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Abstract

Cyber-physical systems (CPS) face tremendous threats in modern society. Indeed their presence in

critical infrastructures such as transportation, energy delivery, and health care make such systems a

target of malevolent entities while their complexity, connectivity, and heterogeneity offer surfaces

for attackers to leverage. One important aim of potential attackers is to remain stealthy. An attacker

that avoids detection is able to disrupt CPS for long periods of time, without having to worry about

defender interference, allowing an adversary to potentially maximize their impact. Intelligent

attackers can leverage their system knowledge, disruption resources, and disclosure resources to

impart critical damage to systems, all the while remaining stealthy.

In this dissertationwe consider the development of activemethods to detect intelligent, powerful,

and malicious adversaries in cyber-physical systems. While standard attack detection involves

producing intelligent algorithms to process information about a system, active detection involves

the intelligent design and modification of the inputs, parameters, and structure of a system in

order to impede an adversary’s ability to generate stealthy attacks. This thesis will propose several

methods for active detection in cyber-physical systems.

We will first consider the design of secret random perturbations at the control input, which we

term as physical watermarking. We will evaluate this approach against both replay attacks and

model aware adversaries. Next, we will consider how naturally occurring stochastic phenomena

in a CPS can be utilized for the purposes of active detection. Specifically, we will evaluate how

packet drops at the control input can act as an environmental watermark for the benefit of security.

Then, we will consider how changing parameters of the plant itself can be used to thwart otherwise

model aware attackers. We term this the moving target approach. Two designs are explored.

We will consider a switched system model where parameters of the plant are directly changed.

Alternatively, we evaluate an authenticating subsystem model where we use an extended system

to detect attacks on the CPS under consideration. The moving target involves online changes to

the system. Instead, we can consider robust offline design. In particular, we use structural system
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theory to analyze and design distributed control systems, which can not be targeted by a class of

stealthy attacks. To conclude, motivated by studies in software security, we explore how tools of

information flow analysis can be used for the analysis and design of active detection techniques.
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Chapter 1

Introduction

Cyber-physical systems (CPS) are computationally capable systems that directly interact with a

physical environment and allow people to intelligently and efficiently manage physical processes.

CPS are the foundation of key infrastructures such as the smart grid, water distribution systems,

and waste management. Their role in transportation, smart buildings, and medical technologies

are also burgeoning as new application areas are discovered.

CPS are enabled by technologies which perform sensing, computing, and communication. For

example, CPS leverage sensing technologies to gather relevant data about physical systems. In

transportation this could for instance be the position and velocity of vehicles. Alternatively, in

medical technologies, this may be the heart rate or blood pressure of a patient. Combined with a

mathematical model of a system’s physical dynamics, sensing can enable accurate state estimation

and prediction. This in turn allows themonitoring of physical processes. Sensing technologies have

significantly improved. Systems can be sampled more frequently and with less delay. Additionally,

sensing devices are in many cases cheap and economically viable.

In addition to monitoring physical processes, it is typically desirable to physically manipulate a

system to achieve some objective. In a waste management system, a relevant task would be to treat

and purify the wastewater. Alternatively, in smart buildings we wish to regulate the environment

(i.e. using HVAC systems) in an energy efficient manner. Cyber-physical systems allow us in many

1
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cases to automate this process using computing technologies. The intelligent control of physical

systems is generally a time sensitive task. Thus, a key to incorporating CPS is improvement

in the processing speed of our computers. Today, programmable logic controllers (PLCs) and

microcontrollers are able to quickly process sensory information and automatically implement an

intelligent algorithm for control. The speed at which this can be done has allowed humans to explore

new frontiers. As an example, the ability to safely incorporate safe driving cars to transportation

systems is in part a result of the vast computational abilities of the embedded systems in today’s

vehicles.

Finally, a sophisticated communication infrastructure allows operators to control cyber-physical

systems remotely while also enabling them to reliably control large scale systems. Many systems

have transitioned from wired to wireless communication technologies, which allows for ease of

maintenance and installation, lower costs, aswell as automation in geographically disparate systems.

As an example, wireless communication technologies play a major role in supervisory control and

data acquisition (SCADA) systems, see, e.g., [1]. A SCADA system is a hierarchical system, which

enables the supervisory management of a control system. The lowest layer consists of field devices

such as sensors and actuators, which directly interact with the physical environment. Remote

terminal units (RTUs) and PLCs are often used to implement autonomous local control. These

units typically interface with both field devices such as pumps, valves, and switches as well as a

centralized supervisory control layer which monitors the system. SCADA systems are regularly

seen in the smart grid as well as water distribution and waste management systems.

