two-stage robust optimization

model
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Proof of Proposition 3.1. The first inequality follows from the observation that T SRO is
equivalent to the following problem:

minimize
S,R̃

∑
p∈P

CVRP(Sp, ξ̂, m)

subject to (S1, S2, . . . , Sh) ∈ F
BPP(Sp, ξ̂) ≤ m ∀ p ∈ P \ {1}
R̃p : Ξ \ {ξ̂} 7→ 2∆p ∀ p ∈ P \ {1}
(S1, R̃2(ξ), . . . , R̃h(ξ)) ∈ F ∀ ξ ∈ Ξ \ {ξ̂}
BPP(R̃p(ξ), ξ) ≤ m ∀ p ∈ P \ {1}, ∀ ξ ∈ Ξ \ {ξ̂}

This description differs from the original one in that it has explicit decision variables
for the assignments resulting from evaluating the functionals S̃p(·) under the nominal
scenario. Observe that the second constraint in the above problem is redundant since
it is embedded in the evaluation of CVRP(Sp, ξ̂, m) in the objective function. Therefore,
DET (ξ̂) is obtained by relaxing the last three constraints and its optimal value provides
a lower bound to that of T SRO.

The second inequality follows from the fact that for any feasible solution
(S1, S̃2(·), . . . , S̃h(·)) inMSRO, we can construct a feasible solution (S′1, S′2(·), . . . , S′h(·))
in T SRO as follows: S′1 = S1 and S′p(ξ) , S̃p(ξ [p−1]) for all ξ ∈ Ξ. Therefore, the feasible
region of MSRO is a subset of the feasible region of T SRO and its optimal value
provides an upper bound to that of T SRO.

The third inequality follows if, for all p > 1, we restrict the functional variables S̃p(·)
in MSRO to the space of constant functions. In doing so, we obtain T SRO, whose
optimal value provides an upper bound to the optimal value ofMSRO.

Proof of Proposition 3.2. In either case, the optimal functions S̃p(·), for all p ∈ P \ {1}, in
both models T SRO and MSRO can be obtained as follows: S̃p(·) ≡ {v ∈ V : p ∈
Pv, v /∈ S1}, i.e., they are constant over their domain. Therefore, the functional variables
S̃p : Ξ 7→ 2∆p in T SRO and S̃p : Ξ[p−1] 7→ 2∆p in MSRO can be replaced with the
decision variables Sp ∈ 2∆p (i.e., Sp ⊆ ∆p) without loss of optimality. In both cases, the
model obtained by restricting the functional variables to the space of constant functions
is optimal and, therefore, equivalent to T SRO.

Proof of Proposition 3.3. The stated result clearly holds under conditions of Proposition 3.2
for which MSRO = TSRO.

Consider now case (i). Assume that (S1, S̃2(·), . . . , S̃h(·)) is a feasible solution in
model MSRO. Consider the order assignment S = (S1, S̃2(1[1]), . . . , S̃h(1

[h−1])) ob-
tained by evaluating this feasible solution under the worst-case uncertainty realization,
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1 ∈ Ξ, where Ξ is a hypercube. This assignment is also feasible in model T SRO
since (a) S ∈ F , as per the second constraint in MSRO, and (b) BPP(S̃p(1[p−1]), ξ) ≤
BPP(S̃p(1[p−1]),1) ≤ m is satisfied for all ξ ∈ Ξ; indeed, the second inequality follows
from the third constraint in modelMSRO, while the first inequality follows from the
fact that the optimal value of the bin-packing problem associated with any set is always
no larger than the optimal value associated with any subset.

Consider now case (ii). Define ξ = (ξ0, ξ1, . . . , ξh−1) ∈ Ξ as follows: ξ p := (ξv[p])v∈Vp
,

where ξ[p] is an optimal solution of maxξ∈Ξ BPP(Sp, ξ), where Sp := {v ∈ V : Pv = {p}}
for all p ∈ P \ {1}. Similar to case (ii), assume that (R1, R̃2(·), . . . , R̃h(·)) is a feasi-
ble solution in model MSRO. Now, consider the R = (R1, R̃2(ξ

[1]), . . . , R̃h(ξ
[h−1])) to

be the order assignment obtained by evaluating this feasible solution under the un-
certainty realization ξ ∈ Ξ. This assignment is also feasible in model T SRO since
(a) R ∈ F , as per the second constraint in MSRO, and (b) BPP(R̃p(ξ

[p−1]), ξ) ≤
BPP(R̃p(ξ

[p−1]), ξ) ≤ m for all ξ ∈ Ξ; indeed, the second inequality follows from the
third constraint inMSRO, while the first inequality follows from the fact that ξ is an
optimal solution of maxξ∈Ξ BPP(R̃p(ξ

[p−1]), ξ). We remark that the latter holds because
the proof of Proposition 3.7 shows that this optimal value only depends on orders in
R̃p(ξ

[p−1])
⋂

q∈P,l Clq = Sp. In turn, this last equality holds because all customers i ∈ N
with wi ≥ 2 satisfy (i, q) /∈ Clq for any l, q (since all orders from i are preprocessed from
the uncertainty set, i.e., (i, q) /∈ V for any q ∈ P), and any customer order v = (i, q) with
wi = 1 and q 6= p− 1 satisfies v /∈ R̃p(ξ

[p−1]) (since ei = 1 for all such orders).

Proof of Proposition 3.4. Necessity. Let S(y) be any robust feasible solution in T SRO that
is induced by binary variables y. Also, let S ⊆ V, p ∈ P and ξ ∈ Ξ be given. Then we
have that:

m + ∑
i∈S

(
1− yip

)
= m + ∑

i∈S∩Sp(y)
(1− 1) + ∑

i∈S\Sp(y)
(1− 0)

= m +
∣∣S \ Sp(y)

∣∣
≥ BPP(Sp(y), ξ) +

∣∣S \ Sp(y)
∣∣

≥ BPP(S ∩ Sp(y), ξ) +
∣∣S \ Sp(y)

∣∣
≥ BPP(S ∩ Sp(y), ξ) + BPP(S \ Sp(y), ξ)

≥ BPP(S, ξ)

Here, the first equality follows from (3.8). The first inequality follows from the definition
of robust feasibility of S(y) in T SRO. The second inequality follows from the fact that
the optimal value of the bin packing problem over a given set of items is always no
smaller than its optimal value over any subset of items. The third inequality follows from
the fact that the cardinality of the set of items is a trivial upper bound to the optimal
value of the corresponding bin packing problem. Finally, the last inequality follows from
the fact that the optimal value of the bin packing problem possesses the subadditivity
property.
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Sufficiency. Assume that y satisfies equations (3.9) and the robust cover inequalities (3.11).
We must then show that S(y) is a robust feasible solution in T SRO. From equations (3.8)–
(3.9), we know that S(y) partitions V; that is, S(y) ∈ F . We therefore only need to verify
that, for every ξ ∈ Ξ and p ∈ P, the relationship BPP(Sp(y), ξ) ≤ m holds. This is true
since the left-hand side of (3.11) for S = Sp(y) evaluates to m, whereas the right-hand
side evaluates to BPP(Sp(y), ξ).

Proof of Proposition 3.5. Instead of proving the proposition directly, we prove its contra-
position: if inequality (3.12) associated with p ∈ P is violated by some solution (x∗, y∗)
of the constraint system (3.10b)–(3.10h), then at least one of the robust cover inequal-
ities (3.11) associated with p is also violated by (x∗, y∗). Therefore, let us assume that
∑i∈S ξ̃i(1− y∗ip)−∑i∈N(S) ξ̃iy∗ip < k is satisfied.

Consider the robust cover inequality (3.11) defined by period p, customer order real-
ization ξ̃, and the subset S′ = S+ ∪ NS+, where S+ = {i ∈ S ∩ Sp(y∗) : ξ̃i = 1} and
NS+ = {i ∈ N(S) ∩ Sp(y∗) : ξ̃i = 1}. We shall prove that this inequality is violated by
(x∗, y∗). Observe that the left-hand side of this inequality evaluates to m since i ∈ Sp(y∗)
is satisfied for all i ∈ S′ by construction. Therefore, we would like to show that its
right-hand side exceeds m; that is, BPP(S′, ξ̃) ≥ m + 1.

We define the set S1 = {i ∈ S : ξ̃i = 1} for ease of notation. Note that BPP(S1, ξ̃) =

BPP(S, ξ̃) ≥ m + k, where k ≥ 1, holds by hypothesis. We now consider two different
cases:

(i) |S+| >
∣∣S1
∣∣− k.

Observe that, since S+ ⊆ S1 and |S+| >
∣∣S1
∣∣ − k, S+ is obtained from S1 after

the removal of fewer than k elements. Therefore, the optimal bin packing value
associated with S+ can only decrease by some number less than k with respect to
the optimal bin packing value associated with S1; that is, BPP(S+, ξ̃) ≥ BPP(S1, ξ̃)−
(k − 1) ≥ m + k − (k − 1) = m + 1. Since BPP(S′, ξ̃) ≥ BPP(S+, ξ̃), we have that
BPP(S′, ξ̃) ≥ m + 1.

(ii) |S+| ≤
∣∣S1
∣∣− k.

Let S− be any non-empty subset of S1 \ S+ such that |S−| =
∣∣S1
∣∣− |S+| − (k− 1). It

is possible to construct such a subset since |S+| ≤
∣∣S1
∣∣− k and k ≥ 1. The following

holds:

BPP(S′, ξ̃) = BPP(S+ ∪ NS+, ξ̃)

≥ BPP(S+ ∪ S−, ξ̃)

≥ BPP(S1, ξ̃)− (k− 1)

≥ m + 1

The first inequality follows from the following two observations: (i) our hypothesis
is ∑i∈S ξ̃i(1− y∗ip)−∑i∈N(S) ξ̃iy∗ip < k; this is equivalent to |NS+| >

∣∣S1
∣∣− |S+| −

k = |S−|, and (ii) each item of NS+ has higher weight (i.e., demand) than each

107



3.9 appendix : proofs of propositions

item of S− since NS+ ⊆ N(S). The second inequality follows from the fact that
S+ ∪ S− ⊆ S1 and S+ ∪ S− is constructed from S1 by the removal of k− 1 customers.
Therefore, the optimal bin packing value associated with S+ ∪ S− can only decrease
by at most k − 1 with respect to the optimal value associated with S1. The last
inequality follows from BPP(S1, ξ̃) ≥ m + k, where k ≥ 1.

Proof of Proposition 3.6. Consider the following relaxation of formulation (3.10) ob-
tained by relaxing the day window constraints (3.10e) and the fleet availability con-
straints (3.10f):

(3.10)′ minimize
x,y ∑

p∈P
∑

v∈V0

c0vx0vp + ∑
p∈P

∑
(u,v)∈E0

cuvxuvp

subject to yvp ∈ {0, 1} ∀ v ∈ V, ∀ p ∈ P

x0vp ∈ {0, 1, 2} ∀ v ∈ V0, ∀ p ∈ P

xuvp ∈ {0, 1} ∀ (u, v) ∈ E0, ∀ p ∈ P

∑
p∈P

yvp = 1 ∀ v ∈ V0

x0vp + ∑
u:(u,v)∈E0

xuvp = 2yvp ∀ v ∈ V0, ∀ p ∈ P

∑
p∈P

∑
(u,v)∈E0(S)

xuvp ≤ |S| −
⌈

1
Q ∑

i∈S
qi

⌉
∀ S ⊆ V0

Now, if we add the two-index variables to the above formulation, via the identities
x′uv = ∑p∈P xuvp for all (u, v) ∈ E0 ∪ {(0, v′) : v′ ∈ V0}, and project the resulting integer
polytope into the space of the two-index variables x′, we obtain the integer polytope
associated with the following formulation:

minimize
x′

∑
v∈V0

c0vx′0v + ∑
(u,v)∈E0

cuvx′uv

subject to x′0v ∈ {0, 1, 2} ∀ v ∈ V0

x′uv ∈ {0, 1} ∀ (u, v) ∈ E0

x0v + ∑
u:(u,v)∈E0

xuv = 2 ∀ v ∈ V0

∑
(u,v)∈E0(S)

xuv ≤ |S| −
⌈

1
Q ∑

i∈S
qi

⌉
∀ S ⊆ V0

This is precisely the two-index formulation of the CVRP instance defined on the subgraph
of G with depot node 0, customers V0, edges E0, demands qv for v ∈ V0 and vehicle
capacity Q. Therefore, if ∑(i,j)∈I λijx′ij ≤ µ is any valid inequality for the above two-
index formulation, the inequality ∑p∈P ∑(i,j)∈I λijxijp ≤ µ is valid for formulation (3.10)′

and, hence, valid for formulation (3.10), since the former constitutes a relaxation of the
latter.
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Proof of Proposition 3.7. We consider values of ξ∗v , v ∈ V, for each of the following cases
separately:

1. v /∈ (V0 ∪ S).
Observe that, for given ξ ∈ Ξ, we can set ξv = 0 without changing the value of
BPP(S, ξ) and without affecting the validity of ξ ∈ Ξ (since each budget constraint
continues to be satisfied). Therefore, there always exists an optimal solution that
satisfies ξv = 0 for all v /∈ (V0 ∪ S).

2. v ∈ (V0 ∪ S) \
(
∪L

l=1Bl
)
. This is equivalent to v ∈ J0, by construction.

Observe that, if ξv = 0, then setting ξv = 1 does not decrease the value of BPP(S, ξ)

and, moreover, we do not violate ξ ∈ Ξ (since ξv does not appear in any budget
constraint). Therefore, any maximizer ξ∗ of BPP(S, ξ) must also satisfy ξ∗v = 1 for
all v ∈ J0.

3. v ∈ (V0 ∪ S) ∩
(
∪L

l=1Bl
)
. This is equivalent to v ∈ S ∩

(
∪L

l=1Bl
)

since, by construc-
tion, we have V0 ∩

(
∪L

l=1Bl
)
= ∅.

Since the subsets {Bl}L
l=1 are disjoint by assumption, assume that v ∈ S∩ Bl , where

1 ≤ l ≤ L is some budget, and that v /∈ Bl′ , for all l′ 6= l. There are two possibilities:
(i) If |S ∩ Bl | ≤ bl , or if |S ∩ Bl | > bl and v = vl,j for some j ≤ bl , then we can
set ξ∗v = 1, since doing so does not violate any budget constraint (i.e., ξ∗ ∈ Ξ is
satisfied) and does not decrease the value of BPP(S, ξ∗).
(ii) If |S ∩ Bl | > bl and v = vl,j for some j > bl , then we must have ξ∗v = 0. Indeed,
if ξ∗v = 1, and since ξ∗ ∈ Ξ, i.e., ∑v′∈Bl

ξ∗v′ ≤ bl , then there exists k ∈ {vl,1, . . . , vl,bl}
such that ξ∗k = 0. In this case, one can obtain a potentially higher bin packing value
associated with the realization obtained by setting ξ∗v = 0 and ξ∗k = 1 (since k has a
higher demand with respect to v), contradicting the fact that ξ∗ is a maximizer of
BPP(S, ξ).

We remark that, with a slight modification, this proof can also be used to show the
correctness of the separation procedure for the robust cumulative capacity inequalities
outlined in Section 3.4.4.2.

Proof of Proposition 3.8. The proof is almost identical to that of Proposition 3.4. Neverthe-
less, we present it for the sake of completeness.

Necessity. Let S1(y) be any customer order assignment on day 1 such that the existence
of a feasible solution (S1(y), S̃2(·), . . . , S̃h(·)) in T SRO is guaranteed. Also, let S ⊆
V \ {v ∈ V : Pv = {1}} and ξ ∈ Ξ be given. Then, we have that:

m(h− 1) + ∑
i∈S

yi1 = m(h− 1) + ∑
i∈S

I[i∈S1(y)]

= m(h− 1) + |S ∩ S1(y)|
≥ BPPDW(V \ S1(y), ξ) + |S ∩ S1(y)|
≥ BPPDW(S \ S1(y), ξ) + |S ∩ S1(y)|
≥ BPPDW(S, ξ)
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The first equality follows from (3.17) and the fact that the assignment, S1(y), is common
for realizations ξ and ξ̂. The first inequality follows from the following two observations:
(i) by definition, the customer order assignment (S1(y), S̃2(ξ), . . . , S̃h(ξ)) is such that
each subset S̃p(ξ) for p > 1 can be partitioned into m capacity-feasible routes, say
(rp,1, . . . , rp,m) and (ii) (S1(y), S̃2(ξ), . . . , S̃h(ξ)) partitions V. Therefore, the feasible space
of the corresponding bin packing problem with day windows defined over the set of
items V \ S1(y), under realization ξ, contains the partition r2,1, . . . , r2,m, . . ., rh,1, . . . , rh,m.
Hence, m(h− 1) constitutes an upper bound to its optimal value, resulting in the first
inequality. The second inequality follows from the fact that S ⊆ V and that the optimal
value of the bin packing problem with day windows over a given set of items is always
no smaller than its optimal value over any subset of items. The third inequality follows
from the fact that if the set of items is enlarged by an additional item, then the optimal
value of the bin packing problem can increase by at most one.

Sufficiency. Assume that y satisfies equations (3.9) and the robust cover inequalities (3.18).
We must show that the customer order assignment on day 1, S1(y), is such that there
exists a feasible solution (S1(y), S̃2(·), . . . , S̃h(·)) in T SRO. Let ξ ∈ Ξ be any customer
order realization. We shall construct the feasible solution as follows. By hypothesis, for
S = V \ S1(y) and customer order realization ξ, the robust cover inequality (3.18) is
satisfied. The left-hand side of this inequality evaluates to m(h− 1), whereas the right-
hand side is the optimal value of the bin packing problem with day windows defined over
the set of items V \ S1(y) with weights qiξi, day windows Pi \ {1}, and set of days P \ {1}
and bin capacity Q. This implies that there is a capacity-feasible partition of the items,
say (r2,1, . . . , r2,m, . . . , rh,1, . . . , rh,m). Therefore, for each p ∈ P \ {1}, we construct S̃p(ξ)

according to S̃p(ξ) =
⋃

k∈K
rp,k. By construction and from (3.9), (S1(y), S̃2(ξ), . . . , S̃h(ξ))

partitions V and is capacity-feasible under realization ξ.
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3.10 appendix : improved column-and-constraint generation

In this section, we present algorithmic efficiencies to improve the generalized column-and-
constraint generation framework [280] for two-stage robust optimization problems with
binary recourse decisions. We first present a brief overview of the original framework
and then present our improvements. The bilevel optimization problems max{BPP(S, ξ) :
ξ ∈ Ξ} and max{BPPDW(S, ξ) : ξ ∈ Ξ} arising in the separation of the robust cover
inequalities can be interpreted as special cases of the subproblems that arise in the
general framework.

3.10.1 Algorithmic Improvements

Consider the following two-stage robust optimization problem with first-stage decisions
denoted by x and second-stage decisions denoted by z:

min
x∈X

c>x +R(x), where R(x) = max
ξ∈Ξ

R(x, ξ) (3.21)

and R(x, ξ) = min
z∈Z

{
d(ξ)>z : W(ξ)z ≤ h(ξ)− T(ξ)x

}
.

Here, X ⊆ RN1 , Z ⊆ RN2 and Ξ ⊆ RN are non-empty and bounded mixed-integer linear
representable sets, and d : Ξ 7→ RN2 , T : Ξ 7→ RM×N1 , W : Ξ 7→ RM×N2 and h : Ξ 7→ RM

are affine functions. The basic column-and-constraint generation algorithmic framework
can be described as follows [280]:

1. Initialize LB← −∞, UB← +∞ and L← 0.

2. Let
(

x∗, η∗, {z(l)∗}L
l=1

)
denote the optimal solution of the following problem:

minimize
x,η,{z(l)}L

l=1

c>x + η

subject to x ∈ X , η ∈ R

z(l) ∈ Z

η ≥ d
(

ξ(l)
)>

z(l)

T
(

ξ(l)
)

x + W
(

ξ(l)
)

z(l) ≤ h
(

ξ(l)
)
 ∀ l ∈ {1, . . . , L}

Update LB← c>x∗ + η∗.
If UB− LB ≤ ε, stop. x∗ is the optimal solution of (3.21).

3. Solve R(x∗) and let ξ∗ denote its optimal solution.
Update UB← min{UB, c>x∗ +R(x∗)}.
If UB− LB ≤ ε, stop. x∗ is the optimal solution of (3.21).

4. Update L← L + 1. Set ξ(L) ← ξ∗ and go to step 2.
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Zhao and Zeng [280] show that the above procedure converges in finite time whenever
R : X × Ξ 7→ R is quasi-convex over Ξ for any x ∈ X . The most important step in the
above procedure is the calculation of R(x∗) in step 3. Zhao and Zeng [280] propose to do
it via another column-and-constraint generation procedure motivated by a reformulation
of R(x) into a trilevel optimization problem. Their procedure to calculate R(x) makes
the following assumptions: (i) fixed recourse, i.e., W(ξ) = W ′ for all ξ ∈ Ξ, and (ii)
complete recourse, i.e., R(x, ξ) is feasible for any x ∈ X and ξ ∈ Ξ. Moreover, it involves
a computationally difficult reformulation of R(x) into a mathematical program with
complementarity constraints. In the following, we propose an improved column-and-
constraint generation method to calculate R(x) via a sequence of feasibility problems
that alleviates these shortcomings.

Our procedure takes as input a target value d0 and either returns a scenario ξ̃ ∈ Ξ for
which the recourse cost is higher than d0; that is, R(x, ξ̃) > d0, or announces that d0 is
an upper bound to the worst-case recourse cost; that is, R(x) ≤ d0. We can then locate
an ε-optimal solution of R(x) by performing a binary search in the space of objective
values of R(x). In doing so, the scenarios identified in previous iterations can be kept in
memory in order to speed up convergence. In cases where R(x) is a feasibility problem
(that is, d ≡ 0), we do not need to perform a binary search, as our procedure shall either
return a scenario ξ̃ ∈ Ξ for which the recourse problem R(x, ξ̃) is infeasible, or announce
that a feasible second-stage decision can be found under any scenario ξ ∈ Ξ.

Our procedure can be described as follows. In the following,M := {1, . . . , M} denotes
the index set of second-stage constraints for ease of presentation.

1. Assume d0 ∈ R, ξ(0) ∈ Ξ and nmax ∈N are given.
Initialize r ← 0, L← 1 and Ξ(L) ← {ξ(r)}.

2. Let
(

z(L), s(L)
)

denote the optimal solution of the following feasible problem:

minimize
z,s

1>s

subject to z ∈ Z , s ∈ RM+1

d(ξ)>z− sM+1 ≤ d0

W(ξ)z− s ≤ −T(ξ)x + h(ξ)

}
∀ ξ ∈ Ξ(L)

If 1>s(L) > 0, go to step 3. Otherwise, go to step 5.

3. If
∣∣∣Ξ(L)

∣∣∣ = 1, stop. R(x, ξ(r)) > d0 is satisfied.

4. Update Ξ(L) ← Ξ(L) \ {ξ(r)} and L ← L + 1. Initialize Ξ(L) ← {ξ(r)} and go to
step 2.
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5. Let
(

ξ∗, θ∗, {ζ(l)∗}L
l=1

)
denote the optimal solution of the following problem:

maximize
ξ,θ,{ζ(l)}L

l=1

θ

subject to ξ ∈ Ξ, θ ∈ R

ζ
(l)
j ∈ {0, 1} ∀ j ∈ M∪ {0}

ζ
(l)
j = 1⇒ θ ≤

[
T (ξ) x + W (ξ) y(l)

]
j
− [h (ξ)]j ∀ j ∈ M

ζ
(l)
0 = 1⇒ θ ≤ d (ξ)> y(l) − d0

ζ
(l)
0 +

M

∑
j=1

ζ
(l)
j = 1


∀ l ∈ {1, . . . , L}

If θ∗ ≤ 0, stop. R(x) ≤ d0 is satisfied.

6. Update r ← r + 1 and set ξ(r) ← ξ∗.
If
∣∣∣Ξ(L)

∣∣∣ < nmax, update Ξ(L) ← Ξ(L) ∪ {ξ(r)} and go to step 2.

Otherwise, update L← L + 1, initialize Ξ(L) ← {ξ(r)} and go to step 2.

The key idea behind our above procedure is to enumerate a number of second-stage
decisions denoted by {z(l)}L

l=1 that collectively guarantee the feasibility of the second-
stage problem R(x, ξ) for any possible scenario ξ ∈ Ξ. The hope is that we would not
have to enumerate too many second-stage decisions and that enumerating a few key
ones will be sufficient. In the following, we go through the algorithm step by the step.

The procedure is initialized with an initial scenario ξ(0) that is assigned to the scenario
subset Ξ(1) (step 1). At iteration L, the subset of scenarios denoted by Ξ(L) is used to
generate a second-stage decision z(L), which will ensure that R(x, ξ) ≤ d0 is satisfied for
all ξ ∈ Ξ(L) (step 2). Whenever this fails because of the addition of a new scenario (i.e.,
step 2 yields 1>s(L) > 0), it implies that either the last added scenario is a certificate of
infeasibility (step 3) or we must use the last added scenario to generate an improved
second-stage decision (step 4). On the other hand, if we succeed, the optimization
problem in step 5 is used to generate a new candidate scenario that makes all currently
postulated second-stage decisions {z(l)}L

l=1 infeasible. If no such scenario can be found,
we terminate successfully (step 5). Otherwise, we assign this scenario to the subset Ξ(L)

that will be used to re-generate an improved second-stage decision z(L) in step 2.

The input parameter nmax controls the growth of the optimization problems in steps 2

and 5 by controlling the maximum cardinality of Ξ(L). The choice nmax = 1 would create
new variables and constraints in the optimization problem of step 5 every time it is
performed, but would restrict the size of the problem in step 2 to involve constraints
for just one scenario. On the other hand, nmax = +∞ would create new variables and
constraints in the optimization problem of step 5 only when necessary, but would involve
constraints for each scenario in Ξ(L). Higher values of nmax are preferable since the
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complexity of the optimization problem in step 2 can typically be managed using cutting
plane techniques, if necessary.

We remark that the procedure converges in finite time whenever Z or Ξ are finite sets. We
reason as follows. By construction, the separation problem in step 5 can only generate a
scenario ξ(r) that makes all currently generated second-stage decisions {z(l)}L

l=1 infeasible.
This scenario is then assigned to one of the scenario subsets {Ξ(l)}L

l=1 in a way that
ensures it is never identified again in step 5 in subsequent iterations (unless the procedure
terminates in step 3). Consequently, no scenario is generated more than once in step 5.
Moreover, by the same reasoning, no second-stage decision is generated more than once
in step 2 (unless the procedure terminates in step 3).

3.10.2 Solving max {BPP(S, ξ) : ξ ∈ Ξ} and max {BPPDW(S, ξ) : ξ ∈ Ξ}

Observe that these problems are special cases of R(x) in which the recourse problem
R(x, ξ) is a Bin Packing Problem, and a Bin Packing Problem with Day Windows
respectively. Therefore, we can utilize any integer programming formulation of BPP(S, ξ)

or BPPDW(S, ξ) to replace R(x, ξ) in the previously described procedure to obtain their
maxima. However, we improve numerical tractability in two ways: (i) we utilize an
associated feasibility-based integer programming formulation of these problems, and (ii)
we do not attempt to obtain the true maxima of these problems.

More specifically, we consider the following integer programing formulation associated
with BPP(S, ξ), which either determines a capacity-feasible assignment of items in S to at
most m bins, or results in infeasibility implying that the optimal value of the bin packing
problem exceeds m. Here, binary variables zik indicate if item i ∈ S is assigned to bin
k ∈ K := {1, . . . , m}.

minimize
z

0

subject to zik ∈ {0, 1} ∀ i ∈ S, ∀ k ∈ K

∑
k∈K

zik = 1 ∀ i ∈ S

∑
i∈S

(qiξi) zik ≤ Q ∀ k ∈ K

∑
j∈S:j<i

zj,k−1 ≥ zik ∀ i ∈ S, ∀ k ∈ K \ {1}

(3.22)

Similarly, we consider the following integer programming formulation associated with
BPPDW(S, ξ), which either determines a capacity-feasible and day window-feasible as-
signment of items in S to at most m bins available on each day p ∈ P \ {1}, or results in
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infeasibility implying that the optimal value exceeds m(h− 1). Here, binary variables
zikp indicate if item i is assigned to bin k on day p.

minimize
z

0

subject to zikp ∈ {0, 1} ∀ i ∈ S, ∀ k ∈ K, ∀ p ∈ P \ {1}
∑

p∈Pi\{1}
∑
k∈K

zikp = 1 ∀ i ∈ S

∑
i∈S

(qiξi) zik ≤ Q ∀ k ∈ K, ∀ p ∈ P \ {1}

∑
j∈S:j<i

zj,k−1,p ≥ zikp ∀ i ∈ S, ∀ k ∈ K \ {1}, ∀ p ∈ P \ {1}

(3.23)

Note that, in both formulations (3.22) and (3.23), the last constraint is a symmetry-
breaking constraint to enforce that, if item i is assigned to bin k > 1, then at least one
item j < i must be assigned to bin k− 1.

We now outline the procedure to solve the bilevel problem max {BPP(S, ξ) : ξ ∈ Ξ}
arising in the separation of the robust cover inequalities (3.11). We first replace the
second-stage problem R(x, ξ) with formulation (3.22) and use the procedure described in
the previous section with input parameters d0 = 0, ξ(0) ∈ arg max {∑i∈S qiξi : ξ ∈ Ξ} and
nmax = 50. This procedure either returns a scenario ξ̃ ∈ Ξ for which formulation (3.22) is
infeasible or certifies that formulation (3.22) is feasible for all ξ ∈ Ξ. The former implies
that BPP(S, ξ̃) > m, while the latter implies that max {BPP(S, ξ) : ξ ∈ Ξ} ≤ m. In the
former case, we obtain the exact value of BPP(S, ξ̃) by solving a deterministic bin packing
problem using the exact algorithm MTP described in [196] and use the resulting value
when adding the corresponding robust cover inequality (3.11). We remark that, in both
outcomes, the exactness of the separation algorithm for the robust cover inequalities (3.11)
is guaranteed.

The procedure to solve max {BPPDW(S, ξ) : ξ ∈ Ξ} arising in the separation of inequali-
ties (3.18) is exactly the same, except that we replace the second-stage problem R(x, ξ)

with formulation (3.23). Moreover, in the case when we have identified a scenario ξ̃ ∈ Ξ
for which BPPDW(S, ξ̃) > m(h− 1), we do not compute the exact value of BPPDW(S, ξ̃)

but rather use the lower bound of m(h − 1) + 1 when adding the corresponding in-
equality (3.18), since our computational experience suggested that the optimal value
of BPPDW(S, ξ̃) almost never exceeds this lower bound. We remark that this does not
invalidate the correctness of the lower bounds provided by formulation T SRO IP.
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4
TA C T I C A L E N F O R C E M E N T O F S E RV I C E C O N S I S T E N C Y

Chapter 2 considered the problem of designing static routes to serve customers with
uncertain demands over an operational (e.g., one day) horizon. One benefit of static
routes are that they are consistent: the same driver serves the same set of customers at
roughly the same time. Such consistent routes are easy to adapt to the realization of
daily uncertainties. Moreover, consistency helps companies realize the important goal of
personalization of services while also improving driver productivity and familiarity with
their daily routes. In this chapter, we aim to explicitly incorporate service consistency as
a means to hedge against demands (as well as service times) that vary over a tactical
(e.g., one week) horizon.

To that end, we study the Consistent Traveling Salesman Problem, where the goal is to
identify the minimum-cost set of routes that a single vehicle should follow during the
multiple time periods of a planning horizon. The requirement for consistent service is
defined to be equivalent to restricting the difference between the earliest and latest vehicle
arrival-times, across the multiple periods, to not exceed some given allowable limit. We
present two exact algorithms for this problem. The first is a branch-and-cut algorithm
based on three novel mixed-integer linear programming formulations, while the second
is a decomposition algorithm based on decomposing the multi-period problem into a
sequence of single-period “classical” traveling salesman problems with time windows.
These constitute the first exact algorithms in the open literature that consider consistency
constraints.

We show that our algorithms are capable of solving instances whose sizes are
representative–or even exceed–expected sizes of real-world distribution settings in-
volving a single vehicle. Moreover, we also empirically show that (i) consistency can
be achieved with merely a small increase in total routing costs (as compared to the
case where consistency considerations are not taken into account), and (ii) the cost of
implementing consistent routes can be reduced significantly if vehicles are allowed to
idle en route.

This chapter is structured as follows. Section 4.1 motivates the problem and provides
necessary background information. Section 4.2 formally defines the problem and intro-
duces the necessary notation. Section 4.3 presents the branch-and-cut algorithm, while
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Section 4.4 presents the decomposition algorithm. Finally, Section 4.5 presents extensive
computational results, comparing the performance of the two algorithms, elucidating
the cost of providing consistent service as well as the cost savings that are possible when
vehicle idling is allowed to occur.

4.1 background and motivation

Supply chains have gradually shifted attention from company-focused to customer-
focused operating strategies over the last few years. Under this paradigm, the focus is to
improve the quality of service and to stimulate one’s profit by satisfying customer needs
better than one’s competitors. In the context of distribution operations, an important lever
to gain this competitive advantage is to provide customer service that is consistent over
time. Consistency in service is particularly desirable in the design and implementation
of periodic distribution systems, wherein customers require frequent service across
multiple time periods. In addition to providing competitive advantages through customer
satisfaction, adopting consistent service policies exposes efficiencies that reduce costs for
both the distributor and the customer.

According to Kovacs et al. [172], who surveyed periodic vehicle routing problems in
which service consistency considerations have been explicitly addressed, consistency
in this context translates to satisfying any of the following requirements each time
service is provided to a customer: (i) arrival-time consistency, wherein the customer
should be visited at roughly the same time, (ii) person-oriented consistency, in which the
customer should be visited by the same driver, and (iii) delivery consistency, for which
a customer should receive roughly the same quantity of goods. Examples of real life
applications where such consistent policies have been applied include–among others–
courier services [140, 225, 245, 270], vendor-manged inventory distribution [84, 99], home
care and nursing services for the elderly [110, 271] and aircraft fleet scheduling [155].

This work focuses on the aspect of arrival-time consistency. In this context, the supplier
aims to reduce the variability in the actual times during the routing horizon at which
a customer is served, since doing so generally increases the value of service for the
customer. For example, in the context of VMI distribution, arrival-time consistency
reduces the need for the customer to commit loading-dock resources throughout the day.
In the home-care industry, the elderly and disabled are sensitive to changes in their daily
routines and developing consistent schedules is of particular importance. Moreover, from
the service provider’s point of view, reducing the variability across repetitive deliveries
over multiple time periods can expose efficiencies that add up to significant cost savings.

The Consistent Traveling Salesman Problem (ConTSP) is a variant of the well-known
Traveling Salesman Problem (TSP) that attempts to address the issue of arrival-time
consistency in multi-period routing applications. In the ConTSP, we aim to design
minimum-cost (or, minimum-makespan) routes over a finite, multi-period horizon so as
to serve a set of customers with known demands and service durations using a single
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(uncapacitated) vehicle. In general, a customer may or may not require service in a given
time period and, thus, only a subset of customers need to be visited in each period.
The consistency requirement applies to every customer who requires service in more
than one time period, meaning that every such customer must be visited at roughly
the same time in each period for which service is required. The exact time of service
remains a decision variable, but the arrival times across the multiple periods at each
customer site must not differ by more than some prespecified, constant bound, which we
call the maximum allowable arrival-time differential. In practice, this bound may be set
by either the customer or by the service provider. Note that, if the maximum allowable
arrival-time differential is chosen to be equal to infinity, then the ConTSP reduces to a
set of separable TSPs (one for each time period); hence, the ConTSP is NP–hard, just
like the TSP [166].

We mention here papers in the existing literature that study problems closely related
to ours. The Periodic Vehicle Routing Problem [74, 233] also addresses periodicity in
routing applications. In this problem, each customer requires one or more visits over a
planning horizon and the distributor must select in which time periods to provide these
visits, while minimizing the total cost across the planning horizon. Spliet and Gabor [242],
Spliet and Desaulniers [241], and Jabali et al. [157] investigate the problem of assigning a
single time window to each customer before the start of the planning horizon such that
the service provider attempts to meet these time windows on a daily basis and minimizes
the expected cost under operational uncertainty. These endogenous time windows are
motivated by requirements of arrival-time consistency and they serve the same purpose
as the above-mentioned maximum allowable arrival-time differential in the ConTSP.
Finally, Kovacs et al. [172] remark that the problem of visiting customers at consistent
times over the different periods in a planning horizon is similar to single-period, multi-
vehicle routing problems with temporal synchronization of vehicles [106]. In particular,
consistent routes in a multi-period setting are equivalent to several synchronized vehicles
that must arrive to customer sites almost simultaneously during a single-period; the
solution of the latter problem can be recovered as the union of all single-vehicle routes
in the former problem.

We highlight that the ConTSP constitutes a special, single-vehicle case of the Consistent
Vehicle Routing Problem (ConVRP), originally introduced in [140]. The ConVRP utilizes
multiple capacitated vehicles in order to provide consistent service to a set of customers
over multiple periods while minimizing total transportation cost. In addition to consid-
ering arrival-time consistency, the ConVRP also requires driver consistency, for which
each customer must be visited by the same driver in all periods of the planning horizon.
A number of metaheuristic approaches to solve the ConVRP have been proposed in
the literature. Groër, Golden, and Wasil [140] present an algorithm that is based on
generating a “template” route by following a precedence principle: if customer a is
visited before customer b in a time period, then a should be visited before b in every time
period. The template route is built by considering only customers that require service in
more than one time period. The individual routes in each time period are then generated
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by deleting those customers in the template who do not require service in that period,
while those customers that require service in this period but are not part of the template
route are inserted into the solution at the best position. Kovacs, Parragh, and Hartl [171]
build upon this algorithm by allowing deviations from the precedence template using an
adaptive large neighborhood search procedure; Tarantilis, Stavropoulou, and Repoussis
[249] modify both the template route and the actual single period routes using tabu
search. Note that, in all of the above approaches, waiting is not allowed; that is, the
vehicle is not allowed to wait at a customer location before providing service. Moreover,
in [140, 249], the departure times of the vehicles from the depot are fixed: vehicles must
depart from the depot at time zero in each period. Kovacs, Parragh, and Hartl [171]
relax the latter requirement by allowing the vehicle to delay its departure from the
depot and demonstrate that service quality can be improved without increasing driver
working time. In a more recent paper, Kovacs et al. [173] consider a generalization of
the ConVRP in which a limited number of different drivers may visit a customer, the
maximum difference in the earliest and latest arrival times is penalized in the objective
(i.e., arrival-time consistency is treated as a soft requirement), and each customer is
associated with either of two available time windows (e.g., AM or PM). Finally, Luo et al.
[192] study a multi-period variant of the Vehicle Routing Problem with Time Windows,
wherein each customer may be visited by only a limited number of drivers over the
routing horizon, in addition to being serviced within a given time window.

It should be highlighted that, in all of the above approaches, vehicle idling (a.k.a.,
“waiting”) is not allowed; that is, the vehicle is not allowed to wait at a customer location
before providing service.1 In [171, 173], the former requirement is slightly relaxed by
allowing the vehicle to delay its departure from the depot2 and show that service quality
can be improved without increasing driver working time. Moreover, with some of the
existing approaches, it is not always straightforward to incorporate maximum limits on
total travel time that are motivated by hours-of-work regulations in many contexts.

In this chapter, we present two new algorithms to address the ConTSP. To the best of our
knowledge, this is the first attempt in the open literature to address a routing problem
with consistency requirements in an exact framework. Our motivation to address the
special, single-vehicle case of the ConVRP is three-fold:

(i) an exact approach, even if only applicable to single-vehicle instances, has the
potential to provide higher quality solutions with provable guarantee of optimality
for those instances,

(ii) if the assignment of customers to drivers is fixed, as is commonly done via dis-
tricting or sectoring in territory-based planning [172, 225, 233], then the ConVRP
decomposes into several ConTSPs, one for each driver; consequently, an efficient so-

1 Vehicle idling does not necessarily entail actual waiting at the customer premises. Idling may be alternatively
implemented by slowing the vehicle down to an appropriate speed as it approaches the customer site.

2 Delaying departure from the depot is equivalent to allowing waiting only at the location of whichever
(solution-dependent) customer is visited first in the route.
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lution scheme for the ConTSP could serve as a component of a hybrid metaheuristic
or a decomposition-based exact approach for the ConVRP.

(iii) our contribution can influence the development of new exact algorithms to address
more complex problem settings for consistent routing.

We note that the size of instances (100 customers over a 5-period horizon) we are able
to address are representative–or even exceed–expected sizes of real world distribution
settings involving a single vehicle. We also relax the restrictive assumption that vehicle
waiting is not allowed, allowing the vehicle to wait at any customer location before
starting service, in addition to enabling the consideration of maximum route duration
limits, as part of our new solution approach. These generalizations are representative of
real world routing operations and alleviate existing algorithmic assumptions that may
be too restrictive in practice. We remark that our methods can readily incorporate the
AM/PM time window requirements proposed in [173] or the delayed vehicle departure
times proposed in [171, 173].

4.2 problem definition

Let G = (V, A) be the complete directed graph on n + 1 nodes, where V := {0, 1, . . . , n}
is the node set and A := {(i, j) ∈ V ×V : i 6= j} is the arc set. Node 0 represents the
depot, while the node subset Vc = V \ {0} represents the set of customers. Associated
with every arc (i, j) ∈ A is a travel cost cij ≥ 0 and a travel duration tij ≥ 0. Service
(a.k.a., processing) times can be easily incorporated into the travel durations via the
operation tij ← tij + si, where si ≥ 0 is the service time of each customer i ∈ Vc and
s0 = 0. We remark that we do not require symmetric costs or travel times; that is, we
allow cij 6= cji or tij 6= tji for any (i, j) ∈ A. In either case, since in general service times
differ among nodes, the ConTSP constitutes an asymmetric problem even if the costs
and travel times are themselves symmetric.

Let also P = {1, . . . , h} denote the set of time periods such that h ≥ 2. For each
period p ∈ P , we define the node subset Vp ⊆ Vc to be the set of customers re-
quiring service in this period, and we define the associated subset of arcs to be
Ap :=

{
(i, j) ∈

(
Vp ∪ {0}

)
×
(
Vp ∪ {0}

)
: i 6= j

}
. Without loss of generality, we assume

for each period p ∈ P , that Vp ∩
[
∪q∈P :q 6=p Vq

]
6= ∅; that is, each set Vp is non-empty3

and it in fact includes at least one customer requiring service in some additional period.4

For each customer i ∈ Vc, we let Pi := {p ∈ P : i ∈ Vp} denote the set of time periods in
which customer i requires service.

3 If the input data provides for a period in which no customers require service, then that period can be
removed from consideration.

4 If the input data provides for a time period p in which every customer that requires service in that period
does not require service in any additional period q 6= p, then we can independently address period p by
solving its corresponding TSP instance and appending its solution to the solution of the ConTSP instance
induced by the remaining periods.
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A traveling salesman tour (TSP tour) in period p is a Hamiltonian cy-
cle in Gp :=

(
Vp ∪ {0} , Ap

)
. We refer to such a tour via notation Tp =〈

vp,0 = 0, vp,1, vp,2, . . . , vp,|Vp|, 0
〉

, where it is implied that each customer vp,k is unique.

Given a tour Tp, we define its cost as c(Tp) := ∑
|Vp|
k=1 cvp,k−1vp,k + cvp,|Vp|0. Furthermore, we

can define the arrival time, ap
vp,k , at the kth node, vp,k ∈ Vp, as any feasible solution to the

linear system (4.1). A TSP tour is said to be infeasible if there is no feasible solution to
this linear system.

ap
vp,0 = 0 (4.1a)

ap
vp,k ≥ ap

vp,k−1 + tvp,k−1vp,k ∀ k ∈ {1, . . . ,
∣∣Vp
∣∣} (4.1b)

avp,|Vp| + tvp,|Vp|0 ≤ D (4.1c)

Here, D is the allowable route duration limit, i.e., an upper bound on the total time
elapsed until the vehicle returns to the depot (if no such restriction applies, a sufficiently
large value may be used instead). Note that the above definition allows the vehicle to
wait at customer locations before starting service. If the vehicle is not allowed to wait,
then the inequality in (4.1b) must be replaced with an equality.

Furthermore, if time windows also apply, then the resulting tour is called a traveling
salesman tour with time windows (TSPTW tour). More specifically, if T W i = [ei, `i] is
the time window for customer i ∈ Vp, where ei ≥ 0 is the earliest arrival time and `i ≥ ei
is the latest arrival time for customer i, then the arrival times can be redefined as any
feasible solution to the above linear system with the added restriction ei ≤ ap

i ≤ `i (also
denoted as ap

i ∈ T W i) and the corresponding tour Tp is said to be feasible only if there
exists a feasible solution to the augmented linear system. Note that a feasible TSP tour
is also a feasible TSPTW tour whenever the time windows have been relaxed for each
customer, i.e., whenever T W i = [0, D] for all i ∈ Vc.

A ConTSP solution is a collection of TSP tours
{

T1, T2, . . . , T|P|
}

, i.e., one tour for each
period p ∈ P . Given such a collection and a corresponding feasible solution to the linear
system (4.1) for each period p ∈ P , we define ∆amax

i := maxp∈Pi ap
i −minp∈Pi ap

i to be
the arrival-time differential for a customer i. In the ConTSP, we want to enforce that this
arrival-time differential does not exceed the given maximum allowable value, L > 0, for
all customers i ∈ Vc; that is, a ConTSP solution is feasible if and only if there exists a
feasible solution to the linear system (4.1) that satisfies maxi∈Vc ∆amax

i ≤ L. A collection
of tours is said to be consistent if they induce a feasible ConTSP solution. The objective
of the ConTSP is then to determine the collection of consistent tours with the minimum
sum of costs, ∑p∈P c(Tp).
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4.3 branch-and-cut algorithm

4.3 branch-and-cut algorithm

In this section, we present a branch-and-cut algorithm for the ConTSP. We note that
this algorithm is applicable only when vehicle idling is not permitted, i.e., if we impose
ai = 0 for all i ∈ Vp in (4.1).

In Section 4.3.1, we present three alternative mixed-integer linear programming formula-
tions and compare their performance when serving as the basis of our branch-and-cut
scheme. In Section 4.3.2, we present a number of valid inequalities for the above formu-
lations. More specifically, in our implementation we use Subtour Elimination Constraints
and 2-matching Constraints. We further derive a new class of valid inequalities for the
ConTSP, which we refer to as Inconsistent Path Elimination Constraints. In Section 4.3.3,
we discuss the implementation of our branch-and-cut algorithm, including separation
routines for each of the valid inequalities.

Throughout this section, we use the following notation. For each customer i ∈ Vp ∪ {0},
let N+

p (i) denote the set of nodes j for which there is an arc from i to j in the graph Gp,
i.e., N+

p (i) :=
{

j ∈ V : (i, j) ∈ Ap
}

. Similarly, let N−p (i) :=
{

j ∈ V : (j, i) ∈ Ap
}

. Finally,
given a subset of nodes S ⊆ Vp ∪ {0}, let A (S) be the set of arcs with both end points in
S, i.e., A (S) := {(i, j) ∈ S× S : i 6= j}, and let δ (S) be the set of arcs with exactly one end
point in S, i.e., δ (S) := {(i, j) ∈ S× Sc} ∪ {(i, j) ∈ Sc × S}, where Sc =

(
Vp ∪ {0}

)
\ S.

4.3.1 Formulations

We now present three alternative mixed-integer linear programming formulations that
can serve as the basis for a branch-and-cut approach. These formulations differ in how
they encode the various useful quantities (e.g., the arrival times at customer locations)
and how they enforce the ConTSP’s requirements, namely the requirement that each
period’s tour corresponds to a Hamiltonian tour (i.e., each node is incident to one
outgoing and one incoming arc and there are no subtours) as well as that the tours
across all periods are consistent (in the sense described in Section 4.2). Sometimes, a
requirement is described via a superpolynomial set of constraints, which will have to
be added dynamically in the context of a branch-and-cut framework. In the following,
we will discuss the various strategies that can be followed in each case with regards to
which constraints are to be utilized as cutting planes.

Let binary variables xijp be defined as follows:

xijp =

1, if arc (i, j) ∈ Ap is used in the tour of period p

0, otherwise

Using these variables, the ConTSP can be cast with the following conceptual formulation:

min ∑
p∈P

∑
(i,j)∈Ap

cijxijp (4.2)
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4.3 branch-and-cut algorithm

s.t. xijp ∈ {0, 1} ∀ (i, j) ∈ Ap, ∀ p ∈ P (4.3)

∑
j∈N+

p (i)

xijp = 1 ∀ i ∈ Vp ∪ {0} , ∀ p ∈ P (4.4)

∑
j∈N−p (i)

xjip = 1 ∀ i ∈ Vp ∪ {0} , ∀ p ∈ P (4.5)

{
(i, j) ∈ Ap : xijp = 1

}
= Tp ∀ p ∈ P (4.6){

Tp, Tq
}

is consistent ∀ (p, q) ∈ P ×P : p < q (4.7)

In this formulation, the assignment (degree) constraints (4.4) and (4.5) ensure that each
node is incident to one outgoing and one incoming arc in each period where it appears.
Constraints (4.6) eliminate subtours by imposing that only Hamiltonian circuits be
considered in each time period. Finally, constraints (4.7) ensure that the tours across all
periods are consistent (in the sense described in Section 4.2).

The formulations we are about to present below differ in the way they achieve the
requirements of constraints (4.6) and (4.7). The first formulation involves only the binary
arc variables xijp defined above and utilizes a superpolynomial number of constraints to
eliminate subtours and enforce consistency. In addition to binary arc variables xijp, the
second formulation utilizes continuous node variables αip to represent the arrival time at
customer i in period p, and employs big-M constraints to appropriately encode them.
The use of big-M constraints is a common way to encode arrival times in formulations
for the Vehicle Routing Problem with Time Windows (see [103]). The third formulation
uses continuous arc variables yijp in addition to binary variables xijp and is based on a
single-commodity flow representation of travel time.

4.3.1.1 Formulation 1

This model does not utilize any additional variables beyond the binary variables xijp
defined above. Constraints (4.6) are modeled via Eqs. (4.8), which constitute the standard
Subtour Elimination Constraints (SEC) originally proposed by Dantzig, Fulkerson, and
Johnson [96].

∑
(i,j)∈A(S)

xijp ≤ |S| − 1 ∀ S ⊆ Vp ∪ {0} : 2 ≤ |S| ≤
∣∣Vp
∣∣− 1, ∀ p ∈ P (4.8)

The consistency constraints (4.7) are modeled using a new class of infeasible path
elimination constraints [16], which we introduce in this work and refer to as Inconsistent
Path Elimination Constraints (IPEC). Note that two paths in two different periods are
said to be “inconsistent” if their simultaneous occurrence as sub-paths in the tours of
their respective time periods renders the ConTSP solution infeasible, and each IPEC will
forbid such an occurrence for a pair of inconsistent paths.

Let P = (v1, . . . , vk)
p denote a non-empty path in period p that is formed by the arcs

in the set {(vi, vi+1) : i = 1, . . . , k − 1}, where (vi, vi+1) ⊆ Ap for all i = 1, . . . , k − 1.
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We assume this path to be open and simple, i.e., k > 1 and vi 6= vj for i 6= j, and
we use |P| = k− 1 to denote the path length, which is equal to the cardinality of the
above arc set. Let also τ (P) = ∑k−1

i=1 tvivi+1 denote the time spent traveling on this path
and processing all its nodes except the last one, vk. Given these definition, sufficient
conditions for inconsistency of a pair of paths are given in Lemma 4.1.

Lemma 4.1. A pair of paths {P, Q}, where P = (v1, . . . , vs)
p, Q = (w1, . . . , wt)

q and p 6= q,
is inconsistent, if any of the following conditions holds:

(i) w1 = v1 = 0, wt = vs and |τ (P)− τ (Q)| > L

(ii) w1 = v1 6= 0, wt = vs 6= 0 and |τ (P)− τ (Q)| > 2L

(iii) w1 = vs 6= 0, wt = v1 6= 0 and τ (P) + τ (Q) > 2L

Proof. Consider a ConTSP solution in which P and Q appear as sub-paths in time periods
p and q respectively. Denote by ap

c the arrival time at customer c in period p. It holds from
their definitions that τ (P) = ap

vs − ap
v1 and τ (Q) = aq

wt − aq
w1 . Let us take into account

these relationships in the context described by each of the three conditions:

(i) Since wt = vs, we have aq
wt = aq

vs . Furthermore, since the vehicle always de-
parts from the depot at time 0, we have ap

v1 = aq
w1 = 0. Therefore, the condition

|τ (P)− τ (Q)| > L implies that
∣∣ap

vs − aq
vs

∣∣ > L; that is, customer vs violates the
maximum allowable arrival-time differential, rendering the pair of paths {P, Q} to
be inconsistent.

(ii) Since w1 = v1 and wt = vs, we have aq
w1 = aq

v1 and aq
wt = aq

vs . Therefore, the
condition |τ (P)− τ (Q)| > 2L implies that

∣∣ap
vs − ap

v1 − aq
vs + aq

v1

∣∣ > 2L, which in
turn implies that either

∣∣aq
v1 − ap

v1

∣∣ > L or
∣∣ap

vs − aq
vs

∣∣ > L (or both); that is, at least
one of the two customers v1 and vs violates the maximum allowable arrival-time
differential, rendering the pair of paths {P, Q} to be inconsistent.

(iii) Since w1 = vs and wt = v1, we have aq
w1 = aq

vs and aq
wt = aq

v1 . Therefore, the
condition τ (P) + τ (Q) > 2L implies that

(
ap

vs − ap
v1 + aq

v1 − aq
vs

)
> 2L, which in

turn implies that
∣∣ap

vs − ap
v1 + aq

v1 − aq
vs

∣∣ > 2L; that is, the same conclusion as in case
(ii) above can be reached.

Lemma 4.1 states that if P and Q have common end nodes and if one of them, say v1, is
to be visited at consistent times in periods p and q, then the other common end node, vs,
cannot be visited at consistent times in those time periods, if the travel times to vs along
paths P and Q are sufficiently different.

The basic form of the inequality that forbids the simultaneous occurrence of P and Q in
a solution is presented in Eq. (4.9).

∑
(i,j)∈P

xijp + ∑
(i,j)∈Q

xijq ≤ |P|+ |Q| − 1 (4.9)
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Every feasible ConTSP solution must satisfy constraints (4.9) for every inconsistent pair
of paths {P, Q}. Moreover, every solution to the set of constraints (4.3)–(4.5) and (4.8)
(i.e., a set of tours) that violates the arrival-time consistency requirement for at least
one customer must satisfy condition (i) of Lemma 4.1 for at least one pair of paths.
Therefore, every solution that satisfies the set of constraints (4.3)–(4.5), (4.8) and (4.9),
where the latter is imposed for all possible pairs of paths that meet the conditions of
Lemma 4.1, constitutes a feasible ConTSP solution. As a result, the model consisting of
Eqs. (4.2)–(4.5), (4.8) and (4.9) is a complete and valid ConTSP formulation. Note that this
formulation is similar to the TSP with Time Windows (TSPTW) formulation described in
[17], which also consisted of only binary arc variables.

We remark that the number of distinct SEC is O (2nh). Similarly, the number of distinct
IPEC in the worst case, when every possible pair of paths is inconsistent, is O

(
n!2h2).

Therefore, since the number of these constraints grows very fast (exponentially and
factorially, respectively) with the size of the instance, we treat these inequalities as
cutting planes and add them dynamically in a branch-and-cut solution framework.
In practice, the number of such inequalities added is relatively small. Our separation
procedures and associated separation protocols are discussed in detail in Section 4.3.3.
Note that, although it may be more challenging in the case of a fractional solution, one
can immediately and exactly (i.e., with guarantees to identify a violation, if one exists)
separate either of these inequalities from an integral solution (see Section 4.3.3 for details).
To that end, the branch-and-cut framework is guaranteed to locate the optimal solution,
as long as it is afforded enough computational resources. We discuss our computational
experience in Section 4.5.

4.3.1.2 Formulation 2

This formulation explicitly encodes the arrival times at customers. To that purpose, we
introduce continuous variables αip ≥ 0 to capture the arrival time at each customer i ∈ Vp

in each period p ∈ P . These variables attain appropriate values via their participation
in Miller-Tucker-Zemlin (MTZ) expressions [198], which are cast here in terms of travel
time.5 For each p ∈ P , let us define parameters fip := mink∈N+

p (i) tik, rip := mink∈N−p (i) tki,
for all i ∈ Vp and f0p := 0, r0p := 0; also define ξip := maxj∈N+

p (i)
{

tij + f jp
}

, for all i ∈ Vp.
Constraints (4.10) apply.

αip − αjp + tijxijp − tjixjip ≤
(

Mp − fip − rjp
) (

1− xijp − xjip
)
∀ (i, j) ∈ A

(
Vp
)

, ∀p ∈ P

(4.10a)

αip ≥ ∑
j∈N−p (i)

(
rjp + tji

)
xjip ∀i ∈ Vp, ∀p ∈ P (4.10b)

5 In the typical setting, MTZ expressions are cast in terms of order of customer visits or cumulative demand
served [103].
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αip + ∑
j∈N+

p (i)

(
tij + f jp

)
xijp ≤ Mp

(
1− x0ip

)
+
(
t0i + ξip

)
x0ip ∀i ∈ Vp, ∀p ∈ P

(4.10c)

αip ≤
(

Mp − fip
) (

1− x0ip
)
+ t0ix0ip ∀i ∈ Vp, ∀p ∈ P (4.10d)

The parameters Mp are big-M coefficients that must be large enough so as not to exclude
the optimal solution. If zUB is the objective value of a known feasible solution, obtained
via a heuristic or otherwise, and if ζ∗p is the optimal objective of the TSP in period p,
then the value Mp = zUB − ∑q∈P :q 6=p ζ∗q suffices.6 This also implies that the value of
the parameter Mp can be dynamically tightened during the search as new incumbent
solutions are identified.

We remark that the MTZ expressions as presented in Eqs. (4.10) incorporate several
applicable liftings, which we have proposed here for the first time. We further remark
that, if the triangle inequality on the travel time vector t is satisfied, namely if

tij + tjk ≥ tik ∀ i, j, k ∈ V (4.11)

then one may further lift the formulation by updating the definitions of its parameters
as follows: fip := ti0, rip := t0i, and ξip := maxj∈N+

p (i)
{

tij + tj0
}

.

Constraints (4.10) suffice to exclude subtours.7 Furthermore, the introduction of variables
αip enables the explicit enforcement of arrival-time consistency via constraints (4.12),
achieving the arrival-time consistency requirement (4.7).

αip − αiq ≤ L ∀ i ∈ Vp ∩Vq, ∀ (p, q) ∈ P ×P : p 6= q (4.12)

Therefore, the model consisting of Eqs. (4.2)–(4.5), (4.10) and (4.12) is a complete and
valid ConTSP formulation.

4.3.1.3 Formulation 3

This is a single-commodity flow formulation, where the cumulative travel time is rep-
resented as a commodity, originating at the depot and flowing through the arcs. The
single-commodity flow formulation for the TSP was originally proposed in [124], where
one unit of commodity was picked up along each traveled arc. A similar model was
proposed in [194] for the sequential ordering problem with time windows; the version
presented here can be obtained from the latter by ignoring the precedence constraints.

6 If no feasible solution to the problem is known, one may replace zUB with the sum of the optimal values of
the Maximum TSPs in each period.

7 On a rather technical remark, note that MTZ constraints suffice to exclude a potential subtour only when the
total travel time along this subtour is strictly positive (which is the typical case). For data sets that involve
arcs of zero travel time, which may give rise to subtours of zero total travel time, one should pay attention
to consider the relevant SEC explicitly (e.g., by adding them as a lazy cut).
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After introducing a set of continuous variables yijp ≥ 0 to capture the commodity flow
on each arc (i, j) ∈ Ap in each period p ∈ P , the following constraints apply.

∑
k∈N+

p (j)

yjkp = ∑
i∈N−p (j)

(
yijp + tijxijp

)
∀ j ∈ Vp, ∀ p ∈ P (4.13a)

∑
j∈N+

p (0)

y0jp = 0 ∀ p ∈ P (4.13b)

0 ≤ yijp ≤
(

Mp − tij − f jp
)

xijp ∀ (i, j) ∈ Ap, ∀ p ∈ P (4.13c)

The parameters Mp and f jp are as described in Section 4.3.1.2. The implications of the
triangle inequality (4.11) on the definitions of f jp also carry over from the discussion
there.

Constraints (4.13a) represent commodity-flow balances and enforce that the arrival time
at node j equals the arrival time at its predecessor node plus the time it takes to travel
from that predecessor to node j. Constraints (4.13b) simply require the vehicle to start
from the depot at time 0 in each period. These constraints lead the commodity variables
yijp to attain the value of the arrival time at node i, whenever (i, j) ∈ Ap is part of the
tour in period p, i.e., whenever xijp = 1. At the same time, constraints (4.13c) will ensure
that yijp = 0, whenever xijp = 0.

The commodity-flow constraints (4.13) suffice to eliminate subtours.8 Furthermore,
the presence of commodity variables yijp enables us to explicitly enforce arrival-time
consistency via constraints (4.14), achieving the arrival-time consistency requirement (4.7).

∑
j∈N+

p (i)

yijp − ∑
j∈N+

q (i)

yijq ≤ L ∀ i ∈ Vp ∩Vq, ∀ (p, q) ∈ P ×P : p 6= q (4.14)

Therefore, the model consisting of Eqs. (4.2)–(4.5), (4.13) and (4.14) is a complete and
valid ConTSP formulation.

Finally, we remark that an alternative formulation results by utilizing commodity-
flow constraints merely to eliminate subtours while using the IPEC (4.9), instead of
constraints (4.14), to enforce arrival-time consistency. In such a case, one could apply
projection techniques as in [139] to obtain a formulation in the space of the binary arc
variables xijp only. Conversely, we also note that it is possible to model the ConTSP
without introducing binary arc variables at all. This technique, which was used in [175]
to model the TSPTW, utilizes a two-commodity flow representation of the cumulative
travel time that is subsequently exploited in a branch-and-bound solution framework.
The lower bound given by the linear programming relaxation of the two-commodity flow
formulation would be identical to that of the single-commodity flow formulation [103].

8 The remark of the previous footnote applies also for the case of commodity-flow constraints.
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4.3.1.4 Sizes and Strength of Proposed Formulations

Formulation 1 utilizes only the binary variables xijp, but features a factorially-large set of
constraints. In contrast, Formulations 2 and 3 feature a polynomial number of constraints,
but utilize additional variables. Table 4.1 provides a synopsis of the sizes of the three
formulations.

Table 4.1: Sizes of ConTSP formulations.

Formulation # of Variables # of Constraints

Binary Continuous

1 O(n2h) — O(n!2h2)

2 O(n2h) O(nh) O(n2h + nh2)

3 O(n2h) O(n2h) O(n2h + nh2)

It should be noted that, in principle, one can postulate a formulation for the ConTSP
based on utilizing any valid asymmetric TSP formulation to model constraints (4.6), and
we refer the interested reader to [130, 206, 222] for recent surveys of such formulations.
As long as a formulation utilizes binary arc variables, one can in conjunction use
Eqs. (4.9) to enforce the arrival-time consistency requirement (4.7) for a comprehensive
ConTSP model. Forthermore, known tightness results and relationships between these
asymmetric TSP formulations will persist in the case of their ConTSP counterparts.
An experimental comparison of exact algorithms for the asymmetric TSP [222] reveals
that the branch-and-cut algorithm of [114] that is based on the formulation introduced
in [96] is computationally most efficient. We note that Formulation 1 utilizes the latter
to achieve requirement (4.6) and enforces the arrival-time consistency requirement (4.7)
via Eqs. (4.9). ConTSP formulations based on the other asymmetric TSP formulations
are likely to reflect the same relative performance and consequently, we do not consider
them in this study.

Conversely, Formulations 2 and 3 utilize travel time information while enforcing require-
ment (4.6) and by doing so, they enforce the arrival-time consistency requirement (4.7)
via constraints (4.12) and (4.14) respectively, without having to introduce the IPEC (4.9).
While this precludes a straightforward analysis of tightness relationships among the
three ConTSP formulations we consider in this study, we present in Section 4.5.2 em-
pirical evidence indicating that the dual bound obtained using the LP relaxation of
Formulation 1 is always stronger than the bounds obtained using the LP relaxations
of Formulations 2 and 3, while no empirical dominance relationship can be inferred
between the latter two formulations.
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4.3.2 Valid Inequalities

Let us define the ConTSP polytope, PCONTSP, to be the convex hull of all integer feasible
solutions of Formulation 1,

PCONTSP = conv
{

x ∈ R∑p∈P |Ap| : x satisfies (4.3), (4.4), (4.5), (4.8), (4.9)
}

.

Several families of inequalities are valid for PCONTSP. These include all inequalities that
are valid for the asymmetric TSP. Note that an inequality that is valid for any of the
asymmetric TSP instance associated with a period p ∈ P can be directly applied on
the ConTSP instance. In our study, we consider Subtour Elimination and 2-matching
Constraints. In addition, we consider the cross-period Inconsistent Path Elimination
Constraints introduced earlier in Section 4.3.1.1. As discussed, the inclusion of SEC
and IPEC is necessary for Formulation 1, which relies on these inequalities to eliminate
subtours and enforce arrival-time consistency, respectively. The inequalities are redundant
for Formulations 2 and 3, as long as the integrality restrictions (4.3) on the variables xijp
are retained; however, they are still capable of strengthening the linear relaxation and
should, thus, be used in conjunction with these formulations as well. In fact, the use of
these inequalities as cutting planes is of fundamental importance from a practical point
of view. For the instances we considered in our computational study (see Section 4.5),
adding the cutting planes was very helpful in expediting the proof of optimality.

4.3.2.1 Subtour Elimination Constraints

These inequalities, which were introduced as constraints (4.8), forbid the occurrence of
subtours and enforce the overall connectivity of the tour. Note however that, because of
the degree constraints (4.4) and (4.5), the SEC defined by a vertex set S ⊂ Vp ∪ {0} and
its complement Sc =

(
Vp ∪ {0}

)
\ S (see Eq. 4.15 below) are equivalent. To that end, one

may use form (4.15) as an alternate to form (4.8). Numerical criteria, such as constraint
sparsity (which depends on the size of set S), can be used to decide which of the two
forms to utilize as a cutting plane in each case.

∑
(i,j)∈A(Sc)

xijp ≤ |Sc| − 1 ∀ S ⊆ Vp ∪ {0} : 2 ≤ |S| ≤
∣∣Vp
∣∣− 1, ∀ p ∈ P (4.15)

4.3.2.2 2-matching Constraints

The 2-matching Constraints (also known as Blossom Inequalities) are particular cases of
a more general class of inequalities that is referred to as Comb Inequalities [112]. For a
given period p ∈ P and given vertex sets H, T1, T2, . . . , Tk ⊂ Vp, where k ≥ 3 and odd,
satisfying (i) |H ∩ Ti| = 1 for i = 1, . . . , k, (ii) |Ti \ H| = 1 for i = 1, . . . , k, (iii) Ti ∩ Tj = ∅
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for 1 ≤ i < j ≤ k, the corresponding 2-matching Constraint (2MC) is presented in
Eq. (4.16).

∑
(i,j)∈A(H)

xijp +
k

∑
i=1

∑
(i,j)∈A(Ti)

xijp ≤ |H|+
k− 1

2
(4.16)

Such constraints are obtained by adding the degree constraints (4.4) and (4.5) for all
i ∈ H, adding the subtour elimination constraints (4.8) defined by the vertex sets S = Ti
for all i ∈ {1, . . . , k}, dividing by 2, and rounding down the right hand side to the nearest
integer. More general Comb Inequalities may be obtained by relaxing conditions (i) and
(ii) above as follows: |H ∩ Ti| ≥ 1 and |Ti \ H| ≥ 1 for i = 1, . . . , k. Constraint (4.16) may
be equivalently cast in the form (4.17). As before, constraint sparsity can be used in
each case to decide whether a cutting plane should be represented in form (4.16) or
form (4.17).

∑
(i,j)∈δ(H)\(⋃k

i=1 A(Ti))

xijp −
k

∑
i=1

∑
(i,j)∈A(Ti)

xijp ≥ 1− k, (4.17)

4.3.2.3 Inconsistent Path Elimination Constraints

These inequalities, which were introduced in Section 4.3.1.1, are cross-period constraints
that forbid pairs of paths belonging to different periods that are inconsistent to simul-
taneously appear in the solution. Given a pair of paths {P, Q}, where P = (v1, . . . , vs)

p

and Q = (w1, . . . , wt)
q, the basic form of the inequality that forbids their simultaneous

occurrence is presented in Eq. (4.18).

s−1

∑
i=1

xvivi+1 p +
t−1

∑
i=1

xwiwi+1q ≤ s + t− 3 (4.18)

However, it is possible to strengthen this basic form (see also [16] for how to strengthen
the infeasible path elimination constraints they proposed in the context of the TSPTW).
In particular, it can be strengthened into the so-called Tournament Constraint (4.19).

s−1

∑
i=1

s

∑
j=i+1

xvivj p +
t−1

∑
i=1

t

∑
j=i+1

xwiwjq ≤ s + t− 3 (4.19)

Furthermore, for a given inconsistent pair of paths {P, Q} as described above, let the
paths obtained by reversing paths P and Q be denoted as P′ = (vs, . . . , v1)

p and Q′ =
(wt, . . . , w1)

q, respectively. If all three pairs of paths {P, Q′}, {P′, Q} and {P′, Q′} are
also inconsistent, then the symmetric inequality (4.20), which corresponds to a lifting of
inequality (4.18), is also valid and can be used instead of the latter.

s−1

∑
i=1

(
xvivi+1 p + xvi+1vi p

)
+

t−1

∑
i=1

(
xwiwi+1q + xwi+1wiq

)
≤ s + t− 3 (4.20)
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Finally, if {P1, Q1} and {P2, Q2} are two inconsistent pairs of paths in periods p and
q, such that P1 is contained in P2 and Q1 is contained in Q2, then the IPEC defined by
{P2, Q2} is dominated by the one defined by {P1, Q1}.

4.3.2.4 Polyhedral Analysis

A polyhedral analysis to determine whether the inequalities considered above are facet-
defining for PCONTSP is typically a difficult task. For a fixed graph size,

∣∣Vp
∣∣, and for

fixed L, small changes in the travel times tij can change the dimension of PCONTSP or
even make the entire instance infeasible. Although there may exist specific instances
in which individual inequalities coincide with facets of PCONTSP, in general none of the
three families of inequalities induces facets of the polytope, even if the instance is feasible.
This observation is interesting inasmuch it implies that known polyhedral results for
asymmetric TSP do not carry over to the case of ConTSP. For example, all SEC are known
to induce facets of the asymmetric TSP polytope for the case of n ≥ 4 [142], while all
2MC are known to be facet-defining for the asymmetric TSP polytope for the case of
n ≥ 6 [112]. However, as Proposition 4.1 shows, this is not true for the ConTSP.

Proposition 4.1. The Subtour Elimination, 2-matching and Inconsistent Path Elimination
Constraints do not induce facets of PCONTSP, in general.

Proof. Consider a ConTSP instance with n = 7, h = 2, V1 = {1, 2, 3, 4, 5, 6} and V2 =

{1, 7}. The arrival-time consistency requirement applies only to node 1, since node 1 is
the only customer node common to both periods 1 and 2. Assume that the travel times
are symmetric and are as depicted in Figure 4.1. For a maximum allowable arrival-time
differential of L = 1, it is straightforward to see that all feasible ConTSP solutions are
of the form

{
〈0, 1, i2, . . . , i6〉1 , 〈0, 1, 7〉2

}
, where i2, . . . , i6 is some permutation of nodes 2

through 6. In this case, one may verify that the rank of the set of feasible solutions is 20

and that 0 does not participate in the affine hull of this set.9 Therefore, the affine rank of
PCONTSP is 20 and dim (PCONTSP) = 19.

0

1

7

2

3
4

5
6

10

10

101

1

2

Figure 4.1: Travel times for the ConTSP instance considered in the proof of Proposition 4.1.

9 This may be verified numerically by showing the following linear system (in variables λi ∈ R) to be
infeasible: ∑i∈F xiλi = 0, ∑i∈F λi = 1. Here, {xi}i∈F is the set of feasible ConTSP solutions.
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By a similar reasoning as above, it can be verified that the face induced by the SEC of
the form (4.8), where p = 1 and S = {0, 2, 3}, is of dimension equal to 8 and, therefore,
this inequality does not induce a facet of PCONTSP. The face induced by the 2MC of the
form (4.16), where p = 1, k = 3, H = {0, 1, 2}, T1 = {0, 3}, T2 = {1, 4} and T3 = {2, 5}, is
of dimension equal to 7 and, therefore, this inequality does not induce a facet of PCONTSP.
In fact, it can be verified that none of the Comb Inequalities that are possible in period 1

(which include, as a special case, all 2-matching Constraints), induce facets of PCONTSP.
Finally, consider the IPEC of the form (4.9), where P = (0, 2, 1)1 and Q = (0, 7, 1)2. It
can be verified that this inequality does not induce a face of PCONTSP, i.e., there is no
integral point in PCONTSP that satisfies this inequality as an equality; therefore, it is not
facet-defining for PCONTSP.

4.3.3 Branch-and-cut Framework

We implemented three separate branch-and-cut algorithms, one based on each of the
formulations presented in Sections 4.3.1.1, 4.3.1.2 and 4.3.1.3. At the interest of working
with sufficiently tractable linear programming (LP) relaxations, a subset of applicable
constraints are initially ignored and added later as cutting planes, if necessary. More
specifically, in the case of Formulation 1, the initial LP relaxation consisted only of the
degree constraints (4.4) and (4.5), along with continuous bounds on the x variables (relax-
ation of the integrality restrictions (4.3)). In the case of Formulation 2, constraints (4.10)–
(4.12) were considered, along with the degree constraints and variable bounds, while
in the case of Formulation 3, the initial LP relaxation consisted of constraints (4.13) and
(4.14), in addition to the degree constraints and variable bounds.

The SEC, 2MC and IPEC were considered in all cases as cutting planes and dynamically
added back to the applicable model, when found to be violated, at each node of the
search tree. At the root node, if we are unable to generate any additional violated
inequalities, we permanently fix nonbasic x variables to their current values using
reduced cost information. Let UB be the current (incumbent) upper bound (obtained
through a heuristic or otherwise) and let LB be the global (root-node) lower bound
obtained from the applicable LP relaxation. Let c̄ijp be the reduced cost of each nonbasic
variable xijp in the root-node LP solution. Then, if xijp = 0 and LB + c̄ijp > UB, we
can fix this variable to zero. Conversely, if xijp = 1 and LB− c̄ijp > UB, then we can
fix this variable to one. In a similar manner, using a local lower bound, one may set
non-basic x variables to their current values in the sub-tree associated with each node of
the search process. These fixings ensure that the variables are never branched upon in
the corresponding sub-trees. The remainder of this section elaborates on our separation
routines and associated protocols.
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4.3.3.1 Separation of Subtour Elimination Constraints

In our implementation, we utilize both heuristic procedures and an exact scheme to
separate violated SEC. In particular, we first attempt to separate these cuts using the
separation heuristics described in [13, Chapter 6]. The advantage of these routines is
that they often lead to the identification of several violated inequalities, as opposed to
the one most violated inequality, and we have found it beneficial to be adding all such
identified inequalities in a single cutting-plane iteration. When the heuristic routines do
not identify any violations, we employ the exact separation scheme that was introduced
in [208]. This is a polynomial-time routine that is based on a minimum-cut algorithm.
The overall running time of our separation routine is dominated by the maximum-flow
computations in the exact scheme, for which we use the Boost graph library [231].

4.3.3.2 Separation of 2-matching Constraints

In our implementation, we utilize both heuristic procedures and an exact scheme to
separate violated 2MC. More specifically, we first attempt to separate these cuts using
the so-called odd-component, Grötschel-Holland and block heuristic routines described in
Applegate et al. [13, chap. 7]. Note that the latter heuristic also identifies violated general
Comb Inequalities. As before, each of these heuristics may identify several violated
inequalities, and we have found it beneficial to be adding all of them in a single cutting-
plane iteration. If none of the heuristic routines succeeds in generating a violated cut,
we employ the polynomial-time exact routine proposed in [186]. The running time of
this routine is dominated by the constructor of the Gomory-Hu cut-tree and, in our
implementation, we utilize the code in [232] for this purpose. Given its computational
burden, we only employ the exact routine during cutting-plane iterations at the root
node. Alternatively, one may use the polynomial-time exact algorithm proposed in [209]
to separate violated 2MC.

4.3.3.3 Separation of Inconsistent Path Elimination Constraints

Our separation routines to identify violated IPEC is guided by Lemma 4.1. We use
the following polynomial-time enumerative procedure to identify inconsistent pairs of
paths. Given a (fractional) solution x∗, consider the support graph in each time period
p. This support graph has the same node set as Gp and involves those arcs (i, j) ∈ Ap

for which x∗ijp > 0. By considering every node in each period’s support graph as a start
node, elementary paths are grown in a depth-first fashion by moving along the incident
outgoing arcs of strictly positive flow. Each path P = (v1, . . . , vs)

p is extended as long as
the following two conditions hold: (i) the total flow on the path, ∑s−1

i=1 x∗vivi+1 p, is strictly
greater than |P| − 1

2 = (s− 1)− 1
2 , and (ii) vs 6= 0, i.e., the path has not reached the depot.

Because of the first condition, an arc (i, j) ∈ Ap is added to the path only if x∗ijp > 0.5,
while the path-growing procedure stops as soon as all incident outgoing arcs have weight
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strictly less than 0.5. The degree constraint ∑j∈N+
p (i) x∗ijp = 1 ensures that, for each node i,

there is at most one incident outgoing arc with x∗ijp > 0.5. Hence, there is at most one
(unique) path extending out of each node and the path-growing procedure terminates in
polynomial time.

After all such paths have been identified in all time periods, violated inequalities (4.18)
are identified as follows: for each pair of nodes v1, vs ∈

(
Vp ∪ {0}

)
∩
(
Vq ∪ {0}

)
, we

consider all pairs of paths in periods p and q such that each path contains both v1

and vs. If any of the conditions (i)–(iii) in Lemma 4.1 are satisfied for the pair of sub-
paths corresponding to v1 and vs as terminal nodes, then we have identified a violated
inequality.

For every pair of paths that satisfy either condition (ii) or (iii) in Lemma 4.1, we check
whether the corresponding IPEC of the form (4.18) can be lifted to the symmetric inequal-
ity (4.20) (see Section 4.3.2.3). If such a lifting is not possible, we add the corresponding
Tournament Constraint (Eq. 4.19), because any pair of paths which violates inequal-
ity (4.18) also violates (4.19), and we have found it computationally beneficial to enforce
the IPEC via the latter, stronger form. We remark that, if the solution x∗ is integral and
does not contain any subtours, then condition (i) of Lemma 4.1 is sufficient to guarantee
the exactness of the separation procedure.

Our computational experiments indicated that the number of violated IPEC identified
during a given cutting-plane iteration at a node of the branch-and-cut tree may be
very large, especially for Formulation 1. For this reason, we attempt to reduce the
number of constraints added to the constraint matrix in the following two ways: (i) we
remove any dominated inequalities (see Section 4.3.2.3), and (ii) whenever the number of
violated inequalities exceeds 2 |V|, we calculate for each cut (considered here as being of
form 4.19) the ratio between its absolute violation at the current solution and the number
of non-zero coefficients in the cut, namely

s−1
∑

i=1

s
∑

j=i+1
x∗vivj p +

t−1
∑

i=1

t
∑

j=i+1
x∗wiwjq − (s + t− 3)

1
2 s (s− 1) + 1

2 t (t− 1)
,

and we only add to the constraint matrix the 2 |V| cuts with the highest such ratio.

4.3.3.4 Separation Protocol

We attempt to separate violated inequalities at each node of the branch-and-cut tree in
the following sequence: (i) SEC for each time period p ∈ P , (ii) 2MC for each time period
p ∈ P , and (iii) IPEC for each pair of time periods p, q ∈ P : p < q. When we identify
violated members of any of the above families of cuts in a given time period, then no
attempt is made to separate members of other families of cuts that appear further in
the separation sequence and that involve variables from that time period. At any given
node other than the root node, whenever new cuts are added but the objective function
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value did not improve by at least 0.1% in the last 20 cutting-plane iterations, we exit
the separation sequence and resort to branching. At the root node, we have found it
beneficial to keep separating as many cuts as possible before branching, even if the lower
bound does not show significant improvement at that moment. Finally, we remark that,
since all inequalities considered are valid globally (i.e., throughout the branch-and-cut
tree), any violated inequality identified is added as a global cut.

4.4 decomposition algorithm

In this section, we describe a scheme to decompose the ConTSP into single period
traveling salesman problems with arrival-time windows, and a branch-and-bound search
approach that converges to the optimal ConTSP solution. The algorithm uses the follow-
ing result.

Lemma 4.2. Given a feasible ConTSP solution
{

T1, . . . , T|P|
}

, there exists a feasible solution to
the linear system (4.1) that satisfies the following disjunction[

ap
i ≥ β− L

2
∀ p ∈ Pi

]
∨
[

ap
i ≤ β +

L
2
∀ p ∈ Pi

]
∀ β ∈ R, ∀ i ∈ Vc (4.21)

Proof. Let us assume that no feasible solution to the linear system (4.1) satisfies the
above disjunction, i.e., every such solution satisfies aq

i < β− (L/2) and ar
i > β + (L/2)

for some i ∈ Vc, (r, q) ∈ {Pi × Pi : r 6= q} and β ∈ R. As a result, ar
i − aq

i > L
and, since ∆amax

i ≥ ar
i − aq

i (by definition), it follows that ∆amax
i > L. However, this

is a contradiction, since the given ConTSP solution is feasible and, by definition, it
satisfies the requirement that there exists a feasible solution to (4.1) for which the
maximum arrival-time differential is no greater than the maximum allowable value:
∆amax

i ≤ maxi∈Vc ∆amax
i ≤ L.

4.4.1 Outline of the Decomposition Algorithm

The exact algorithm is based on a branch-and-bound search that uses the above disjunc-
tion to create valid branches whenever the candidate solution is infeasible with respect
to arrival-time consistency. As a consequence, each node of the search tree corresponds
to a set of TSPTW instances (one for each period), which can be solved separably so as
to process the node. Note that each node can be characterized by a vector of applicable
time windows (one for each customer), which we denote as T W .

1. Initialize. Let time windows
[
e0

i , `0
i

]
:= [0, D], ∀ i ∈ Vc, and set root node T W0 ←([

e0
1, `0

1

]
, . . . ,

[
e0

n, `0
n
])

, node queue N ←
{
T W0

}
, upper bound zub ← +∞ and

optimal solution T∗ ← ∅.

2. Check convergence. If N = ∅, then stop. T∗ is the optimal solution with cost zub.
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3. Select node. Select a node T W from N using a best-bound strategy, and set N ←
N \ {T W}.

4. Process node. For each p ∈ P :

a) Solve the TSPTW on graph Gp with time windows T W i for each i ∈ Vp.

b) If the TSPTW instance is infeasible, then go to step 2.
Otherwise, let Tp =

〈
vp,0 = 0, vp,1, . . . , vp,|Vp|, 0

〉
be its optimal tour.

Define T :=
{

T1, . . . , T|P|
}

as the resulting ConTSP solution.

5. Fathom by bound. If ∑p∈P c(Tp) ≥ zub, then go to step 2.

6. Check feasibility. Let (d̂, â) be the optimal solution of the following, feasible linear
program:

min
a,d

d (4.22a)

s.t. d ≥ ap
i − aq

i ∀ i ∈ Vp ∩Vq, ∀ (p, q) ∈ P ×P : p 6= q (4.22b)

ap
vp,0 = 0 ∀ p ∈ P (4.22c)

ap
vp,k ≥ ap

vp,k−1 + tvp,k−1vp,k ∀ k ∈ {1, . . . ,
∣∣Vp
∣∣}, ∀ p ∈ P (4.22d)

ap
vp,|Vp| + tvp,|Vp|0 ≤ D ∀ p ∈ P (4.22e)

ap
i ∈ T W i ∀ i ∈ Vp, ∀ p ∈ P (4.22f)

d ∈ R+ (4.22g)

If d̂ ≤ L, then T constitutes a feasible ConTSP solution; set T∗ ← T and zub ←
∑p∈P c(Tp), and go to step 2.