Unfortunately, CPS have become a target of malicious attacks. Indeed, there exists ample

motivation to target cyber-physical systems because they are linked to our critical infrastructures

such as energy delivery, transportation, and health care. Economically driven adversaries can wage

attacks for instance to obtain an advantage in the electricity market [2] or improve fuel mileage

while driving [3]. On the other hand, truly malicious actors such as terrorists can pursue attacks

that lead to widespread damages, the disruption of critical services, and potentially the loss of life.

There has been a precedence for attacks. One example is Stuxnet, a malware that attacked
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uranium enrichment facilities in Iran, causing damage to a 1000 centrifuges at these plants [4].

Stuxnet was able to spread across networks using USBs and shared printers. In addition to

leveraging two stolen certificates from chip manufacturers, four zero day exploits, and a PLC

rootkit, the malware was able to avoid detection for long periods of time by using a replay attack

[5]. In particular, infected devices sent prior measurements to the SCADA system, which were

collected during normal operation. This prevented attacks varying the gas pressure and rotational

speeds of centrifuges from being recognized. Another prominent attack was the Maroochy Shire

incident in Queensland, Australia [6]. Here, a disgruntled former employee was able to hack a

SCADA system performing waste management, causing millions of gallons of sewage to leak. The

presence of a malicious insider with a fundamental understanding of the system posed a significant

challenge for operators. Finally, another famous attack was the Ukraine power attack in December

of 2015 [7, 8]. Here, attackers were able to harvest valid credentials at a control center by using

the BlackEnergy malware to infect SCADA systems. The attackers then used their access to hack

workstations and remotely trip circuit breakers. Additionally, the KillDisk malware destroyed data

at the control center while a telephone denial of service was used to cut off communication between

customers and providers.

Finally, there still remains ample opportunity for adversaries. Increased automation and im-

proved sensing have allowed system designers to remotely monitor and control critical infras-

tructures. The ability to perform sensing and control over a communication network creates the

opportunity for an attacker to cause damage via network intrusions. Adversaries can find weak-

nesses in protocols including DNP3 and the older Modbus protocol or leverage poorly designed

firewalls to penetrate the network. Attackers can also target trusted peer utility links. For instance,

adversaries can attempt to hijack VPN connections. Alternatively, adversaries can steal valid cre-

dentials allowing them unencumbered remote access to perform the same actions as a trusted user

as in the Ukraine power attack [7].

We remark that CPS operation relies on the use of small heterogeneous components and devices

that are potentially prone to failure or attack. For example, in the Stuxnet attack, introducing infected



CHAPTER 1. INTRODUCTION 4

USB devices into CPS allowed this malware to spread. Meanwhile in the case of the Ukraine power

attack, infected email attachments allowed attackers access to system workstations. Attackers can

also target field devices such as sensors and actuators as well as networking devices which can

interface with both field devices and the monitoring layer. For instance, in SCADA systems, remote

terminal units often allow for dial up access and may not even require authentication. An attacker

can also take the initiative to introduce vulnerabilities to CPS devices by targeting supply chains.

If production is not performed securely, adversaries can install backdoors in components, which

can later be leveraged to compromise the CPS.

Beyond attempting to access CPS through a network, an attacker can simply attempt to target the

physical plant itself. In many cases, due to the scale of CPS it is impossible to physically monitor

and protect all devices and components. As an example, it is often the case that substations as well

as smart meters and PMUs are left unattended in the electricity grid. Likewise, it is impractical to

guard all the sensors, pumps, and valves in a water distribution system or traffic lights and vehicles

in a transportation system. The defender must also account for the actions of malicious insiders.

Malicious insiders can leverage their understanding of a CPS and their access to the system in order

to target the infrastructure as was done in the Maroochy Shire incident.

Given the ample motivation, opportunity, and precedence for attacks, it is important to design

CPS, which preserve the fundamental security properties of secrecy, availability, and integrity.

With respect to secrecy, the release of sensitive information in CPS can have significant privacy

repercussions. In the smart grid, consumers do not want their electricity consumption released,

travelers in transportation systems do not want their locations disclosed, and patients receiving

health care do not want their medical histories revealed.

Availability is also a critical property in CPS. Jamming or denial of service attacks can be

used to restrict the flow of information in a CPS. In a jamming attack, an adversary emits a signal

which interferes with the messages being sent between the plant and SCADA operator, preventing

the receiving party from obtaining the proper message. In a similar vain, a denial of service

attack restricts availability by flooding a system with requests. This can delay or prevent legitimate



CHAPTER 1. INTRODUCTION 5

requests from being addressed. While the availability of real time data streams is often not critical

in typical software systems, in CPS availability of sensor information and control commands may

be intrinsically linked to the safe and reliable operation of the underlying control system. In the

absence of sensor measurements, a SCADA system fails to monitor the plant. This in turn can

prevent an operator from determining proper corrective actions. Likewise, the absence of control

commands prevents proper control actions from being delivered to the plant. This results in sub-

optimal or possibly unsafe operation. Previous work [9, 10] has shown that open loop unstable

systems have critical packet delivery rates that are necessary to ensure that the resulting closed loop

system can be stabilized.