7. Select branching rule. Let i∗ ∈ Vc be the customer for which ∆âmax
i∗ = d̂ (arbitrarily

breaking ties, if necessary), and let a = minp∈Pi∗ âp
i∗ , ā = maxp∈Pi∗ âp

i∗ and β∗ =
(a + ā) /2.

8. Branch. Instantiate two children nodes from the parent node, and tighten the time
window for i∗, as follows:

• T WL ← T W , `L
i∗ = β∗ + L/2

• T WR ← T W , eR
i∗ = β∗ − L/2

Set N ← N ∪ {T WL, T WR}, and go to step 3.

Note that the chosen (i∗, β∗) pair defines a valid branching rule because (i) it is valid as
per Lemma 4.2, and (ii) the solution T obtained in step 4 violates the disjunction (4.21) for
customer i∗. More specifically, since ā− a = ∆âmax

i∗ = d̂ > L, it follows that a < β∗ − L/2
and ā > β∗ + L/2. Also note that the above algorithm converges in finite time because (i)
the union of the feasible regions of the children nodes, T WL and T WR, created in step 8,
is strictly smaller than that of the parent node, T W , (ii) there are only a finite number of
single-period Hamiltonian cycles to consider, and (iii) every TSPTW subproblem can be
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solved in finite time. In practice, of course, the actual number of TSPTW subproblems
that have to be solved is fairly small (see Section 4.4.3).

It is also interesting to point out that the lower bounds at each node, which are obtained
by solving separably in step 4 a set of single-period TSPTW instances (with or without
waiting), can be interpreted as Lagrangean bounds obtained by dualizing the cross-
period arrival-time consistency constraints in an integer programming formulation of
the ConTSP with zero multiplier weights. While it is possible to update these multipliers
and approach the Lagrangean dual bound, our preliminary computational experiments
utilizing the subgradient and cutting plane methods to perform such updates suggested
that this does not pay off. The solution of the subproblems (TSPTW) at each node became
more difficult at the benefit of a relatively minor improvement in the final lower bounds.
Finally, we highlight that, if waiting is not allowed, (d̂, â) in step 6 can be computed in
closed form, instead of solving a linear program, since in this case constraint (4.22d)
becomes an equality.

4.4.2 An Illustrative Example

Consider a ConTSP instance with n = 5, |P| = 2, V1 = {1, 2, 3, 4}, V2 = {2, 3, 5}, D = 16
and L = 2. The arrival-time consistency requirement applies to nodes 2 and 3 only, since
they are the only customer nodes common to both periods 1 and 2. Assume that the
costs and travel times coincide, are symmetric and are as depicted in Figure 4.2. For
simplicity of exposition, assume also that waiting is not allowed. Figure 4.3 presents
the branch-and-bound tree of the algorithm for this example. Each figure represents the
solution at a given node of the branch-and-bound tree, where the sequence of square
boxes in each time period represents the actual tour, their positions along the time
axis represent the arrival-times, while the sum (across the two time periods) of the
arrival times at the final depot (rightmost “0” boxes) represents the objective value of the
corresponding solution. Whenever a node is infeasible, the offending boxes are depicted
in gray color, and the corresponding branching decisions (if applicable) are indicated
along the branching arrows.

Node A constitutes the root node where no time windows are active. Since customer 3

violates the arrival-time consistency requirement, ∆amax
3 = a2

3 − a1
3 = 3 > 2 = L, node A

is branched upon to obtain nodes B and C with time windows ap
3 ∈ [0, 9.5], ∀ p ∈ P , and

ap
3 ∈ [7.5, 16], ∀ p ∈ P , respectively. Node C represents a feasible solution and it provides

the first incumbent upper bound, zub = 29. By a similar reasoning as above, branching
on node B results into nodes D and E, while branching on node E results in nodes F
and G. Nodes D and F are infeasible because they do not respect the route duration
limit D = 16 in period 2, and are thus fathomed (step 4b).10 Node G represents another

10 The infeasible routes depicted in Figure 4.2, nodes D and F, period 2, are provided for reference; they
correspond to routes with minimum total travel time that adhere to the imposed time windows but without
regard to the route duration limit.
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Figure 4.2: Travel times and costs for the illustrative example.

feasible ConTSP solution, which happens to attain an equal objective value as the current
incumbent obtained at node C. Node G is technically fathomed by bound (step 5).

4.4.3 Algorithmic Details: Solving TSPTW Instances

Step 4a of the main algorithm presented in Section 4.4.1 involves the repeated solution
of TSPTW subproblems, which provide us with the lower bounds necessary to drive
the overall branch-and-bound search. In fact, after branching has occurred in step 8

of the algorithm, at most |P| (out of a total of 2 |P|) TSPTW subproblems have to
be solved across the two sibling nodes, while the remaining TSPTW solutions can be
directly transferred from parent subproblems. This is true because the optimal TSPTW
tour in a given time period cannot simultaneously violate both terms of the branching
disjunction (4.21) (although it may still satisfy both terms simultaneously). Therefore,
as far as a given time period is concerned, a TSPTW needs to be solved only at most
once across the two children nodes. In addition, it can be shown that at least one TSPTW
subproblem (or at least two, when waiting is not permitted) will have to be solved
across the two siblings. Recall that the time windows in the TSPTW instances of the
children nodes differ from those of the parent in exactly one component, namely their
i∗ component (and that too only in either their latest or earliest arrival times, but not
both). In particular T WL

i∗ has a tighter (i.e., smaller) latest arrival time, giving rise to
at least one TSPTW instance for which the corresponding parent tour is not feasible,
while T WR

i∗ has a tighter (i.e., larger) earliest arrival time, which (when waiting is not
permitted) gives rise to at least one more TSPTW instance for which the corresponding
parent tour is not feasible.

In order to illustrate the above properties, let us focus on the search tree depicted in
Figure 4.3. We observe that, in this two-period example, exactly 2 TSPTW subproblems
need to be solved per each pair of sibling nodes. More specifically, the optimal tour of
period 1 in node A remains optimal in its child node B even after imposing the time
window a3 ∈ [0, 9.5], while the optimal tour of period 2 in node A remains optimal
in node C even after imposing the time window a3 ∈ [7.5, 16]. Hence, only node B’s
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Figure 4.3: The search tree of our algorithm for the illustrative example.
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period 2 and node C’s period 1 TSPTW subproblems need to be solved at the next tree
level. Similar behavior can be observed after branching upon nodes B and E as well.

Below we review the relevant literature on the exact solution of the TSPTW, and we
discuss the approach we used as part of our implementation. We also discuss a heuristic
procedure for generating valid initial upper bounds, which can be used to warm-start
the TSPTW solution process.

4.4.3.1 Literature Review.

Branch-and-bound schemes to solve variants of the TSPTW have been presented in a
number of papers. Christofides, Mingozzi, and Toth [83] derived lower bounds using a
state-space relaxation approach, wherein the state space associated with a given dynamic
programming (DP) recursion is relaxed, Baker [23] derived lower bounds from the
solution of a time-constrained longest path problem, and Langevin et al. [175] used a
two-commodity flow formulation to obtain lower bounds. The first two papers considered
problems that seek to minimize the total makespan, while the third paper also considered
the traditional objective of minimizing travel cost. In addition, many researchers have
proposed DP-based algorithms for the TSPTW. Dumas et al. [108] developed advanced
pre-processing routines and elimination tests to reduce the number of states and state
transitions within a DP approach. Mingozzi, Bianco, and Ricciardelli [199] and Balas
and Simonetti [26] presented algorithms for the TSPTW with additional precedence
restrictions. Li [187] reported the solution of instances with up to 233 vertices using
a bi-directional and resource-bounded label-correcting algorithm. Baldacci, Mingozzi,
and Roberti [31] presented new state space relaxations for the TSPTW to compute tight
lower bounds and solved all but one instance from existing TSPTW benchmark sets
to optimality. More recently, Tilk and Irnich [252] generalized the ideas of Baldacci,
Mingozzi, and Roberti [31] for the case when the objective is to minimize the makespan
or the total duration time. Furthermore, approaches based on constraint programming
have also been developed for the TSPTW. Pesant et al. [212] used redundant constraints
to improve a constraint-programming model of the TSPTW, while Focacci, Lodi, and
Milano [117] proposed a hybrid approach that merges constraint programming ideas
with more traditional optimization techniques.

Branch-and-cut algorithms for the TSPTW have been developed in [17, 98]. Ascheuer,
Fischetti, and Grötschel [17] considered several MILP formulations for the asymmetric
version of the problem and computationally compared them within a branch-and-cut
approach. They used several families of cutting planes in their scheme, along with
problem-specific local search heuristics and pre-processing routines. Dash et al. [98]
presented a new formulation for the TSPTW based on partitioning the time windows into
sub-windows called buckets. They used several families of cutting planes derived from
their bucket formulation, as well as those developed in [17]. Recently, Kara et al. [165]
presented a new two-commodity flow formulation for the TSPTW with the objective
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of minimizing total duration time and solved their resulting model with a commercial
MILP solver.

All of the previous papers assume that the vehicle can wait as long as needed at any
customer location. For the ConTSP without waiting, our solution scheme involves the
repeated solution of TSPTW instances where waiting at customer locations is not allowed.
Consequently, we cannot directly use these approaches. In particular, extending the
state-of-the-art DP algorithm of Baldacci, Mingozzi, and Roberti [31] is not particularly
straightforward when there are constraints prohibiting waiting, as the latter would
invalidate many of the key dominance rules used by the authors. In our implementation,
we use the branch-and-cut algorithm of Ascheuer, Fischetti, and Grötschel [17] to solve
the TSPTW in step 4 of the main algorithm described in Section 4.4. In the following,
we describe the MILP models and the branch-and-cut approach as well as appropriate
modifications that must be made in order to handle the case of no waiting.

For ease of notation, we shall drop the subscript p and use Vc to denote the set of
customers requiring service in time period p ∈ P , with A being the corresponding arc
set. We shall assume that [ei, `i] is the time window associated with customer i ∈ Vc. For
each node i ∈ Vc ∪ {0}, we let N+

i denote the set of nodes j for which there is an arc
from i to j; that is, N+

i := {j ∈ V : (i, j) ∈ A}. Similarly, let N−i := {j ∈ V : (j, i) ∈ A}.
Finally, given a subset of nodes S ⊆ Vc ∪ {0}, let A (S) be the set of arcs with both end
points in S; that is, A (S) := {(i, j) ∈ S× S : i 6= j}.

4.4.3.2 MILP Model 1.

This model extends the polyhedral formulation for the TSP introduced in [96]. Let
xij ∈ {0, 1} encode whether arc (i, j) is part of the optimal tour. The following MILP
model is then valid for the TSPTW:

min
x ∑

(i,j)∈A
cijxij (4.23a)

s.t. xij ∈ {0, 1} ∀ (i, j) ∈ A (4.23b)

∑
j∈N+

i

xij = ∑
j∈N−i

xji = 1 ∀ i ∈ Vc ∪ {0} (4.23c)

∑
(i,j)∈A(S)

xij ≤ |S| − 1 ∀ S ⊆ Vc ∪ {0} : |S| ∈ {2, · · · , |Vc| − 1} (4.23d)

∑
(i,j)∈P

xij ≤ |P| − 1 ∀ infeasible paths P (4.23e)

Inequalities (4.23e) are Infeasible Path Elimination Constraints and they forbid the occur-
rence of paths whose existence would render the resulting TSPTW solution infeasible. Let
P = (v1, . . . , vs), with s > 1 and all vk nodes unique, denote a path that is formed by the
arcs in the set {(vk, vk+1) : k = 1, . . . , s− 1}, where (vk, vk+1) ∈ A for all k = 1, . . . , s− 1.
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Let us denote the earliest and latest possible arrival times at node vk by epatvk
and lpatvk

.
These quantities can be computed as follows:

epatv1
:= ev1

lpatv1
:= `v1

epatvk
:=

max
{

evk , epatvk−1
+ tvk−1,vk

}
if waiting is allowed

epatvk−1
+ tvk−1,vk if waiting is not allowed

for k = 2, . . . , s

lpatvk
:=

max
{

evk , lpatvk−1
+ tvk−1,vk

}
if waiting is allowed

lpatvk−1
+ tvk−1,vk if waiting is not allowed

for k = 2, . . . , s

Note that, for the case when waiting is not allowed, these quantities depend only on the
time window restrictions of the first node in the path (since the vehicle needs to keep
moving at all times). Sufficient conditions for the infeasibility of a path P can then be
given in the following lemma, which simply checks the arrival time at the path’s last
node.

Lemma 4.3. A path P = (v1, . . . , vs), is infeasible, if any of the following conditions holds:

(i) P violates the latest arrival-time window of its last node, i.e., epatvs
> `vs .

(ii) P violates the earliest arrival-time window of its last node, i.e., lpatvs
< evs .

Note that Lemma 4.3 augments the sufficient condition presented by Ascheuer, Fis-
chetti, and Grötschel [17] to consider the case when waiting time is not allowed. More
specifically, condition (ii) can only yield a violation in this situation.

4.4.3.3 MILP Model 2.

This TSPTW model corresponds to the single-commodity flow formulation that was
presented in [17]. In this formulation, yij encodes the arrival time at node i ∈ V, if arc
(i, j) ∈ A is part of the tour, and 0 otherwise. Note that, if waiting is not allowed, then
Constraint (4.24e) in the following model must be converted to an equality.

min
x,y ∑

(i,j)∈A
cijxij (4.24a)

s.t. xij ∈ {0, 1} , yij ∈ R+ ∀ (i, j) ∈ A (4.24b)

∑
j∈N+

i

xij = ∑
j∈N−i

xji = 1 ∀ i ∈ Vc ∪ {0} (4.24c)

∑
k∈N+

0

y0k = 0 (4.24d)

∑
k∈N+

j

yjk ≥ ∑
i∈N−j

(
yij + tijxij

)
∀ j ∈ Vc (4.24e)
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eixij ≤ yij ≤ `ixij ∀ (i, j) ∈ A (4.24f)

We remark that, since arrival times are explicitly encoded as decision variables, it is
possible to extend this model so as to incorporate costs associated with vehicle idling.
This is relevant in situations where the total costs depend on the amount of time the
vehicle is in use (e.g., when drivers are paid according to their actual working time, or
when driver overtime costs must be accounted).

4.4.3.4 Branch-and-cut Approach.

For the TSPTW subproblems that indeed warrant a new solution to be computed, we
implemented two separate branch-and-cut algorithms, based on each of the formulations
presented above. In the case of Model 1, the initial LP relaxation consisted only of the
degree constraints (4.23c), along with continuous bounds on the x variables (relaxation of
the integrality restrictions (4.23b)), while in the case of Model 2, constraints (4.24c)–(4.24f)
were considered, in addition to the variable bounds. Note that before we call the exact
routine, we modify the instance to obtain an equivalent one by tightening the time
windows [ei, `i] and reducing the arc set A using the pre-processing routines described
in [17, 98]. While doing so, we identify precedence relationships among nodes; these
precedences are used in the above pre-processing phase and also during the separation
and addition of valid inequalities as cutting planes.

We considered the following inequalities as cutting planes [17], which we attempt to
separate in the order they are listed. When we identify violated members of any of the
below families of cuts, then no attempt is made to separate members of other families of
cuts that appear further in the separation sequence.

1. Subtour elimination constraints [96]: We separated these inequalities using the
routines and protocol described in Section 4.3.3.

2. Blossom inequalities [13]: We employ the same exact separation procedures as
described in Section 4.3.3.

3. π−, σ− and (π, σ)− inequalities [25]: We use the heuristic separation procedures
for the weak version of these inequalities described in [25].

4. Infeasible path elimination constraints [16]: We use these inequalities in their
tournament form and separate them using the polynomial time path-growing
scheme described in [17]. In doing so, we use the sufficient conditions described in
Lemma 4.3 to check if a candidate path is infeasible.

4.4.3.5 Protocol.

Computational experiments [17] have indicated that none of the two branch-and-cut
models dominates the other in terms of performance across the whole range of instances
they had considered. In particular, the authors had observed that Model 2 performed
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well on problems when only few time windows were active, whereas Model 1 performed
best otherwise. We were able to confirm this observation on TSPTW instances arising
in the context of our decomposition scheme. To that end, we have decided to employ
both approaches and, in the remainder of this section, we shall describe our protocol in
terms of how we utilized the two TSPTW solvers in the context of step 4a of our main
algorithm.

Since most of the generated TSPTW instances have wide, overlapping time windows,
the branch-and-cut algorithm based on Model 2 was more robust. Furthermore, pretests
suggested that in the vast majority of cases, the algorithm based on Model 1 can either
solve an instance very fast (on the order of a few seconds), or the solution time may easily
exceed many minutes. We therefore decided to allocate a small computational budget for
the branch-and-cut algorithm based on Model 1 in our solution protocol. In particular, we
first attempt to solve the TSPTW instance using the branch-and-cut algorithm based on
Model 1 with a time budget of ρ. If the algorithm terminated successfully, we continue on
to step 4b. Otherwise, we attempt to solve the TSPTW instance using the branch-and-cut
algorithm based on Model 2.

4.4.3.6 Warm-starting.

Providing the branch-and-cut solver with a valid initial upper bound on the cost of the
optimal TSPTW tour can significantly speed up the search, as more parts of the search
tree can be fathomed early in the process. Below we describe the heuristic procedure we
used to generate such upper bounds. The procedure attempts to “repair” the optimal
tour of the parent node and generate a tour that is feasible for the applicable child node
as well.

Consider a parent node T W (already processed) with optimal solution T ={
T1, . . . , T|P|

}
as obtained from step 4 of the main algorithm. Consider also one of

its child nodes T W j, where j ∈ {L, R}, as created after branching (based on customer
i∗) in step 8 of main algorithm. Finally, consider a period p ∈ Pi∗ , such that Tp is not
feasible for T W j. This means that the parent solution for period p cannot be directly
transferred to the child, and hence, warm-starting is sought to aid the search towards a
new solution. The below procedure computes a valid upper bound, ubj

p, on the cost of
the child’s period–p optimal TSPTW tour.

1. Initialize. Set ubj
p ← zub − ∑q∈P :q 6=p c(Tq), where zub is the currently applicable

upper bound on the optimal ConTSP solution.

2. Let k ∈
{

1, · · · ,
∣∣Vp
∣∣} be the position of customer i∗ in tour Tp, and let index set K

be as follows: K = {1, . . . , k− 1}, if j = L, or K = {k + 1, . . . ,
∣∣Vp
∣∣}, if j = R.

a) Node reinsertion heuristic. For each l ∈ K: Remove customer i∗ from position k
in the tour Tp and reinsert it at position l to obtain tour T′. If T′ is feasible for
T W j and c(T′) < ubj

p, set ubj
p ← c(T′).
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b) Forward arc reinsertion heuristic (only if k 6=
∣∣Vp
∣∣). For each l ∈ K \ {

∣∣Vp
∣∣}:

Remove customer i∗ and its immediately following customer from positions k
and k + 1 in the tour Tp and reinsert them at positions l and l + 1, respectively,
to obtain tour T′. If T′ is feasible for T W j and c(T′) < ubj

p, set ubj
p ← c(T′).

c) Backward arc reinsertion heuristic (only if k 6= 1). For each l ∈ K \ {1}: Remove
customer i∗ and its immediately preceding customer from positions k and
k− 1 in the tour Tp and reinsert them at positions l and l − 1, respectively, to
obtain tour T′. If T′ is feasible for T W j and c(T′) < ubj

p, set ubj
p ← c(T′).

Note that solving the (up to |P|) TSPTW subproblems can be conducted in parallel, if
desired. In our implementation, we solved these subproblems serially on a single CPU
thread, starting with the lowest indexed time period. In this setting, one may capitalize
on subproblems that have already been solved so as to obtain improved upper bounds
in step 1 of the above procedure as follows:

ubj
p ← zub − ∑

q∈P :q<p
c(T j

q)− ∑
q∈P :q>p

c(Tq),

where T j
q is the recently computed optimal TSPTW tour in time period q ∈ P of the node

under consideration (T W j).

4.4.4 Algorithmic Details: Branching

It should be noted that the choice of β∗ = (a + ā) /2 in step 7 of the main algorithm
(see Section 4.4.1) is not the only one that defines a valid branching rule. Indeed, any
β∗ ∈ (a + L/2, ā− L/2) will define a valid branching rule. In this regard, we tested a
number of strategies, including the strategy where β∗ is chosen such that the number of
TSPTW instances that have to be solved across the two children nodes is minimized; that
is, the value β∗ that minimizes the function

V (β) = min
I∈{0,1}|Pi∗ |

{
∑

p∈Pi∗
Ip : (β− L/2)

(
1− Ip

)
≤ âp

i∗ ≤ (β + L/2) + D Ip, ∀ p ∈ Pi∗

}
.

Here, Ip indicates whether a TSPTW instance would have to be solved in period p in
either of the two children nodes, while D acts a big-M coefficient. For the instances we
considered, no strategy seemed to consistently outperform the original branching rule,
β∗ = (a + ā) /2; hence, the latter was adopted for our computational experiments.

However, these preliminary investigations led to an interesting finding. Allowing waiting
causes the linear program (4.22), which generates arrival time values â in step 6 of
the algorithm, to often exhibit significant degeneracy. This happens because of route
duration slackness, making it possible to shift forward in time the arrival at some (at least
one) customer locations in all time periods, while still maintaining ConTSP feasibility
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that features the same maximum arrival-time differential d̂. Using this degeneracy to
our advantage, we have found it beneficial to shift the arrival times to their earliest
possible values by minimizing the cumulative waiting time, which can be achieved via
the following two-step procedure. We first solve the linear program (4.22) to obtain the
optimal d̂ value. Assuming d̂ > L (otherwise the value of â is irrelevant), we solve the
auxiliary linear program (4.25) to obtain an equally-optimal, yet more promising solution
â.

min
a,w ∑

p∈P
∑

i∈Vp

wp
i (4.25a)

s.t. d̂ ≥ ap
i − aq

i ∀ i ∈ Vp ∩Vq, ∀ (p, q) ∈ P ×P : p 6= q (4.25b)

ap
vp,0 = 0 ∀ p ∈ P (4.25c)

ap
vp,k = ap

vp,k−1 + tvp,k−1vp,k + wp
vp,k ∀ k ∈ {1, . . . ,

∣∣Vp
∣∣}, ∀ p ∈ P (4.25d)

ap
vp,|Vp| + tvp,|Vp|0 ≤ D ∀ p ∈ P (4.25e)

ap
i ∈ T W i ∀ i ∈ Vp, ∀ p ∈ P (4.25f)

wp
i ∈ R+ ∀ i ∈ Vp, ∀ p ∈ P (4.25g)

4.4.5 Algorithmic Details: Stalling

Computational experiments using a first implementation of our algorithm revealed
that, for many ConTSP instances we considered, the majority of the computational
time was spent in processing those nodes that entailed relatively less tractable TSPTW
subproblems. Our experience showed that, on average, about 80% of the time was spent
in the solution of fewer than 10% of the TSPTW subproblems encountered in the search.
Moreover, the geometric average (across all of the ConTSP benchmarks) of the ratio of
the maximum to median time to solve subproblems was in excess of 700. It can thus be
argued that detecting and bypassing–whenever possible–these time-consuming parts
would significantly reduce the overall running time of our algorithm.

We consider the solution process of a TSPTW instance to have stalled if it has not
terminated successfully within a CPU time of τ, and we recognize that changing the
actual values we imposed as time windows has the potential to significantly change
the CPU time required to solve it. In this context, a different set of values for the time
windows can be obtained by applying the disjunction (4.21) for a different (i, β) pair
than the one originally used for branching the parent node, assuming that another valid
such pair exists. To that end, whenever we encounter stalling, we attempt to create a
new set of TSPTW instances by backtracking to the parent node and considering an
alternative branching decision. In order to implement this, we store the list of alternative
branching decisions, IB, as part of a node’s characteristic data (along with T W) at the
time of node creation (branching step). We also modify steps 4a and 7 of the original
algorithm as follows:
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4a′ If IB 6= ∅, let tlim = τ; else, let tlim = ∞. Solve the TSPTW on graph Gp with time
windows T W i for each i ∈ Vp, specifying a CPU time limit of tlim. If this time limit
is reached, we backtrack as follows: (i) we remove from the search tree the current
node’s sibling or (if already processed) all its descendants still remaining in the tree,
(ii) we reset the time windows of the current node to be the same as its parent’s, (iii)
we select (i∗, β∗) to be the first element of IB, and we set IB ← IB \ {(i∗, β∗)},
(iv) we go to step 8.

7
′ Select branching rule. Set IB ← ∅. For each i ∈ Vc such that ∆âmax

i > L, let
ai = minp∈Pi âp

i , āi = maxp∈Pi âp
i and βi = (ai + āi) /2, and set IB ← IB∪{(i, βi)}.

Sort IB in decreasing order of ∆âmax
i . Select (i∗, β∗) to be the first element of IB,

and set IB ← IB \ {(i∗, β∗)}.
Finally, it should be mentioned that we generally attempt to follow a best-bound node
selection strategy in step 3. However, in order to avoid destroying too many nodes
during the backtracking procedure described above, we also recommend the use of a
locally breadth-first variant; that is, after a node has been processed, the node we select
immediately next is its sibling, if the latter is still in the node queue N , or otherwise
proceed with the best-bound selection.

4.4.6 Algorithmic Details: Initial Upper Bound

Providing a valid initial upper bound zub to the branch-and-bound tree in step 1 of
the main algorithm of Section 4.4.1 can significantly speed up the solution process by
fathoming more nodes of the tree early in the search process, in addition to providing
tight upper bounds for the solution of each TSPTW subproblem (see step 1 of the
procedure in Section 4.4.3.6). To that end, we run a “template”–based construction
heuristic (see, e.g., [140]) at the beginning of the algorithm in an attempt to generate a
good initial incumbent ConTSP solution.

The heuristic is based on deriving TSP tours for each period from a template tour,
Ttemplate = 〈0, v1, . . . , vt, 0〉, where t > 1 and all vk ∈ Vc nodes are unique. We consider
each of the following tours as template tours: (i) the optimal TSP tour on graph G, i.e.,
t = |Vc|, (ii) the optimal TSP tour on graph Gp, i.e., t =

∣∣Vp
∣∣ and vk ∈ Vp, ∀ k ∈ {1, . . . , t},

for each period p ∈ P , and (iii) the optimal TSP tour involving all customers who require
service more than once throughout the planning horizon, namely the set of customers
{i ∈ Vc : |Pi| > 1}. For each of these cases, we also consider the template tour obtained
by reversing the original template: 〈0, vt, . . . , v1, 0〉. In all, we consider a total of 2 |P|+ 4
template tours as part of our construction heuristic. For each such template tour Ttemplate,
we attempt to generate a feasible ConTSP solution via the following greedy procedure
that appropriately modifies Ttemplate so as to obtain tours for each period.

1. Initialize. Let Tp ← Ttemplate, for each p ∈ P , and let cost z← +∞.

2. Generate candidate solution. For each p ∈ P :
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a) Remove from Tp all customers i ∈ Tp such that i /∈ Vp.

b) For each customer i ∈ Vp such that i /∈ Tp, insert i in tour Tp at the position
that induces the smallest increase in the cost of Tp.

3. Check feasibility. If
{

T1, . . . , T|P|
}

is feasible for ConTSP, set z← ∑p∈P c(Tp).

Assuming the above heuristic has generated at least one feasible ConTSP solution (which
is not always guaranteed), we set zub to be the minimum among the costs of all feasible
ConTSP solutions generated, and we adopt the corresponding solution as our initial
incumbent.

4.5 computational results

We implemented our algorithms in C++ using the GCC 5.1.0 compiler with optimization
level -O2. The runs were conducted on a single-core of an Intel Xeon 2.8 GHz processor
with 4 GB RAM. The C Callable Library of CPLEX 12.6 was used to implement all
subordinate branch-and-cut algorithms. In the implementation of these branch-and-cut
algorithms, all CPLEX-generated cuts and heuristics were disabled because we observed
that enabling these features increased computation times; all other options were at their
default values. We also selected ρ = dn̄/30e and τ = ρ + n̄/2 (both in seconds) as the
applicable TSPTW solver time limits (see Sections 4.4.3.5 and 4.4.5 for details). Here, n̄ is
the average number of customers (across time periods) in the ConTSP instance. In all
cases, an overall CPU time limit of 2 hours was imposed.

4.5.1 Test Instances

Since no benchmark data sets are currently available for the ConTSP in the open literature,
we compiled a set of benchmark problems by extending symmetric and asymmetric
TSP instances from the well-known TSPLIB library [221] into 3- and 5-period ConTSP
instances. In particular, we considered all instances that involve up to 100 customers
(i.e., 101 nodes). For each TSPLIB instance, we constructed 3- and 5-period ConTSP
instances in a manner similar to that proposed in [140] for the ConVRP. More specifically,
we considered each of the n customers to have a probability f of requiring service in
each period, where f ∈ {0.5, 0.7, 0.9}. Note that, in general, this results in instances in
which a different number of customers require service in each time period; however,
the average number of customers (across periods) is approximately f n. The distances
acquired from the TSPLIB data11 were interpreted as being both travel costs (cij) and
travel times (tij), while we assumed all service times (si) to be zero. The first node in
each of these data sets was arbitrarily regarded to be the depot. For every resulting

11 As per the TSPLIB standard, all distances were rounded down to the nearest integer. Note, however, that
this assumption is not restrictive and does not invalidate any of the theoretical results presented in this
paper.
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multi-period instance, we selected the maximum allowable arrival-time differential, L, to
be 10%, 15% or 20% of the maximum (across periods) travel time of the corresponding
optimal (single-period) traveling salesman tours.12 The overall process resulted in nine
3-period and nine 5-period instances for each of the original TSPLIB problems, for a
total of 756 ConTSP benchmark instances. These instances are available for download at
http://gounaris.cheme.cmu.edu/datasets/contsp/.

Note that the literature on the ConVRP does not allow the vehicle to wait at customer
locations and do not consider vehicle duration limits. In order for us to also solve the
above instances for the case when waiting is allowed, however, a value for the duration
limit D is necessary for each instance. To that end, we set the vehicle duration limit
D at 1.1 times the maximum (across periods) travel time of the corresponding optimal
(single-period) traveling salesman tours. This value was selected because the tours in the
optimal solutions satisfy this duration limit when waiting is not allowed. In this way, all
instances are guaranteed to be feasible, allowing us to compare waiting and no-waiting
solutions across the whole dataset.

4.5.2 Tightness of Alternative Formulations and Effect of Valid Inequalities

In order to gain some insight about the tightness of the three formulations proposed
in Section 4.3.1, we compare in Table 4.2 the corresponding root-node gaps, averaged
across all instances containing up to 50 customers.13 The reported gap values constitute
an average across all nine 3-period and nine 5-period ConTSP instances constructed from
the TSPLIB data indicated in the first column. Furthermore, we report in each case, four
characteristic root-node gap quantities, as follows: (C0) the gap obtained using the initial
LP relaxation (as described in the preamble of Section 4.3.3), before any cut separation;
(C1) the gap obtained after separation of SEC; (C2) the gap obtained after separation
of SEC and 2MC; (C3) the gap obtained after separation of SEC, 2MC and IPEC. This
analysis helps us appreciate the effect that each of the three families of cuts we consider
in this study has on each formulation’s tightness. Note that, in order to ensure a fair
comparison, we had disabled all CPLEX options pertaining to performing any possible
MIP-based bound strengthening.

We observe that the initial LP bounds (gaps C0) are generally weak, in the order of 10%
to 20%, but these bounds get significantly reduced, down to roughly 1.6%, when violated
SEC are added as cutting planes (gaps C1). The additional separation of 2MC further
reduces the gaps by 0.14%, on average. The gaps C2 are indicative of the strength
of the lower bounds possible after separating over all the structural, TSP-related cuts.

12 We computed the optimal tours of these TSP instances with an in-house exact TSP solver implementation.
We found this to be a rather trivial task, as each single period of a ConTSP instance involved no more than
50 customers.

13 Optimality gaps in this study are defined as ub−lb
ub × 100%, where ub is the global upper bound and lb is

the global lower bound of the branch-and-cut tree. Root-node gaps correspond to optimality gaps after
processing the root of the search tree.
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Finally, the separation of IPEC further improves the bounds, on average, by 0.11% for
Formulation 1 and by 0.01% for Formulations 2 and 3 (gaps C3). Note that the gaps C3

constitute the effective “root-node gaps” of our branch-and-cut framework.

Comparing across formulations, Formulation 1 has the weakest initial LP bound, while
the strongest initial LP bound is featured by Formulation 2. However, Formulation 1 ap-
pears to be more amenable for bound improvement after separation of valid inequalities.
More specifically, after the separation of all three families of cuts considered in this study
(gaps C3), the lower bounds of Formulation 1 become stronger and are higher by 0.10%
and 0.08%, on average, compared to the respective bounds of Formulations 2 and 3. In 81

out of the 414 instances considered, the final root-node gaps (C3) were equal in all three
formulations. In the remaining 333 instances, the root node bound of Formulation 1 was
strongest in 215 instances, while those of Formulations 2 and 3 were strongest in 9 and
93 instances, respectively. Table 4.2 also shows the averages across the symmetric and
asymmetric instances separately. It is interesting to note that Formulation 3 provided
the strongest bound in most of the asymmetric instances, while Formulation 1 gave the
strongest bound in most of the symmetric instances. This can be attributed to the fact
that, while Formulation 3 is inherently asymmetric, Formulation 1 takes into account any
asymmetry only through the IPEC. It remains to be investigated whether the addition
of any cuts specific to the asymmetric TSP polytope (see, e.g., [115]) can significantly
improve our lower bounds.

Table 4.3 presents the time spent and the number of cuts added at the root node during
the runs that resulted in gaps C3; that is, after separation of all three families of cuts
(SEC, 2MC and IPEC). Each reported value is averaged across 18 instances (similarly to
Table 4.2). The average time spent at the root node is lowest in Formulation 1 and highest
in Formulation 3. Thus, Formulation 1 is able to provide a stronger bound in a smaller
amount of time, on average. We further observe that, at the root node, the number of
IPEC added in the cases of Formulations 2 and 3 is negligible. This is probably because
the explicit arrival-time consistency constraints (4.12) and (4.14) in these formulations
prevent the frequent occurrence of (fractional) inconsistent paths for us to separate.

4.5.3 Comparison Between the Algorithms

In this section, we compare the performance of the branch-and-cut and decomposition
algorithms. We only consider the 414 ConTSP instances containing up to 50 customers.
Since the branch-and-cut algorithm does not incorporate waiting times or duration limits,
we first solve the corresponding instances under the same assumptions, and in order to
make a fair comparison, we provide the same initial upper bounds to both algorithms.

In Table 4.4, we compare the decomposition algorithm with the best of the three branch-
and-cut algorithms from the previous section, i.e., the one utilizing Formulation 1. For
each of the two approaches, we report the number of instances (out of 18) for which
optimality was proved as well as the computational time required, averaged across the
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Figure 4.4: Log-scaled performance profiles across 414 ConTSP benchmark instances.

same instances. For those instances which could not be solved within the imposed time
limit, the residual gap (defined as ub−lb

ub × 100%, where ub is the global upper bound and
lb is the global lower bound of the branch-and-bound tree) is reported as an average. The
two algorithms are also compared in the performance profiles [105] of Figure 4.4. There,
we also plot the performance of the branch-and-cut algorithm utilizing the additional two,
polynomial-sized MILP formulations, as well as CPLEX 12.6 in its default settings (using
general-purpose cuts only, and without separation of the valid inequalities described
in Section 4.3.2) to directly address these same formulations. Finally, Table 4.5 presents
a summary comparison of the numerical performance of all existing exact methods;
the columns have the same meaning as above. The decomposition algorithm is able
to prove the optimality of 403/414 instances utilizing an average computation time of
312.9 seconds; of these instances, 95 were unsolved by the best branch-and-cut algorithm.
The decomposition algorithm outperforms all branch-and-cut methods, solving more
problems and achieving the fastest computation time in almost all instances. Evidently,
this algorithm constitutes the new state-of-the-art for solving ConTSP instances to
guaranteed optimality.
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Table 4.4: Computational comparison of new algorithm against the best branch-and-cut algorithm.

Decomposition Branch-and-cut

Proven optimal Residual gap Proven optimal Residual gap

Instance # t (sec) # Gap
(%)

# t (sec) # Gap
(%)

burma14 18 0.2 0 – 18 0.1 0 –

ulysses16 18 0.4 0 – 18 0.1 0 –

br17 18 0.0 0 – 18 0.0 0 –

gr17 18 0.2 0 – 18 1.8 0 –

gr21 18 0.1 0 – 18 0.1 0 –

ulysses22 18 0.1 0 – 18 0.1 0 –

gr24 18 2.0 0 – 18 88.7 0 –

fri26 18 6.1 0 – 18 513.4 0 –

bayg29 18 18.4 0 – 17 416.9 1 1.77

bays29 18 1.7 0 – 18 5.1 0 –

ftv33 16 1,039.8 2 0.37 11 3.3 7 1.69

ftv35 18 391.3 0 – 10 1,267.8 8 1.05

ftv38 17 1,496.9 1 1.41 8 323.9 10 1.61

dantzig42 18 23.8 0 – 16 78.9 2 0.41

swiss42 18 96.7 0 – 16 518.8 2 0.49

p43 18 2.7 0 – 0 – 18 0.05

ftv44 13 1,174.2 5 1.27 6 2,496.7 12 1.81

att48 18 624.3 0 – 13 1,091.4 5 0.74

ftv47 17 1,164.1 1 2.05 6 891.8 12 1.25

gr48 18 234.7 0 – 13 353.5 5 0.39

hk48 18 399.0 0 – 11 743.3 7 0.90

ry48p 18 64.7 0 – 13 866.3 5 0.38

eil51 16 960.5 2 1.81 6 1,324.7 12 1.08

All 403 312.9 11 1.29 308 355.3 106 0.98

4.5.4 Performance of Decomposition Algorithm on Larger Dataset

We now turn our attention to applying the decomposition algorithm on the expanded
benchmark set of 1,512 instances (756 instances with and without waiting). Table 4.6
summarizes its performance. The results are averaged across instances with similar
characteristics. In the order in which they appear, the different rows summarize the com-
putational performance on instances with increasing number of customers n, different
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Table 4.5: Summary of computational performance of all existing methods.

Proven Optimal Residual Gap

Method # t (sec) # Gap (%)

Decomposition 403 312.9 11 1.29

Branch-and-cut (Form. 1) 308 355.3 106 0.98

Branch-and-cut (Form. 2) 291 489.9 123 1.03

Branch-and-cut (Form. 3) 297 577.7 117 1.24

CPLEX 12.6 (Form. 2) 182 845.9 232 6.46

CPLEX 12.6 (Form. 3) 246 664.8 168 5.13

number of periods |P|, various levels of f , various levels of L, as well as on instances
with and without waiting. This table shows that we are able to solve 1,066/1,512 (71%)
instances in an average time of 528.4 seconds. For the remaining instances, the average
optimality gap at the time limit was 3.04%. On average, the instances with higher number
of periods, mean service frequency f = 0.7, lower values of L (higher service quality),
and in which waiting is permitted are harder to solve than their counterparts. The de-
composition algorithm is able to solve about 96% of all instances with n ≤ 40 and about
90% of all instances with n ≤ 60. Interestingly, the average number of branch-and-bound
nodes processed exhibits a peak for instances with a number of customers between
40 and 60. This can be explained by the fact that, for n > 60, it is mostly the “easier”
instances (requiring fewer branch-and-bound nodes) that can be solved within the time
limit.

In the following, we present some data related to specific implementation details of
the algorithm. Table 4.7 reports the number of TSPTW subproblems solved during
the execution of the algorithm, the percentage of subproblems solved with the single-
commodity flow formulation (4.4.3.3) (as opposed to those solved with the polyhedral
formulation (4.4.3.2); see Section 4.4.3.5), the percentage of subproblems that were
feasible, the number of times the node and arc reinsertion heuristics (see Section 4.4.3.6)
succeeded in finding a feasible solution (as a percentage of the number of feasible
subproblems), as well as the average quality of the obtained heuristic solutions, measured
as
(
zh − z∗

)
/z∗ × 100%, where zh is the objective value of the heuristic solution and

z∗ is the objective value of the optimal solution. The table showcases that our TSPTW
heuristics succeed in finding a feasible solution in the majority of cases, and that
these solutions are of fairly high quality (about 2.5% away from the true optimum, on
average). In addition, an increase in instance size leads to more effort being spent in
solving the TSPTW subproblems with the branch-and-cut algorithm based on the single-
commodity flow formulation (4.4.3.3) rather than with the one based on the polyhedral
formulation (4.4.3.2).
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Table 4.6: Average computational performance as a function of benchmark characteristics.

Proven optimal Residual gap No
incumbent

Parameter # # Nodes Time # Gap (%)

n ∈ (0, 20] 180 180 50.0 0.3 0 – 0

n ∈ (20, 40] 288 271 386.5 310.4 16 2.36 1

n ∈ (40, 60] 504 422 494.2 637.8 80 2.67 2

n ∈ (60, 80] 216 54 228.2 1,134.3 157 3.33 5

n ∈ (80, 100] 324 139 203.8 1,070.1 185 3.01 0

3-period 756 590 168.9 475.4 166 2.84 0

5-period 756 476 553.1 594.1 272 3.16 8

f = 0.5 504 364 337.5 455.9 132 4.73 8

f = 0.7 504 310 650.3 621.0 194 2.95 0

f = 0.9 504 392 98.2 522.5 112 1.20 0

Low L 504 330 613.5 607.3 168 3.30 6

Med. L 504 358 251.1 520.3 145 2.92 1

High L 504 378 186.7 467.2 125 2.82 1

No Wait 756 542 121.6 563.5 209 3.29 5

Wait 756 524 566.8 492.1 229 2.81 3

All 1,512 1,066 340.5 528.4 438 3.04 8

Table 4.7: Number of TSPTW subproblems solved and effect of heuristic upper bounding.

n # TSPTWs
solved

% Single-
commodity
flow model

% TSPTWs
feasible

% Heuristics
succeeded

Heuristic
solution

quality (%)

(0, 20] 35.6 0.0 67.8 78.6 1.02

(20, 40] 372.0 21.1 85.5 66.0 3.01

(40, 60] 317.2 33.0 87.4 74.0 2.47

(60, 80] 400.3 56.6 98.3 82.4 2.52

(80, 100] 178.9 70.5 96.9 82.0 2.09

All 276.3 39.5 90.2 75.2 2.54

Table 4.8 reports, as a function of instance size n, the average number of branch-and-
bound nodes that had to be processed as well as the average total number of TSPTW
subproblems encountered during each search. The table also reports the average time it
took to solve TSPTW subproblems that were not encountered in stalled nodes, revealing
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that it only took about 1 second, on average, to solve these “well-behaved” subproblems
to guaranteed optimality. Finally, the table reports some statistics about the nodes that
indeed stalled, namely the percentage of ConTSP benchmarks for which stalling was
encountered at least once during the algorithm, and for these instances, the percentage
of nodes that actually stalled, the percentage of TSPTW subproblems solved within
stalled nodes, and the percentage of total computation time spent inside stalled nodes. It
is evident that with increasing problem size n, the likelihood of stalling increases. On
average, the algorithm spends 70% of the total CPU time in just 23% of the subproblems.
Although this goes beyond the scope of this study, these numbers motivate the need for a
more robust TSPTW implementation. For example, one may utilize TSPTW solvers based
on dynamic programming, which have reported competitive results [31, 252], although
these solvers would be valid only in the case of allowed waiting.

Table 4.8: Number of nodes stalled and time spent inside stalled nodes (averaged across all 1,512

benchmarks).

Not stalled Stalled

n # Nodes TSPTWs Sol.
time

TSPTW

% %
Nodes

%
TSPTWs

% Time

(0, 20] 180 50.0 48.7 0.01 0.0 0.0 0.0 0.0

(20, 40] 288 1,783.0 1,360.2 0.21 22.6 2.8 5.4 59.6

(40, 60] 504 812.9 637.4 1.02 56.3 9.7 19.0 62.4

(60, 80] 216 923.3 700.8 2.55 93.5 24.8 48.5 73.1

(80, 100] 324 233.2 227.2 7.52 94.4 59.0 90.4 73.6

All 1,512 798.4 626.1 1.26 56.7 12.3 23.5 70.1

As discussed in Section 4.4.6, the initial upper bounds we provide our branch-and-bound
search are generated by a simple construction heuristic. In order to assess the potential
benefit from employing a better ConTSP heuristic (e.g., a full-fledged metaheuristic)
to produce these initial upper bounds, we re-run our algorithm by using our best
known solutions as initial incumbents. Table 4.9 summarizes the performance of the
algorithm under this setting and compares with the aggregate results from Table 4.6.
The experiment reveals that a good initial upper bound can provide tangible numerical
benefit. More specifically, with the better initial incumbents, our algorithm was able
to solve an additional 124 instances, which constitute approximately 8% of the full
benchmark dataset and 27% of the instances that had remained open. In addition, the
average optimality gap for the unsolved instances at the time limit was also reduced
down to 1.73%.
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Table 4.9: Effect of providing the best known solution as an initial incumbent.

Source of initial upper bounds
Proven optimal Residual gap

# # Nodes Time # Gap
(%)

Construction heuristic 1,512 1,066 340.5 528.4 438 3.04

Best known solutions 1,512 1,190 308.9 413.8 322 1.73

4.5.5 The Price of Consistency

In this section, we aim to estimate the additional cost that one must incur, on average,
in order to provide consistent service. To that purpose, we report in Table 4.10 the
difference between the optimal ConTSP cost and the sum of the minimum costs of the
corresponding traveling salesman tours in each time period (without consistency), as
a percentage of the latter. This quantity is reported separately for each different level
of service frequency ( f ), length of the planning horizon (h) and maximum allowable
arrival-time differential (L) considered in this study, in order to also investigate the effect
of these parameters on the overall cost increase.

Table 4.10: Cost of providing consistent service.

Low L Med. L High L

f = 50% 1.85 1.32 1.09

f = 70% 2.10 1.64 1.37

f = 90% 0.99 0.75 0.67

h = 3 1.52 1.18 1.03

h = 5 1.77 1.30 1.06

1.65 1.24 1.05

Our study shows that an arguably small cost increase, 1.31%, must be incurred, on
average, in order to provide consistent service. Across all instances we considered, the
required additional cost varies between 0% to 8.25%, with four out of five instances
commanding less than 2% of a cost increase. For low values of the maximum allowable
arrival-time differential, i.e., high levels of service consistency, the additional cost that
must be incurred reaches 1.65%, on average, and this number decreases to 1.05% when
consistency levels are reduced (high L). Moreover, it is interesting to observe that a
relatively higher cost must be incurred when the service frequency is 70%, as opposed to
when it is 50% or 90%, and when the number of time periods is 5, as opposed to when it
is 3. We also remark that the price of consistency is, on average, higher for asymmetric
instances.
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We remark that the selection of the above levels of L, the maximum allowable arrival
time differential, is not arbitrary and in fact, these levels correspond to consistency
requirements which are tight, in some sense. This is because, on average, the maximum
arrival time difference (across all customers) of the multi-period solution consisting of the
optimal traveling salesman tours in each period, is roughly 68% of the maximum vehicle
travel time (across periods).14 Therefore, for the benchmark problems we considered,
arrival time consistency is not enforced using a purely cost-based routing approach
and levels of L = 10%, 15% and 20% are reasonably tight. Moreover, assuming these
optimal traveling salesman tours correspond to an “8-hour shift of driving”, a value
of L = 10% roughly corresponds to a maximum arrival time difference of 48 minutes
(i.e., a guaranteed arrival time within 24 minutes of a nominal time), while L = 20%
corresponds to a maximum arrival time difference of 1 hour 36 minutes (i.e., a guaranteed
arrival time within 48 minutes of a nominal time). We believe these values are reasonable
from a practical point of view.

4.5.6 Cost Savings due to Allowing Waiting

The price of consistency computed in the previous section can be decreased by allowing
the vehicle to wait before providing service. In this section, we aim to estimate the cost
savings that are possible by allowing the vehicle to do so. More specifically, we define
the cost savings, S = 100%× (zNW − zW) /zNW , where zW is the best known cost of the
ConTSP with waiting and zNW is the best known cost of the ConTSP without waiting. We
also define the consistency premium recovery ratio, R = 100%× (zNW − zW) / (zNW − zTSP),
where zTSP is the sum of the minimum costs of the corresponding traveling salesman
tours in each time period. In this context, zTSP reflects the cost that the operator would
anyways have to incur even if there was no requirement for service consistency. The
cost savings and recovery ratio are reported separately for each different level of service
frequency ( f ), length of the planning horizon (|P|) and maximum allowable arrival-time
differential (L) considered in this study, in order to also elucidate the effect of these
parameters on the overall cost savings.

For 51 instances in our dataset, the objective value of the optimal ConTSP solution (with
or without waiting) is equal to the objective value of the optimal, purely cost-based
routing plan without consistency. For 341 out of the remaining 705 instances, the objective
value of the ConTSP is the same with or without waiting, i.e., no cost savings are possible.
For the remaining 364 instances for which the cost recovery is non-zero, about 0.6% of the
cost incurred when not allowing waiting and about 40.1% of the increase with respect to
the purely cost-based routing plan can be recovered, on average, by allowing the vehicle
to wait. Across all instances we considered, the savings varies between 0% and 6.5%,

14 For ConTSP instances with symmetric costs, this number was obtained by minimizing the maximum arrival
time difference across all 2h configurations of solutions with the same cost.
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Table 4.11: Average cost recovery across all 756 ConTSP benchmark instances.

Parameter # # zNW > zTSP # zNW > zW S (%) R (%)

n ∈ (0, 20] 90 63 26 0.5 52.8

n ∈ (20, 40] 144 132 84 0.9 46.6

n ∈ (40, 60] 252 243 150 0.4 33.4

n ∈ (60, 80] 108 107 40 0.5 41.4

n ∈ (80, 100] 162 160 64 0.5 41.4

3-period 378 341 170 0.5 40.5

5-period 378 364 194 0.6 39.7

f = 0.5 252 236 155 0.6 42.5

f = 0.7 252 235 130 0.6 35.7

f = 0.9 252 234 79 0.3 42.5

Low L 252 239 136 0.8 38.2

Med. L 252 235 114 0.4 38.6

High L 252 231 114 0.4 43.9

All 756 705 364 0.6 40.1

while the consistency premium recovery ratio varies between 0% and 100%, with one
out of every four instances enjoying an excess of 0.3% savings and 30% recovery.

4.6 summary

Multi-period routing problems with consistency requirements represent a practically-
relevant class of problems, as distributors can gain significant competitive advantages
by providing consistent service to their customers. Arrival-time consistency, i.e., the
requirement to visit customers at approximately the same time during the routing
horizon, has been identified as one plausible avenue to add such value. In this chapter,
we introduced two exact algorithms for the Consistent Traveling Salesman Problem.
These constitute the first exact approaches in the open literature that address a routing
problem with consistency constraints.

The first algorithm was based on applying branch-and-cut on three mixed-integer linear
programming formulations. The formulation that uses only binary variables and that
relies on cutting planes to enforce all consistency requirements was shown to be the
most attractive from a computational viewpoint. The second algorithm was based on a
decomposition idea. It is superior to the best branch-and-cut algorithm, being able to
solve to guaranteed optimality benchmark instances with up to 100 customers requiring
service over a 5-period horizon. Moreover, it allowed for the possibility of the vehicle
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to idle (wait) at customer locations in addition to considering–whenever applicable–
route duration limits, overcoming restrictive assumptions that were made by previous
approaches.

Our study suggests that a modest routing cost increase of the order of 1-2% would
typically suffice so as to provide consistent service, and that up to 40% of the cost
increase that would be incurred in order to provide consistent service can be recovered
by allowing the vehicle to idle en route. Expected benefits for the distributor, however,
may well make up for this small cost increase. Evidently, consistency of service constitutes
a value proposition that distributors should consider further.
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4.7 appendix : nomenclature

n Number of customers

h Number of time periods

P Set of time periods

G = (V, A) Complete directed graph with node set V and arc set A

cij Routing cost along arc (i, j) ∈ A

tij Travel time along arc (i, j) ∈ A

Vc Set of customers

Pi Subset of time periods in which customer i ∈ Vc requires service

Vp Subset of customers requiring service in period p ∈ P
Ap Subset of arcs covering customers in Vp

Tp Traveling salesman tour on graph Gp = (Vp ∪ {0}, Ap)

c(Tp) Cost of the traveling salesman tour Tp

ap
i Arrival time at customer i ∈ Vp in period p ∈ P

D Route duration limit

L Maximum allowable arrival-time differential

T W i = [ei, `i] Time window associated with customer i ∈ Vc

N+
p (i) Set of nodes j for which there is an arc from i to j in arc set Ap

N−p (i) Set of nodes j for which there is an arc from j to i in arc set Ap

A(S) Subset of arcs with both end points in S ⊆ Vc

δ(S) Subset of arcs with exactly one end point in S ⊆ Vp and the other
in Vp ∪ {0} \ S

xijp Binary variable ∈ {0, 1} indicating if arc (i, j) ∈ A is used in the
tour of period p ∈ P

αip Continuous variable recording the arrival time at customer i ∈ Vp

in period p ∈ P

yijp Continuous variable recording the arrival time at customer i ∈ Vp

in period p ∈ P if xijp = 1, and 0 otherwise

PCONTSP Convex hull of integer feasible solutions of Formulation 1
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5
S T R AT E G I C A L L O C AT I O N O F T I M E W I N D O W S

The previous chapters illustrated the benefits of considering uncertainty in vehicle
routing at the operational and tactical levels. At these time scales, several parameters
remain unchanged over the duration of the planning horizon, as they are exogenously
determined by longer-term decisions, and they can therefore be treated deterministically.
Typical examples include the allocation of customers to depots as well as of service time
windows for each customer on a particular day. This chapter addresses the strategic
decision-making problem of assigning values to such parameters, and treats them as
endogenous to the problem.

We focus our study to the long-term allocation of a weekly service day and daily time
window for each customer. nce such a time window has been allocated, the distributor
must contractually adhere to it on a daily basis. Since the time windows control the struc-
ture of feasible vehicle routes, their strategic allocations end up strongly influencing the
operationally incurred transportation costs. Determining the time windows is therefore
an important albeit non-trivial task, since operational level information (such as travel
times or customer demand) is often not known with certainty at the strategic level when
they are to be allocated.

In this chapter, we show that the strategic problem of allocating service time windows is
more or less equivalent to the tactical problem of enforcing service consistency, which
was the subject of the previous chapter. We leverage this equivalence to develop a
highly flexible yet efficient scenario-based approach to tackle the time window allocation
problem. From a modeling viewpoint, the approach can accommodate scenario-based
models of uncertainty for any routing-specific parameter. From an algorithmic viewpoint,
it can utilize any available (exact or heuristic) vehicle routing solver as a black box. And
from a practical viewpoint, it allows decision-makers to quantify the trade-off between
modeling effort and expected cost savings when considering a larger number of future
scenarios during strategic time window assignment.

This chapter is organized as follows. After the problem is further motivated in Section 5.1,
Section 5.2 reviews existing papers that study related problems. Section 5.3 then provides
a general mathematical model of the problem while Sections 5.4 and 5.5 describe our
solution approach. In Section 5.6, we conduct an extensive computational study on
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existing as well as new datasets, and in Section 5.7, we close with a summary of the
results.

5.1 motivation

The commitment to deliver (or pickup) goods within scheduled time windows is a
common practice in several real world distribution networks. In many industries, these
time windows are mutually agreed upon by the distributor and customer through
long-term delivery contracts. For example, in a distribution network of retailers, it is
common that deliveries to a retail store are always made on the same day of the week (at
about the same time) for an entire year [242, 265]. Likewise, in maritime distribution of
liquefied natural gas, a central planning activity is to design and negotiate contractual
agreements of annual delivery plans that specify delivery dates and corresponding delivery
quantities to customers [277]. From the customer’s point of view, this is crucial for
efficient inventory management and scheduling of personnel to process the delivery.
From the distributor’s point of view, it reduces the variability across repetitive deliveries
and exposes efficiencies that add up to significant cost savings. Short- and medium-term
contracts of similar nature can be also found in small-package shipping where, for
instance, courier companies provide a delivery time window to customers receiving
sensitive packages [157]. Other examples of applications where such operations are
typical include, among others, attended home delivery in e-commerce businesses [4] and
internet installation services [259].

Once a time window has been agreed upon and communicated to the customer, the
distributor must attempt to meet it on an operational (e.g., daily) basis as well as possible.
This is done by solving a Vehicle Routing Problem with Time Windows (VRPTW) to
determine a delivery schedule that adheres to the agreed time windows. The assigned
time windows strongly influence the structure of feasible delivery schedules and, hence,
the daily incurred distribution costs. Therefore, a natural choice is to assign time windows
based on the arrival times at customer locations in the optimal (i.e., minimum cost)
vehicle routing schedule. However, this seemingly optimal decision may become highly
suboptimal in the presence of operational uncertainty.

In reality, operational level information (such as customer demands or travel times) is
often not known with certainty at the strategic level when time windows are to be decided.
For example, the demand volume of a customer typically fluctuates per delivery. Similarly,
travel times vary on a day-to-day basis (e.g., because of unpredictable traffic conditions).
The true values of these operational parameters are not known far in advance, and
often may become known only on the day of delivery before the vehicles are dispatched.
This makes the strategic assignment of time windows a non-trivial task. Indeed, if one
utilizes only nominal values of the uncertainty when assigning time windows, then it
will often lead to situations in which the distribution costs are unacceptably high, since
the nominal delivery schedule may no longer be feasible, let alone optimal, in such
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cases. Fortunately, with the increasing availability of data, distributors can readily obtain
forecasts of uncertain operational parameters (e.g., as perturbations from their nominal
values). It is possible to take advantage of this information and assign time windows in a
way that will lead to low distribution costs in the long run. The goal of this chapter is to
study the problem of strategic time window assignment in the presence of operational
uncertainty.

This chapter builds upon the work of [242], which introduced the Time Window As-
signment Vehicle Routing Problem (TWAVRP). The TWAVRP consists of assigning time
windows of pre-specified width within some exogenous time windows to a set of known
customers. The exogenous time windows typically correspond to operating hours of the
customer but may also arise from hours-of-work or other government regulations. The
work of [242] studies the TWAVRP under situations in which the demand volume of the
customers is unknown and subject to uncertainty. However, a finite set of “scenarios,”
each describing a possible realization of demand for every customer, is assumed to
be given with known probability of occurrence. This information is used to formulate
a two-stage stochastic program, in which the first-stage decisions are to assign time
windows, while the second-stage decisions are to design vehicle routing schedules satis-
fying the assigned time windows, one for each of the demand scenarios. The objective is
to minimize the total routing costs, averaged over the postulated scenarios. A similar
modeling approach is followed in [241], with the only difference that the first-stage time
windows are selected from a finite set of a priori constructed windows; this problem is
referred to as the discrete TWAVRP to distinguish it from the original continuous TWAVRP.
In this work, we consider both cases, and we shall in fact allow also for the generalized
case in which feasible time window assignments lie in a continuous set for some portion
of the customer base and in a discrete set for the remaining portion.

Algorithms to solve the aforementioned stochastic programming models have been
proposed in [94, 242] for the continuous version, and in [241] for the discrete version
of the problem. The algorithms of [241, 242] are based on branch-price-and-cut and
can solve instances with 25 customers and 3 demand scenarios to optimality, while the
algorithm of [94] is based on branch-and-cut and can address instances containing 40

customers and 3 scenarios. Several heuristics have also been proposed in [241] for the
discrete setting that can address instances containing up to 60 customers. Recently, [240]
studied a variant of the TWAVRP with time-dependent travel times and proposed a
branch-price-and-cut algorithm that can solve instances with 25 customers and 3 demand
scenarios.

A problem that is closely related to the strategic TWAVRP is the Consistent Vehicle
Routing Problem (ConVRP) [140], which is motivated in the context of operational
level planning. The ConVRP aims to design minimum cost vehicle routes over a finite,
multi-day horizon to serve a set of customers with known demands. The goal is to design
routes that are consistent over time; this translates to satisfying any of the following
requirements each time service is provided to a customer: (i) arrival-time consistency,
wherein the customer should be visited at roughly the same time during the day, (ii)
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person-oriented consistency, in which the customer should be visited by the same driver,
and whenever applicable, (iii) load consistency, for which a customer should receive
roughly the same quantity of goods. We refer the reader to [172] for an overview of this
problem and its applications.

Conceptually, the assigned time windows in the TWAVRP (which are also referred to as
the endogenous time windows) serve to satisfy the arrival-time consistency requirement
of the ConVRP, which requires that every customer be visited at roughly the same
time whenever service is requested. Formally, the ConVRP requires that the difference
between the earliest and the latest arrival times at each customer location must differ by
no more than some pre-specified constant bound, which is referred to as the maximum
allowable arrival-time differential. This bound is analogous to the pre-specified width of the
endogenous time window in the continuous TWAVRP, and this equivalence between the
two problems has been previously acknowledged in [240, 242].

The equivalence between the TWAVRP and the arrival-time ConVRP has two important
consequences. First, we observe that, in the most general case, the ConVRP allows for the
possibility that not all customers require service in all time periods and that operational
parameters (such as customer demands or travel times) differ from one time period to
the other. Translated in the context of the TWAVRP, this allows us to address applications
in which a fraction of the customer base does not require frequent (e.g., daily) service (by
considering scenarios where certain subsets of customers have no demand), as well as to
treat uncertainty in a wider variety of parameters such as travel and service times (by
considering scenarios in which their values represent perturbations from some nominal
value). We therefore study the TWAVRP under a more general definition than what
has been previously considered in the literature, in which it is possible to incorporate
uncertainty in several operational parameters at once. However, we do remark that, as is
the case with traditional stochastic programming models, the simultaneous treatment of
uncertainty in several parameters may come at the cost of an explosion in the number of
scenarios that have to be considered.

The second consequence of the equivalence between the TWAVRP and the arrival-time
ConVRP is that any algorithm developed for the latter can be used to obtain solutions for
the former. In this work, we adapt the decomposition algorithm proposed in Chapter 4

for the Consistent Traveling Salesman Problem (ConTSP), the single-vehicle variant of
the ConVRP that focuses purely on the aspect of arrival-time consistency, to obtain a
new algorithm for the TWAVRP. Our method can be viewed as a scenario decomposition
algorithm in the language of stochastic programming, and is not based on branch(-price)-
and-cut that has been the de facto approach for solving TWAVRP models. Our algorithm
has the attractive features of modularity and scalability. It is modular in accommodating
(i) continuous and discrete time windows, (ii) any VRPTW solver (exact or heuristic),
(iii) routing-specific constraints (e.g., heterogeneous fleets), and (iv) generic scenario
descriptions. Moreover, it can be readily parallelized which allows postulating a large
number of scenarios of the uncertainty. Together with (ii) above, this means that our
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algorithm is also scalable. The distinct contributions of our work may be summarized as
follows.

5.2 related literature

This section reviews papers in the vehicle routing literature, other than those mentioned
in the introduction, which deal with aspects of (i) endogenously imposed time windows,
(ii) consistent service considerations, and (iii) stochastic or uncertain parameters. We
choose not to review the extensive literature on the VRPTW; instead, we refer interested
readers to [102].

The authors of [157] study a time window assignment problem that is encountered
by courier companies who must quote delivery time windows to customers receiving
sensitive packages. In this problem, which they refer to as the VRP with Self-Imposed
Time Windows, travel times are uncertain but all customers and their demands are known
a priori. Using this information, the service provider must simultaneously determine
(i) a single routing plan to serve all customers, and (ii) time window assignments that
will be quoted to the customers before the vehicles depart from the depot. The objective
is to minimize the sum of (deterministic) routing costs and (expected) overtime and
tardiness penalty costs. Since travel times are uncertain, the key challenge is to determine
the optimal placement of time windows (along each vehicle route) in step (ii) so as to
avoid penalties due to delays. The uncertainty in travel time along each arc is modeled
via a discrete set of “disruption” scenarios (each representing a deviation from some
nominal value). Under the assumption that at most one arc will be disrupted on any
vehicle route, the authors propose a Tabu Search heuristic for route generation and a
linear programming approach for time window placement that inserts “time buffers”
along each vehicle route. Recently, with a goal to solve the same problem, the authors of
[262] extended the work of [157]. On the one hand, they relax the assumption that only
one arc will be disrupted and use probabilistic chance constraints to guarantee reliable
service. On the other hand, they propose an alternative model of uncertainty in which
the stochastic deviations in travel times are modeled as continuous gamma-distributed
random variables. Finally, by considering also the width of the time window (along with
its placement) as a decision variable, they propose an Adaptive Large Neighborhood
Search solution procedure.

A related line of work is the so-called Time Slot Management Problem that is motivated
in the context of attended home delivery in e-commerce businesses [4]. Here, customers
place online orders for products (e.g., groceries) and, during this process, they select one
time window (amongst a number of available ones) in which they want their product to
be delivered. From the service provider’s point of view, the challenge is to design a finite
set of time windows (instead of just one) to offer to potential customers in different zip
code areas. The problem is complicated by the fact that, during the design phase, the
set of customers as well as their demand is not known with certainty. The objective is to
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design time windows that would not only yield low distribution costs in the long run,
but also satisfy marketing or regulatory requirements. In general, existing approaches
(e.g., see [4, 67, 150]) deal with uncertainty by simply using expected values of customer
demand whose temporal distribution is either assumed to be uniform over the offered
time windows or determined via simulations. The expected routing cost associated with
a candidate set of time windows is then estimated via coarse continuous approximation
methods (e.g., see [93, 111]) or detailed vehicle routing models. These estimates are
embedded within some heuristic procedure (e.g., local search) to determine the final
set of time windows. We refer the reader to [3] for an overview of research problems
in the area of attended home delivery, including time slot management. Finally, we
mention the work of [259] who also study a time window assignment problem that is
motivated in the context of home-attended services (e.g., cable installation). Here, as is
the case in attended home delivery, customers dynamically place orders for some service.
However, instead of the customer choosing a time window from a number of available
ones, the service provider must quote a service time window to the customer at the
time of request. Similar to the VRP with Self-Imposed Time Windows, travel and service
times are stochastic and the objective is to minimize expected delays. However, unlike
the latter problem, not all customers who will be serviced are known at the time when a
particular request is received, and thus the customer base is also stochastic. The authors
use approximate dynamic programming techniques to obtain time window assignments
in real time.

We conclude our literature review by mentioning the relationship of the TWAVRP to
Stochastic Vehicle Routing Problems (SVRP). The latter class of problems also treats
parameter uncertainty in the context of vehicle routing. However, unlike the TWAVRP
which is inherently a strategic decision-making problem, the SVRP is an operational
problem. Specifically, in the TWAVRP, the exact values of all parameters are assumed
to be known before the vehicle routes are to be determined on a particular day. In
contrast, in the SVRP, the vehicle routes must be determined before the parameter values
become known, which are only gradually revealed during the execution of the routing
plan. This requires fundamentally different modeling considerations and corresponding
solution approaches. The most common modeling paradigms are (i) recourse models, (ii)
reoptimization models, and (iii) chance-constrained models. In (i), a planned solution
is designed in the first stage and recourse actions based on a predetermined policy
are taken in the second stage when the uncertainties are revealed. For example, the
capacity of a vehicle may get exceeded en route, if demands are stochastic at the time
of vehicle dispatch; in such cases, a recourse policy, such as a detour to the depot to
empty the vehicle, must be explicitly incorporated in the model [107, 123]. In (ii), the
planned solution is dynamically modified as the uncertain parameters (e.g., demands or
travel times) become gradually revealed during the execution of the vehicle routes [226].
Finally, in (iii), probabilistic or chance constraints are used to explicitly control the level
of risk that is acceptable to the decision-maker [179]. We refer interested readers to [125],
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who provide an excellent overview of applications, models and solution algorithms for
the SVRP and its variants.

5.3 problem definition

Let G = (V, A) denote a directed graph with nodes V = {0, 1, . . . , n} and arcs A. Node
0 ∈ V represents the unique depot, and each node i ∈ VC := V \ {0} represents a
customer. The operating hours of the depot are represented by the time window [e0, `0],
where an unlimited number of vehicles, each of capacity Q, are available for service.
Each vehicle incurs a transportation cost cij ∈ R+ and a travel time tij ∈ R+ if it traverses
the arc (i, j) ∈ A. Furthermore, each customer i ∈ VC features a demand qi ∈ R+, service
time ui ∈ R+ and exogenous time window [ei, `i] (e.g., representing operating hours). The
key decisions in the TWAVRP are to decide the endogenous time windows τi ∈ TWi to be
assigned to each customer i ∈ VC. The definition of the feasible time window set TWi
may be either of the following (refer to Figure 5.1):

• In the continuous setting, the assigned time window must have a pre-specified
width wi ∈ R+; that is, TWi = {[yi, yi + wi] : ei ≤ yi ≤ `i − wi}, where we assume,
without loss of generality, that ei ≤ `i − wi.

• In the discrete setting, the assigned time windows must belong to a pre-specified
finite set; that is, TWi =

{
[y

i1
, yi1], . . . , [y

iNi
, yiNi

]
}

, where we can assume, without
loss of generality, that all Ni candidate time windows are pairwise either non-
overlapping or partially overlapping.1 Therefore, the set TWi can be ordered so
that ei = y

i1
≤ . . . ≤ y

iNi
and yi1 ≤ . . . ≤ yiNi

= `i.2

We denote by Vcont ⊆ VC and Vdisc ⊆ VC the subset of customers whose feasible time
window sets are continuous and discrete respectively. We note that Vcont ∩Vdisc = ∅ and
Vcont ∪Vdisc = VC.

In practice, operational parameters such as those related to the transportation network
(costs c, travel times t) or the customers (demands q, service times u) are often not known
with certainty at the strategic level when time windows must be allocated. Let θ denote
the set of all operational parameters, and let P denote the joint probability distribution
of θ. The goal of the TWAVRP is to assign the time windows τi ∈ TWi in a way that
minimizes the expected cost of routing:

minimize
τ

Eθ∼P [VRPTW(τ; θ)]

subject to τi ∈ TWi ∀i ∈ VC.
(5.1)

1 Two completely overlapping time windows [a, b] and [c, d] with a ≤ c ≤ d ≤ b can be replaced with the
larger of the two time windows [a, b].

2 We remark that ei = y
i1

and `i = yiNi
can be achieved by preprocessing. If ei < y

i1
, then ei can be shifted

forward to match y
i1

, and if ei > y
ib

, then y
ib

can be shifted forward to match ei. A similar argument applies
for `i.
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time
ei yi yi + wi `i

wi

time
ei = y

i1
ȳi1 y

i2
ȳi2 y

i3
ȳi3 = `i

Figure 5.1: Illustration of continuous (left) and discrete (right) time window sets TWi. In the
continuous case, the assigned time window can be any sub-interval of [ei, `i] of length
wi, while in the discrete case, the assigned window must be one of the intervals
[y

i1
, yi1], [yi2

, yi2] or [y
i3

, yi3].

In the above stochastic programming formulation, VRPTW(τ; θ) denotes the minimum cost
of the vehicle routing problem with time windows τi, i ∈ VC and operational parameters
θ. A formal mathematical definition of VRPTW(τ; θ) follows.

5.3.1 Mathematical Definition of VRPTW(τ; θ)

In this section, the time windows τ and operational parameters θ are assumed to be
fixed to certain values in their domain and support respectively. As far as the routing
operation is concerned, we shall assume that each customer with non-zero demand
must be visited exactly once by a single vehicle; that is, split deliveries are not allowed.
In this regard, a route set R = (R1, . . . , Rm), where m ≥ 1, represents a partition of the
customer set VC. Here, Rk = (Rk,1, . . . , Rk,nk) represents the kth vehicle route, Rk,l the
lth customer and nk the number of customers visited by vehicle k. The cost of a route
Rk is evaluated as c(Rk) = ∑nk

l=0 cRk,l ,Rk,l+1 , where we define Rk,0 = Rk,nk+1 = 0, and the
cost of R is defined as c(R) = ∑m

k=1 c(Rk). The route set R is feasible, if (i) all capacity
constraints are satisfied, i.e., ∑i∈Rk

qi ≤ Q for all k ∈ {1, . . . , m}, and (ii) all time window
constraints are satisfied, i.e., there exists a vector of arrival times, a ∈ X (R, τ; θ), where
X (R, τ; θ) is the feasible solution set of the following linear system of inequalities:

X (R, τ; θ) =

a ∈ Rn
+

∣∣∣∣∣∣∣∣∣∣

aRk,1 ≥ e0 + t0,Rk,1 ∀k ∈ K := {1, . . . , m}
aRk,l+1 − aRk,l ≥ tRk,l ,Rk,l+1 + uRk,l ∀l ∈ {1, . . . , nk − 1} , ∀k ∈ K

aRk,nk
≤ `0 − tRk,nk

,0 − uRk,nk
∀k ∈ K

ai ∈ τi ∀i ∈ VC


(5.2)

In this definition, aRk,l denotes the arrival time at location Rk,l , i.e., the arrival time at the
lth location on the kth vehicle route. The first three inequalities essentially require that
the arrival time at any location must be at least as large as the sum of the arrival and
service times in the previous location and the time to travel from the previous to the
current location. The last inequality requires the arrival time at customer location i ∈ VC
to be within the time window τi. Observe that, by this definition, if a vehicle arrives
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at customer location i ∈ VC at a time earlier than τi := mint∈τi t, then it is allowed to
wait until τi. However, arriving later than τi := maxt∈τi t is not permitted. We denote by
R(τ; θ) the set of all feasible route sets for the given realization of operational parameters
θ and time window assignment τ. The value of VRPTW(τ; θ) can now be defined as the
optimal value of the following optimization problem:

minimize
R

c (R)

subject to R ∈ R(τ; θ).
(VRPTW(τ; θ))

5.3.2 Deterministic Equivalent of Stochastic Programming Formulation

In practice, the exact joint probability distribution P is either not explicitly available or
is hard to obtain. Indeed, even if it is known exactly, computing the objective function
involves multi-dimensional integration of the function VRPTW(τ; ·), which is practically
impossible considering that the solution of the deterministic problem VRPTW(τ; θ) is itself
challenging and cannot be obtained in closed form. Instead, we assume that we are given
a finite set of S scenarios θ1, . . . , θS along with associated probabilities of occurrence
p1, . . . , pS, where ps > 0, s ∈ S := {1, . . . , S} and ∑s∈S ps = 1. In this situation, we seek
to optimize the following deterministic equivalent of problem (5.1), obtained by replacing
the expectation with a sample average:

minimize
τ

∑
s∈S

psVRPTW(τ; θs)

subject to τi ∈ TWi ∀i ∈ VC.
(5.3)

Following the definition of VRPTW(τ; θ), the above sample average formulation (5.3) can
be equivalently represented as follows:

minimize
τ,R

∑
s∈S

psc (Rs)

subject to τi ∈ TWi ∀i ∈ VC

Rs ∈ R(τ; θs) ∀s ∈ S .

(5.4)

The optimization problem (5.4) shall be our primary focus for the rest of the chapter. We
shall denote by (τ, {Rs}s∈S ) a feasible solution to this problem.

5.4 solution approach

Our solution approach for the TWAVRP is motivated by the observation that, in the
continuous setting (where Vdisc = ∅), problem (5.4) can be reduced to an instance of the
arrival-time ConVRP. Consequently, any algorithm to solve the latter class of problems
can be used to solve problem (5.4). Section 5.4.1 presents an exact branch-and-bound
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algorithm for this purpose; we note, however, that the presented algorithm is more
general-purpose, since it can also address the setting where Vdisc 6= ∅. Section 5.4.2
presents new valid disjunctions that can be used as alternative branching rules in the
algorithm; Section 5.4.3 presents upper bounding procedures (i.e., generating good time
window assignments) in the context of our algorithm; and finally, Section 5.4.4 shows
how the (exact) algorithm can be modified as a heuristic to solve large-scale instances.

5.4.1 Overview of Exact Algorithm

We adapt the decomposition algorithm of Chapter 4 developed for the Consistent
Traveling Salesman Problem (the single-vehicle variant of the ConVRP) to solve the
TWAVRP to optimality. Notably, we extend the algorithm to incorporate also the case
of discrete time windows. This section presents the main ingredients of the algorithm
translated into the TWAVRP context.

The algorithm uses a branch-and-bound tree search to identify the optimal time window
assignments by solving within each node a set of VRPTW instances. The tree is initialized
with the original problem instance enforcing only the exogenous time windows [e, `].
If valid time window assignments τ ∈ TW cannot be constructed using the optimal
solution of the current node, the algorithm creates new nodes by using disjunctions (5.5a)
and (5.5b) as branching rules. The resulting branching rules are valid because, for
every feasible solution (τ, {Rs}s∈S ) in problem (5.4), there exist arrival-time vectors
as ∈ X (Rs, [e, `]; θs) for each s ∈ S that satisfy disjunctions (5.5).

[asi ≤ β + wi/2 ∀s ∈ S ] ∨ [asi ≥ β− wi/2 ∀s ∈ S ] ∀β ∈ R, ∀i ∈ Vcont

(5.5a)

[asi ≤ yib ∀s ∈ S ] ∨
[

asi ≥ y
i,b+1
∀s ∈ S

]
∀b ∈ {1, . . . , Ni − 1}, ∀i ∈ Vdisc.

(5.5b)

Conversely, if there exist route sets Rs ∈ R([e, `]; θs) and arrival-time vectors as ∈
X (Rs, [e, `]; θs) for each s ∈ S satisfying disjunctions (5.5), then there exists a time win-
dow assignment τ ∈ TW such that (τ, {Rs}s∈S ) is feasible in problem (5.4). Specifically,
a feasible time window assignment is

τ?
i =


[yi, yi + wi] , where yi = min

{
`i − wi, min

s∈S
asi

}
if i ∈ Vcont[

y
ibi

, yibi

]
, where bi = arg min

b∈{1,...,Ni}

{
yib : yib ≥ max

s∈S
asi

}
if i ∈ Vdisc

∀i ∈ VC.

(5.6)

For given route sets Rs ∈ R([e, `]; θs), verifying the existence of arrival-time vectors
as ∈ X (Rs, [e, `]; θs), s ∈ S , that satisfy disjunctions (5.5) is equivalent to verifying that
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the optimal objective value δ of the following mixed-integer linear optimization problem
is non-positive.

minimize
δ,a,z,µ,µ

δ

subject to δ ∈ R+, as ∈ X (Rs, τ; θs), s ∈ S
µi, µ

i
∈ R+, zib ∈ {0, 1}, b ∈ {1, . . . , Ni}

Ni

∑
b=1

zib = 1

zib = 1 ⇒ µi ≥ asi − yib ∀(s, b) ∈ S × {1, . . . , Ni}
zib = 1 ⇒ µ

i
≥ y

ib
− asi ∀(s, b) ∈ S × {1, . . . , Ni}


∀i ∈ Vdisc

δ ≥ as1i − as2i − wi ∀(s1, s2) ∈ S × S ∀i ∈ Vcont

δ ≥ ∑
i∈Vdisc

(
µi + µ

i

)
.

(5.7)

In this problem, δ records the minimum possible violation of disjunctions (5.5) across
all feasible arrival-time vectors as ∈ X (Rs, [e, `]; θs), s ∈ S . The second-to-last constraint
ensures that δ is at least as large as the maximum violation across all members of (5.5a),
while the last constraint ensures that δ is at least as large as the sum of violations across
all members of (5.5b). In the latter case, the binary variable zib indicates whether the
bth member of (5.5b) is minimally violated for given i ∈ Vdisc. In other words, if zib = 1,
then

[
y

ib
, yib

]
is the best time window for customer i, and µi = [maxs∈S asi − yib]+ and

µ
i
=
[
y

ib
−mins∈S asi

]
+

respectively record the arrival-time violations with respect to

the start and end of this time window (refer to Figure 5.2). Here, [·]+ = max{·, 0}.

time
ei a1i a2i a3i `i

≤ δ + wi

time
ei a1i y

ib
ȳiba2i a3i `i

µ
i µ̄i

Figure 5.2: Decision variables in problem (5.7) for the continuous (left) and discrete (right) cases.

algorithm . The above observations suggest that we can solve the TWAVRP without
having to explicitly encode its time window assignments. In fact, any TWAVRP instance
decomposes into its individual scenarios if we track, within each node of a branch-
and-bound search tree, a vector of applicable time windows (one for each customer),
which we shall denote by τ. The root node enforces only the exogenous time windows
(see Step 1). Processing a node amounts to solving a set of VRPTW instances (one for
each scenario) with time window constraints enforced by that node (see Step 3). It
is important to remark that these VRPTW instances are uncoupled, and can thus be
solved independently of each other. This is because none of the expressions within each
disjunct in (5.5) (upon which our branching rules are based) link arrival-times from
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different scenarios in the same inequality. The resulting optimal route sets {Rs}s∈S are
then used as inputs to the separation problem (5.7) (see Step 5). If the optimal objective
value satisfies δ ≤ 0, then a new, improved time window assignment τ? is recorded, as
per (5.6). Otherwise, the algorithm creates two new nodes with tightened time windows
for customer i? ∈ VC (see Step 6). The overall algorithm is as follows.

1. Initialize. Set root node τ0 ← ([e1, `1] , . . . , [en, `n]), node queue N ←
{

τ0}, upper
bound UB← +∞ and optimal time window assignment τ? ← ∅.

2. Check convergence. If N = ∅, then stop: τ? is the optimal time window assignment
with (expected) cost UB. Otherwise, select a node τ from N , and set N ← N \ {τ}.

3. Process node. For each s ∈ S , solve VRPTW(τ; θs); and let Rs denote an optimal
solution.

4. Fathom by bound. If ∑s∈S psc(Rs) ≥ UB, then go to Step 2.

5. Check feasibility. Let (δ, a, z, µ, µ) be an optimal solution of problem (5.7). If δ ≤ 0,
then a new, improved time window assignment is found: set τ? as per (5.6), set
UB← ∑s∈S psc(Rs) and go to Step 2.

6. Branch. Instantiate two children nodes, τL and τR, from the parent node: τL ← τ,
τR ← τ. If δ > ∑i∈Vdisc

(µi + µ
i
), then do Step 6a; otherwise, do Step 6b:

a) Branch as per (5.5a). Let i? ∈ Vcont be any customer for which δ =

maxs∈S asi? −mins∈S asi? − wi? , and let β? = (maxs∈S asi? + mins∈S asi?) /2.
Tighten the time window for i? as follows: (i) τL

i? ←
[
mint∈τL

i?
t, β? + 1

2 wi?
]
, (ii)

τR
i? ←

[
β? − 1

2 wi? , maxt∈τR
i?

t
]
.

b) Branch as per (5.5b). Let i? ∈ Vdisc be any member of arg maxi∈Vdisc
{µi + µ

i
}.

If µi? ≥ µ
i?

, let b? = ∑Ni
b=1 b1[zib=1]; else, let b? = ∑Ni

b=1(b − 1)1[zib=1].

Tighten the time window for i? as follows: (i) τL
i? ←

[
mint∈τL

i?
t, yi?b?

]
, (ii)

τR
i? ←

[
y

i? b?+1
, maxt∈τR

i?
t
]
.

Set N ← N ∪ {τL, τR}, and go to Step 2.

We remark that any node selection strategy can be used in Step 2 to guarantee conver-
gence.

An illustration on a small example is now presented to aid understanding and give
intuition about the algorithm. Consider the TWAVRP instance shown in Figure 5.3. This
example features n = 4 customers, with Vcont = {1, 2, 3} and Vdisc = {4}. Only customer
demands are uncertain and they are represented using S = 2 scenarios.