While the availability of real time information is important in CPS, these violations are often

easily detected. As such, it remains to design systems, which can adequately respond to these

attacks when they do occur. Since denial of service and jamming attacks can be easily recognized,

the focus of this dissertation, and the remaining discussion will be centered around developing

methods that can counter integrity attacks.

In an integrity attack, the adversary typically modifies control commands or sensor measure-

ments transmitted in a CPS. Both sensor and control command attacks can be realized through the

cyber realm or the physical realm. For example, these integrity attacks can be performed in the

cyber space via a man in the middle attack occurring over the network. Here, the adversary can

intercept true data packets and replace them with his own falsified data packets before forwarding

the resulting message to the operator or plant. Alternatively, a physical sensor integrity attack can

occur if an adversary changes the environment around a sensor. For instance, a temperature sensor

can be compromised through local heating and cooling. We also note that control commands

can be directly modified by an attacker who has physical access to actuators in CPS. Misleading

sensory information may cause operators to make incorrect control decisions, which in turn leads

to physical damage at the plant. Modified control commands can also cause significant damage,

for instance allowing an attacker to cause blackouts on the grid by tripping breakers. If done

intelligently, integrity attacks can be performed in a stealthy manner, allowing an adversary to
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perturb a system for long periods of time without defender interference. An example of this is a

replay attack, which was utilized in Stuxnet.

One may wonder whether existing tools in cyber security are sufficient for countering integrity

attacks. One possible option is to consider attack prevention. However, it is often infeasible to

remove all access points for potential attackers. The large scale of a CPS means physical protection

is often impractical. Additionally, device heterogeneity provides ample entry points for an attacker

to leveragewhile system connectivity allows adversaries tomaximize the opportunities they receive.

Last but not the least, human error, which could allow corrupted devices to enter a system (as in

Stuxnet) or allow malware to infect workstations (as in the Ukraine attack) can not be completely

eliminated.

Without the ability to prevent integrity attacks, we must consider mechanisms for response.

Cryptographic primitives and protocols can detect integrity attacks. Authentication protocols,

for instance, can be used to verify the identity of different devices, components, and operators.

Moreover, authenticated encryption simultaneously guarantees secrecy and integrity in attacks

from remote adversaries. The root of trust in such a system is a set of secret keys. In public key

cryptography each object will have a public key used for encryption and a private key used for

decryption while in symmetric key cryptography each pair of communicating objects has a shared

key.

However, cryptographic primitives can often be broken or compromised. Moreover, in certain

systems, introducing computationally demanding encryption can be costly or impractical for devices

that can only support lightweight protocols. In addition, encryption schemes can fail against

purely physical attacks. The integrity of sensor measurements can be modified by changing a

sensor’s local environment while control inputs can be changed by directly manipulating system

actuators. In such a scenario, message authentication codes or digital signatures fail to recognize an

attack. Furthermore, upon detection of attacks, cyber security is woefully inadequate in providing

mechanisms for recovery. For instance, upon detecting an attack, one common countermeasure

in cyber security is to take a system offline. However, the inertia of CPS and the need to provide
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continued service can make such a decision impractical. Moreover, achieving resilience in CPS

requires a defender to design countermeasures that preserve stability and control performance.

As a result, we argue that in order to achieve resilient CPS, it is necessary to augment existing

techniques in cyber security. A common approach is to invoke methods from system theory. In

particular, the defender’s understanding of a system’s dynamics can be used to detect, isolate, and

respond to attacks. Here, sensor measurements can be used as outputs, which allow a defender

to evaluate a system’s health. For example, if the sensor measurements closely follow expected

behavior as determined by a physical model, a detector can accept the hypothesis that the system

is operating normally. However, if the measurements significantly deviate from the model, the

detector may determine that their exists faults or malicious behavior in the CPS. Upon attack

detection, resilient algorithms for estimation and control can be implemented to allow a CPS to

recover.

From an adversarial perspective, generating stealthy attacks is often a desirable outcome.

Remaining stealthy allows an adversary to act on a system for long periods of time without a

defender’s knowledge. This prevents a defender from deploying effective countermeasures, which

can otherwise hinder an adversary and limit his or her impact. Unfortunately, the process of

attack detection, even when enhanced with system theoretic methods, can fail against clever,

knowledgeable, and resourceful adversaries. For example, attackers with a strong understanding

of the dynamics of a system can carefully construct attack inputs so that the sensor measurements

received by the operator under attack have the same statistics as the sensor measurements that

would be received during normal operation.