The search tree of our algorithm to solve the illustrative example of Figure 5.3 is shown
in Figure 5.4. Each “rectangle” denotes a node of our search tree. Within each rectangle,
for each scenario s ∈ {1, 2}, the optimal route set Rs is shown. The x-coordinate of each
customer i ∈ VC denotes its arrival-time asi, which is computed by solving the separation
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[0, 15] [0, 30] [0, 10] [0, 20]

[0, 7] , [14, 22] (n, S, Q) = (4, 2, 3)

ps qs1 qs2 qs3 qs4

s = 1 1/2 1 3 1 1

s = 2 1/2 3 1 1 1

w1 = w2 = w3 = 3

Figure 5.3: Instance parameters for the illustrative example. The arc weights denote both travel
times and costs, and they are such that the triangle inequality is satisfied. Note that
the graph is assumed to be complete, with nodes 0–3 lying along a straight line and
costs/times to travel along this line being cumulative (not all arcs are shown for
convenience). All service times are zero. The depicted intervals denote exogenous
time windows for nodes 1–3 and feasible ones for node 4.

problem (5.7) to optimality (note that there may be multiple optimal solutions in each
case). Finally, on top of each rectangle, the time windows τ enforced by our algorithm
and the objective value of the corresponding optimal route sets (equal to ∑s∈S psc(Rs))
are shown. In the root node, the separation problem (5.7) certifies (in Step 5) that no
valid time window assignment can be constructed from its optimal solution. In particular,
if we focus on customer 3 ∈ Vcont, then a13 = 14 and a23 = 5. These arrival times
clearly do not fall within a time window of width w3 = 3. Therefore, as per Step 6a,
β? = (14 + 5)/2 = 9.5. The time window of customer 3 in the left child is tightened to
[e3, β? + w3/2] = [0, 11], while in the right child to [β? − w3/2, `3] = [8, 15]. Similarly, if
we focus on customer 4 ∈ Vdisc in this right child node, then a14 = 9 and a24 = 22. These
arrival times also do not simultaneously satisfy either of the two candidate windows,
[0, 7] or [14, 22]. Therefore, a branch is made, as per Step 6b, tightening the time window
of customer 4 in the left child to [0, 7] and in the right one to [14, 22].

We remark that, in a given node of our search tree (except the root node), one does
not need to solve a VRPTW subproblem for every scenario as required by Step 3 of
the algorithm, and the optimal VRPTW route sets for some of the scenarios can be
directly transferred from the parent subproblems. In fact, after branching has occurred
in Step 6 of the algorithm, at most S (out of a total of 2S) VRPTW subproblems have to
be solved across the two children nodes. This is because, by construction, any arrival
time vectors corresponding to the optimal solution, Rs, of a given scenario s cannot
simultaneously violate both disjuncts of the applied branching disjunction (either (5.5a)
or (5.5b)), although it may satisfy both disjuncts simultaneously. Therefore, as far as a
given scenario s is concerned, a VRPTW subproblem needs to be solved only at most
once across the two children nodes. To illustrate this, see Figure 5.4. After branching
has occurred in the root node, R1 in the right child node is exactly the same as that in
the parent, since it already satisfies the applied branching constraint [a3 ≥ 8]. For the
same reason, R2 in the left child node is exactly the same as that in the parent. Once the
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a3 ≤ 11 a3 ≥ 8

a4 ≤ 7 a4 ≥ 14

Figure 5.4: The search tree of our algorithm for the illustrative example of Figure 5.3.

branching rule has been established, whether a scenario-specific set of routes remains
feasible (and hence, optimal) for the VRPTW instance of a child node can be inferred
trivially by inspection, and hence, the corresponding instance need not be solved, as
the routes can be copied over. For the VRPTW instances that indeed warrant a new
route set to be computed, Section 5.5 describes methods for solving the corresponding
subproblems.
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5.4.2 Path-based Disjunctions

The algorithm described in the previous section converges in finite time (the argument is
similar to that in Chapter 4). However, the branching Step 6 may not necessarily “cut
off” the optimal VRPTW route set {Rs}s∈S found in the parent node. Indeed, it is only
guaranteed to cut off the arrival time vector {as}s∈S corresponding to {Rs}s∈S . More
specifically, the optimal route set of the (right) child node τR may be exactly the same
as that of its parent node τ. This is because the only difference between τR and its
parent τ is that the former features a tighter earliest start time for customer i? ∈ VC. It is
possible for the optimal route set of τ to be unchanged, if the tighter earliest start time
constraint can be satisfied by simply allowing the vehicle to wait longer at i?. To see this,
consider again the example of Figure 5.3. If the exogenous time window of customer 2
is increased by one unit to [0, 21], then the optimal route set R2 in the root node of the
algorithm (see Figure 5.4) will be exactly the same as that in its right child node since
the vehicle visiting customer 3 will simply wait longer until it satisfies the branching
constraint, a3 ≥ 8. Along with the fact that R1 is also the same (refer to the discussion
in the previous section), this means that the optimal VRPTW route set {Rs}s∈S in the
root node has not changed in its right child node. The impact of this is non-improving
lower bounds: the objective value of the node τR will be exactly the same as that of its
parent, leading to slow convergence and poor numerical performance. This observation
motivates us to investigate branching rules which are guaranteed to cut off the parent
route set.

Our motivation for the new class of disjunctions comes from the path precedence inequalities
proposed in [94] for the continuous TWAVRP and the inconsistent path elimination con-
straints proposed in Chapter 4 for the ConTSP. Consider a feasible solution (τ, {Rs}s∈S )
to problem (5.4). Suppose that there is a vehicle route in the solution Rs1 of scenario
s1 ∈ S in which customer i ∈ VC is visited before customer j ∈ VC \ {i}, and that there is
a vehicle route in the solution Rs2 of scenario s2 ∈ S \ {s1} in which j is visited before
i. Since both i and j are visited within their respective time windows τi and τj in both
scenarios, it must be the case that the sum of the travel times from i to j in scenario s1

and from j to i in scenario s2 is at most the sum of the widths of their time windows,
wi + wj, as shown in Figure 5.5. Consequently, if this condition is not satisfied by a route
set {Rs}s∈S for all possible pairs (i, j), then there cannot exist a feasible time window
assignment τ ∈ TW such that (τ, {Rs}s∈S ) is feasible in problem (5.4).

To construct valid disjunctions based on the above observation, we first introduce some
notation. Let π = (v1, . . . , vp) denote a directed v1− vp path in graph G that is formed by
the arcs in the set {(vi, vi+1) : i = 1, . . . , p− 1}, where (vi, vi+1) ∈ A for all i = 1, . . . , p− 1.
We shall only consider paths which are open and simple, i.e., p > 1 and vi 6= vj for i 6= j.
For a given realization of the travel and service times, the travel time along π is defined
to be t(π) = ∑

p−1
i=1

(
tvivi+1 + uvi

)
, where we define u0 = 0. Note that as per this definition,

the travel time along a path does not include any waiting time that might potentially be
incurred at its nodes. Finally, a route set R = (R1, . . . , Rm), where Rk = (Rk,1, . . . , Rk,nk)
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time
as2 j as1i as2i as1 j

width = wi

width = wj

(as2i − as2 j)

(as1 j − as1i)

j i

i jscenario s1

scenario s2

Figure 5.5: Motivation for the path-based disjunctions. The above shown sub-paths must satisfy
(as2i − as2 j) + (as1 j − as1i) ≤ wi + wj, if they are to be part of a feasible solution.

for k = 1, . . . , m, is said to contain π, if π appears as a sub-path in any of its routes, i.e.,
if for some k, we have Rk = (Rk,1, . . . , Rk,l = v1, Rk,l+1 = v2, . . . , Rk,l+p−1 = vp, . . . , Rk,nk).
The key result of this section is that every feasible solution (τ, {Rs}s∈S ) to problem (5.4)
satisfies the following disjunctions:[

Rs does not contain any i− j

path with travel time ≥ d1
∀s ∈ S

]
∨
[

Rs does not contain any j− i

path with travel time ≥ d2
∀s ∈ S

]
∀(d1, d2) ∈ R2 : d1 + d2 > wi + wj, ∀(i, j) ∈ VC ×VC : i 6= j,

(5.8)

where wk for any k ∈ Vdisc is defined to be wk = maxb∈{1,...,Nk}{ykb − y
kb
}. However, the

converse is not true. To see this, consider the following counter-example.

• (n, S, Q) = (4, 2, 3). Vcont = VC and wi = 1 for all i ∈ VC.

• [e, `] = ([0, 6], [0, 6], [3, 4], [4, 5]). Also, [e0, `0] = [0, 10].

• G = (V, A) is complete. cij = tij = 1 for all (i, j) ∈ A and ui = 0 for all i ∈ VC.

• Demand is uncertain. (qs1, qs2, qs3, qs4) = (1, 1, 1, 3) for s = 1 and (1, 1, 3, 1) for
s = 2.

Consider the route sets {Rs}s=1,2 shown in Figure 5.6. The x-coordinates correspond
to arrival times. This solution satisfies all path-based disjunctions (5.8). However, it is
not a feasible TWAVRP solution since there are no valid time window assignments
τ ∈ TW for customers 1 and 2. In contrast, observe that this solution does indeed violate
the (necessary and sufficient) time window-based disjunctions (5.5a) corresponding to
(i, β) = (1, 4) as well as (i, β) = (2, 4).

The above observations suggest that we can use the path-based disjunctions (5.8) as the
basis of a branching rule in addition to the time window-based disjunctions (5.5). The
corresponding branching constraints, i.e., constraints within each individual disjunct
of (5.8), are equivalent to path elimination constraints (e.g., see [17]). Consequently, the
subproblems to be solved in Step 3 of the algorithm are VRPTW instances with additional
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Figure 5.6: Counter-example to show that the disjunctions (5.8) are not sufficient for the TWAVRP.

path elimination constraints. To describe these subproblems formally, if F is a finite
collection of triples (i, j, d) ∈ VC ×VC ×R, such that i 6= j, then we let each member of
F represent a family of forbidden paths. Specifically, the member (i, j, d) ∈ F represents
the set of all i− j paths with travel time greater than or equal to d. Given a collection F
of representative forbidden paths, time windows τ and operational parameters θ, we
define VRPTWFP(τ,F ; θ) to be the optimal value of the following optimization problem:

minimize
R

c (R)

subject to R ∈ R(τ; θ)

R does not contain any i-j path π with t(π) ≥ d ∀(i, j, d) ∈ F .

(VRPTWFP(τ,F ; θ))

Note that VRPTWFP(τ, ∅; θ) = VRPTW(τ; θ) so our definition is consistent with the one in
Section 5.3.1.

Before we can incorporate the path-based disjunctions (5.8) as branching rules in our
algorithm, we also need a separation algorithm, which will take as input route sets
{Rs}s∈S , and return either a violated member of (5.8) or a certificate that all of its
members are satisfied. We compute the following quantities, where we assume (i, j) ∈
VC ×VC, such that i 6= j, is a given pair of customers.

• Sij: scenarios containing an i − j path; that is, Sij = {s ∈ S : Rs contains an i −
j path}.

• ds
ij: travel time of i− j path in Rs, where s ∈ Sij.

• νij: no. of violating scenario pairs; that is, νij =
∣∣∣{(s1, s2) ∈ Sij × Sji : ds1

ij + ds2
ji >

wi + wj

}∣∣∣.
• ∆ij: minimum value of sum of path travel times (across violating scenario pairs);

that is, ∆ij = inf(s1,s2)∈Sij×Sji

{
ds1

ij + ds2
ji : ds1

ij + ds2
ji > wi + wj

}
.

We are now in a position to incorporate the path-based-disjunctions (5.8) in our algorithm.
To do so, we store the set of forbidden paths F as part of a node’s characteristic data
(along with τ) at the time of node creation (initialization and branching steps), and we
use this set as input to the VRPTW subproblem at the time of node processing. We
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update F in the branching step based on a ranked list L of pairs (i, j) for which the
corresponding path-based disjunctions (5.8) can be used as branching rules. In all, the
following modifications are made to the main algorithm.

1
′ Initialize. Set root node τ0 ← ([e1, `1] , . . . , [en, `n]), F 0 ← ∅, node queue N ←{

(τ0,F 0)
}

, upper bound UB← +∞ and optimal time window assignment τ? ←
∅.

3
′ Process node. For each s ∈ S , solve VRPTWFP(τ,F ; θs); and let Rs denote its optimal

solution.

6
′ Branch. Instantiate two children nodes from (τ,F ): (τL,FL)← (τ,F ), (τR,FR)←
(τ,F ). Set L ← ∅. For each pair (i, j) ∈ VC × VC, such that i 6= j and νij ≥ 1, set
L ← L∪ {(i, j)}.
If L 6= ∅, do Step 6

′c; else if δ > ∑i∈Vdisc
(µ+

i + µ−i ), do Step 6a; else, do Step 6b:

(c) Sort L in decreasing order of ν (breaking ties in increasing order of ∆). Let

(i, j) be the first element of L and let (s1, s2) = arg min(s,s′)∈Sij×Sji

{
ds

ij + ds′
ji :

ds
ij + ds′

ji > wi + wj

}
. Set d?1 and d?2 as follows: if ds1

ij ≤ ds2
ji , set d?1 ← ds1

ij ,

d?2 ← wi + wj − d?1 + ε; otherwise, set d?2 ← ds2
ji , d?1 ← wi + wj − d?2 + ε; here, ε

is a small positive number. Set i? ← i, j? ← j. Add path elimination constraints:
(i) FL ← FL ∪ {(i?, j?, d?1)}, (ii) FR ← FR ∪ {(j?, i?, d?2)}.

Set N ← N ∪
{(

τL,FL) ,
(
τR,FR)}, and go to Step 2.

The modified algorithm gives preference to the branching Step 6
′c over Steps 6a and 6b,

because unlike the latter, the former would necessarily cut off the VRPTW route set of
the parent node in at least one scenario (in both children nodes). However, as discussed
earlier, the path-based disjunctions (5.8) (upon which branching rule 6

′c is based) are only
necessary but not sufficient. This is in contrast to the time window-based disjunctions (5.5)
(upon which the branching rules 6a and 6b are based), which are both necessary and
sufficient.

Figure 5.7 shows the effect that the new branching rules have on the branch-and-bound
search tree for the case of our illustrative example from Figure 5.3. Note how, in the root
node, instead of branching via the time window-based disjunctions (5.5), the modified
branching Step 6

′ certifies that it is impossible to have both 3− 4 and 4− 3 paths in
different scenario route sets, and branches using the disjunction (5.8) instead. Observe
that the search tree is much smaller than in the case of Figure 5.4. Our numerical
experiments confirm that this is generally true, i.e., that incorporating the path-based
disjunctions (5.8) results in fewer nodes being explored (see Section 5.6.3).
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Figure 5.7: The search tree of our algorithm (utilizing path-based disjunctions) for the illustrative
example of Figure 5.3.

5.4.3 Generating Upper Bounds

A small value of the global upper bound UB can significantly speed up the solution
process by fathoming more nodes of the search tree using the fathoming Step 4. The
algorithm presented in Section 5.4.1 updates UB in Step 5 only. However, it is possible to
update UB more frequently by generating candidate (feasible) TWAVRP solutions using
the route sets {Rs}s∈S obtained in the node processing Step 3. The basic idea is to select
some scenario and use its solution as a “template” [140], assigning the time windows
based on the arrival times in this template solution. Specifically, for every scenario s? ∈ S
in which a new route set Rs? is computed in Step 3 of the algorithm, we can attempt to
generate a feasible TWAVRP solution (τh, {Rh

s}s∈S ) using the following procedure.

1. Initialize arrival times. Let R← Rs? and θ ← θs? . Let a ∈ X (R, [e, `]; θ) be the vector
of arrival times with minimum cumulative waiting time. That is, we recursively
define aRk,0 = e0 and aRk,l+1 = max{eRk,l+1 , aRk,l + tRk,l ,Rk,l+1} for all l ∈ {1, . . . , nk − 1}
and k ∈ {1, . . . , m}. For i ∈ VC such that qi = 0 (that is, i 6= Rk,l for any k, l), we
define ai = ei.

181



5.5 exact solution of vrptw subproblems

2. Assign time windows. Let τh be defined as follows.

τh
i =


[xi, xi + wi] , where xi =


ei if ai − wi/2 ≤ ei

`i − wi if ai + wi/2 ≥ `i

ai − wi/2 otherwise

if i ∈ Vcont

[
xi,bi , yi,bi

]
, where bi ∈ arg min

b∈{1,...,Ni}

{
min

ω∈[xi,b,yi,b]
|ai −ω|

}
if i ∈ Vdisc

∀i ∈ VC.

3. Compute upper bound. For each s ∈ S , let Rh
s be a (possibly suboptimal) solution of

VRPTW(τh; θs). Let ubh ← ∑s∈S psc(Rh
s ). If ubh ≤ UB, set UB← ubh and τ? ← τh.

We remark that it is not necessary to solve the VRPTW instances to optimality in
Step 3 above, since the generated upper bounds ubh are guaranteed to still be valid.
Consequently, we can utilize any (possibly heuristic) VRPTW solver to quickly compute
candidate upper bounds. For example, the computational results reported in Section 5.6
were obtained by implementing Solomon’s sequential insertion construction heuristic
“I1” [238] in combination with a local search procedure [65], which used the Relocate,
2-opt, 2-opt? and Or-opt moves within a deterministic Variable Neighborhood Descent
algorithm (e.g., see [64]).

5.4.4 Modification as a Heuristic Algorithm

The exact algorithm of Section 5.4.1 can be readily modified as a heuristic algorithm.
Indeed, if one uses a heuristic VRPTW solver (e.g., one based on a metaheuristic) in
place of an exact one in the node processing Step 3, then the time window assignment τ?

determined by the algorithm is still guaranteed to be feasible, although not necessarily
optimal. Overall TWAVRP optimality can no longer be guaranteed, since the fathoming
Step 4 may incorrectly prune a node whose descendant contains the optimal time window
assignment. Nevertheless, this modification as a heuristic is particularly suited from
a practical viewpoint, as it allows one to utilize any available VRPTW heuristic solver
“out of the box.”

5.5 exact solution of vrptw subproblems

Various exact solution schemes have been proposed for the VRPTW over the last several
decades. These include algorithms based on branch-and-cut, Lagrangean relaxation and
column generation, among others. We refer the reader to [102] for a recent survey. The
most successful of these are branch-price-and-cut algorithms, which correspond to branch-
and-bound algorithms in which the bounds are obtained by solving linear relaxations of
a set partitioning model by column generation, and are further strengthened by generating
cutting planes.
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In order to solve VRPTW instances in Steps 3 and 3
′ of the main algorithm, we imple-

mented the branch-price-and-cut algorithm described in [210], as well as procedures to
warm start the latter exact method in the context of our algorithm. Our implementation
incorporates several elements of the algorithm described in [210], including ng-routes,
bidirectional labeling, variable fixing, route enumeration, and limited-memory subset
row cuts. In what follows, we highlight only the most important of these ingredients; for
details, we refer the reader to [210].

5.5.1 Branch-Price-and-Cut Implementation

For ease of notation, we shall drop the subscript s referencing a scenario and assume that
all operational parameters θ are fixed to certain given values. We shall also assume that
the time windows have been fixed at τ and that the set of forbidden paths is given to be
F . Note that we only describe the solution approach for VRPTWFP(τ,F ; θ); the approach
for VRPTW(τ; θ) is obtained by simply setting F = ∅. We remark that, before we call
the exact solution method, we modify the VRPTW instance to obtain an equivalent one
by tightening the time windows τ and reducing the arc set A using the preprocessing
routines described in [17, 164]. In addition to this, it is possible to further reduce the arc
set A using members of F . Indeed, if for some (i, j, d) ∈ F , the shortest travel time from
i to j in graph G exceeds d, then we can remove the arc (i, j) from A.

In the following, Pij denotes the set of all i− j paths in graph G (after preprocessing),
where (i, j) ∈ VC × VC, such that i 6= j. We use Ω to denote the set of all (elementary)
vehicle routes that are feasible with respect to capacity and time window constraints. For
a given route r ∈ Ω, λir denotes the number of times customer i ∈ VC is visited in route
r, ηijr denotes the number of times arc (i, j) ∈ A is traversed by route r, while cr denotes
its cost, i.e., cr ≡ c(r). The set partitioning model is described in the following. In this
model, xr is a binary path-flow variable that encodes whether route r ∈ Ω is part of the
optimal route set.

minimize
x ∑

r∈Ω
crxr

subject to xr ∈ {0, 1}, ∀r ∈ Ω,

∑
r∈Ω

λirxr = 1, ∀i ∈ VC,

∑
r∈Ω

∑
(i′,j′)∈π

ηi′ j′rxr ≤ |π| − 1, ∀π ∈ Pij : t(π) ≥ d, ∀(i, j, d) ∈ F .

(5.9)

In the above, the last set of inequalities are infeasible path elimination constraints (e.g.,
see [17, 164]) that forbid the occurrence of i− j paths with travel time greater than or
equal to d. In our implementation, we replace the subscript of the innermost summation
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with (i′, j′) ∈ tr.cl.(π), where tr.cl.(π) denotes the transitive closure of π.3 This so-called
tournament form of the inequality is stronger than the version presented above, see [17]
for a proof. Furthermore, it is also well known that one can relax the feasible space of the
above set partitioning model by including non-elementary vehicle routes in Ω without
sacrificing optimality. In our implementation, we replace Ω with the set of so-called
ng-routes Ωng ⊇ Ω, which are not necessarily elementary [30].

We now describe the branch-price-and-cut algorithm to solve the set partitioning model
over Ωng. The root node, which solves the linear relaxation of this set partitioning model,
is initialized with a subset of Ωng (single-customer vehicle routes) but no infeasible path
elimination constraints. A pricing subproblem is used to generate other members of Ωng

(also referred to as columns), as necessary. After column generation has converged, if
the gap between the current node lower bound and global upper bound is sufficiently
small (≤ 1% in our implementation), we employ route enumeration to generate all feasible
vehicle routes with reduced costs smaller than this gap [28]. [28] have shown that this
subset must contain the routes of all optimal solutions. Therefore, we can solve the
resulting “reduced” set partitioning model by using a standard integer programming
solver. We remark that this is done only if the number of generated routes is less than
a threshold, which we set to 3× 106, as suggested in [210]. On the other hand, if the
current node gap is large or if route enumeration generated too many routes, then we
attempt to separate the infeasible path elimination constraints (as well as other valid
inequalities) in order to tighten the linear relaxation. The above process is iterated until
we cannot generate any more columns or inequalities. At this stage, if the current node
solution is fractional, we create additional children nodes by branching on the number
of used vehicles or by branching on edges/arcs.

pricing subproblem . The pricing subproblem is a shortest path problem with resource
constraints, with customer demands and arc travel times considered as resources con-
strained by the vehicle capacity and time windows, respectively. We utilize the dynamic
programming algorithm described in [210] to solve this problem. In order to speed up the
solution of the pricing subproblem, we apply various techniques including bidirectional
labeling and variable fixing (based on reduced costs). In addition, we implemented the
bucket pruning heuristic (e.g., see [119]) to find candidate columns and use the dynamic
programming algorithm only if the former fails to generate columns.

route enumeration. We use the dynamic programming algorithm of [210] with a
modification to account for the presence of the infeasible path elimination constraints. In
particular, we consider two different “partial routes” that visit the same set of customers
(but possibly in different sequences) to be undominated irrespectively of their resource
consumptions, and we do not perform any associated dominance checks. This prevents

3 If π = (v1, . . . , vp) denotes an elementary path, then its transitive closure is the set of arcs (vk, vl) such that vl
can be reached from vk using only arcs in π, i.e, tr.cl.(π) = {(vk, vl) ∈ A : (k, l) ∈ {1, . . . , p}×{1, . . . , p}, k <
l}.
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incorrectly “pruning” a vehicle route that satisfies the infeasible path elimination con-
straints in favor of one that does not. Among all enumerated routes, we only consider
those which are elementary and satisfy all infeasible path elimination constraints (which
can be done in O(|F |) time per route) to include in the final “reduced” set partitioning
model.

cutting planes . We use the tournament form of the infeasible path elimination con-
straints as “necessary cuts” (a violating member is guaranteed to be separated), and the
extended capacity cuts [213] and limited-node-memory subset row cuts [210] as “strengthening
cuts” (a violating member may not necessarily be separated). The separation algorithms
for these cuts are described next.

• The infeasible path elimination constraints are separated by utilizing the
polynomial-time path-growing scheme of [17]. Specifically, suppose Gx̄ = (V, Ax̄)

is the so-called support graph of the current linear programming solution x̄,
where Ax̄ =

{
(i′, j′) ∈ A : ∑r∈Ωng ηi′ j′r x̄r > 0

}
. Then, for every (i, j, d) ∈ F , the

scheme of [17] is used to obtain the set of all i − j paths π in Gx̄, which satisfy
∑r∈Ωng ∑(i′,j′)∈tr.cl.(π) ηi′ j′r x̄r > |π| − 1. Amongst all such paths, we choose the ones
for which the travel time t(π) is greater than d and add the corresponding tour-
nament form of the infeasible path elimination constraints to the current linear
relaxation.

• The extended capacity cuts are separated by first using the CVRPSEP package [193]
to separate the so-called rounded capacity inequalities and then lifting these, as
described in [213].

• The limited-node-memory subset row cuts are separated by first identifying all
subset row cuts violated by node sets with cardinality up to 5 and then identifying
their so-called “node memory sets,” as described in [210].

We remark that, since the infeasible path elimination inequalities are defined over arcs,
they are “robust” and affect the pricing subproblem only through a corresponding term
in the arc cost, i.e., their dual value. In other words, the addition of these inequalities
does not affect the complexity of the pricing subproblem. In contrast, the extended
capacity and limited-node-memory subset row cuts are “non-robust” as their addition
increases the complexity of the pricing subproblem [210].

5.5.2 Warm Starting

Initializing the branch-price-and-cut algorithm described in the previous section with a
feasible set of columns can speed up the convergence of its column generation process,
leading to small computation times. In addition to this, providing a valid initial upper
bound on the optimal objective value can also significantly speed up the search, both in
the context of route enumeration, where it can result in fewer routes being enumerated,
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as well as branch-and-bound, where more parts of the search tree can be fathomed
early in the process. In this section, we describe warm starting procedures that can be
employed in the context of our algorithm of Section 5.4.

Consider a parent node (τ,F ) (already processed) with optimal solution {Rs}s∈S as
obtained in Step 3. Also, consider one of its child nodes (τh,F h), where h ∈ {L, R},
created in the branching Step 6

′. Finally, consider a scenario s ∈ S such that the
corresponding optimal route set in the parent node, Rs, is not feasible for the child
node (τh,F h). This means that Rs cannot be directly transferred to the latter, and warm
starting is sought to aid the search towards the optimal one.

generating an initial set of columns . Let Ωng
s be the set of columns that

were generated during the branch-price-and-cut process in scenario s of the parent node
(τ,F ). Since the child node (τh,F h) differs from its parent in exactly one constraint,
it is likely that several members of Ωng

s are also feasible in the set partitioning model
of the child’s scenario−s VRPTW subproblem. Therefore, we can simply loop through
the members of Ωng

s and filter out all infeasible columns to generate the initial linear
relaxation in the branch-price-and-cut algorithm.

generating an initial upper bound. The following procedure computes a
valid upper bound, ubh

s , on the cost of the child’s scenario−s VRPTW subproblem. The
procedure attempts to “repair” the scenario−s optimal route set of the parent node and
generate one that is feasible for the child.

1. Set ubh
s ← UB−∑s′∈S\{s} c(Rs′), where UB is the currently applicable upper bound

from the algorithm of Section 5.4; and set R′ ← Rs.

2. Let H ⊆ VC be defined as follows: if (τh,F h) was created using branching Steps 6a
or 6b, then H = {i?}; otherwise H = {i?, j?}.

3. For each i ∈ H:

a) Remove customer i from its current position in R′ and insert it into a new
vehicle route.

b) Apply local search on R′, ensuring that each accepted move satisfies all time
window and path elimination constraints in (τh,F h).

c) If c(R′) < ubh
s , set ubh

s ← c(R′).

In our implementation of local search, we considered the Relocate, 2-opt, 2-opt? and Or-opt
moves within a deterministic Variable Neighborhood Descent algorithm (e.g., see [64]).
We remark that the solution of (up to S) VRPTW instances in Step 3 of the algorithm
can be easily parallelized. Alternatively, one can do this serially on a single CPU thread
(e.g., by starting with the lowest indexed scenario). In the former setting, no information
can be exchanged among the VRPTW instances. In the latter setting, however, one can
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capitalize on instances that have already been solved so as to obtain improved upper
bounds in Step 1 of the above procedure as follows:

ubh
s ← UB− ∑

s′∈S :s′<s
c(Rh

s′)− ∑
s′∈S :s′>s

c(Rs′),

where Rh
s′ is the just computed optimal solution in scenario s′ of the node under consid-

eration.

5.6 computational results

This section presents computational results obtained by our algorithm on benchmark
instances from the literature. Specifically, in Section 5.6.1, we present the characteristics of
the test instances; in Section 5.6.2, we present a summary of the numerical performance
of our algorithm and compare it to existing solution methods; in Section 5.6.3, we present
detailed tables of results outlining the performance of each component of our algorithm;
and, finally in Section 5.6.4, we present results of a parallel implementation on instances
containing a large number of scenarios.

The algorithm was coded in C++ and the runs were conducted on an Intel Xeon E5-2687W
3.1 GHz processor with 4 GB of available RAM. The nodes in Step 2 of the algorithm
were selected using a simple depth-first rule that backtracked whenever the gap between
the objective value of the current node and the current upper bound exceeded 50%
of the gap between the global lower and current upper bound. All subordinate linear
and mixed-integer linear programs were solved using default settings of the IBM ILOG
CPLEX Optimizer 12.7. Finally, except for the results presented in Section 5.6.4, all runs
were restricted to a single CPU thread. This facilitates a fair comparison with existing
algorithms from the literature in Section 5.6.2 and between different configurations of
our algorithm in Section 5.6.3. The results presented in Section 5.6.4 were obtained
with OpenMP by using up to min{S, 10} threads in parallel, where S is the number of
scenarios. In all cases, an overall “wall clock” time limit of one hour per instance was
imposed.

5.6.1 Benchmark Instances

Existing benchmark instances for the TWAVRP focus solely on demand uncertainty. For
the continuous setting, the authors of [242] introduced 40 randomly generated instances.
The number of customers (n) in these instances varies from 10 to 25. Subsequently, [94]
proposed 50 additional instances with n varying from 30 to 50. Each of the 90 available
instances consists of 3 demand scenarios (low, medium, high), each with equal probability
of occurrence. The average demand (for each customer) across the three scenarios is about
1/6 of the vehicle capacity Q. The exogenous time windows are designed to be much
wider than the endogenous time windows; in particular, the average (across customers)
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exogenous time window width (`i− ei) is 10.8, compared to an endogenous time window
width (wi) of just 2.0. For the discrete setting, the authors of [241] introduced 80 randomly
generated instances with n varying from 10 to 60. Except for the structure of the feasible
time window set, the instances share similar characteristics as in the continuous setting,
each consisting of 3 demand scenarios. In each instance, the number of candidate time
windows (Ni) is equal to 3 for about 10% of the customers, 5 for about 60% of the
customers, and 7 for the remaining 30%. Similarly to the continuous setting, the customer
locations are generated using a uniform distribution over a square with the depot located
in the center. Moreover, the time windows and vehicle capacities are chosen such that no
more than eight customers can be visited on a single vehicle route in any scenario. All of
the aforementioned test instances are inspired from the Dutch retail sector, and can be
found online at http://people.few.eur.nl/spliet.

To test our algorithm on instances containing a large number of scenarios, we generated
80 additional benchmark instances. Specifically, for each existing (continuous and dis-
crete) TWAVRP instance with n ≤ 25, we used a similar procedure as described in [241]
to generate 15 additional demand scenarios. For a particular instance, we first generate a
nominal demand q̄i for each customer i ∈ VC using a normal distribution with mean 5.0
and variance 1.5. To generate additional scenarios, we draw additive disturbances εsi from
a uniform distribution on [−1.5, 1.5] for each i ∈ VC and s ∈ S , and multiplicative factors
fs from a uniform distribution on [0.625, 1.375] for each s ∈ S . The demand of customer
i in scenario s is then computed as qsi =

⌈
max

{
fs (q̄i + εsi) , 10−6}⌉. The multiplicative

factors fs determine the level of correlation among the customer demands. For instance,
high (low) values of fs may represent the behavior that demands increase (decrease)
uniformly for all retailers in a supply chain, whereas values close to one represent the
nominal situation in which the demands are uncorrelated. The additional benchmark
instances can be downloaded from http://gounaris.cheme.cmu.edu/datasets/twavrp.

5.6.2 Comparison with Existing Methods

We first compare the performance of our algorithm with the results published in [94]
for the case of the continuous TWAVRP. We do not compare with the algorithm of [242],
since the authors of [94] have demonstrated that their algorithm is superior to the
former. Table 5.1 summarizes the comparison of the numerical performance across
all 90 instances that are available for the continuous TWAVRP. The column # denotes
the number of test instances that contain n customers. For each algorithm, Optimal
denotes the number of test instances that it could solve to optimality in one hour while
Time (sec) denotes the average time in seconds to solve these instances to optimality.
For those instances which could not be solved to optimality in one hour, the column
Gap (%) reports the average optimality gap, defined as (UB− LB)/UB× 100%, where
LB and UB are respectively the global lower and upper bounds determined by the
algorithm after one hour. The two methods are also compared in the performance
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profiles [105] of Figure 5.8a. Our proposed algorithm is able to solve all but one (89 out
of 90) benchmark instances to optimality, utilizing an average computation time of 169

seconds; of these, 32 instances were unsolved by the best previous method, while the
one unsolved instance was determined to be within 0.8% of optimality. These results
demonstrate that our algorithm strongly outperforms the existing method, solving more
problems and achieving (or matching) the fastest computation time in all instances.

Table 5.1: Computational comparison of the proposed algorithm against the existing state-of-the-
art algorithm (DS18) [94] on all 90 benchmark instances of the continuous TWAVRP.

DS18 Proposed algorithm

n # Optimal Time (sec) Gap (%) Optimal Time (sec) Gap (%)

10 10 10 0.1 – 10 0.1 –

15 10 10 4.6 – 10 0.6 –

20 10 10 2.2 – 10 1.5 –

25 10 10 12.4 – 10 8.6 –

30 10 9 204.5 1.66 10 48.2 –

35 10 6 152.8 0.89 9 51.5 0.79

40 10 2 1860.0 1.16 10 342.3 –

45 10 0 – 2.74 10 361.3 –

50 10 0 – 4.26 10 696.0 –

All 90 57 117.0 2.56 89 169.1 0.79

Processor Intel i7 3.5 GHz Xeon E5-2687W 3.1GHz

We now turn our attention to the discrete TWAVRP. Table 5.2 compares the numerical
performance of our algorithm with the results published in [241] across all 80 instances
of the discrete TWAVRP. The columns in this table have the same meaning as in Table 5.1.
The two algorithms are also compared in the performance profiles of Figure 5.8b. Our
algorithm is able to solve 54 out of 80 benchmark instance to optimality, utilizing an
average computation time of 274 seconds; of these, 22 instances were unsolved by the
best previous method, while the remaining unsolved instances were determined to
be within 1.2% of optimality, on average. As in the continuous setting, our algorithm
strongly outperforms the existing method: it solves more instances and achieves the
fastest computation time in all of them.

5.6.3 Detailed Discussion of Results

A comparison of Tables 5.1 and 5.2 shows that the discrete TWAVRP instances take
longer to solve than the continuous ones. This can be partly explained by the fact that,
in the continuous setting, the separation problem (5.7) is a linear program, while in the
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Table 5.2: Computational comparison of the proposed algorithm against the existing state-of-the-
art algorithm (SD15) [241] on all 80 benchmark instances of the discrete TWAVRP.

SD15 Proposed algorithm

n # Optimal Time (sec) Gap (%) Optimal Time (sec) Gap (%)

10 10 10 3.9 – 10 0.1 –

15 10 10 185.9 – 10 15.2 –

20 10 9 1247.6 0.06 10 33.8 –

25 10 3 504.4 n/a†
9 248.8 0.43

30 10 0 – n/a†
9 581.7 0.13

40 10 0 – n/a†
5 1263.5 1.22

50 10 0 – n/a†
1 533.6 1.31

60 10 0 – n/a†
0 – 1.30

All 80 32 457.5 n/a†
54 274.4 1.21

Processor Intel Core i5-2450M 2.5 GHz Xeon E5-2687W 3.1GHz

Note. The reported results for “SD15” are the best entries of Tables 3 and 4 from that publica-
tion [241].
† The optimality gaps for the unsolved instances have not been reported in the publication.
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Figure 5.8: Log-scaled performance profiles across all benchmark instances. The left graph com-
pares the performance in the continuous setting, in which “DS18” shows the perfor-
mance of the algorithm of [94], while the right graph compares the performance in the
discrete setting, in which “SD15” shows the performance of the algorithm of [241]. In
both graphs, “This work” shows the performance of our proposed algorithm. For each
curve (i.e., algorithm), the value at t = 0 gives the fraction of benchmark instances for
which it is fastest, while the limiting value at t → ∞ gives the fraction of instances
which it could solve within the time limit of one hour.
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discrete setting, it is a mixed-integer linear program. Consequently, the algorithm spends
a greater fraction of the total time in solving the separation problem in the latter case
(see Table 5.3).

Table 5.3: Percentage of computing time spent in various parts of the algorithm (averaged across
instances solved to optimality in one hour). “Solving VRPTW” and “Separation prob-
lem” refer to Steps 3

′ and 5 of the algorithm from Section 5.4.2 respectively, while
“Upper bounding” refers to the steps in Section 5.4.3.

Continuous Discrete

n Solving
VRPTW

Separation
problem

Upper
bounding

Solving
VRPTW

Separation
problem

Upper
bounding

25 84.6 0.0 15.0 81.0 15.4 3.3

30 86.8 0.1 12.9 75.7 21.4 2.7

40 89.2 0.2 10.4 90.6 8.2 1.2

50 93.1 0.0 6.8 95.7 1.6 2.8

≥ 25 89.0 0.1 10.8 81.6 15.6 2.6

To show the efficacy of the path-based disjunctions and the associated branching rules
(see Section 5.4.2), we disable them and run only the basic version of the algorithm from
Section 5.4.1. Table 5.4 compares the performance of this basic version with the one
incorporating the path-based disjunctions. They are also compared in the performance
profiles of Figure 5.9. The results indicate that the path-based branching rules are
important to improve the tractability of the overall algorithm. In particular, they are
essential in reducing the total number of nodes that are explored in the overall search
tree. We remark, however, that this reduction comes at a price: it requires modifying the
underlying VRPTW solver (see Section 5.5.1). Nevertheless, even without the path-based
branching rules, the basic version of our algorithm outperforms the existing ones (see
Figure 5.9), while having the advantage of being able to utilize any VRPTW solver in a
modular fashion.

Tables 5.5 and 5.6 present detailed results on all benchmark instances of the continuous
and discrete TWAVRP, respectively. In these tables, if an instance could be solved to
optimality within one hour, then Opt [UB] reports the corresponding optimal objective
value, while Time (sec) [LB] reports the time to solve the instance to optimality. Oth-
erwise, the columns respectively report in brackets the best upper and lower bounds
found within the time limit of one hour.

Finally, it is worth noting that the average number of nodes processed and the average
computation time elapsed until the optimal solution was found were about 91% and 93%
of their respective totals, while both median percentages were 100%. These observations
indicate that the algorithm most often terminated as soon as the optimal solution was
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Table 5.4: Computational comparison of the algorithm with and without the path-based disjunc-
tions on all 170 benchmark instances of the continuous and discrete TWAVRP.

Without path-based disjunctions With path-based disjunctions

n # Optimal Nodes Time
(sec)

Gap
(%)

Optimal Nodes Time
(sec)

Gap
(%)

[10, 15] 40 40 5,887 91.5 – 40 26 4.0 –

[20, 25] 40 36 933 147.7 0.17 39 158 68.7 0.43

[30, 35] 30 22 949 327.6 0.16 28 132 220.7 0.46

[40, 45] 30 19 469 210.7 0.66 25 139 534.1 1.22

[50, 60] 30 8 557 1,061.0 1.12 11 105 681.2 1.30

All 170 125 2,427 229.4 0.75 143 108 208.9 1.19
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Figure 5.9: Log-scaled performance profiles across all benchmark instances. The profile “This
work (no path)” refers to our proposed algorithm without the path-based disjunctions
(see Section 5.4.2). The other profiles as well as the axes have the same meaning as in
Figure 5.8.

detected and the upper bound updated, alluding to the fact that our algorithm generates
strong lower bounds in Steps 3 and 3

′.

5.6.4 Instances containing a Large Number of Scenarios

We now turn our attention to benchmark instances containing a large number of scenarios.
Our goals are two-fold. First, we aim to understand how our algorithm performs as
the number of considered scenarios (S) increases. Second, we aim to understand the
cost benefits of considering more scenarios during strategic time window assignment.
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5.6 computational results

In pursuit of these goals, we consider the 80 benchmark instances consisting of 15

demand scenarios each (see Section 5.6.1). For each of these instances, we obtain time
window assignments using our algorithm by considering the following sample average
approximations: (i) the original instance with all 15 scenarios, and (ii) the original
instance with only the first S scenarios, where S ∈ {1, 3, 5, 10}. For each approximation,
we implement a parallel version of our algorithm in which Step 3

′ and the upper
bounding step in Section 5.4.3 are each parallelized using up to min{S, 10} threads.

For S = 1 and S = 3, all 80 instances were solved to optimality, while 73 out of 80

instances were solved to optimality for S = 5 (the average gap for the 7 unsolved
instances being less than 0.2%). Therefore, at the interest of brevity, we shall not show
tabulated results for these cases. On the other hand, for the cases with the higher
number of scenarios, namely S = 10 and S = 15, Table 5.7 presents a summary of the
performance. The columns in this table have the same interpretation as in Tables 5.1
and 5.2; the only difference is that the column Time (sec) is now broken into two parts:
Wall denotes the average wall clock time, while CPU denotes the average CPU time. The
ratio between these quantities is a good measure of how well the algorithm scales across
multiple threads (i.e., how much it benefits from parallelism), which is also plotted as a
function of S in Figure 5.10.

Table 5.7: Summary of computational performance of the parallelized algorithm on 80 benchmark
instances of the (continuous and discrete) TWAVRP, each containing S scenarios.