This threat is amplified by malicious insiders who have a strong understanding of the system

as in the Maroochy Shire incident and skilled hackers who are able to modify a significant fraction

of a system’s inputs and outputs. Detailed system knowledge may not even be a requirement as

replay attacks are often provably stealthy. Traditional detection theory, which we refer to as passive

detection, alone is provably ineffective against attacker’s who are able to generate convincing

counterfeit sensor outputs because no tests exist that can differentiate between sequences of outputs
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with the same statistics.

We remark, that the defender has additional degrees of freedom beyond the design of statis-

tical algorithms for detection. We argue that a defender can design his control strategy, system

parameters, and sensors in a manner that limits or altogether prevents an attacker from constructing

stealthy attack sequences. Specifically, in this thesis we consider the the development of active

detection. Here, active detection refers to the intelligent design of systems and controllers, both

offline and online, which force attackers to use strategies that result in outputs that are statistically

different from the outputs that are obtained during normal operation. Given active strategies that

limit an attacker’s ability to generate convincing fabricated outputs, passive detectors can again

become an effective tool for recognizing an attacker’s presence.

1.1 Contributions

In this thesis, we propose and evaluate several techniques for active detection. We first consider

how changing the defender’s control strategy can be leveraged to detect attacks. Specifically, we

consider the process of physical watermarking, where a noisy additive Gaussian input is introduced

on top of the control input, in order to authenticate sensor measurements. We extend prior work,

which considers the design of IID Gaussian watermarks by exploring the design of stationary

Gaussian watermarks. We demonstrate the effectiveness of this approach in detecting replay attack

strategies. Additionally, we explore how physical watermarking can still be effective against certain

classes of model aware adversaries with access to a subset of inputs. Here, we propose a robust

watermark for attack detection.

Next, we consider how naturally occurring, stochastic phenomena can allow a defender to

perform active detection. As an example, we explore how packet drops at the control input in a

TCP like system act as an environmental watermark. Specifically, the randomness of packet drops

can be used by a defender to detect adversaries who construct outputs which are independent of the

packet dropping sequence. We then evaluate the effectiveness of intentionally introducing packet
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drops. Moreover, we examine the design of a Gaussian watermark in the presence of a stochastic

drop process.

Beyond changing the control strategy, we investigate introducing time varying changes to the

parameters of the system. This can thwart a model aware defender that utilizes their knowledge of

the plant to construct harmful, stealthy outputs. We refer to this method for active detection as a

moving target. In particular, the time varying dynamics act as a moving target for an attacker who

attempts to alter their strategy. Twomainmethods are considered here. The first is an authentication

system based moving target. Here, the dynamics of the original plant are unmodified. However, an

additional system with time varying dynamics correlated to the original system is introduced. The

idea is that if the nominal plant is harmed, this will be reflected in the authenticating subsystem.

An attacker will be unable to adapt his attack to counter the changing authenticating subsystem and

is detected. We will alternatively consider a separate moving target approach where the dynamics

of the original plant are indeed altered. Design recommendations here are provided.

We will also consider how structural changes to the plant can improve the resiliency of cyber-

physical systems to stealthy attacks. We will formulate this problem as the design of a distributed

control system where the operator has the degree of freedom to change the communication and

sensing topology. The goal is to design the system structurally in such a way that a class of

stealthy attacks is unfeasible for a resource limited, model aware attacker. Necessary and sufficient

conditions for the design of such systems will be provided. In addition, optimization problems with

efficient solutions are formulated to design minimal robust control systems.

Finally, we conclude the thesis by proposing an overarching formalism to consider the problem

of detection in cyber-physical systems. Here, we are motivated by the notion of information flows

in software security. Here, we use information flows as a means to quantify the detectability of

different attack strategies as a function of a particular defense strategy. This in turn, will provide

operators with helpful guidelines to design systems in order to prevent, detect, or mitigate classes

of harmful and stealthy attacks.

The rest of the thesis is formulated as follows. In Chapter 2, we consider the design of physical
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watermarks for active detection. In Chapter 3, we evaluate how naturally occurring watermarks,

specifically packet drops at the control input, can aid in detection. In Chapter 4, we investigate

the moving target approach and study two unique methods for parameter modification. In Chapter

5, we discuss how structural changes to systems can eliminate several classes of stealthy attacks.

Chapter 6 introduces information flow as a formalism for considering active detection. Finally,

Chapter 7 concludes the thesis.



Chapter 2

Physical Watermarking

In this chapter, we introduce our first technique for active detection, physical watermarking. Here,

we will investigate how introducing random perturbations at the control input allow us to detect

otherwise stealthy attacks. In section 2.1, we extend prior work in the design of IID Gaussian

watermarks by investigating the design of more general stationary Gaussian watermarks. We

demonstrate evidence of significant improvement over the IID design. In section 2.2, we consider

watermarking against an alternative attacker who violates standard assumptions by having access

to a subset of control inputs and leveraging model knowledge. We introduce a robust watermarking

design to counteract this attacker. The results in this chapter are largely based on [11] and [12].