S = 10 S = 15

Time (sec) Time (sec)

n # Optimal Wall CPU Gap % Optimal Wall CPU Gap %

10 20 20 0.7 3.8 – 20 1.1 7.0 –

15 20 18 127.7 474.6 0.21 18 441.7 1,639.2 0.64

20 20 16 266.4 779.8 0.46 11 426.2 1,403.3 0.33

25 20 5 465.3 841.6 0.60 2 2,189.9 3,777.1 0.70

All 80 59 150.9 428.9 0.53 51 334.2 1,032.1 0.58

Table 5.7 shows that we can consistently solve all benchmark instances with 15 scenarios
to an optimality gap of less than 1% within a time limit of one hour. Figure 5.10 shows that
the speedup in wall clock time is sublinear with respect to the number of parallel threads.
The reasons for deviating from a perfect linear speedup are two-fold. First, each node
of our search tree does not necessarily require the solution of S VRPTW instances (see
concluding paragraph of Section 5.4.1). Indeed, for the considered benchmark instances,
the average number of VRPTW instances solved in a typical node is smaller than S/2.
Second, the variance in solution times across the VRPTW instances solved in a node is
typically large because the feasible route sets in a particular scenario might be drastically
different compared to other scenarios in the same node (because of different demand
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5.6 computational results

Figure 5.10: The ratio of CPU time to wall clock time with increasing number of scenarios (for
instances whose solution took at least one wall clock second and at most one wall
clock hour). For each S, the lower and upper most dashes denote the minimum and
maximum values of the ratio, the lower and upper edges of the box denote the first
and third quartile, while the middle bar (in red color) denotes the median ratio.
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realizations). Consequently, the different CPU threads are not necessarily balanced, i.e.,
do not perform equal amount of work. Nevertheless, as Figure 5.10 shows, on average,
our algorithm performs four times as many computations for instances containing 15

scenarios by utilizing up to ten threads as compared to using just one.

Finally, Table 5.8 shows the cost savings in routing that are to be expected by considering
more than just one scenario during time window assignment. We calculate these savings
as follows. First, for a particular instance (with a given S), we obtain the optimal time
window assignment τ? from our algorithm. Next, we calculate the “in-sample” expected
costs by (i) fixing the time windows to τ?, (ii) solving a VRPTW instance with time
windows fixed to τ? for each of the 15 postulated demand scenarios in the original
benchmark instance, and (iii) averaging the costs. The “out-of-sample” expected costs
are obtained in exactly the same manner except that in step (ii), the costs are evaluated
over 100 independently generated demand scenarios, which are randomly drawn using
the procedure described in Section 5.6.1. Table 5.8 shows that, on average, we expect
to do better than the deterministic solution by about 2.3% when considering up to 3
scenarios and by about 3.2% when considering up to 15 scenarios (based on out-of-
sample evaluations). If we consider only the discrete instances, the out-of-sample savings
increase to about 3.0% for S = 3 and 3.7% for S = 15. In either case, we observe that
the marginal benefits diminish as the number of scenarios grows. Although we expect
this trend to generally hold, we also expect the actual magnitudes of the cost savings
to depend on the problem parameters as well as the dimensionality of the uncertainty
(the number of customers in this case). Indeed, for high-dimensional problems with
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5.7 summary

narrow and discrete time windows, we expect greater cost benefits by considering more
scenarios of the uncertainty.

Table 5.8: Expected cost savings from considering S scenarios during strategic time window
assignment relative to considering only one scenario (averaged across all 60 instances
with n ≥ 15).

S = 1 S = 3 S = 5 S = 10 S = 15

In-sample 0.00% 2.26% 2.88% 3.13% 3.22%

Out-of-sample 0.00% 2.36% 2.89% 3.18% 3.21%

5.7 summary

This chapter addresses the challenge of dealing with operational uncertainty during
strategic decision-making in the context of vehicle routing. In particular, we studied
problems in which the decisions correspond to an allocation of long-term delivery
time windows to customers. These problems are motivated from several real-world
distribution operations, and are particularly common in retail. We proposed a novel
algorithm to solve this problem that is highly competitive with existing methods. It
draws on existing algorithms for deterministic vehicle routing problems (both exact
and heuristic) and can use any vehicle routing solver as a subroutine, thus facilitating
its deployment in practice. From a modeling viewpoint, it allows the user to postulate
potential scenarios of future uncertainty corresponding to different routing-specific
parameters, as well as incorporate modular changes in routing-specific constraints. Our
business insights, aided via numerical experiments, are that long-term costs are expected
to decrease by modeling more scenarios of future uncertainty but the marginal benefits
rapidly diminish as a function of the number of postulated scenarios. In other words, a
few scenarios are sufficient to obtain time window assignments that would incur lower
long-term costs compared to assignments that would be obtained by completely ignoring
operational uncertainty.
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5.8 appendix : nomenclature

5.8 appendix : nomenclature

n Number of customers

G = (V, A) Directed graph with node set V and arc set A

Q Capacity of each vehicle

cij Routing cost along arc (i, j) ∈ A

tij Travel time along arc (i, j) ∈ A

[ei, `i] Exogenous time window of node i ∈ V

VC Set of customers

qi Demand of customer i ∈ VC

ui Service time of customer i ∈ VC

TWi Feasible time window set of customer i ∈ VC

Vcont Subset of customers with continuous time window sets

Vdisc Subset of customers with discrete time window sets

wi Width of endogenous time window of customer i ∈ Vcont

Ni Number of candidate time windows of customer i ∈ Vdisc

[y
ib

, yib] bth candidate time window of customer i ∈ Vdisc

S Number of scenarios

S Set of scenarios

ps Probability of scenario s ∈ S
θs Realization of the operational parameters in scenario s ∈ S
R Route set that partitions the customer set VC

c(R) Cost of route set R

X (R, τ; θ) Set of feasible arrival time vectors corresponding to route set R,
time windows τi for each i ∈ VC and operational parameters θ

R(τ; θ) Set of all feasible route sets corresponding to time windows τi for
each i ∈ VC and operational parameters θ

Ω Set of all elementary vehicle routes that are feasible with respect
to capacity and time window constraints

F Collection of forbidden paths

VRPTW(τ; θ) Optimal value of the vehicle routing problem with time windows
τi for each i ∈ VC and operational parameters θ

VRPTWFP(τ,F ; θ) Optimal value of the vehicle routing problem with time windows
τi for each i ∈ VC, forbidden paths F and parameters θ

1[E ] Indicator function taking a value of 1 if the expression E is true
and 0 otherwise
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6
K - A D A P TA B I L I T Y I N T W O - S TA G E R O B U S T O P T I M I Z AT I O N

Chapters 2 and 3 applied robust optimization to solve vehicle routing problems under
uncertainty. In particular, Chapter 2 applied the theory of static robust optimization,
while Chapter 3 applied the theory of two-stage robust optimization. It turns out that the
underlying optimization problems in both chapters are special cases of a very general
class of dynamic decision-making problems, in which decisions need to be made both in
anticipation of and in response to the realization of unknown problem parameters.

In this chapter, we study generic two-stage robust optimization problems with mixed
discrete-continuous decisions and mixed discrete-continuous uncertain parameters. These
problems have a broad range of applications, including but not limited to just vehicle
routing operations. However, their potential applicability is currently restricted because
of two fundamental challenges that they pose: (i) they constitute infinite-dimensional
problems that require a finite-dimensional approximation, and (ii) the presence of discrete
recourse decisions typically prohibits duality-based solution schemes.

The aim of this chapter is to address these challenges from a theoretical, algorithmic
and practical perspective. We address the first challenge by studying a K-adaptability
formulation that selects K candidate recourse policies before observing the realization
of the uncertain parameters and that implements the best of these policies after the
realization is known. We address the second challenge by developing an algorithmic
scheme that enjoys strong convergence properties, both in theory and in practice.

This chapter is organized as follows. First, the K-adaptability problem is motivated and
formally defined in Section 6.1. Section 6.2 then analyzes its geometry and tractability,
and it shows how the K-adaptability problem can be used to model continuous recourse
decisions via a novel, highly flexible class of decision rules that generalize classical
affine decision rules. Section 6.3 develops a branch-and-bound algorithm for the K-
adaptability problem and analyzes its convergence. Numerical results are then presented
in Section 6.4, and we close with a summary of the main results from this chapter in
Section 6.5.
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6.1 motivation and background

6.1 motivation and background

Dynamic decision-making under uncertainty, where actions need to be taken both in
anticipation of and in response to the realization of a priori uncertain problem parame-
ters, arguably forms one of the most challenging domains of operations research and
optimization theory. Despite intensive research efforts over the past six decades, many
uncertainty-affected optimization problems resist solution, and even our understanding
of the complexity of these problems remains incomplete.

In the last two decades, robust optimization has emerged as a promising methodology
to counter some of the intricacies associated with decision-making under uncertainty.
The rich theory on static robust optimization problems, in which all decisions have to
be taken before the uncertainty is resolved, is summarized in [36, 42, 121]. However,
dynamic robust optimization problems, in which some of the decisions can adapt to the
observed uncertainties, are still poorly understood.

This chapter is concerned with two-stage robust optimization problems of the form

inf
x∈X

sup
ξ∈Ξ

inf
y∈Y

{
c>x+ d(ξ)>y : T (ξ)x+W (ξ)y ≤ h(ξ)

}
, (6.1)

where X ⊆ RN1 , Y ⊆ RN2 and Ξ ⊆ RNp constitute nonempty and bounded mixed-integer
linear programming (MILP) representable sets, c ∈ RN1 , and the functions d : Ξ 7→ RN2 ,
T : Ξ 7→ RL×N1 , W : Ξ 7→ RL×N2 and h : Ξ 7→ RL are affine. In problem (6.1), the vector
x represents the first-stage (or ‘here-and-now’) decisions which are taken before the
value of the uncertain parameter vector ξ from within the uncertainty set Ξ is observed.
The vector y, on the other hand, denotes the second-stage (or ‘wait-and-see’) decisions
that can adapt to the realized value of ξ. We emphasize that problem (6.1) can have a
random recourse, i.e., the recourse matrix W may depend on the uncertain parameters ξ.
Moreover, we do not assume a relatively complete recourse; that is, for some first-stage
decisions x ∈ X , there can be parameter realizations ξ ∈ Ξ such that there is no feasible
second-stage decision y. Also, we do not assume that the sets X , Y or Ξ are convex.

Remark 6.1 (Uncertain First-Stage Objective Coefficients). The assumption that c is de-
terministic does not restrict generality. Indeed, problem (6.1) accounts for uncertain first-stage
objective coefficients c′ : Ξ 7→ RN1 if we augment the second-stage decisions y to (y,y′), replace
the second-stage objective coefficients d with (d, c′) and impose the constraint that y′ = x.

Even in the special case where X , Y and Ξ are linear programming (LP) representable,
problem (6.1) involves infinitely many decision variables and constraints, and it has
been shown to be NP-hard [143]. Nevertheless, problem (6.1) simplifies considerably if
the sets Y and Ξ are LP representable. For this setting, several approximate solution
schemes have been proposed that replace the second-stage decisions with decision rules,
i.e., parametric classes of linear or nonlinear functions of ξ [38, 79, 128, 131, 174]. If we
further assume that d, T and W are deterministic and Ξ is of simple form (e.g., a budget
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6.1 motivation and background

uncertainty set), a number of exact solution schemes based on Benders’ decomposition
[49, 163, 251, 279] and semi-infinite programming [20, 275] have been developed.

Problem (6.1) becomes significantly more challenging if the set Y is not LP representable.
For this setting, conservative MILP approximations have been developed in [135, 263] by
partitioning the uncertainty set Ξ into hyperrectangles and restricting the continuous
and integer recourse decisions to affine and constant functions of ξ over each hyperrect-
angle, respectively. These a priori partitioning schemes have been extended to iterative
partitioning approaches in [44, 218]. Iterative solution approaches based on decision
rules have been proposed in [46, 47]. However, to the best of our knowledge, none of
these approaches has been shown to converge to an optimal solution of problem (6.1).
For the special case where problem (6.1) has a relatively complete recourse, d, T and
W are deterministic and the optimal value of the second-stage problem is quasi-convex
over Ξ, the solution scheme of [275] has been extended in [280] to a nested semi-infinite
approach that can solve instances of problem (6.1) with MILP representable sets Y and
Ξ to optimality in finite time.

Instead of solving problem (6.1) directly, we study its K-adaptability problem

inf
x∈X ,
y∈YK

sup
ξ∈Ξ

inf
k∈K

{
c>x+ d(ξ)>yk : T (ξ)x+W (ξ)yk ≤ h(ξ)

}
, (6.2)

where YK =×K
k=1 Y and K = {1, . . . , K}. Problem (6.2) determines K non-adjustable

second-stage policies y1, . . . ,yK here-and-now and subsequently selects the best of these
policies in response to the observed value of ξ. If all policies are infeasible for some
realization ξ ∈ Ξ, then the solution (x,y) attains the objective value +∞. By construction,
the K-adaptability problem (6.2) bounds the two-stage robust optimization problem (6.1)
from above.

Our interest in problem (6.2) is motivated by two observations. Firstly, problem (6.2) has
been shown to be a remarkably good approximation of problem (6.1), both in theory
and in numerical experiments [43, 145]. Secondly, and perhaps more importantly, the
K-adaptability problem conforms well with human decision-making, which tends to
address uncertainty by developing a small number of contingency plans, rather than
devising the optimal response for every possible future state of the world. For instance,
practitioners may prefer a limited number of contingency plans to full flexibility in the
second stage for operational (e.g., in production planning or logistics) or organizational
(e.g., in emergency response planning) reasons.

The K-adaptability problem was first studied in [43], where the authors reformulate the
2-adaptability problem as a finite-dimensional bilinear program and solve it heuristically.
The authors also show that the 2-adaptability problem is NP-hard even if d, T and W are
deterministic, and they develop necessary conditions for the K-adaptability problem (6.2)
to outperform the static robust problem (where all decisions are taken here-and-now).
The relationship between the K-adaptability problem (6.2) and static robust optimization
is further explored in [48] for the special case where T and W are deterministic. The
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6.2 problem analysis

authors show that the gaps between both problems and the two-stage robust optimization
problem (6.1) are intimately related to geometric properties of the uncertainty set Ξ.
Finite-dimensional MILP reformulations for problem (6.2) are developed in [145] under
the additional assumption that both the here-and-now decisions x and the wait-and-see
decisions y are binary. The authors show that both the size of the reformulations as well
as their gaps to the two-stage robust optimization problem (6.1) depend on whether the
uncertainty only affects the objective coefficients d, or whether the constraint coefficients
T , W and h are uncertain as well. Finally, it is shown in [68, 69] that for polynomial time
solvable deterministic combinatorial optimization problems, the associated instances of
problem (6.2) without first-stage decisions x can also be solved in polynomial time if all
of the following conditions hold: (i) Ξ is convex, (ii) only the objective coefficients d are
uncertain, and (iii) K > N2 policies are sought. This result has been extended to discrete
uncertainty sets in [70], in which case pseudo-polynomial solution algorithms can be
developed.

In this chapter, we expand the literature on the K-adaptability problem in two ways. From
an analytical viewpoint, we compare the two-stage robust optimization problem (6.1) with
the K-adaptability problem (6.2) in terms of their continuity, convexity and tractability.
We also investigate when the approximation offered by the K-adaptability problem is
tight, and under which conditions the two-stage robust optimization problem and the K-
adaptability problem reduce to single-stage problems. From an algorithmic viewpoint, we
develop a branch-and-bound scheme for the K-adaptability problem (6.2) that combines
ideas from semi-infinite and disjunctive programming. We establish conditions for its
asymptotic and finite time convergence; we show how it can be refined and integrated
into state-of-the-art MILP solvers; and, we present a heuristic variant that can address
large-scale instances. In contrast to existing approaches, our algorithm can handle mixed
continuous and discrete decisions in both stages as well as discrete uncertainty, and
allows for modeling continuous second-stage decisions via a novel class of highly flexible
piecewise affine decision rules. Extensive numerical experiments on benchmark data
from various application domains indicate that our algorithm is highly competitive with
state-of-the-art solution schemes for problems (6.1) and (6.2).

Notation. Vectors and matrices are printed in bold lowercase and uppercase letters,
respectively, while scalars are printed in regular font. We use ek to denote the kth unit
basis vector and e to denote the vector whose components are all ones, respectively; their
dimensions will be clear from the context. The ith row vector of a matrix A is denoted by
a>i . For a logical expression E , we define I[E ] as the indicator function which takes a
value of 1 is E is true and 0 otherwise.

6.2 problem analysis

In this section, we analyze the geometry and tractability of the two-stage robust op-
timization problem (6.1) and its associated K-adaptability problem (6.2). To this end,
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Continuity Convexity Tractability

First-stage problem (6.1) if feasible if X , Y convex if X , Y , Ξ convex and OBJ

problem problem (6.2) if feasible typically not if X , Y , Ξ convex and OBJ

Evaluation problem (6.1) if OBJ if Ξ convex and OBJ if Ξ, Y convex and OBJ

problem problem (6.2) if OBJ or CON if Ξ convex and OBJ if Ξ convex and OBJ

Second-stage problem (6.1) if feasible if Y convex if Y convex

problem problem (6.2) if feasible always always

Propositions 6.1, 6.5 6.2, 6.6 6.3, 6.7

Reduction to static problem

problem (6.1) if Ξ convex and OBJ

problem (6.2) if Ξ convex, OBJ and K > min{N2, Np}

Propositions 6.4, 6.8

Optimality of problem (6.2)

if Y , Ξ convex and OBJ

if Ξ convex, OBJ and K > min{N2, Np}
if |Y| finite and K ≥ |Y|

Proposition 6.9

Table 6.1: Summary of theoretical results from Sections 6.2.1 and 6.2.2. Here, “OBJ” refers to
instances where only the objective coefficients d are uncertain, while T , W and h are
constant. Similarly, “CON” refers to instances where only the constraint coefficients T ,
W and right-hand sides h are uncertain, while d is constant.

Sections 6.2.1 and 6.2.2 characterize the continuity, convexity and tractability of both
problems, as well as their relationship to the static robust optimization problem where all
decisions are taken here-and-now. Section 6.2.3 shows how the K-adaptability problem
with continuous second-stage decisions enables us to approximate the two-stage robust
optimization problem (6.1) through highly flexible piecewise-affine decision rules.

Table 6.1 summarizes our theoretical results from Sections 6.2.1 and 6.2.2. In the table,
the first-stage problem refers to the overall problems (6.1) and (6.2), the evaluation problem
refers to the maximization over ξ ∈ Ξ for a fixed first-stage decision, and the second-stage
problem refers to the inner minimization over y ∈ Y or k ∈ K for a fixed first-stage
decision and a fixed realization of the uncertain problem parameters. The table reveals
that despite significant differences in their formulations, the problems (6.1) and (6.2)
behave very similarly. The most significant difference is caused by the replacement
of the optimization over the second-stage decisions y ∈ Y in problem (6.1) with the
selection of a candidate policy k ∈ K in problem (6.2). This ensures that the second-stage
problem in (6.2) is always continuous, convex and tractable, whereas the first-stage
problem in (6.2) fails to be convex even if X and Y are convex. Moreover, in contrast to
problem (6.1), the evaluation problem in (6.2) remains continuous as long as either the
objective function or the constraints are unaffected by uncertainty. For general problem
instances, however, neither of the two evaluation problems is continuous. As we will
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see in Section 6.3.2, this directly impacts the convergence of our branch-and-bound
algorithm, which only takes place asymptotically in general. Note that the convexity of
the problems (6.1) and (6.2) does not depend on the shape of the uncertainty set Ξ.

6.2.1 Analysis of the Two-Stage Robust Optimization Problem

To analyze problem (6.1), we equivalently rewrite it as

inf
x∈X

c>x+Q(x) with Q(x) = sup
ξ∈Ξ

Q(x, ξ),

where Q(x, ξ) = inf
y∈Y

{
d(ξ)>y : T (ξ)x+W (ξ)y ≤ h(ξ)

}
(6.1′)

for Q : X 7→ R∪ {+∞} and Q : X × Ξ 7→ R∪ {+∞}.
We first investigate whether the infima and the supremum in problem (6.1′) are attained.

Proposition 6.1 (Continuity). Problem (6.1′) satisfies the following properties.

(i) The problem Q(x, ξ) attains its infimum, if it is feasible.

(ii) The problem Q(x) attains its supremum, if only the objective function is uncertain.
Otherwise, Q(x) does not necessarily attain its supremum, even if only the constraint
right-hand sides are uncertain.

(iii) The problem (6.1′) attains its infimum, if it is feasible.

Proof. The first statement holds since the problem Q(x, ξ) minimizes an affine function
in y over the intersection of the compact set Y and the polyhedron {y ∈ RN2 : W (ξ)y ≤
h(ξ)− T (ξ)x}.
In view of the second statement, assume first that only the objective function in prob-
lem (6.1′) is uncertain; that is, T (ξ) = T , W (ξ) = W and h(ξ) = h for all ξ ∈ Ξ.
Then the inner problem Q(x, ξ) simplifies to Q(x, ξ) = inf{d(ξ)>y : y ∈ YW } with
YW = {y ∈ Y : Wy ≤ h− Tx}. If YW = ∅, then Q(x, ξ) = +∞ for all ξ ∈ Ξ, and
any ξ ∈ Ξ attains the supremum. Otherwise, we have Q(x, ξ) = inf{d(ξ)>y : y ∈
ext conv YW }, where ext conv YW denotes the set of (finitely many) extreme points of
the convex hull of YW . We thus conclude from [223, Proposition 1.26] that Q(x, ξ) is
upper semicontinuous in ξ for every fixed x, and [223, Theorem 1.9] then implies that
Q(x) attains its supremum since Ξ is a compact set.

Assume now that only the constraint right-hand sides in problem (6.1′) are allowed to be
uncertain, and consider the following instance of problem Q(x):

sup
ξ∈[0,1]

inf
τ∈R,

y∈{0,1}
{τ − y : y ≤ ξ ≤ τ}
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The inner minimization problem is optimized by τ? = ξ and y? = bξc. The supremum is
1, and it is approached by the sequence of feasible solutions ξ ↑ 1. Note, however, that
the limit point ξ? = 1 of this sequence results in an objective function value of 0.

As for the third statement, we first note that the extended real-valued function

Q(x, ξ,y) =

d(ξ)>y if y ∈ Y and T (ξ)x+W (ξ)y ≤ h(ξ),
+∞ otherwise

is lower semicontinuous in (x, ξ,y) since the set {(x, ξ,y) ∈ RN1 ×RNp ×Y : T (ξ)x+

W (ξ)y ≤ h(ξ)} is closed. From [223, Theorem 1.17] and [223, Proposition 1.26] we
conclude that the lower semicontinuity is preserved by the partial minimization over
y and the partial maximization over ξ. By [223, Theorem 1.9] and the fact that X is
compact we can then conclude that the problem (6.1′) attains its infimum whenever it is
feasible.

It is shown in [145, Example 1] that Q(x) may not attain its supremum if both the
objective function and the constraint right-hand sides in problem (6.1′) are uncertain.
Proposition 6.1 (ii) strengthens this observation to instances of problem (6.1′) where only
the constraint right-hand sides are uncertain. We now consider the convexity properties
of problem (6.1′).

Proposition 6.2 (Convexity). Problem (6.1′) satisfies the following properties.

(i) The problem Q(x, ξ) is convex, if Y is convex.

(ii) The problem Q(x) is convex, if Ξ is convex and only the objective function is uncertain,
irrespective of Y . Otherwise, Q(x) is typically not convex, even if Ξ and Y are convex and
only the constraint right-hand sides are uncertain.

(iii) The problem (6.1′) is convex, if X and Y are convex, irrespective of Ξ.

Proof. The first statement directly follows from the linearity of the objective function and
the convexity of the feasible set.

In view of the second statement, assume first that Ξ is convex and only the objective
function in problem (6.1′) is uncertain; that is, T (ξ) = T , W (ξ) =W and h(ξ) = h for
all ξ ∈ Ξ. Then the inner problem Q(x, ξ) simplifies to Q(x, ξ) = inf{d(ξ)>y : y ∈ YW }
with YW = {y ∈ Y : Wy ≤ h− Tx}. Assume that YW 6= ∅; the other case is trivial.
Then we have Q(x, ξ) = inf{d(ξ)>y : y ∈ ext conv YW }, where ext conv YW denotes
the set of (finitely many) extreme points of the convex hull of YW . We thus conclude
from [223, Proposition 2.9] that Q(x, ξ) is concave in ξ for every fixed x, which implies
that Q(x) is a convex optimization problem.

Assume now that the constraint right-hand sides in problem (6.1′) are allowed to be
uncertain, and consider the following instance of problem Q(x):

sup
ξ∈[−1,1]

inf
y∈R
{y : y ≥ ξ, y ≥ −ξ}
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Since the inner minimization problem is optimized by y? = |ξ|, the problem maximizes
the (convex) 1-norm of ξ over the interval [−1, 1], which amounts to a non-convex
optimization problem.

As for the third statement, assume that X and Y are convex, and consider the function

Q(x, ξ,y) =

d(ξ)>y if y ∈ Y and T (ξ)x+W (ξ)y ≤ h(ξ),
+∞ otherwise.

The function Q(x, ξ,y) is convex in (x,y) for every fixed ξ ∈ Ξ. From [223, Proposi-
tion 2.22] and [223, Proposition 2.9] we conclude that the convexity is preserved by the
partial minimization over y and the partial maximization over ξ. The problem (6.1′) thus
minimizes the sum of two convex functions c>x and Q(x) over the convex set X , which
is a convex optimization problem.

One readily verifies that the third statement in Proposition 6.2 does not hold if Y is
not convex. We now investigate under which conditions we can solve problem (6.1′) in
polynomial time.

Proposition 6.3 (Tractability). Problem (6.1′) satisfies the following properties.

(i) The problem Q(x, ξ) can be solved in polynomial time, if Y is convex.

(ii) The problem Q(x) can be solved in polynomial time, if Ξ and Y are convex and only the
objective function is uncertain. Otherwise, Q(x) is strongly NP-hard, even if Ξ and Y are
convex and only the constraint right-hand sides are uncertain.

(iii) The problem (6.1′) can be solved in polynomial time, if X , Y and Ξ are convex and only
the objective function is uncertain. Otherwise, the problem is strongly NP-hard, even if X ,
Y and Ξ are convex and only the constraint right-hand sides are uncertain.

Proof. If Y is convex, then the problem Q(x, ξ) amounts to a linear program that can be
solved in polynomial time. This shows the first statement.

The first part of the second statement follows from the proof of the first part of the third
statement below if we fix X = {x} and c = 0 in problem (6.1′). For the second part of
the second statement, we recall the strongly NP-hard 0/1 Integer Programming (IP)
feasibility problem [122]:

0/1 Integer Programming Feasibility.

Instance. Given are A ∈ ZR×Np and b ∈ ZR.
Question. Is there a vector ξ ∈ {0, 1}Np such that Aξ ≤ b?

We show that the IP feasibility problem has an affirmative answer if and only if the
problem

sup
{

inf
{

e>y : y ∈ RNp , y ≥ ξ− 1
2

e, y ≥ 1
2

e− ξ
}

: ξ ∈ [0, 1]Np , Aξ ≤ b
}

(6.3)
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has an optimal value of Np/2. Note that (6.3) can be interpreted as an instance of Q(x).
For any fixed ξ, the infimum in (6.3) evaluates to ‖ξ− e/2‖1. Thus, the optimal value
of (6.3) is equal to Np/2 if and only if there is ξ ∈ [0, 1]Np satisfying ‖ξ− e/2‖1 = Np/2
and Aξ ≤ b. The statement now follows from the fact that ‖ξ− e/2‖1 = Np/2 if and
only if ξ ∈ {0, 1}Np .

In view of the first part of the third statement, the proof of Proposition 6.4 below
shows that, under the stated assumptions, problem (6.1′) reduces to a single-stage robust
optimization problem. Dualizing the inner maximization problem in that single-stage
reformulation allows us to solve the overall problem in polynomial time as a linear
program, see [36]. Finally, the second part of the third statement follows from the proof
of the second part of the second statement if we amend problem (6.3) by appending an
outer infimum over the singleton set X = {1}.

The NP-hardness of the two-stage robust optimization problem (6.1′) has previously
been established for the case where X , Y and Ξ are convex and only the constraint
right-hand sides are uncertain [143, Theorem 3.5]. We provide an alternative proof in
Proposition 6.3 (iii) to facilitate a self-contained comparison with the K-adaptability
problem (6.2) in Proposition 6.7 (ii) below. Moreover, it is shown in [143, Theorem 3.3]
that problem (6.1′) can be solved in polynomial time whenever X and Y are convex, d
and W are deterministic and Ξ is described in terms of its extreme points. We close our
analysis of the two-stage robust optimization problem (6.1′) with a special case where it
reduces to a single-stage robust optimization problem.

Proposition 6.4 (Reduction to Static Problem). The problem (6.1′) reduces to a static robust
optimization problem where Y is replaced with its convex hull, if Ξ is convex and only the
objective function is uncertain, irrespective of X and Y .

Proof. Assume that Ξ is convex and that only the objective function in problem (6.1′) is
uncertain; that is, T (ξ) = T , W (ξ) =W and h(ξ) = h for all ξ ∈ Ξ. Problem (6.1′) then
simplifies to

inf
x∈X

sup
ξ∈Ξ

inf
y∈convY

{
c>x+ d(ξ)>y : Tx+Wy ≤ h

}
,

where the replacement of the second-stage feasible region Y with its convex hull, conv Y ,
is justified since the inner minimization has a linear objective function. The classical
minimax theorem now allows us to exchange the order of the inner two operators:

inf
x∈X ,

y∈convY

{
sup
ξ∈Ξ

{
c>x+ d(ξ)>y

}
: Tx+Wy ≤ h

}
.

This problem is readily recognized as a single-stage robust optimization problem.

We emphasize that the previous argument requires Ξ to be convex. Indeed, we have

−1 = sup
ξ∈{−1,1}

inf
y∈[−1,1]

ξy 6= inf
y∈[−1,1]

sup
ξ∈{−1,1}

ξy = 0,
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and we cannot establish equivalence by replacing Ξ with conv Ξ = [−1, 1] in the second
optimization problem either.

A related result was established in [38, Theorem 2.1], where it is shown that the two-stage
robust optimization problem (6.1′) reduces to a single-stage robust optimization problem
if X , Y and Ξ are convex and the uncertain parameters can be partitioned into subsets
such that each constraint is only affected by the parameters of one such subset, and no
two constraints are affected by parameters of the same subset.

6.2.2 Analysis of the K-Adaptability Problem

To analyze problem (6.2), we equivalently rewrite it as

inf
x∈X ,
y∈Y k

c>x+Q(x,y) with Q(x,y) = sup
ξ∈Ξ

Q(x,y, ξ),

where Q(x,y, ξ) = inf
k∈K

{
d(ξ)>yk : T (ξ)x+W (ξ)yk ≤ h(ξ)

}
(6.2′)

for Q : X ×YK 7→ R∪ {+∞} and Q : X ×YK × Ξ 7→ R∪ {+∞}.
In analogy to Proposition 6.1, we first investigate whether (6.2′) attains its infima and
supremum.

Proposition 6.5 (Continuity). Problem (6.2′) satisfies the following properties.

(i) The problem Q(x,y) attains its supremum, if only the objective function or only the
constraints are uncertain. Otherwise, Q(x,y) does not necessarily attain its supremum,
even if the constraint left-hand sides are not uncertain.

(ii) The problem (6.2′) attains its infimum, if it is feasible.

Proof. In view of the first statement, assume that only the objective function in prob-
lem (6.2′) is uncertain; that is, T (ξ) = T , W (ξ) =W and h(ξ) = h for all ξ ∈ Ξ. Then
the inner problem Q(x,y, ξ) simplifies to Q(x,y, ξ) = inf{y>k d(ξ) : k ∈ KW }, where
KW = {k ∈ K : Wyk ≤ h− Tx}. If KW = ∅, then Q(x,y, ξ) = +∞ for all ξ ∈ Ξ,
and any ξ ∈ Ξ attains the supremum. Otherwise, Q(x,y, ξ) is readily verified to be
continuous in ξ for every fixed x and y, and [223, Theorem 1.9] then implies that Q(x,y)
attains its supremum since Ξ is a compact set.

Assume now that only the constraints in problem (6.2′) are uncertain. Then Q(x,y, ξ)
simplifies to Q(x,y, ξ) = inf{d>yk : k ∈ K, ξ ∈ Ξk}, where Ξk = {ξ ∈ Ξ : T (ξ)x+

W (ξ)yk ≤ h(ξ)}. If
⋃

k∈K Ξk 6= Ξ, then Q(x,y, ξ) = +∞ for any ξ ∈ Ξ \ ⋃k∈K Ξk and
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Q(x,y) attains its supremum. Otherwise,
⋃

k∈K Ξk = Ξ, and the supremum in Q(x,y)
is attained by any ξ ∈ ⋂k∈K? Ξk, where

K? ∈ arg max
K′⊆K

{
min
k∈K′

d>yk :
⋂

k∈K′
Ξk 6= ∅

}
.

Finally, assume that both the objective function and the constraint right-hand sides
in problem (6.2′) are allowed to be uncertain, and consider the following instance of
problem Q(x,y):

sup
ξ∈[0,1]

inf
k∈{1,2}

{ξ − yk : yk ≤ ξ} with y1 = 1 and y2 = 0.

The inner minimization problem is optimized by k? = 1 if ξ = 1 and k? = 2 otherwise.
The supremum is 1, and it is approached by the sequence of feasible solutions ξ ↑ 1.
Note, however, that the limit point ξ? = 1 of this sequence results in an objective function
value of 0.

As for the second statement, we first note that each extended real-valued function

Qk(x,y, ξ) =

d(ξ)>yk if yk ∈ Y and T (ξ)x+W (ξ)yk ≤ h(ξ),
+∞ otherwise,

k ∈ K,

is lower semicontinuous in (x,y, ξ) since the sets {(x,y, ξ) ∈ RN1 × (RN2)K ×RNp :
yk ∈ Y , T (ξ)x+W (ξ)yk ≤ h(ξ)} are closed. From [223, Proposition 1.26] we conclude
that the lower semicontinuity is preserved by the partial minimization over k and the
partial maximization over ξ. Due to [223, Theorem 1.9] the problem (6.2′) then attains its
infimum whenever it is feasible.

Similar to Proposition 6.2, we now consider the convexity properties of problem (6.2′).

Proposition 6.6 (Convexity). Problem (6.2′) satisfies the following properties.

(i) The problem Q(x,y) is convex, if Ξ is convex and only the objective function is uncertain.
Otherwise, Q(x,y) is typically not convex, even if Ξ is convex and only the constraint
right-hand sides are uncertain.

(ii) Problem (6.2′) is typically not convex, even if X and Y are convex and Ξ is a singleton.

Proof. In view of the first statement, assume that Ξ is convex and that only the objective
function in problem (6.2′) is uncertain; that is, T (ξ) = T , W (ξ) =W and h(ξ) = h for
all ξ ∈ Ξ. Then the inner problem Q(x,y, ξ) simplifies to Q(x,y, ξ) = inf{y>k d(ξ) : k ∈
KW }, where KW = {k ∈ K : Wyk ≤ h− Tx}. Assume that KW 6= ∅; the other case is
trivial. Then Q(x,y, ξ) is a piecewise-affine concave function in ξ for every fixed x and
y. We thus conclude that Q(x,y) is a convex optimization problem as it maximizes a
concave function over a convex set.
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Assume now that the constraint right-hand sides in problem (6.2′) are allowed to be
uncertain, and consider the following instance of problem Q(x,y):

sup
ξ∈[−1,1]

inf
k∈K
{yk : yk ≥ ξ} with y1 = 1 and y2 = 0.

The inner minimization problem is optimized by k? = 1, if ξ > 0, and k? = 2, otherwise.
The outer maximization problem thus maximizes the non-convex function I[ξ > 0] over
the interval [−1, 1], which amounts to a non-convex optimization problem.

In view of the second statement, consider the following problem instance:

inf
y1,y2∈[−1,1]

sup
ξ∈{1}

inf
k∈{1,2}

ξ yk

The problem attains the objective value −1 for (y1, y2) ∈ {(−1, 1), (1,−1)}, but it attains
the larger objective value of 0 for (y1, y2) = 1/2 · (−1, 1) + 1/2 · (1,−1) = (0, 0).

In analogy to Proposition 6.3, we now investigate under which conditions problem (6.2′)
is tractable.

Proposition 6.7 (Tractability). Problem (6.2′) satisfies the following properties.

(i) The problem Q(x,y) can be solved in polynomial time, if Ξ is convex and only the objective
function is uncertain. Otherwise, Q(x,y) is strongly NP-hard, even if Ξ is convex and
only the constraint right-hand sides are uncertain.

(ii) The problem (6.2′) can be solved in polynomial time, if X , Y and Ξ are convex and only
the objective function is uncertain. Otherwise, the problem is strongly NP-hard, even if X ,
Y and Ξ are convex and only the constraint right-hand sides are uncertain.

Proof. The first part of the first statement follows directly from [145, Observation 2].

In view of the second part of the first statement, we consider the following variant of the
IP feasibility problem:

Approximate 0/1 Integer Programming Feasibility.

Instance. Given are A ∈ ZR×Np , b ∈ ZR.
Question. Is there ξ ∈ ([0, ε) ∪ (1− ε, 1])Np , ε =

(
minr ∑q |Arq|

)−1, such that Aξ ≤ b?

It follows from [269, Lemma 2] that the approximate IP feasibility problem is strongly
NP-hard. We claim that the approximate IP feasibility problem has an affirmative answer
if and only if

Q(x,y) = sup
ξ∈Ξ

inf
k∈K

{
y0

k : yk ≤ ξ ≤ yk

}
= 1, (6.4)

where Ξ = {ξ ∈ [0, 1]Np : Aξ ≤ b} for (A, b) from the approximate IP feasibility
instance, K = Np + 1, yk = (y0

k ,yk,yk) = (0, ε ek, e− ε ek) for k = 1, . . . , Np and yNp+1 =
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(y0
Np+1,yNp+1,yNp+1) = (1,0, e). Note that we do not specify the first-stage decision x as

it is not required for the argument.

Assume first that the approximate IP feasibility problem has an affirmative answer, i.e.,
there is ξ? ∈ ([0, ε) ∪ (1− ε, 1])Np such that Aξ? ≤ b. Note that ξ? ∈ Ξ, but for every
k = 1, . . . , Np we have ξ? /∈ [yk,yk]. Since ξ? ∈ [0, e], yNp+1 is the only feasible candidate
policy, and the optimal value of problem (6.4) is indeed 1.

Assume now that the optimal value of problem (6.4) is 1. In that case, there is ξ? ∈ Ξ
such that ξ? ∈ [0, e] \ ⋃Np

k=1[ε ek, e− ε ek], i.e, ξ? ∈ ([0, ε) ∪ (1− ε, 1])Np . Since Aξ? ≤ b
by construction of Ξ, we conclude that the approximate IP feasibility problem has an
affirmative answer.

As for the first part of the second statement, assume first that X , Y and Ξ are convex
and that only the objective function in problem (6.2′) is uncertain; that is, T (ξ) = T ,
W (ξ) =W and h(ξ) = h for all ξ ∈ Ξ. The classical minimax theorem then implies that

inf
x∈X ,
y1∈Y

{
sup
ξ∈Ξ

{
c>x+ d(ξ)>y1

}
: Tx+Wy1 ≤ h

}

= inf
x∈X

sup
ξ∈Ξ

inf
y∈Y

{
c>x+ d(ξ)>y : Tx+Wy ≤ h

}
,

i.e., the 1-adaptability problem achieves the same objective value as the two-stage robust
optimization problem (6.1). Since the K-adaptability problem is bounded from above
by the 1-adaptability problem and from below by the two-stage robust optimization
problem, we thus conclude that, under the stated assumptions, the 1-adaptability problem
coincides with the K-adaptability problem. The statement now follows from the fact
that we can reformulate the 1-adaptability problem as a linear program by dualizing
the inner maximization problem, see [36]. Note that the convexity of Ξ is needed in this
argument since

−1 = max
ξ∈{−1,1}

min
y∈[−1,1]

ξy 6= min
y∈[−1,1]

max
ξ∈{−1,1}

ξy = 0.

A similar argument with Ξ = [−1, 1] and Y = {−1, 1} shows that the convexity of Y is
needed, too.

Finally, in view of the second part of the second statement, consider the following
problem:

inf
y∈YK

sup
ξ∈Ξ

inf
k∈K
{0 : yk ≤ ξ ≤ e− yk} , (6.5)

where K = Np, Y = {y ∈ R
Np
+ : e>y = ε}, ε < 1/2, and Ξ = {ξ ∈ [0, 1]Np : Aξ ≤ b}

for (A, b) from an approximate IP feasibility instance. We claim that the optimal value
of this problem is +∞, i.e., there is ξ ∈ Ξ for which no decision y ∈ YK is feasible in the
second stage, if and only if the approximate IP feasibility instance has an affirmative
answer.
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Assume first that the approximate IP feasibility problem has an affirmative answer. It then
follows from [269, Lemma 2] that the exact IP feasibility problem also has an affirmative
answer; that is, there is ξ? ∈ {0, 1}Np such that Aξ? ≤ b. Fix any feasible candidate
policy yk ∈ Y . By construction, there is i ∈ {1, . . . , Np} such that yki > 0. Thus, the
candidate policy is feasible in the second stage under the parameter realization ξ? only if
ξ?i ∈ [yki, 1− yki] ⊆ (0, 1), which is not the case since ξ?i ∈ {0, 1}. We thus conclude that
the optimal value of problem (6.5) is indeed +∞ whenever the approximate IP feasibility
problem has an affirmative answer.

Assume now that the optimal value of problem (6.5) is +∞ and consider the K candidate
policies yk = ε ek, k = 1, . . . , Np. Since y = (y1, . . . ,yK) ∈ YK and problem (6.5) evaluates

to +∞ under this choice of y, there must be ξ? ∈ Ξ such that ξ? ∈ [0, e] \⋃Np
k=1[ε ek, e−

εek]; that is, ξ? ∈ ([0, ε) ∪ (1− ε, 1])Np . Since Aξ? ≤ b by construction of Ξ, we conclude
that the approximate IP feasibility problem has an affirmative answer.