2.1 Stationary Gaussian Watermarks

In this section, we introduce the approach of physical watermarking for actively detecting attacks

in control systems.

Definition 2.1. A physical watermark is a secret noisy (random) control input inserted in addition

to or in place of an intended control input u∗k to authenticate the system.

We will show the approach of physical watermarking is effective in detecting replay attacks.

11
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We note that watermarking is in part motivated by the use of nonces in cyber security described

below.

Example: Let us consider the Needham Schroeder protocol in [13], which establishes a

session key between 2 users, Alice A and Bob B, by leveraging access to a trusted third party,

server S. In this protocol, Alice shares a session key KAB with Bob by sending {KAB, A}KBS
whereKBS is Bob’s shared key with S and {}K∗ denotes encryption with keyK∗. This message is

vulnerable to a replay attack. For instance, suppose Eve E recovers an old session key K∗AB. She

can replay the message {K∗AB, A}KBS to Bob. Bob now believes he shares key K∗AB with Alice,

when he truly shares a key with Eve. This lets Eve engage in a man in the middle attack.

To counter this attack, Alice receives a nonce or random number,NB, from Bob encrypted with

KBS . After communicating with S, Alice sends {KAB, A,NB}KBS to Bob. The random nonce

serves as a challenge to Alice. By including the encrypted nonce in her response to Bob, Alice

proves that the message is fresh, and has not been replayed.

2.1.1 System Description

The physical watermarking strategy is given for a class of general control systems. The control

system is modeled as a linear, time invariant (LTI) system, the state dynamics of which are given

by

xk+1 = Axk +Buk + wk, (2.1)

where xk ∈ Rn is the vector of state variables at time k, uk ∈ Rp is the control input, and wk ∈ Rn

is the process noise at time k. wk is assumed to be an IID Gaussian process with wk ∼ N (0, Q).

Since the control system usually operates for an extended period of time, it is assumed that the

system starts at time −∞.

A sensor suite monitors the system described in (2.1). At each step, all the sensor readings are

collected by a base station. The observation equation can be written as

yk = Cxk + vk, (2.2)
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where yk ∈ Rm is a vector ofmeasurements from the sensors and vk ∼ N (0, R) is IIDmeasurement

noise independent ofwk. It is assumed that (A,B) and (A,Q
1
2 ) is stabilizable, (A,C) is detectable,

and R > 0.

We assume that the system operator wants to minimize the infinite-horizon linear-quadratic-

Gaussian (LQG) cost

J = lim
N→∞

1

2N + 1
E

[
N∑

k=−N

(
xTkWxk + uTkUuk

)
]
, (2.3)

where W,U are positive definite matrices. Since the separation principle holds in this case, the

optimal solution of (2.3) is a combination of the Kalman filter and LQG controller [14]. The

Kalman filter provides the optimal state estimate x̂k|k. Since the system is assumed to start at−∞,

the Kalman filter converges to a fixed gain linear estimator

x̂k+1|k = Ax̂k +Buk, x̂k|k = x̂k|k−1 +Kzk. (2.4)

where zk , yk − Cx̂k|k−1 is the residue vector and the Kalman gain K is given by

K , PCT
(
CPCT +R

)−1
, (2.5)

where P is the solution of the Riccati equation

P = APAT +Q− APCT (CPCT +R)−1CPAT . (2.6)

The estimation error at time k is defined to be ek = xk − x̂k|k.

The LQG controller is a fixed gain linear controller based on the optimal state estimate x̂k|k.

Specifically,

u∗k = Lx̂k|k, (2.7)

where u∗k is the optimal control input. The control gain matrix L is defined to be

L , −
(
BTSB + U

)−1
BTSA, (2.8)

where S satisfies the Riccati equation

S = ATSA+W − ATSB
(
BTSB + U

)−1
BTSA. (2.9)



CHAPTER 2. PHYSICAL WATERMARKING 14

Consider the case where, instead of directly applying the optimal LQG control u∗k to the physical

system, a physical watermarking scheme is used, in which the true control input uk is given by

uk = u∗k + ∆uk, (2.10)

where u∗k is the optimal LQG control and ∆uk is the watermark signal. Physical watermarking was

first introduced in [15] as an IID additive input sequence ∆uk ∼ N (0,J ) introduced on top of an

optimal control sequence u∗k. It is assumed that the adversary can not read the defender’s control

input uk or watermark ∆uk in this scenario. In particular, the control input will serve as a secret in

this approach for active detection. The watermarks act as a cyber-physical nonce. Under normal

conditions, the watermark will be embedded in the sensor outputs due to the system dynamics, a

valid response to the defender’s challenge. However, under replay attack, the measurements contain

physical responses to an earlier sequence of watermarks. Unable to detect recent watermarks in

the sensor outputs, the defender can not verify freshness of the received sensor measurements. As

a result, a passive detector can be designed to distinguish normal system behavior from a replay

attack.

The process of physical watermarking is pictorially illustrated in Fig. 2.1. The first images

represents the CPS with an optimal control input. A watermark (the second image) is embedded

in the control input resulting in a noisy output (the third image). The defender designs a detector

that allows him to recognize the presence of the watermark in the sensor outputs.

The watermark signal {∆uk} is assumed to be a p−dimensional stationary zero-mean Gaussian

process independent from the noise processes {wk}, {vk}. Define the autocovariance function

Γ : Z→ Rp×p to be

Γ(d) , Cov(∆u0,∆ud) = E[∆u0∆uTd ]. (2.11)

In this section, the watermark is assumed to be generated by a Hidden-Markov Model (HMM)

ξk+1 = Aωξk + ψk, ∆uk = Chξk, (2.12)

whereψk ∈ Rnh , k ∈ Z is a sequence of IID zero-meanGaussian random variables with covariance

Ψ, and ξk ∈ Rnh is the hidden state. To make {∆uk} a stationary process, the covariance of ξ0 is
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b) Add Watermark 

Normal  Faulty/Attack 

�uk

d) Perform Detection 

Physical Watermarking 

c) Watermarked Output 

a) Output with Optimal Input 

Figure 2.1: Physical Watermarking in Cyber-Physical Systems

assumed to be the solution of the following Lyapunov equation

Cov(ξ0) = Aω Cov(ξ0)ATω + Ψ.

All the matrices are of proper dimensions.

Remark 2.1. It is worth noticing that {∆uk} is completely described by its finite dimensional

distribution and hence the autocovariance function Γ. However, the watermarking signal is

restricted to be generated from an HMM since any autocovariance function Γ can be approximated

by an HMM, given that the dimension nh of the hidden state is large enough. On the other hand,

the HMM is easy to implement if nh is small, which is the case for the optimal watermarking signal,

as is illustrated later by Theorem 2.6.

To ensure the freshness of the watermark signal, Aω is assumed to be strictly stable, which

implies that the correlation between the current watermark signal ∆uk and the future watermark

signal ∆uk′ decays to 0 exponentially when k′ − k →∞. The spectral radius of Aω is denoted as

ρ(Aω) < 1. In this section, it is assumed that the watermark signal is chosen from aHidden-Markov
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Model with ρ(Aω) ≤ ρ̄, where ρ̄ < 1 is a design parameter. A value of ρ̄ close to 1 gives the system

operator more freedom to design the watermark signal, while a value of ρ̄ close to 0 improves the

freshness of the watermark signal by reducing the correlation of ∆uk at different time steps. To

simplify notations, define the feasible set G(ρ̄) as

G(ρ̄) = {Γ : Γ is generated by an HMM (2.12) with ρ(Aω) ≤ ρ̄}. (2.13)

Remark 2.2. Since it is assumed that (A,B) is stabilizable and (A,C) is detectable, the closed-loop

system is stable regardless of the watermark signal. Furthermore, by the separation principle, the

Kalman filter is the optimal filter regardless of the watermark signal ∆uk. However, the addition

of ∆uk incurs an LQG control performance loss and the control input uk is not optimal. The

necessity of adding the watermark signal ∆uk is illustrated later in Theorem 2.1. Conceptually,

if the system is under normal operation, then the effect of the watermark signal ∆uk can be found

in the sensor measurements yk. The presence of the watermark is possibly lost when the system is

malfunctioning or under attack, which can be detected by the failure detector.

If no watermark signal is present, that is if ∆uk = 0, then the optimal objective function J∗

given by the Kalman filter and LQG controller is

J∗ = tr (SQ) + tr
[(
ATSA+W − S

)
(P −KCP )

]
. (2.14)

A passive detector is used to detect abnormality of the system in conjunction with our physical

watermarking scheme. In this section, the passive detector is assumed to trigger an alarm at time

k if and only if the condition,

g(zk,∆uk−1,∆uk−2, . . .) ≥ η, (2.15)

ismet where g(zk,∆uk−1,∆uk−2, . . .) is a continuous real valued function of zk,∆uk−1,∆uk−2, . . .

and η is the threshold, which is a design parameter of the system. Under normal operation, denote

the probability of false alarm to be α, defined as

α , Pr(g(zk,∆uk−1,∆uk−2, . . .) ≥ η). (2.16)
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False alarms usually occur with low probability for practical systems. When the system is operating

normally, zk is a stationary process and hence α is a constant.