We note that Q(x,y) can be solved in polynomial time if Ξ is convex and the number of
policies K is fixed (even when the objective function, the constraint coefficients and the
right-hand sides are uncertain), see [145, Corollary 1]. The NP-hardness of Q(x,y) has
previously been established under the more restrictive assumption that both the objective
function and the constraint right-hand sides in problem (6.2′) are uncertain, see [145,
Theorem 3]. For the special case where K = 2, the K-adaptability problem with objective
and constraint uncertainty can be solved in polynomial time if any of Np, max{N1, N2}
or L is fixed [43, Proposition 5], while the problem becomes NP-hard otherwise [43,
Proposition 6]. Proposition 6.7 (ii) provides an alternative proof of the NP-hardness of
problem (6.2′), which facilitates a direct comparison to the two-stage robust optimization
problem (6.1′), see Proposition 6.3 (iii).

We also note that the K-adaptability problem (6.2′) simplifies in the absence of first-stage
decisions x. For this case, it has been shown in [69, Theorem 2] that the problem can be
solved in polynomial time, if only the objective function is uncertain, the deterministic
second-stage problem is polynomial time solvable, the uncertainty set Ξ has a tractable
representation, and if any number of policies K > N2 is acceptable. The same problem
becomes NP-hard, however, when the number of policies K is fixed [69, Corollary 3] or
when the uncertainty sets are discrete [70, Corollaries 1–4].

Similar to Proposition 6.4, we next consider when the K-adaptability problem (6.2′)
reduces to a single-stage robust optimization problem.

Proposition 6.8 (Reduction to Static Problem). The problem (6.2′) reduces to a static robust
optimization problem where Y is replaced with its convex hull, if Ξ is convex, only the objective
function is uncertain and K > min{N2, Np}, irrespective of X and Y .
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Proof. Assume that Ξ is convex and that only the objective function in problem (6.2′) is
uncertain; that is, T (ξ) = T , W (ξ) =W and h(ξ) = h for all ξ ∈ Ξ. Problem (6.2′) then
simplifies to

inf
x∈X ,
y∈YK

sup
ξ∈Ξ

inf
k∈K

{
c>x+ d(ξ)>yk : Tx+Wyk ≤ h

}
.

The inner discrete minimization can be replaced by a continuous minimization over all
convex combinations λ ∈ ∆(x,y) =

{
λ ∈ RK

+ : e>λ = 1, λk = 0 if Tx+Wyk 6≤ h
}

:

inf
x∈X ,
y∈YK

sup
ξ∈Ξ

inf
λ∈∆(x,y)

{
c>x+ ∑

k∈K
λkd(ξ)

>yk

}

The classical minimax theorem then allows us to exchange the order of the inner two
operators:

inf
x∈X ,
y∈YK

inf
λ∈∆(x,y)

sup
ξ∈Ξ

{
c>x+ d(ξ)>

[
∑

k∈K
λkyk

]}
(6.6)

If K ≥ N2 + 1, then we can use Carathéodory’s theorem to replace the convex combi-
nations of K candidate decisions yk ∈ Y with a single decision from the convex hull,
conv Y , resulting in

inf
x∈X ,

y∈convY

{
sup
ξ∈Ξ

{
c>x+ d(ξ)>y

}
: Tx+Wy ≤ h

}
, (6.7)

which is readily recognized as a single-stage robust optimization problem. Similarly,
problem (6.6) can be rewritten as

inf
x∈X ,
y∈YK

inf
λ∈∆(x,y)

sup
ξ∈Ξ

{
c>x+ ∑

k∈K
λk

[
d(ξ)>yk

]}
,

and if K ≥ Np + 1, then we can use Carathéodory’s theorem to replace the convex com-
binations of K candidate decisions d(ξ)>yk ∈

{
d(ξ)>y : y ∈ Y

}
with a single decision

from the convex hull of their domain, conv
{
d(ξ)>y : y ∈ Y

}
=
{
d(ξ)>y : y ∈ conv Y

}
,

resulting again in the single-stage robust optimization problem (6.7).

As in Proposition 6.4, the previous arguments require Ξ to be convex. Indeed, we have

−1 = sup
ξ∈{−1,1}

inf
k∈{1,2}

ξyk 6= inf
y∈[−1,1]

sup
ξ∈{−1,1}

ξy = 0 with y1 = −1 and y2 = 1,

and we cannot establish equivalence by replacing Ξ with conv Ξ = [−1, 1] in the sec-
ond optimization problem either. To see that the number of policies K must exceed
min{N2, Np} in general in the previous arguments, we compare the two problems

inf
y∈({−1,1}N2 )K

sup
ξ∈[−1,1]Np

inf
k∈K

ξ1yk1 and inf
y∈[−1,1]N2

sup
ξ∈[−1,1]Np

ξ1y1.
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For every N2, Np ≥ 1, the problem on the right attains its optimal value 0 at any
y ∈ [−1, 1]N2 with y1 = 0. Similarly, for every N2, Np ≥ 1, the problem on the left
attains an optimal value of 0, if K ≥ 2, and an optimal value of 1, if K = 1. We thus
verify that K > min{N2, Np} is required for the optimal values to coincide by choosing
(N2, Np) ∈ {(1, 2), (2, 1)}.

We close this section with several special cases where the optimal value of the K-
adaptability problem (6.2′) coincides with the optimal value of the two-stage robust
optimization problem (6.1′).

Proposition 6.9 (Optimality). The optimal values of problems (6.1′) and (6.2′) coincide if (i)
Y and Ξ are convex and only the objective function is uncertain, irrespective of X and K, or if
(ii) Ξ is convex, only the objective function is uncertain and K > min{N2, Np}, irrespective of
X and Y , or if (iii) Y has a finite cardinality and K ≥ |Y|, irrespective of X and Ξ. Otherwise,
their optimal values may differ for any finite K, even if X , Y and Ξ are convex and only the
constraint right-hand sides are uncertain.

Proof. The fact that the two optimal values coincide under the first set of conditions
follows from the proof of Proposition 6.7 (ii), where we have shown that, under the
stated assumptions, the optimal values of the 1-adaptability problem and the two-stage
robust optimization problem (6.1′) coincide. We have also shown there that the convexity
of Y and Ξ is crucial for the proof to hold.

The fact that the two optimal values coincide under the second set of conditions follows
from Proposition 6.8, which shows that, under the stated assumptions, the K-adaptability
problem (6.2′) is equivalent to

inf
x∈X ,

y∈convY

{
sup
ξ∈Ξ

{
c>x+ d(ξ)>y

}
: Tx+Wy ≤ h

}
.

The classical minimax theorem, which is applicable since convY and Ξ are convex, then
implies that this problem is equivalent to

inf
x∈X

sup
ξ∈Ξ

inf
y∈convY

{
c>x+ d(ξ)>y : Tx+Wy ≤ h

}
,

which provides a lower bound to the two-stage robust optimization problem (6.1′) since
conv Y ⊇ Y . On the other hand, we know that the K-adaptability problem (6.2′) by
construction bounds (6.1′) from above. We thus conclude that the optimal values of both
problems must coincide.

In view of the third set of conditions, it is clear that K ≥ |Y| policies are sufficient for
the optimal values of problems (6.1′) and (6.2′) to coincide. Moreover, [145, Theorem 4]
presents a problem where the optimal values of problems (6.1′) and (6.2′) differ for every
K < |Y|.
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As for the second part of the statement, consider the problem

sup
ξ∈[−1,1]

inf
τ∈R,

y∈[−1,1]

{τ : τ ≥ ξ − y, τ ≥ y− ξ} .

The optimal second-stage decision to this two-stage robust optimization problem satisfies
τ(ξ) = 0 and y(ξ) = ξ, and any ξ ∈ [−1, 1] attains the optimal objective value 0. Consider
now the K-adaptability problem

inf
τ∈RK ,

y∈[−1,1]K

sup
ξ∈[−1,1]

inf
k∈K
{τk : τk ≥ ξ − yk, τk ≥ yk − ξ} .

The objective value of this problem evaluates to at least maxξ∈[−1,1] mink∈K |ξ − yk| > 0
for any finite K and any feasible solution (τ ,y) ∈ RK × [−1, 1]K.

The validity of the first part of the statement under the second set of conditions in Proposi-
tion 6.9 was established for the subclass of purely binary K-adaptability problems in [145,
Theorem 1]. We also mention that the optimal value of the K-adaptability problem (6.2′)
approaches the optimal value of the two-stage robust optimization problem (6.1′) if
K → ∞ and a continuity assumption is satisfied, see [43, Proposition 1].

6.2.3 Incorporating Decision Rules in the K-Adaptability Problem

Although the K-adaptability problem (6.2) selects the best candidate policy yk in response
to the observed parameter realization ξ ∈ Ξ, the policies y1, . . . ,yK—once selected in the
first stage—no longer depend on ξ. This lack of dependence on the uncertain problem
parameters can lead to overly conservative approximations of the two-stage robust
optimization problem (6.1) when the second-stage decisions are continuous. In this
section, we show how the K-adaptability problem (6.2) can be used to generalize affine
decision rules, which are commonly used to approximate continuous instances of the
two-stage robust optimization problem (6.1). We note that existing schemes, such as [69,
145], cannot be used for this purpose as they require the wait-and-see decisions y to be
binary.

Throughout this section, we assume that problem (6.1) has purely continuous second-
stage decisions (that is, Y is LP representable), a deterministic objective function (that
is, d(ξ) = d for all ξ ∈ Ξ) and fixed recourse (that is, W (ξ) = W for all ξ ∈ Ξ). The
assumption of continuous second-stage decisions allows us to assume, without loss of
generality, that Y = RN2 as any potential restrictions can be absorbed in the second-stage
constraints.

The affine decision rule approximation to the two-stage robust optimization problem is

inf
x∈X ,

y:Ξ 17→RN2

{
sup
ξ∈Ξ

{
c>x+ d>y(ξ)

}
: T (ξ)x+Wy(ξ) ≤ h(ξ) ∀ξ ∈ Ξ

}
,
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where y : Ξ 17→ RN2 indicates that y(ξ) = y0 + Y ξ for some y0 ∈ RN2 and Y ∈ RN2×Np ,
see [38]. This problem provides a conservative approximation to the two-stage robust
optimization problem (6.1) since we replace the space of all (possibly non-convex and
discontinuous) second-stage policies y : Ξ 7→ RN2 with the subspace of all affine second-

stage policies y : Ξ 17→ RN2 . In a similar spirit, we define the subspace of all piecewise

affine decision rules y : Ξ K7→ RN2 with K pieces as

y : Ξ K7→ RN2 ⇐⇒
[
∃(y0

k ,Yk) ∈ RN2 ×RN2×Np , k = 1, . . . , K, such that

∀ξ ∈ Ξ, ∃k ∈ {1, . . . , K} : y(ξ) = y0
k + Ykξ

]
.

Note that our earlier definition of y : Ξ 17→ RN2 is identical to our definition of y :
Ξ K7→ RN2 if K = 1. For K > 1, the decision rules y : Ξ K7→ RN2 may be non-convex and
discontinuous, and the regions where y is affine may be non-closed and non-convex. We
highlight that the points of nonlinearity are determined by the optimization problem.
This is in contrast to many existing solution schemes for piecewise affine decision rules,
such as [47, 79, 128, 131], where these points are specified ad hoc by the decision-maker.

Observation 6.1. The piecewise affine decision rule problem with fixed recourse

inf
x∈X ,

y:Ξ K7→RN2

{
sup
ξ∈Ξ

{
c>x+ d>y(ξ)

}
: T (ξ)x+Wy(ξ) ≤ h(ξ) ∀ξ ∈ Ξ

}
(6.8)

is equivalent to the K-adaptability problem with random recourse

inf
x∈X ,

(y0,Y ,z)∈ŶK

sup
ξ∈Ξ

inf
k∈K

{
c>x+ d>y0

k + d̂(ξ)
>zk1 : T (ξ)x+Wy0

k + Ŵ (ξ)zk2 ≤ h(ξ)
}

,

(6.9)

where Ŷ =
{
(y0,Y , z) ∈ RN2 × RN2×Np × (RNp × RNp L) : z = (z1, z2) with z1 =

Y >d and z2 = [w>1 Y . . . w>L Y ]>
}

, d̂(ξ) = ξ and Ŵ (ξ) = diag
(
ξ>, . . . , ξ>

)
∈ RL×Np L.

Proof. Problem (6.9) is infeasible if and only if for every x ∈ X and (y0,Y , z) ∈ ŶK there
is a ξ ∈ Ξ such that T (ξ)x+Wy0

k + Ŵ (ξ)zk2 6≤ h(ξ) for all k = 1, . . . , K, which in turn
is the case if and only if for every x ∈ X and (y0

k ,Yk) ∈ RN2 ×RN2×Np , k = 1, . . . , K there
is a ξ ∈ Ξ such that T (ξ)x+Wy0

k +WYkξ 6≤ h(ξ) for all k = 1, . . . , K; that is, if and
only if problem (6.8) is infeasible. We thus assume that both (6.8) and (6.9) are feasible.
In this case, we verify that every feasible solution (x,y0,Y , z) to problem (6.9) gives
rise to a feasible solution (x,y), where y(ξ) = y0

k(ξ) + Yk(ξ)ξ and k(ξ) is any element of

arg min
k∈K

{
c>x+ d>y0

k + d̂(ξ)
>zk1 : T (ξ)x+Wy0

k + Ŵ (ξ)zk2 ≤ h(ξ)
}

, in problem (6.8)

that attains the same worst-case objective value. Similarly, every optimal solution (x,y) to
problem (6.8) gives rise to an optimal solution (x,y0,Y , z), where zk = (zk1, zk2) with
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Figure 6.1: The optimal second-stage value function in Example 6.1 is given by the first-order
cone Q?(ξ) = [ξ1 + ξ2]+ + [ξ1 − ξ2]+ + [−ξ1 + ξ2]+ + [−ξ1 − ξ2]+.

zk1 = Y >k d and zk2 = [w>1 Yk . . . w>L Yk]
>, k = 1, . . . , K, in problem (6.9). Hence, (6.8)

and (6.9) share the same optimal value and the same sets of optimal solutions.

We close with an example that illustrates the benefits of piecewise affine decision rules.

Example 6.1. Consider the following instance of the two-stage robust optimization problem (6.1),
which has been proposed in [136, Section 5.2]:

sup
ξ∈[−1,1]2

inf
y∈R4

+

{
e>y : y1 ≥ ξ1 + ξ2, y2 ≥ ξ1 − ξ2, y3 ≥ −ξ1 + ξ2, y4 ≥ −ξ1 − ξ2

}
.

The optimal second-stage policy is y?(ξ) = ([ξ1 + ξ2]+, [ξ1 − ξ2]+, [−ξ1 + ξ2]+, [−ξ1 −
ξ2]+), where [·]+ = max{·, 0}, and it results in the optimal second-stage value function
Q?(ξ) = [ξ1 + ξ2]+ + [ξ1 − ξ2]+ + [−ξ1 + ξ2]+ + [−ξ1 − ξ2]+ with a worst-case objec-

tive value of 2, see Figure 6.1. The best affine decision rule y1 : Ξ 17→ R4
+ is y1(ξ) =

(1 + ξ2, 1 + ξ1, 1− ξ1, 1− ξ2), and it results in the constant second-stage value function
Q1(ξ) = 4. The best 2-adaptable affine decision rule y2 : Ξ 27→ R4

+, on the other hand, is
given by

y2(ξ) =

{
(0, 1 + ξ1, 1 + ξ2, −ξ1 − ξ2) if ξ1 + ξ2 ≤ 0

(ξ1 + ξ2, 1− ξ2, 1− ξ1, 0) otherwise,

and it results in the constant second-stage value function Q2(ξ) = 2. Thus, 2-adaptable affine
decision rules are optimal in this example. Figure 6.2 illustrates the optimal value, the affine
approximation and the 2-adaptable affine approximation of the decision variable y3.

The piecewise affine decision rules presented here can be readily combined with discrete
second-stage decisions. For the sake of brevity, we omit the details of this straightforward
extension.

6.3 solution scheme

Our solution scheme for the K-adaptability problem (6.2) is based on a reformulation as
a semi-infinite disjunctive program which we present next.
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Figure 6.2: Plot of the optimal second-stage policy y3(ξ) in the two-stage robust optimization
problem (left), the affine decision rule problem (middle) and the 2-adaptable affine
decision rule problem (right).

Observation 6.2. The K-adaptability problem (6.2) is equivalent to

minimize θ

subject to θ ∈ R, x ∈ X , y ∈ YK

∨
k∈K

[
c>x+ d(ξ)>yk ≤ θ

T (ξ)x+W (ξ)yk ≤ h(ξ)

]
∀ ξ ∈ Ξ.

(6.10)

Moreover, if some of the constraints in problem (6.10) are deterministic, i.e., they do not depend
on ξ, then they can be moved outside the disjunction and instead be enforced for all k ∈ K.

In the following, we stipulate that the optimal value of (6.10) is +∞ whenever it is
infeasible.

Proof of Observation 6.2. Problem (6.2) is infeasible if and only if (iff) for every x ∈ X
and y ∈ YK there is a ξ ∈ Ξ such that T (ξ)x+W (ξ)yk 6≤ h(ξ) for all k ∈ K, which
in turn is the case iff for every x ∈ X and y ∈ YK, the disjunction in (6.10) is violated
for at least one ξ ∈ Ξ; that is, iff problem (6.10) is infeasible. We thus assume that
both (6.2) and (6.10) are feasible. In this case, one readily verifies that every feasible
solution (x,y) to problem (6.2) gives rise to a feasible solution (θ,x,y), where θ =

sup
ξ∈Ξ

inf
k∈K

{
c>x+ d(ξ)>yk : T (ξ)x+W (ξ)yk ≤ h(ξ)

}
, in problem (6.10) with the same

objective value. Likewise, any optimal solution (θ,x,y) to problem (6.10) corresponds
to an optimal solution (x,y) in problem (6.2). Hence, (6.2) and (6.10) share the same
optimal value and the same sets of optimal solutions.

We now claim that if tl(ξ)
> = t>l , wl(ξ)

> = w>l and hl(ξ) = hl for all l ∈ {1, . . . , L} \ L,
where L ⊆ {1, . . . , L}, then problem (6.10) is equivalent to

minimize θ

subject to θ ∈ R, x ∈ X , y ∈ YK

t>l x+w>l yk ≤ hl ∀ l ∈ {1, . . . , L} \ L, ∀ k ∈ K∨
k∈K

[
c>x+ d(ξ)>yk ≤ θ

tl(ξ)
>x+wl(ξ)

>yk ≤ hl(ξ) ∀ l ∈ L

]
∀ ξ ∈ Ξ.
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By construction, every feasible solution (θ,x,y) to the above problem is feasible in
problem (6.10). Conversely, fix any feasible solution (θ,x,y) to problem (6.10) and
assume that t>l x+w>l yk > hl for some k ∈ K and l ∈ {1, . . . , L} \ L. In that case, the kth

disjunct in (6.10) is violated for every realization ξ ∈ Ξ. We can therefore replace yk with
a different candidate policy yk′ that satisfies t>l x+w>l yk′ ≤ hl for all l ∈ {1, . . . , L} \ L
without sacrificing feasibility. (Note that such a candidate policy yk′ exists since (θ,x,y)
is assumed to be feasible in (6.10).) Replacing any infeasible policy in this way results in
a solution that is feasible in the above problem.

Problem (6.10) cannot be solved directly as it contains infinitely many disjunctive con-
straints. Instead, our solution scheme iteratively solves a sequence of (increasingly tighter)
relaxations of this problem that are obtained by enforcing the disjunctive constraints over
finite subsets of Ξ. Whenever the solution of such a relaxation violates the disjunction for
some realization ξ ∈ Ξ, we create K subproblems that enforce the disjunction associated
with ξ to be satisfied by the kth disjunct, k = 1, . . . , K. Our solution scheme is reminiscent
of discretization methods employed in semi-infinite programming, which iteratively replace
an infinite set of constraints with finite subsets and solve the resulting discretized prob-
lems. Indeed, our scheme can be interpreted as a generalization of Kelley’s cutting-plane
method [59, 168] applied to semi-infinite disjunctive programs. In the special case where
K = 1, our method reduces to the cutting-plane method for (static) robust optimization
problems proposed in [203].

In the remainder of this section, we describe our basic branch-and-bound scheme
(Section 6.3.1), we study its convergence (Section 6.3.2), we discuss algorithmic variants
to the basic scheme that can enhance its numerical performance (Section 6.3.3), and we
present a heuristic variant that can address problems of larger scale (Section 6.3.4).

6.3.1 Branch-and-Bound Algorithm

Our solution scheme iteratively solves a sequence of scenario-based K-adaptability
problems and separation problems. We define both problems first, and then we describe
the overall algorithm.

the scenario-based K -adaptability problem . For a collection Ξ1, . . . , ΞK of
finite subsets of the uncertainty set Ξ, we define the scenario-based K-adaptability problem
as

M(Ξ1, . . . , ΞK) = minimize θ

subject to θ ∈ R, x ∈ X , y ∈ YK

c>x+ d(ξ)>yk ≤ θ

T (ξ)x+W (ξ)yk ≤ h(ξ)

}
∀ ξ ∈ Ξk, ∀ k ∈ K.

(6.11)
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If X and Y are convex, problem (6.11) is an LP; otherwise, it is an MILP. The problem is
closely related to a relaxation of the semi-infinite disjunctive program (6.10) that enforces
the disjunction only over the realizations ξ ∈ ⋃k∈K Ξk. More precisely, problem (6.11) can
be interpreted as a restriction of that relaxation which requires the kth candidate policy yk
to be worst-case optimal for all realizations ξ ∈ Ξk, k ∈ K. We obtain an optimal solution
(θ,x,yk) to the relaxed semi-infinite disjunctive program by solvingM(Ξ1, . . . , ΞK) for
all partitions (Ξ1, . . . , ΞK) of

⋃
k∈K Ξk and reporting the optimal solution (θ,x,yk) of the

problemM(Ξ1, . . . , ΞK) with the smallest objective value.

If Ξk = ∅ for all k ∈ K, then problem (6.11) is unbounded, and we stipulate that its
optimal value is −∞ and that its optimal value is attained by any solution (−∞,x,y)
with (x,y) ∈ X ×YK. Otherwise, if problem (6.11) is infeasible for Ξ1, . . . , ΞK, then we
define its optimal value to be +∞. In all other cases, the optimal value of problem (6.11)
is finite and it is attained by an optimal solution (θ,x,y) since X and Y are compact.

Remark 6.2 (Decomposability). For K-adaptability problems without first-stage decisions x,
problem (6.11) decomposes into K scenario-based static robust optimization problems that are only
coupled through the constraints referencing the epigraph variable θ. In this case, we can recover
an optimal solution to problem (6.11) by solving each of the K static problems individually and
identifying the optimal θ as the maximum of their optimal values.

the separation problem . For a feasible solution (θ,x,y) to the scenario-based
K-adaptability problem (6.11), we define the separation problem as

S(θ,x,y) = max
ξ∈Ξ

S(θ,x,y, ξ), where

S(θ,x,y, ξ) = min
k∈K

max
{
c>x+ d(ξ)>yk − θ, max

l∈{1,...,L}

{
tl(ξ)

>x+wl(ξ)
>yk − hl(ξ)

}}
,

(6.12)

for S : R ∪ {−∞} × X × YK 7→ R ∪ {+∞} and S : R ∪ {−∞} × X × YK × Ξ 7→ R ∪
{+∞}. Whenever it is positive, the innermost maximum in the definition of S(θ,x,y, ξ)
records the maximum constraint violation of the candidate policy yk under the parameter
realization ξ ∈ Ξ. Likewise, the quantity c>x+ d(ξ)>yk − θ denotes the excess of the
objective value of yk under the realization ξ over the current candidate value of the
worst-case objective, θ. Thus, S(θ,x,y, ξ) is strictly positive if and only if every candidate
policy yk either is infeasible or results in an objective value greater than θ under the
realization ξ ∈ Ξ. Whenever θ is finite, the separation problem is feasible and bounded,
and it has an optimal solution since Ξ is nonempty and compact. Otherwise, we have
S(θ,x,y) = +∞, and the optimal value is attained by any ξ ∈ Ξ.
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Observation 6.3. The separation problem (6.12) is equivalent to the MILP

maximize ζ

subject to ζ ∈ R, ξ ∈ Ξ, zkl ∈ {0, 1}, (k, l) ∈ K × {0, 1, . . . , L}
L

∑
l=0

zkl = 1

zk0 = 1 ⇒ ζ ≤ c>x+ d(ξ)>yk − θ

zkl = 1 ⇒ ζ ≤ tl(ξ)
>x+wl(ξ)

>yk − hl(ξ) ∀ l ∈ {1, . . . , L}

 ∀ k ∈ K.

(6.13)

This problem can be solved in polynomial time if Ξ is convex and the number of policies K is fixed.

Proof. Fix any feasible solution (θ,x,y) to the scenario-based K-adaptability prob-
lem (6.11). For every ξ ∈ Ξ, we can construct a feasible solution (ζ, ξ, z) to problem (6.13)
with ζ = S(θ,x,y, ξ) by setting zk0 = 1 if c>x+ d(ξ)>yk − θ ≥ tl(ξ)

>x+wl(ξ)
>yk −

hl(ξ) for all l = 1, . . . , L and zkl = 1 for l ∈ arg max
l∈{1,...,L}

{
tl(ξ)

>x+wl(ξ)
>yk − hl(ξ)

}
other-

wise (where ties can be broken arbitrarily). We thus conclude that S(θ,x,y) is less than
or equal to the optimal value of problem (6.13). Likewise, every feasible solution (ζ, ξ, z)
to problem (6.13) satisfies ζ ≤ max

{
c>x+d(ξ)>yk− θ, max

l∈{1,...,L}
{tl(ξ)

>x+wl(ξ)
>yk−

hl(ξ)}
}

for all k ∈ K; that is, ζ ≤ S(θ,x,y, ξ). Thus, the optimal value of problem (6.13)
is less than or equal to S(θ,x,y) as well.

If the number of policies K is fixed and the uncertainty set Ξ is convex, then problem (6.13)
can be solved by enumerating all (L + 1)K possible choices for z, solving the resulting
linear programs in ζ and ξ and reporting the solution with the maximum value of ζ.

the algorithm . Our solution scheme solves a sequence of scenario-based K-
adaptability problems (6.11) over monotonically increasing scenario sets Ξk, k ∈ K.
At each iteration, the separation problem (6.13) identifies a new scenario ξ ∈ Ξ to be
added to these sets.

1. Initialize. Set N ← {τ0} (node set), where τ0 = (Ξ0
1, . . . , Ξ0

K) with Ξ0
k = ∅ for all

k ∈ K (root node). Set (θi,xi,yi)← (+∞, ∅, ∅) (incumbent solution).

2. Check convergence. If N = ∅, then stop and declare infeasibility (if θi = +∞) or
report (xi,yi) as an optimal solution to problem (6.2).

3. Select node. Select a node τ = (Ξ1, . . . , ΞK) from N . Set N ← N \ {τ}.
4. Process node. Let (θ,x,y) be an optimal solution to the scenario-based K-adaptability

problem (6.11). If θ ≥ θi, then go to Step 2.

5. Check feasibility. Let (ζ, ξ, z) be an optimal solution to the separation problem (6.13).
If ζ ≤ 0, then set (θi,xi,yi)← (θ,x,y) and go to Step 2.
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6. Branch. Instantiate K new nodes τ1, . . . , τK as follows: τk = (Ξ1, . . . , Ξk ∪
{ξ}, . . . , ΞK) for each k ∈ K. Set N ← N ∪ {τ1, . . . , τK} and go to Step 3.

Our branch-and-bound algorithm can be interpreted as an uncertainty set partitioning
scheme. For a solution (θ,x,y) in Step 4, the sets

Ξ(θ,x,yk) =
{
ξ ∈ Ξ : c>x+ d(ξ)>yk ≤ θ, T (ξ)x+W (ξ)yk ≤ h(ξ)

}
, k ∈ K,

describe the regions of the uncertainty set Ξ for which at least one of the candidate
policies is feasible and results in an objective value smaller than or equal to θ. Step 5

of the algorithm attempts to identify a realization ξ ∈ Ξ \ ⋃k∈K Ξ(θ,x,yk) for which
every candidate policy either is infeasible or results in an objective value that exceeds θ.
If there is no such realization, then the solution (x,y) is feasible in the K-adaptability
problem (6.2). Otherwise, Step 6 assigns the realization ξ to each scenario subset Ξk,
k ∈ K, in turn. Figure 6.3 illustrates our solution scheme.

Figure 6.3: An illustrative example with K = 2 policies. Each cube represents the uncertainty
set Ξ while the shaded regions represent Ξ(θ,x,y1) and Ξ(θ,x,y2). The green and
blue dots represent elements of the sets Ξ1 and Ξ2, respectively, while the red squares
represent the candidate realizations ξ identified in Step 5 of the algorithm.

6.3.2 Convergence Analysis

We now establish the correctness of our branch-and-bound scheme, as well as conditions
for its asymptotic and finite convergence.

Theorem 6.1 (Correctness). If the branch-and-bound scheme terminates, then it either returns
an optimal solution to problem (6.2) or correctly identifies the latter as infeasible.
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Proof. We first show that if the problem instance is infeasible, then the algorithm ter-
minates with the incumbent solution (θi,xi,yi) = (+∞, ∅, ∅). Indeed, the algorithm
can only update the incumbent solution in Step 5 if the objective value of the separa-
tion problem is non-positive. By construction, this is only possible if the algorithm has
determined a feasible solution.

We now show that for feasible problem instances, the algorithm terminates with an
optimal solution (xi,yi) of problem (6.2). To this end, assume that (x?,y?) is an optimal
solution of problem (6.2) with objective value θ?. Let T be the set of all nodes of the
branch-and-bound tree for which (θ?,x?,y?) is feasible in the corresponding scenario-
based K-adaptability problem (6.11). Note that T 6= ∅ since (θ?,x?,y?) is feasible in
the root node. Let T ′ ⊆ T be the set of those nodes which have children in T and
consider the set T ′′ = T \ T ′; by construction, we have T ′′ 6= ∅. Consider an arbitrary
node τ ∈ T ′′. By definition of T ′′, our algorithm has not branched τ. Since τ has been
selected in Step 3, this is only possible if either (i) τ has been fathomed in Step 4 or if (ii)
τ has been fathomed in Step 5. In the former case, the solution (θ?,x?,y?) must have
been weakly dominated by the incumbent solution (θi,xi,yi), which therefore must be
optimal as well. In the latter case, the incumbent solution must have been updated to
(θ?,x?,y?).

We now show that our branch-and-bound scheme converges asymptotically to an op-
timal solution of the K-adaptability problem (6.2). Our result has two implications: (i)
for infeasible problem instances, the algorithm always terminates after finitely many
iterations, i.e., infeasibility is detected in finite time; (ii) for feasible problem instances, the
algorithm eventually only inspects solutions in the neighborhood of optimal solutions.

Theorem 6.2 (Asymptotic Convergence). Every accumulation point (θ̂, x̂, ŷ) of the solutions
to the scenario-based K-adaptability problem (6.11) in an infinite branch of the branch-and-bound
tree gives rise to an optimal solution (x̂, ŷ) of the K-adaptability problem (6.2) with objective
value θ̂.

Proof. We denote by (θ`,x`,y`) and (ζ`, ξ`, z`) the sequences of optimal solutions to the
scenario-based K-adaptability problem in Step 4 and the separation problem in Step 5

of the algorithm, respectively, that correspond to the node sequence τ`, ` = 0, 1, . . ., of
some infinite branch of the branch-and-bound tree. Since X , Y and Ξ are compact, the
Bolzano-Weierstrass theorem implies that (θ`,x`,y`) and (ζ`, ξ`, z`) each have at least
one accumulation point.

We first show that every accumulation point (θ̂, x̂, ŷ) of the sequence (θ`,x`,y`) corre-
sponds to a feasible solution (x̂, ŷ) of the K-adaptability problem (6.2) with objective value
θ̂. By possibly going over to subsequences, we can without loss of generality assume
that the two sequences (θ`,x`,y`) and (ζ`, ξ`, z`) converge themselves to (θ̂, x̂, ŷ) and
(ζ̂, ξ̂, ẑ), respectively. Assume now that (x̂, ŷ) does not correspond to a feasible solution
of the K-adaptability problem (6.2) with objective value θ̂. Then there is ξ? ∈ Ξ such that
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S(θ̂, x̂, ŷ, ξ?) ≥ δ for some δ > 0. By construction of the separation problem (6.13), this
implies that

S(θ`,x`,y`, ξ`) = max
ξ∈Ξ

S(θ`,x`,y`, ξ) ≥ S(θ`,x`,y`, ξ?) ≥ δ/2

for all ` sufficiently large. By taking limits and exploiting the continuity of S, we conclude
that

S(θ̂, x̂, ŷ, ξ̂) ≥ S(θ̂, x̂, ŷ, ξ?) ≥ δ/2.

Note, however, that S(θ`+1,x`+1,y`+1, ξ`) ≤ 0 since ξ` ∈ Ξ`+1
k for some k ∈ K. Since

the sequence (θ`+1,x`+1,y`+1) also converges to (θ̂, x̂, ŷ) and ξ` converges to ξ̂, we thus
conclude that S(θ̂, x̂, ŷ, ξ̂) ≤ 0, which yields the desired contradiction.

We now show that every accumulation point (θ̂, x̂, ŷ) of the sequence (θ`,x`,y`) corre-
sponds to an optimal solution (x̂, ŷ) of the K-adaptability problem (6.2) with objective
value θ̂. Assume to the contrary that (θ̂, x̂, ŷ) is feasible but suboptimal. Then there is a
feasible solution (θ′,x′,y′) with θ′ < θ̂ that either (i) is used to update the incumbent
solution after finitely many iterations, or (ii) constitutes the accumulation point of another
infinite sequence (θ′,`,x′,`,y′,`). In the first case, the objective values θ` of the scenario-
based K-adaptability problems will be arbitrarily close to θ̂ for ` sufficiently large, which
implies that the corresponding nodes τ` will be fathomed in Step 4. Similarly, in the
second case the objective values θ` and θ′,` of the scenario-based K-adaptability problems
will be arbitrarily close to θ̂ and θ′, respectively, for ` sufficiently large. Since θ′ < θ̂, the
algorithm will fathom the tree nodes corresponding to the sequence (θ`,x`,y`) in Step 4.
The result now follows since both cases contradict the assumption that (θ̂, x̂, ŷ) is an
accumulation point.

Theorem 6.2 guarantees that after sufficiently many iterations of the algorithm, our
scheme generates feasible solutions that are close to an optimal solution of the K-
adaptability problem (6.2). In general, our algorithm may not converge after finitely
many iterations. In the following, we discuss a class of problem instances for which finite
convergence is guaranteed.

Theorem 6.3 (Finite Convergence). The branch-and-bound scheme terminates after finitely
many iterations, if Y has finite cardinality and only the objective function in problem (6.2) is
uncertain.

Proof. If only the objective function in the K-adaptability problem (6.2) is uncertain, then
the corresponding semi-infinite disjunctive program (6.10) can be written as

minimize θ

subject to θ ∈ R, x ∈ X , y ∈ YK

Tx+Wyk ≤ h ∀k ∈ K∨
k∈K

[
c>x+ d(ξ)>yk ≤ θ

]
∀ξ ∈ Ξ,
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see Observation 6.2. Thus, the scenario-based K-adaptability problem (6.11) becomes

M(Ξ1, . . . , ΞK) = minimize θ

subject to θ ∈ R, x ∈ X , y ∈ YK

Tx+Wyk ≤ h ∀k ∈ K
c>x+ d(ξ)>yk ≤ θ ∀ξ ∈ Ξk, ∀k ∈ K,

and the separation problem (6.12) can be written as

S(θ,x,y) = max
ξ∈Ξ

min
k∈K

{
c>x+ d(ξ)>yk − θ

}
= c>x− θ + max

ξ∈Ξ
min
k∈K

{
d(ξ)>yk

}
.

We now show that if Y has finite cardinality, then our branch-and-bound algorithm
terminates after finitely many iterations. To this end, assume that this is not the case,
and let τ`, ` = 0, 1, . . . be some rooted branch of the tree with infinite length. We denote
by (θ`,x`,y`) and (ζ`, ξ`, z`) the corresponding sequences of optimal solutions to the
master and the separation problem, respectively. Since Y has finite cardinality, we must
have y`1 = y`2 for some `1 < `2.

The solution (θ`2 ,x`2 ,y`2) satisfies S(θ`2 ,x`2 ,y`2) > 0 since τ`, ` = 0, 1, . . ., is a branch
of infinite length. Since y`2 = y`1 , we thus conclude that

c>x`2 − θ`2 + max
ξ∈Ξ

min
k∈K

{
d(ξ)>y`1

k

}
> 0.

Since ξ`1 is optimal in the separation problem S(θ`1 ,x`1 ,y`1) and S(θ`1 ,x`1 ,y`1 , ξ`1) > 0,
we have

c>x`2 − θ`2 + min
k∈K

{
d(ξ`1)>y`1

k

}
= c>x`2 − θ`2 + max

ξ∈Ξ
min
k∈K

{
d(ξ)>y`1

k

}
> 0.

However, since the node τ`2 = (Ξ`2
1 , . . . , Ξ`2

K ) is a descendant of the node τ`1 =

(Ξ`1
1 , . . . , Ξ`1

K ), we must have ξ`1 ∈ Ξ`2
k for some k ∈ K. This, along with the fact

that (θ`2 ,x`2 ,y`2) is a feasible solution to the master problemM(Ξ`2
1 , . . . , Ξ`2

K ) and that
y`2 = y`1 , implies that

c>x`2 − θ`2 + min
k∈K

{
d(ξ`1)>y`1

k

}
≤ 0.

This yields the desired contradiction and proves the theorem.

We note that the assumption of deterministic constraints is critical in the previous
statement.
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Example 6.2. Consider the following instance of the K-adaptability problem (6.2):

inf
y1,y2∈{0,1}

sup
ξ∈[0,1]

inf
k∈{1,2}

{(ξ − 1)(1− 2yk) : yk ≥ ξ}

On this instance, our branch-and-bound algorithm generates a tree in which all branches have
finite length, except (up to permutations) the sequence of nodes τ` = (Ξ`

1, Ξ`
2), where (Ξ0

1, Ξ0
2) =

(∅, ∅) and (Ξ`
1, Ξ`

2) =
({

ξ02−i : i = 0, 1, . . . , `− 1
}

, {0}
)
, ` > 0, for some ξ0 ∈ (0, 1]. For

the node τ`, ` > 1, the optimal solution of the scenario-based K-adaptability problem (6.11)
is (θ`, y`1, y`2) = (1− ξ02−`+1, 1, 0), while the optimal solution of the separation problem is
(ζ`, ξ`) = (ξ02−`, ξ02−`). Thus, our branch-and-bound algorithm does not terminate after
finitely many iterations.

We note that every practical implementation of our branch-and-bound scheme will
fathom nodes in Step 5 whenever the objective value of the separation problem (6.12)
is sufficiently close to zero (within some ε-tolerance). This ensures that the algorithm
terminates in finite time in practice. Indeed, in Example 6.2 the objective value of the
separation problem is less than ε for all nodes τ` with ` ≥ log2(ξ

0ε−1), and our branch-
and-bound algorithm will fathom the corresponding path of the tree after O(log ε−1)

iterations if we seek ε-precision solutions.

6.3.3 Improvements to the Basic Algorithm

The algorithm of Section 6.3.1 serves as a blueprint that can be extended in multiple ways.
In the following, we discuss three enhancements that improve the numerical performance
of our algorithm.

breaking symmetry. For any feasible solution (x,y) of the K-adaptability prob-
lem (6.2), every solution (x,y′), where y′ is one of the K! permutations of the second-
stage policies (y1, . . . ,yK), is also feasible in (6.2) and attains the same objective value.
This implies that our branch-and-bound tree is highly isomorphic since the scenario-
based problems (6.11) and (6.13) are identical (up to a permutation of the policies) across
many nodes. We can reduce this undesirable symmetry by modifying Step 6 of our
branch-and-bound scheme as follows:

6
′. Branch. Let K′ = 1 if Ξ1 = . . . = ΞK = ∅ and let K′ = min

{
K, 1 + max

k∈K

{
k :

Ξk 6= ∅
}}

otherwise. Instantiate K′ new nodes τk = (Ξ1, . . . , Ξk ∪ {ξ}, . . . , ΞK),

k = 1, . . . , K′. Set N ← N ∪ {τ1, . . . , τK′} and go to Step 3.

Despite generating only a subset of the nodes that our original algorithm constructs, the
modification above always maintains at least one of the K! solutions symmetric to every
feasible solution.
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integration into milp solvers . Step 4 of our algorithm solves the scenario-
based problem (6.11) from scratch in every node, despite the fact that two successive
problems along any branch of the branch-and-bound tree differ only by the addition of a
few constraints. We can leverage this commonality if we integrate our branch-and-bound
algorithm into the solution scheme of the MILP solver used for problem (6.11). In doing
so, we can also exploit the advanced facilities commonly present in the state-of-the-art
solvers such as warm-starts and cutting planes, among others.

In order to integrate our branch-and-bound algorithm into the solution scheme of the
MILP solver, we initialize the solver with the scenario-based problem (6.11) corresponding
to the root node τ0 of our algorithm, see Step 1. The solver then proceeds to solve this
problem using its own branch-and-bound procedure. Whenever the solver encounters an
integral solution (θ,x,y) ∈ R×X ×YK, we solve the associated separation problem (6.13).
If S(θ,x,y) > 0, then we execute Step 6 of our algorithm through a branch callback:
we report the K new branches to the solver, which will discard the current solution.
Otherwise, if S(θ,x,y) ≤ 0, then we do not create any new branches, and the solver will
accept (θ,x,y) as the new incumbent solution. This ensures that only those solutions
which are feasible in problem (6.10) are accepted as incumbent solutions.