Remark 2.3. A widely used passive detector is the χ2 detector ([16], [17]), which satisfies

g(zk,∆uk−1,∆uk−2, . . .) = zTk (CPCT +R)−1zk.

The χ2 detector will be introduced and used later in this thesis.

Fig 2.2 shows the system diagram described in this section. In this system, no adversary is present

and as a result, the watermark input is present in the sensor outputs. By confirming the presence of

a watermark in the sensor measurements, a passive detector can verify that the system is not under

a replay attack.

Figure 2.2: Diagram of system under normal operation

2.1.2 Attack Model

In this section, a model for a replay attack motivated by Stuxnet is given. To cause physical

damage, a first version of Stuxnet implements control logic to increase pressure in the centrifuge
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while a second version of the worm varies rotor speeds. To prevent detection in the first scenario,

Stuxnet replayed previous sensor outputs to the SCADA system [18]. Since the system was in

steady state, outputs from the past, collected in steady state, were statistically identical to outputs

under normal operation, and as such were not detected. Motivated by Stuxnet, the following replay

attack model is considered in this section.

Attacker’s Knowledge and Resources

The adversary is first described through its knowledge and available resources.

1. The attacker has knowledge of all real time sensor measurements. In particular, he knows

the true sensor outputs yk for all k.

2. The attacker can violate the integrity of all sensor measurements. Specifically, he can modify

the true sensor signals yk to arbitrary sensor signals yak .

Remark 2.4. The attack on the sensors can be carried out by breaking the cryptography

algorithm. Another way to perform an attack, which is potentially much harder to defend, is

to use physical attacks. Physical attacks can violate the basic properties of secrecy, integrity

and availability without the need to attack the cyber part of the system. Consider for example

a temperature sensor. Secrecy, integrity and availability of its sensing data can be affected

by placing a sensor nearby, affecting the local temperature around the sensor, and enclosing

the sensor with a metal cover respectively. In addition, the insider threat is critical in large

infrastructures, as these systems usually involve many employees. These kinds of attacks may

be easy to carry out when sensors are spatially distributed in remote locations.

3. The attacker has access to a set of external actuators with control matrixBa ∈ Rn×pa and can

thus insert an external input Bauak where uak ∈ Rpa is the control input. Moreover, assuming

that uak is intelligently chosen, the set of actuators Ba allows the adversary to achieve a

malicious objective, for instance causing physical damage to the plant.
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Remark 2.5. The attacker could inject the external control input by controlling a subset

of actuators of the system and/or deploying its own actuators. For example, to change the

temperature distribution in a building, the attacker could take control of the HVAC (heating,

ventilation, and air conditioning) system, deploy heaters of its own, or even commit arson.

4. The attacker does not need to have full knowledge of the system parameters, namely the

A,B,C,Q,R,K,L matrices and the Γ function. However, the attacker might have enough

knowledge of the systemmodel to design an input uak ∈ Rpa , which may achieve its malicious

objective such as physically damaging the plant.

Teixeira et al. [19], [20], demonstrate how an attacker can be succinctly characterized via a 3

dimensional attack space. The first dimension includes the attacker’s system knowledge, including

knowledge of the dynamics and controller. Knowledge of the model can for instance aid an

attacker in constructing stealthy attack sequences that agree with a system’s expected behavior

while imparting maximal damage. The second dimension consists of the attacker’s disclosure

resources. This includes the information the attacker can gather about a system online. In our

setting this refers to the ability to read sensor outputs and control inputs. Disclosure resources

can allow an attacker to directly create harmful attacks, for instance through a replay attack. In

addition, they can be utilized to enhance an attacker’s understanding of the model, via system

identification. Finally, the third dimension is an attacker’s disruption resources, which characterize

how an attacker can affect the system. If we limit ourselves to integrity attacks, this is characterized

by the sensors and actuators an attacker can corrupt. Disruption resources allow an attacker to act

on the system.

Figure 2.3 introduces the attack space. Here pure eavesdropping attacks only require disclosure

resources, while a pure denial of service (DoS) attack requires only disruption resources. The

covert attack is a stealthy attack that allows an attacker to completely appropriate a system [21].

A covert attacker can read all input and output sequences, disrupt all input and output channels,

and has perfect model knowledge. A replay attack requires the disruption resources to read sensor
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Figure 2.3: Cyber-Physical Attack Space

measurements. With a watermarking countermeasure, the control inputs must remain secret. The

attacker also requires the ability tomanipulate all sensor measurements. Moreover, the attacker may

or may not need some minimal amount of system knowledge and access to (potentially external)

actuators to cause damage to the system.

Attack Strategy

Given the adversary’s knowledge and resources, the following attack strategy is considered.