Whenever the solver encounters a fractional solution, it will by default branch on an
integer variable that is fractional in the current solution. However, if S(θ,x,y) > 0, it is
possible to override this strategy and instead execute Step 6 of our algorithm. In such
cases, a heuristic rule can be used to decide whether to branch on integer variables or
to branch as in Step 6. In our computational experience, a simple rule that alternates
between the default branching rule of the solver and the one defined by Step 6 appears
to perform well in practice.

6.3.4 Modification as a Heuristic Algorithm

Whenever the number of policies K is large, the solution of the scenario-based K-
adaptability problem (6.11) can be time consuming. In such cases, only a limited number
of nodes will be explored by the algorithm in a given amount of computation time, and
the quality of the final incumbent solution may be poor. As a remedy, we can reduce the
size and complexity of the scenario-based K-adaptability problem (6.11) by fixing some
of its second-stage policies. In doing so, we obtain a heuristic variant of our algorithm
that can scale to large values of K.

In our computational experience, a simple heuristic that sequentially solves the 1-, 2-,
. . . , K-adaptability problems by fixing in each K-adaptability problem all but one of
the second-stage policies, y1, . . . ,yK−1, to their corresponding values in the (K − 1)-
adaptability problem, performs well in practice. This heuristic is motivated by two
observations. First, the resulting scenario-based K-adaptability problems (6.11) have the
same size and complexity as the corresponding scenario-based 1-adaptability problems.
Second, in our experiments on instances with uncertain objective coefficients d, we often

227



6.4 numerical results

found that some optimal second-stage policies of the (K− 1)-adaptability problem also
appear in the optimal solution of the K-adaptability problem. In fact, it can be shown that
this heuristic can obtain K-adaptable solutions that improve upon 1-adaptable solutions
only if the objective coefficients d are affected by uncertainty.

6.4 numerical results

We now analyze the computational performance of our branch-and-bound scheme in a
variety of problem instances from the literature. We consider a shortest path problem
with uncertain arc weights (Section 6.4.1), a capital budgeting problem with uncertain
cash flows (Section 6.4.2), a variant of the capital budgeting problem with the additional
option to take loans (Section 6.4.3), a project management problem with uncertain task
durations (Section 6.4.4), and a vehicle routing problem with uncertain travel times
(Section 6.4.5). Of these, the first two problems involve only binary decisions, and they
can therefore also be solved with the approach described in [145]. In these cases, we
show that our solution scheme is highly competitive, and it frequently outperforms the
approach of [145]. In contrast, the third and fourth problems also involve continuous
decisions, and there is no existing solution approach for their associated K-adaptability
problems. However, the project management problem from Section 6.4.4 involves only
continuous second-stage decisions, and therefore the corresponding two-stage robust
optimization problem (6.1) can also be approximated using affine decision rules [38],
which represent the most popular approach for such problems. In this case, we elucidate
the benefits of K-adaptable constant and affine decisions over standard affine decision
rules. Finally, the first and last problems involve only binary second-stage decisions and
deterministic constraints, and they can therefore also be addressed with the heuristic
approach described in [69]. In these cases, we show that the heuristic variant of our
algorithm often outperforms the latter approach in terms of solution quality.

For each problem category, we investigate the tradeoffs between computational effort and
improvement in objective value of the K-adaptability problem for increasing values of K.
We demonstrate that (i) the K-adaptability problem can provide significant improvements
over static robust optimization (which corresponds to the case K = 1), and that (ii) our
solution scheme can quickly determine feasible solutions of high quality.

We implemented our branch-and-bound algorithm in C++ using the C callable library of
CPLEX 12.7 [154]. We used a constraint feasibility tolerance of ε = 10−4 to accept any
incumbent solutions, whereas all other solver options were kept at their default values.
The experiments were conducted on a single core of an Intel Xeon 2.8GHz computer
with 16GB RAM.

228



6.4 numerical results

6.4.1 Shortest Paths

We consider the shortest path problem from [145]. Let G = (V, A) be a directed graph
with nodes V = {1, . . . , N}, arcs A ⊆ V × V and arc weights dij(ξ) = (1 + ξij/2)d0

ij,
(i, j) ∈ A. Here, d0

ij ∈ R+ represents the nominal weight of the arc (i, j) ∈ A and
ξij denotes the uncertain deviation from the nominal weight. The realizations of the
uncertain vector ξ are known to belong to the set

Ξ =

ξ ∈ [0, 1]|A| : ∑
(i,j)∈A

ξij ≤ Γ

 ,

which stipulates that at most Γ arc weights may maximally deviate from their nominal
values.

Let s ∈ V and t ∈ V, s 6= t, denote the source and terminal nodes of G, respectively. The
decision-maker aims to choose K paths from s to t here-and-now, i.e., before observing
the actual arc weights, such that the worst-case weight of the shortest among the chosen
paths is minimized. This problem can be formulated as an instance of the K-adaptability
problem (6.2):

inf
y∈YK

sup
ξ∈Ξ

inf
k∈K

d(ξ)>yk

Here, Y denotes the set of all s− t paths in G; that is,

Y =

y ∈ {0, 1}|A| : ∑
(j,l)∈A

yjl − ∑
(i,j)∈A

yij ≥ I[j = s]− I[j = t] ∀ j ∈ V

 .

Note that this problem only contains second-stage decisions and as such, the correspond-
ing two-stage robust optimization problem (6.1) may be of limited interest in practice.
Nevertheless, the K-adaptability problem (6.2) has important applications in logistics
and disaster relief [145].

For each graph size N ∈ {20, 25, . . . , 50}, we randomly generate 100 problem instances as
follows. We assign the coordinates (ui, vi) ∈ R2 to each node i ∈ V uniformly at random
from the square [0, 10]2. The nominal weight of the arc (i, j) ∈ A is defined to be the

Euclidean distance between the nodes i and j; that is, d0
ij =

√
(ui − uj)2 + (vi − vj)2. The

source node s and the terminal node t are defined to be the nodes with the maximum
Euclidean distance between them. The arc set A is obtained by removing from the set of
all pairwise links the b0.7(N2 − N)c connections with the largest nominal weights. We
set the uncertainty budget to Γ = 3. Further details on the parameter settings can be
found in [145].

Table 6.2 summarizes the numerical performance of our branch-and-bound scheme for
K ∈ {2, 3, 4}. Table 6.2 indicates that our scheme is able to reliably compute optimal
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solutions for small values of N and K, while the average optimality gap for large values
of N and K is less than 9%. The numerical performance is strongly affected by the value
of K; very few of the 4-adaptable instances are solved to optimality within the time
limit. This decrease in tractability is partly explained in Figure 6.4, which shows the
improvement in objective value of the K-adaptability problem over the static problem
(where K = 1). Figure 6.4a shows that the computed 4-adaptable solutions are typically
of high quality since they improve upon the static solutions by as much as 13% for
large values of N. Moreover, Figure 6.4b shows that these solutions are obtained within
1 minute (on average), even for the largest instances. This indicates that the gaps in
Table 6.2 are likely to be very conservative since the majority of computation time is
spent on obtaining a certificate of optimality for these solutions.

Table 6.2: Results for the shortest path problem. For each value of K, the “Opt (#)” column reports
the number of instances (out of 100) which were solved to optimality, while the “Time
(s)” column reports the average time to solve these instances to optimality. For those
instances which could not be solved to optimality within the time limit of 7,200s, the
average gap |(ub− lb)/ub| × 100% between the global lower bound (lb) and global
upper bound (ub) of the branch-and-bound tree is reported in the “Gap (%)” column.

K = 2 K = 3 K = 4

N Opt (#) Time
(s)

Gap
(%)

Opt (#) Time
(s)

Gap
(%)

Opt (#) Time
(s)

Gap
(%)

20 99 6 1.23 97 408 2.51 70 539 1.74

25 91 222 4.14 64 847 2.91 33 885 2.89

30 64 744 4.40 31 1,237 4.10 16 827 4.27

35 37 1,083 5.36 14 1,020 5.01 10 896 5.23

40 10 808 6.28 6 1,670 6.43 2 39 6.10

45 9 1,152 7.70 1 16 7.06 1 15 6.61

50 2 3,307 8.55 1 2,308 7.90 0 – 7.10

Figure 6.5 illustrates the quality of the solutions obtained using the heuristic variant of
our algorithm, described in Section 6.3.4, and contrasts it with the quality of the solutions
obtained using the heuristic algorithm described in [69]. Figure 6.5 shows that, after just
one minute of computation time, the 2-, 3- and 4-adaptable solutions obtained using our
heuristic algorithm are within 0.3% of known optimal solutions and about 2% better
than those obtained using the heuristic algorithm described in [69], on average. The
differences in the qualities of the 6-, 8- and 10-adaptable solutions are smaller. The figure
also shows that the marginal gain in objective value decreases rapidly as we increase the
number of policies K. Indeed, while the 2-adaptable solutions are about 8.3% better than
the 1-adaptable (i.e., static) solutions, the 10-adaptable solutions are only about 0.1%
better than the 8-adaptable solutions. This may be explained by the possibility that the
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Figure 6.4: Results for the shortest path problem using the exact algorithm. The graphs show the
average improvement |(θ1− θK)/θ1| × 100% of the objective value of the K-adaptability
problem (θK) over the static problem (θ1). The left graph shows the improvement
after 2 hours (for increasing N), while the right graph shows the time profile of the
improvement of the incumbent solution in the first 60 seconds (for N = 50).

objective values of the corresponding K-adaptable solutions are very close to the optimal
value of the two-stage robust optimization problem (6.1).
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Figure 6.5: Results for the shortest path problem using the heuristic algorithm. The graphs show
the average improvement after 1 minute obtained using the heuristic variant of our
algorithm (left) and the heuristic algorithm described in [69] (right).
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6.4.2 Capital Budgeting

We consider the capital budgeting problem from [145], where a company wishes to invest
in a subset of N projects. Each project i has an uncertain cost ci(ξ) and an uncertain
profit ri(ξ) that are governed by factor models of the form

ci(ξ) =
(

1 + Φ>i ξ/2
)

c0
i and ri(ξ) =

(
1 + Ψ>i ξ/2

)
r0

i for i = 1, . . . , N.

In these models, c0
i and r0

i represent the nominal cost and the nominal profit of project i,
respectively, while Φ>i and Ψ>i represent the ith row vectors of the factor loading matrices
Φ, Ψ ∈ RN×4. The realizations of the uncertain vector of risk factors ξ belong to the
uncertainty set Ξ = [−1, 1]4.

The company can invest in a project either before or after observing the risk factors ξ. In
the latter case, the company generates only a fraction κ of the profit (reflecting a penalty
for postponement) but incurs the same cost as in the case of an early investment. Given
an investment budget B, the capital budgeting problem can then be formulated as the
following instance of the two-stage robust optimization problem (6.1):

sup
x∈X

inf
ξ∈Ξ

sup
y∈Y

{
r(ξ)>(x+ κy) : c(ξ)>(x+ y) ≤ B, x+ y ≤ e

}
,

where X = Y = {0, 1}N .

For our numerical experiments, we randomly generate 100 instances for each problem
size N ∈ {5, 10, . . . , 30} as follows. The nominal costs c0 are chosen uniformly at random
from the hyperrectangle [0, 10]N . We then set r0 = c0/5, B = e>c0/2 and κ = 0.8. The
rows of the factor loading matrices Φ and Ψ are sampled uniformly from the unit simplex
in R4; that is, the ith row vector is sampled from [0, 1]4 such that Φ>i e = Ψ>i e = 1 is
satisfied for all i = 1, . . . , N.

Table 6.3 summarizes the numerical performance of our branch-and-bound scheme for
K ∈ {2, 3, 4}. Table 6.3 demonstrates that our branch-and-bound scheme performs very
well for this problem class since the majority of instances is solved to optimality for
K ∈ {2, 3}. Moreover, the optimality gaps for the unsolved instances are less than 4%
for K ∈ {2, 3} and less than 9% for K = 4 on average. Additionally, Figure 6.6 shows
that even for the largest instances, high-quality incumbent solutions which significantly
improve (≈100%) upon the static robust solutions are obtained within 1 minute of
computation time. Our results compare favorably with those of [145] as well as those of
the partition-and-bound approach for the corresponding two-stage robust optimization
problem presented in [44].

6.4.3 Capital Budgeting with Loans

We consider a generalization of the capital budgeting problem from Section 6.4.2 where
the company can increase its investment budget by purchasing a loan from the bank
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Table 6.3: Results for the capital budgeting problem. The columns have the same interpretation
as in Table 6.2.

K = 2 K = 3 K = 4

N Opt (#) Time
(s)

Gap
(%)

Opt (#) Time
(s)

Gap
(%)

Opt (#) Time
(s)

Gap
(%)

5 100 1 – 100 1 – 100 3 –

10 100 1 – 100 16 – 100 149 –

15 100 10 – 99 566 0.33 69 2,245 1.42

20 100 419 – 34 2,787 1.65 5 3,710 4.02

25 29 2,238 1.12 4 2,281 2.63 0 – 6.22

30 1 188 3.01 1 6,687 3.35 0 – 8.27

at a unit cost of λ > 0 before the risk factors ξ are observed as well as purchasing a
loan at a unit cost of µλ (with µ > 1) after the observation occurs. If the company does
not purchase any loan, then the problem reduces to the one described in Section 6.4.2.
Therefore, we expect the worst-case profits to be at least as large as in that setting. The
generalized capital budgeting problem can be formulated as the following instance of
problem (6.1):

sup
(x0,x)∈X

inf
ξ∈Ξ

sup
(y0,y)∈Y

r(ξ)>(x+ κy)− λ(x0 + µy0) :

 x+ y ≤ e

c(ξ)>x ≤ B + x0

c(ξ)>(x+ y) ≤ B + x0 + y0




Here, X = Y = R+ × {0, 1}N . The constraint c(ξ)>x ≤ B + x0 ensures that the first-
stage expenditures c(ξ)>x are fully covered by the budget B as well as the loan x0 taken
here-and-now.

We consider problems with N ∈ {5, 10, . . . , 30} projects. For each value of N, we solve
the same 100 instances from Section 6.4.2 with λ = 0.12 and µ = 1.2. Table 6.4 shows
the computational performance of our branch-and-bound scheme for K ∈ {2, 3, 4}. As
in the case of the problems discussed so far, the numerical tractability of our algorithm
decreases as the value of K increases. However, a comparison of Tables 6.3 and 6.4
suggests that the numerical tractability is not significantly affected by the presence of the
additional continuous variables x0 and y0. Indeed, the majority of instances for K = 2
are solved to optimality and the average gap across all unsolved instances is less than 5%
for K = 3 and less than 9% for K = 4. Figure 6.7 shows that the 4-adaptable solutions
improve upon the static solutions by as much as 115% in the largest instances. Although
not shown in the figure, a comparison of the objective values of the final incumbent
solutions with those of the capital budgeting problem without loans (Section 6.4.2) reveals
that for N ≥ 15, the option to purchase loans has no effect on the worst-case profit of the
static solution and results in less than 1% improvement in the worst-case profit of the
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Figure 6.6: Results for the capital budgeting problem. The top (bottom) graphs are for the exact
(heuristic) algorithm under a time limit of 2 hours (1 minute). The left graphs show the
average improvement at the time limit (for increasing N), while the right graphs show
the time profile of the improvement of the incumbent solution in the first 60 seconds
(for N = 30).

2-adaptable solution. Indeed, the option to purchase loans results in significantly better
worst-case profits only if K ≥ 3. The average relative gain in objective value is 4.3% for
K = 3 and 5.9% for K = 4.

6.4.4 Project Management

We define a project as a directed acyclic graph G = (V, A) whose nodes V = {1, . . . , N}
represent the tasks (e.g., ‘build foundations’ or ‘develop prototype’) and whose arcs
A ⊆ V ×V denote the temporal precedences, i.e., (i, j) ∈ A implies that task j cannot

234



6.4 numerical results

Table 6.4: Results for the capital budgeting problem with loans. The columns have the same
interpretation as in Table 6.2.

K = 2 K = 3 K = 4

N Opt (#) Time
(s)

Gap
(%)

Opt (#) Time
(s)

Gap
(%)

Opt (#) Time
(s)

Gap
(%)

5 100 1 – 100 9 – 98 80 3.14

10 100 3 – 100 78 – 98 938 1.92

15 100 62 – 96 1,265 0.91 23 3,989 2.23

20 85 1,680 0.80 20 3,941 1.71 0 – 4.94

25 12 3,363 2.29 1 2,693 3.34 0 – 6.88

30 1 424 3.78 0 – 4.73 0 – 8.17

be started before task i has been completed. We assume that each task i ∈ V has an
uncertain duration di(ξ) that depends on the realization of an uncertain parameter vector
ξ ∈ Ξ. Without loss of generality, we stipulate that the project graph G has the unique
sink N ∈ V, and that the last task N has a duration of zero. This can always be achieved
by introducing dummy nodes and/or arcs.

In the following, we want to calculate the worst-case makespan of the project, i.e,
the smallest amount of time that is required to complete the project under the worst
realization of the parameter vector ξ ∈ Ξ. This problem can be cast as the following
instance of problem (6.1):

sup
ξ∈Ξ

inf
y∈Y

{
yN : yj − yi ≥ di(ξ) ∀(i, j) ∈ A

}
Here Y = RN

+ , and yi denotes the start time of task i, i = 1, . . . , N. This problem is
known to be NP-hard [268, Theorem 2.1], and we will employ affine decision rules as
well as K-adaptable constant and affine decisions to approximate the optimal value of
this problem. Note that the problem does not contain any first-stage decisions, but such
decisions could be readily included, for example, to allow for resource allocations that
affect the task durations.

For our numerical experiments, we consider the instance class presented in [268, Exam-
ple 2.2]. To this end, we set N = 3m + 1 and A = {(3l + 1, 3l + p), (3l + p, 3l + 4) : l =
0, . . . , m and p = 2, 3}, d3l+2(ξ) = ξl+1 and d3l+3(ξ) = 1− ξl+1, l = 0, . . . , m− 1, as well
as d3l+1(ξ) = 0, l = 0, . . . , m. Figure 6.8 illustrates the project network corresponding to
m = 4. Similar to [268], we consider the uncertainty set Ξ = {ξ ∈ Rm

+ : ‖ξ − e/2‖1 ≤
1/2}.
We consider project networks of size N ∈ {3m + 1 : m = 3, 4, . . . , 8}. One can show that
for each network size N, the optimal value of the corresponding static robust optimization
problem as well as the affine decision rule problem is m, see [268, Example 2.2]. For
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Figure 6.7: Results for the capital budgeting problem with loans. The graphs have the same
interpretation as in Figure 6.6.
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Figure 6.8: Project network with N = 3m + 1 nodes for m = 4.

K ∈ {2, 3, 4}, Figure 6.9 summarizes the computational performance of the branch-and-
bound scheme and the improvement in objective value of the resulting piecewise constant
and piecewise affine decision rules with K pieces over the corresponding 1-adaptable
solutions. Figures 6.9a and 6.9b show that using only two pieces, piecewise constant
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decision rules can improve upon the affine approximation by more than 12%, while a
piecewise affine decision rule can improve by more than 15%. Figures 6.9c and 6.9d
show that piecewise constant decision rules require smaller computation times than
piecewise affine decision rules. This is not surprising since piecewise constant decision
rules are parameterized by O(KN) variables, whereas piecewise affine decision rules are
parameterized by O(KN2) variables.
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Figure 6.9: Results for the project management problem. The left (right) graphs show results for
the piecewise constant (affine) K-adaptability problems for increasing values of N.
Graphs (a) and (b) depict improvements in objective value, while graphs (c) and (d)
show optimality gaps after 2 hours. The y-axes in graphs (a) and (b) have the same
interpretation as those in Figure 6.4 while the y-axes in graphs (c) and (d) have the
same interpretation as the column “Gap (%)” in Table 6.2.
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6.4.5 Vehicle Routing

We consider the classical capacitated vehicle routing problem [137, 138, 256] defined
on a complete, undirected graph G = (V, E) with nodes V = {0, 1, . . . , N} and edges
E = {(i, j) ∈ V × V : i < j}. Node 0 represents the unique depot, while each node
i ∈ VC = {1, . . . , N} corresponds to a customer with demand di ∈ R+. The depot is
equipped with M homogeneous vehicles; each vehicle has capacity C and it incurs an
uncertain travel time tij(ξ) = (1 + ξij/2)t0

ij when it traverses the edge (i, j) ∈ E. Here,
t0
ij ∈ R+ represents the nominal travel time along the edge (i, j) ∈ E, while ξij denotes

the uncertain deviation from the nominal value. Similar to the shortest path problem
from Section 6.4.1, the realizations of the uncertain vector ξ are known to belong to the
set

Ξ =

ξ ∈ [0, 1]|E| : ∑
(i,j)∈E

ξij ≤ Γ

 ,

which stipulates that at most Γ travel times may maximally deviate from their nominal
values.

A route plan (R1, . . . , RM) corresponds to a partition of the customer set VC into M
vehicle routes, Rm = (Rm,1, . . . , Rm,Nm), where Rm,l represents the lth customer and
Nm the number of customers served by the mth vehicle. This route plan is feasible
if the total demand served on each route is less than the vehicle capacity; that is, if
∑Nm

l=1 dRm,l ≤ C is satisfied for all m ∈ {1, . . . , M}. The total travel time of a feasible
route plan under the uncertainty realization ξ is given by ∑M

m=1 ∑Nm
l=0 tRm,l Rm,l+1(ξ), where

we define Rm,0 = Rm,Nm+1 = 0; that is, each vehicle starts and ends at the depot. The
decision-maker aims to choose K route plans here-and-now, i.e., before observing the
actual travel times, such that the worst-case total travel time of the shortest among the
chosen route plans is minimized. This problem can be formulated as an instance of the
K-adaptability problem (6.2):

inf
y∈YK

sup
ξ∈Ξ

inf
k∈K

t(ξ)>yk

Here, Y denotes the set of all feasible route plans in G; that is,

Y =


y ∈ Z

|E|
+ :

0 ≤ yij ≤ 1 ∀(i, j) ∈ E : i, j ∈ VC,

∑
j∈VC

y0j = 2M,

∑
j∈V:(i,j)∈E

yij = 2 ∀i ∈ VC,

∑
(i,j)∈E:i,j∈U

yij ≤ |U| −
⌈

1
D ∑

i∈U
di

⌉
∀U ⊆ VC


.

Similar to the shortest path problem, the K-adaptability formulation of the vehicle routing
problem only contains second-stage decisions, and as such, the corresponding two-stage
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robust optimization problem (6.1) is of limited interest in practice. However, the K-
adaptability problem (6.2) has important applications in logistics enterprises, where the
time available between observing the travel times in a road network and determining
the route plan is limited, or because the drivers must be trained to a small set of route
plans that are to be executed daily over the course of a year.

We note that the set Y represents the so-called two-index vehicle flow formulation of the
vehicle routing problem, in which the first equation ensures that M vehicles are used; the
second set of equations ensures that each customer is visited by exactly one vehicle; while
the third set of inequalities ensure that there are no subtours disconnected from the depot
and that all vehicle capacities are respected. This formulation is known to be extremely
challenging to solve because it consists of an exponential number of inequalities. For
K > 1, the corresponding K-adaptability problem is naturally even more challenging
and it is practically intractable to solve it using the approach described in [145]. In
contrast, the heuristic variant of our algorithm described in Section 6.3.4 as well as the
heuristic approach of [69] only require the solution of vehicle routing subproblems that
are of similar complexity as the associated 1-adaptability problems. Therefore, in the
following, we only present results using these algorithms. In both cases, we solved all
vehicle routing subproblems using the branch-and-cut algorithm described in [193].

For our numerical experiments, we consider all 49 instances from [193] with N ≤ 50,
which are commonly used to benchmark vehicle routing algorithms. We set an overall
time limit of 2 hours. For the heuristic variant of our algorithm, we further set a time
limit of 10 minutes per vehicle routing subproblem. We note that the heuristic of [69]
requires the successful termination of an expensive preprocessing step to determine good
K-adaptable solutions. Therefore, to prevent bias in favor of our algorithm, Figure 6.10

compares the two algorithms only across the 39 instances for which this step terminated
successfully. The figure shows that when the number of policies is small, the K-adaptable
solutions obtained using our algorithm are about 1% better than those obtained using
the heuristic algorithm of [69]. Moreover, the differences in their objective values are
relatively higher for larger instances.

6.5 summary

In contrast to single-stage robust optimization problems, which are typically solved via
monolithic reformulations, there is growing evidence that two-stage and multi-stage
robust optimization problems are best solved algorithmically [44, 46, 47, 218, 275]. Our
findings in this chapter appear to confirm this observation, as our proposed branch-
and-bound algorithm compares favorably with the reformulations proposed in [145]. In
terms of modeling flexibility, our algorithm can accommodate mixed continuous and
discrete decisions in both stages, can incorporate discrete uncertainty, and allows us to
model flexible piecewise affine decision rules. At the same time, our numerical results
indicate that the algorithmic approach is highly competitive in terms of computational
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Figure 6.10: Results for the vehicle routing problem. The graphs show the average improvement
after 2 hours obtained using the heuristic variant of our algorithm (left) and the
heuristic algorithm in [69] (right).

performance as well. From a practical viewpoint, a notable feature of our algorithm is
that it admits a lightweight implementation by integrating it into the branch-and-bound
schemes of commercial solvers via branch callbacks, while allowing easy modification as
a heuristic for large-scale instances.
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6.6 appendix : nomenclature

x First-stage (or here-and-now) decisions

y Second-stage (or wait-and-see) decisions

ξ Uncertain parameters

N1 Number of first-stage decisions

N2 Number of second-stage decisions

Np Number of uncertain parameters

X Domain of first-stage decisions

Y Domain of second-stage decisions

Ξ Uncertainty set

c Objective coefficients of first-stage decisions

d Objective coefficients of second-stage decisions

T Technology matrix (constraint matrix of first-stage decisions)

W Recourse matrix (constraint matrix of second-stage decisions)

h Right-hand side vector (of problem constraints)

L Number of constraints affected by uncertainty (dimension of h
and number of rows in T and W )

e Vector of ones

ek kth unit basis vector

a>i ith row of a matrix A

I[E ] Indicator function taking a value of 1 if the expression E is true
and 0 otherwise
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7
C O N C L U S I O N S A N D F U T U R E W O R K

The effective solution of vehicle routing problems can play an important role in the
competitiveness, service quality and sustainability of the global economy. In this thesis,
we have explored various novel models and algorithms to alleviate the traditional
assumptions of deterministic parameters in vehicle routing problems arising at the
operational, tactical and strategic levels of planning. In addition to these, we have also
contributed methodologically to the broader field of optimization under uncertainty,
by developing theory and algorithms for dynamic robust optimization problems. In
the following sections, we outline the key contributions made in this thesis, as well
as directions for potential future research in both vehicle routing problems as well as
optimization under uncertainty.

7.1 key contributions (in order in which they appear)

• We studied the modeling and solution of a broad class of vehicle routing problems
under customer demand uncertainty, where the goal is to determine a single set of
vehicle routes and associated fleet composition such that the total demand served
on any route is less than the associated vehicle capacity, under any realization of
the demands in a prespecified uncertainty set.

– We proposed robust versions of various classical local search moves for the
solution of this problem. The efficient evaluation of the local moves is enabled
by closed-form expressions for the worst-case load carried by a vehicle for five
classes of uncertainty sets: budget sets, factor models, ellipsoids, cardinality-
constrained sets, and discrete sets. We presented data structures that allow
efficient evaluation of the local moves and established time and storage
complexities of updating these structures.

– The proposed local search was shown to be modular by incorporating it
within two metaheuristic implementations that determine robust feasible
solutions: Iterated Local Search and Adaptive Memory Programming. The
proposed metaheuristic algorithms are simple to implement and adapt: they
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introduce few user-defined parameters and they do not incorporate any
instance-specific features, spatiotemporal decomposition schemes, or heuristic
restriction procedures to accelerate the local search process.

– We proposed an integer programming formulation and branch-and-cut algo-
rithm to obtain lower bounds on the optimal solution. A key feature of this
formulation is a generalization of the classical rounded capacity inequalities.
Efficient separation of these generalized inequalities was enabled by the same
closed-form expressions and data structures that were used in the robust local
search.

– We addressed not only the classical Capacitated VRP but also all variants of
the Heterogeneous and Fleet Size and Mix VRP that have been considered in
the literature, as well as the Site Dependent and Multi-Depot VRP, in a single,
unified framework.

– We elucidated, via an extensive study, the computational overhead of incorpo-
rating robustness in metaheuristic algorithms, the quality of the lower bounds
from the exact algorithm, as well as the tradeoff between robustness and costs
for the considered uncertainty sets.

• We studied the modeling and solution of multi-period vehicle routing problems
under customer order uncertainty, where the goal is to determine a minimum cost
visit schedule and associated routing plan for each period of a planning horizon in
which customer service requests are received dynamically during the horizon.

– We formulated the multi-period VRP under customer order uncertainty as a
multi-stage robust optimization problem. In doing so, we modeled customer
orders as discrete random variables having realizations in an uncertainty set of
finite (but possibly very large) cardinality. We proposed methods to construct
the uncertainty set using historical data in a way that can be tuned against a
user-specified risk level.

– We conservatively approximated the multi-stage robust optimization model
via a non-anticipative two-stage robust optimization model. We provided
an integer programming formulation for the latter as well as a numerically
efficient branch-and-cut method for its optimization.

– We established conditions under which the solution provided by the conser-
vative two-stage model coincides with that of the (fully adaptive) multi-stage
model. In cases where these conditions are not satisfied, we derived a progres-
sive (as opposed to conservative) approximation of the multi-stage model and
presented numerical schemes for its computation.

– We proposed algorithmic efficiencies to improve the generalized column-and-
constraint generation framework for two-stage robust optimization problems
with binary recourse decisions. These improvements are particularly suited in
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cases when there are no second-stage costs; that is, when the recourse problem
is a mere feasibility problem.

– We conducted computational experiments on test instances derived from
standard benchmark datasets, and showed via out-of-sample rolling horizon
simulations that robust routing plans significantly outperform traditional
route plans.

• We studied the modeling and solution of consistent vehicle routing problems, in
which the goal is to identify the minimum-cost set of routes that a single vehicle
should follow during the multiple time periods of a planning horizon, in order
to provide consistent service to a given set of customers, which we defined to
be equivalent to restricting the difference between the earliest and latest vehicle
arrival-times, across the multiple periods, to not exceed some given allowable limit.

We proposed the first exact algorithms for this problem, referred to as the Consistent
Traveling Salesman Problem.

– We presented three mixed-integer linear programming formulations for this
problem and introduced a new class of valid inequalities, the Inconsistent
Path Elimination Constraints, to strengthen these formulations. We presented
a polynomial-time algorithm to separate these inequalities in the context of a
branch-and-cut framework. Further, we showed that, unlike the case of the
traveling salesman problem, the Subtour Elimination Constraints and the
2-matching Constraints are not, in general, facet-defining for the underlying
integer polytope of the problem.

– In addition to the above, we developed a novel decomposition algorithm for
solving these problems to guaranteed optimality. This algorithm is highly
scalable, and can effectively address instances containing up to hundred
customers requiring service over a five-period planning horizon.

– We compiled a comprehensive database of benchmark instances for the Con-
sistent Traveling Salesman problem by extending single-period TSP instances
from the TSPLIB library. We calculated, for these database, the additional cost
that a distributor must incur, on average, in order to implement consistent
delivery schedules; that is, we quantified the “price of consistency.”

– We extended the definition of consistent vehicle routing problems to allow
waiting at each customer location and to incorporate maximum route duration
limits. We estimated, based on standard benchmark datasets, the savings on
consistent routing costs that are to be expected by allowing the vehicle to wait
at customer locations.

• We studied the strategic decision-making problem of assigning time windows to
customers, referred to as the Time Window Assignment Vehicle Routing Problem.
This is a two-stage stochastic optimization problem, where time window assign-
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ments constitute first-stage decisions, vehicle routes adhering to the assigned time
windows constitute second-stage decisions, and the objective is to minimize the
expected routing costs.

– We generalized the definition of this problem to include general scenario-
based models of uncertainty in which any operational parameter may be
uncertain and in which the endogenous time windows may be chosen from
either continuous or discrete sets.

– We proposed a scenario decomposition algorithm for solving this problem.
The algorithm strongly outperforms all existing state of the art methods,
solving fifty-four out of eighty-one previously open instances. Furthermore,
it is easily parallelized, can utilize any available vehicle routing solver in a
“black box” fashion, and be readily modified as a heuristic to solve large-scale
instances.

– We conducted experiments with a parallel implementation of our algorithm
to solve instances consisting of up to fifteen scenarios, representing a five-fold
increase compared to existing literature. We used these solutions to elucidate,
via out-of-sample simulations, the cost savings that are to be expected when
considering more scenarios during strategic time window assignment.

• We studied two-stage robust optimization problems with mixed discrete-continuous
decisions in both stages, and presented a K-adaptability approximation that selects
K candidate recourse policies before observing the realization of the uncertain
parameters and that implements the best of these policies after the realization is
known.

– We established conditions under which the two-stage robust optimization
problem and the K-adaptability problem are continuous, convex and tractable.
We also investigated when the approximation offered by the K-adaptability
problem is tight, and under which conditions the two-stage robust optimiza-
tion problem and the K-adaptability problem reduce to single-stage problems.

– We developed a branch-and-bound algorithm for the K-adaptability problem.
In contrast to the existing approaches, our algorithm can handle mixed con-
tinuous and discrete decisions in both stages as well as discrete uncertainty.
Furthermore, it allows for modeling continuous second-stage decisions via a
novel class of highly flexible piecewise-affine decision rules.

– We conducted extensive numerical experiments on benchmark data from
various application domains. Our experiments indicated that our algorithm is
highly competitive with existing state-of-the-art solution schemes.
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7.2 future work

7.2.1 Short Term

1. Static robust routing: set partitioning formulations.

It is well known (e.g., see [217]) that the set partitioning formulation is the most ef-
ficient integer programming formulation for the deterministic VRP. However, most
mathematical programming based methods for the robust VRP have focused on ve-
hicle flow formulations. It would be promising to extend the methods developed in
Chapter 2 to the set partitioning model as the basis. A key challenge is to efficiently
“robustify” the pricing routine in the associated column generation subproblem.
Some early work [215] has been done towards this front, but the approach heavily
capitalizes on the structure of the specific uncertainty set. It would be interesting to
use our robust rounded capacity inequalities as a mechanism to enforce robustness
a way that does not exploit such structure.

2. Static robust routing: other VRP variants.

There is a need to generalize the methods from Chapter 2 to address problem
variants with features such as simultaneous pickups and deliveries (e.g., backhauls),
split deliveries (where the demand can be satisfied by multiple vehicles), profits
(where service is optional but results in a profit that may be imprecisely known) as
well as inventory routing (where the delivery amount is a decision variable and
the consumption rate is imprecisely known).

3. Static robust routing: Out-of-sample performance of different uncertainty sets.

Although we proposed data-driven methods to construct each of five classes of
uncertainty sets as a function of a user-specified risk level, the resulting probabilistic
guarantees are a priori and hence, very conservative. It would be instructive to
perform a systematic theoretical as well as empirical study to understand the
out-of-sample performance of the routes that are robust with respect to each of the
constructed uncertainty sets.

4. Service consistency considerations: driver consistency.

Service consistency amounts to serving each customer over a multi-period tactical
horizon using the same driver at roughly the same time of the day. The latter
requirement, arrival-time consistency, was the subject of Chapter 4, where we
proposed efficient algorithms to explicitly incorporate this feature. Recently, we
have also been investigating efficient algorithms to explicitly incorporate the former
requirement of driver consistency. The key challenge is to devise a clever decom-
position (similar to the one in Chapter 4) that relies on efficient algorithms for
the associated single-vehicle (multi-period traveling salesman) problem or for the
single-period (multi-vehicle) routing problem.
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5. Strategic allocation of weekly visit days.

Chapter 5 studied the problem of allocating to customers long-term delivery time
windows (within a single day). A natural generalization would be to also consider
the problem of allocating weekly visit days (within a working week). Discussions
with practitioners seem to indicate that the latter problem is more practically
motivated in many industrial contexts as compared to the former. One reason
for this is that this problem can be shown to be equivalent to the problem of
partitioning the customer base among multiple depots or distribution centers,
where each depot corresponds to a day of the week.

7.2.2 Medium Term

1. Modeling uncertainty in travel times.

Existing papers that study travel time uncertainty have focused almost entirely on
cardinality-constrained sets. However, this model of uncertainty is not practically
motivated in case of travel times. There are several reasons for this. First, all papers
ignore the underlying road network and consider a reduced graph defined only
by the customer positions. This results in a highly inaccurate model since adjacent
road sections (that would otherwise be reduced to a single arc in the reduced
graph) can exhibit strong correlations among each other. Therefore, the assumption
of independent travel times (which is implicit in the cardinality-constrained model)
is difficult to justify. Second, there is a large gap between constructing travel time
uncertainty sets from real traffic data.

We believe that the factor model uncertainty set is probably a more accurate
model for representing travel times. On the one hand, it allows us to represent the
high-dimensional travel time uncertainty (on the actual road network) in terms of
low-dimensional factors that could possibly be correlated and time-dependent (as
real travel times often are). On the other hand, they can be conveniently constructed
from data using well-established statistical tools like principal components or factor
analysis.

2. Static robust routing: uncertainty in other parameters.

Existing literature has focused almost entirely on demand uncertainty. There is
a need to extend the local search and exact methods developed in Chapter 2 to
address uncertainty in parameters such as travel times and service times as well
(especially in view of the observation made in the previous point). This, however,
is challenging since the presence of time windows would require the reinvention of
efficient update rules for the robust versions of local search that have been known
to work well in the deterministic versions.

3. Simultaneous consideration of customer order and demand uncertainty.
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The multi-period vehicle routing problem studied in Chapter 3 considered un-
certainty in customer requests, but assumed that their order sizes (i.e., demands)
are deterministic. However, in several practical applications, the demands of the
customers also exhibit significant variability. The challenge is to simultaneously
incorporate uncertainty in both parameters. One option is to adopt a two-phase
approach: in the first phase, assume that demands are deterministic and determine
a multi-period visit schedule; in the second phase, use the methods developed in
Chapter 2 to determine robust single-period routes. However, it is not clear if the
resulting solutions would be overly conservative.

4. Timing considerations in multi-period vehicle routing.

The model of Chapter 3 allowed us to make dynamic/adaptive decisions over a
multi-period horizon while ensuring that vehicle capacity constraints are always
satisfied. However, timing considerations (e.g., customer time windows and vehicle
duration limits) where completely ignored. It is unclear how the underlying two-
stage and multi-stage models can be extended to take these into account, and we
believe this would constitute a valuable extension of this model.

5. Real-time predictions in multi-period vehicle routing.

The framework of Chapter 3 assumed that route optimization will take place only
once at the end of each day, after all orders have been received. This allowed us
to use detailed models and exact solution methods to determine the routes to
be executed over the next day. An interesting extension of this work would be
to consider real-time decision-making in which one must decide the day (and
possibly the route) in which an order will be served at the time when the order is
placed during the day. This requires fundamentally different modeling techniques
because the degree of dynamism; that is, the frequency at which new information
is obtained and reacted upon, is significantly higher (of the order of hours and
minutes, as opposed to days), thereby reducing the time available for optimization
computations and, hence, the solution strategy (and, often, the solution quality).

6. Approximation algorithms for K-adaptability problems.

An attractive feature of the K-adaptability formulation is its simplicity. In Chapter 6,
we presented a simple iterative heuristic for the K-adaptability problem that seemed
to perform extremely well for the problem instances we considered. An interesting
theoretical question is to analyze the approximation guarantees of this heuristic, or
perhaps, other similar heuristics, whose analysis can shed light on the structure of
the K-adaptability problems.

7. K-adaptability in two-stage distributionally robust optimization problems.

One interesting avenue for future work would be to extend the work of Chap-
ter 6 to distributionally robust optimization, which is a generalization of robust
optimization, in which the probability distribution governing the uncertain prob-
lem parameters is not assumed to be precisely known but rather assumed to be
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contained in a so-called ambiguity set of possible distributions (e.g., the set of all
distributions “close” to the empirical distribution). While there has already been
some work done along this direction [146], there is a need to develop analogous
theoretical results and algorithms of the type developed in Chapter 6.

7.2.3 Long Term

1. Dynamic robust optimization models for operational routing.

All existing robust optimization approaches to vehicle routing design a priori or
static routes. The work done in Chapter 3 extended this to two-stage models in the
context of a tactical planning problem. A key difference between operational and
tactical level problems is that the latter affords more time for optimization, and
hence, more elaborate recourse schemes. On an operational level, significantly less
time is available for optimization.

In a real time setting (e.g., minutes to hours), dynamic optimization amounts to
modifying the vehicle routes during their execution. This class of problems have
been traditionally modeled using Markov decision processes and solved using
simple, often ad-hoc, heuristics. It is unclear if these are the best approaches
and if robust optimization can offer something better. Several challenges must be
overcome before we can assess this.

First, one needs to develop formulations of multi-stage robust optimization prob-
lems that appropriately capture the decision dynamics in a typical setting. For
example, feasibility may often not be a concern as the applications where such
problems are motivated arise in service-based routing, where services can be de-
nied (possibly at an economic loss) but ensuring high service levels is a priority.
Therefore, appropriate constraints and objectives such as maximizing throughput
(i.e., number of served requests) might be more appropriate. Second, these dynamic
problem formulations would necessitate the development of tractable approxima-
tions of multi-stage robust optimization problems; these are still lacking in the
wider robust optimization literature; however, the underlying structure in vehicle
routing problems might offer a path to develop tractable schemes.

2. Distributionally robust optimization in vehicle routing problems.

Distributionally robust optimization has recently started to gain a lot of attention
because of its rich modeling power and underlying connections with classical
problems in machine learning and statistics. A consequence is that there has been
a rich arsenal of theoretical tools that have been developed to solve these problems.
One broad avenue for future work would be to investigate the use of distributionally
robust optimization to address vehicle routing problems under uncertainty. Some
preliminary work [159, 278] has already started along this direction.
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3. K-adaptability in multi-stage robust optimization problems.

The scope of Chapter 6 was restricted to two-stage robust optimization problems. It
would be instructive to define a K-adaptability formulation for multi-stage robust
optimization problems (with more than two stages) and study its geometry and
tractability. It is unclear, however, if a similar algorithm from Chapter 6 would be
applicable to this setting.
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