1. The attacker records a sequence of sensor measurements from time −T to time −1, where

T is a large enough number to ensure that the attacker can replay the sequence later for an
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extended period of time.

2. Starting at time 0 to time T − 1, the attacker modifies the sensor signals to yak , which is the

same as the measurements recorded by the attacker at time k − T . In other words,

yak = yk−T , 0 ≤ k ≤ T − 1.

Remark 2.6. For simplicity, the time that the replay starts is denoted as time 0. In reality,

the attacker can freely choose the starting time, which is unknown to the system operator.

3. Starting at time 0, the attacker injects an external control input Bauak, where uak ∈ Rpa is the

control input and Ba ∈ Rn×pa denotes its direction.

Remark 2.7. When the system is under attack, the controller cannot perform closed loop control

since the true sensory information is not available. Therefore, control performance of the system

cannot be guaranteed during the attack. In fact, the attacker can inject a bias on the state of the phys-

ical system along its controllable subspace, which is the column space of [Ba, ABa, . . . , An−1Ba].

The only way to counter this attack is to detect its presence.

Remark 2.8. For simplicity in this section, we consider the performance of watermarking against

a replay attack. However, this active strategy can also be effective against alternative, otherwise

stealthy adversaries. In the next section, we will consider an attacker who has access to a subset

of control inputs and attempts to estimate the defender’s state estimate in order to construct a

stealthy attack output. In the next chapter, we will consider a simulation based attacker, who uses

knowledge of the system model and the deterministic portion of a defender’s control strategy to

construct virtual sensor outputs.

System Model Under Attack

To simplify notations, time-shifted variables,

x̂ak|k−1 , x̂k−T |k−T−1, z
a
k = zk−T , ∆uak = ∆uk−T , 0 ≤ k ≤ T − 1, (2.17)
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are defined. During the replay (0 ≤ k ≤ T − 1), the system dynamics changes to

xk+1 = Axk +Buk +Bauak + wk, yk = Cxk + vk, (2.18)

x̂k+1|k = Ax̂k|k +Buk, x̂k|k = x̂k|k−1 +K
(
yak − Cx̂k|k−1

)
, (2.19)

uk = Lx̂k|k + ∆uk, zk = yak − Cx̂k|k−1. (2.20)

Notice that the fake measurement yak is used instead of yk for calculating the state estimate and

residue. In addition, the probability of detection at time k is defined to be βk given as

βk , Pr(g(zk,∆uk−1,∆uk−2, . . .) ≥ η), 0 ≤ k ≤ T − 1. (2.21)

The following theorem characterizes the feasibility of the replay attack in the absence of the

watermark signal ∆uk, which illustrates the necessity of the physical watermark.

Theorem 2.1. Suppose ∆uk = 0 for all k. IfA , (A+BL)(I −KC) is stable, ρ((A+BL)(I −

KC)) < 1, then the detection rate βk of all detectors g converges to the false alarm rate α during

the attack, that is,

lim
k→∞

βk = α. (2.22)

On the other hand, if A is strictly unstable and g satisfies

lim
||z||→∞

g(z, 0, 0, . . .) =∞, (2.23)

for some norm || · ||, then the detection rate βk converges to 1, that is,

lim
k→∞

βk = 1. (2.24)

Proof. Part of the proof is reported in [15]. However, for the sake of completeness, the whole

proof is included here. Manipulating (2.17)-(2.20) yields

x̂k+1|k = Ax̂k|k−1 + (A+BL)Kyak +B∆uk (2.25)

x̂ak+1|k = Ax̂ak|k−1 + (A+BL)Kyak +B∆uak (2.26)
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zk+1 = zak+1 − CAk+1
(
x̂0|−1 − x̂a0|−1

)
− C

k∑

i=0

Ak−iB (∆ui −∆uai ) . (2.27)

If A is stable and ∆uk = ∆uak = 0, then the residue zk of the system under the replay attack

converges to the residue zak of the virtual system, which is essentially zk−T . Hence,

lim
k→∞

βk = lim
k→∞

Pr(g(zk, 0, 0, . . .) ≥ η) = Pr(g(zak , 0, 0, . . .) ≥ η) = Pr(g(zk−T , 0, . . .) ≥ η) = α

On the other hand, ifA is strictly unstable, the second term on the RHS (right hand side) of (2.27)

goes to infinity almost surely. Hence, if g(z, 0, 0, . . .)→∞ when ||z|| → ∞,

lim
k→∞

βk = lim
k→∞

Pr(g(zk, 0, 0, . . .) ≥ η) = 1,

which concludes the proof.

Remark 2.9. Notice that the stability of the “healthy” system depends only on the A + BL and

A −KCA matrices, not on A. Hence, it is entirely possible that the closed-loop system is stable

while A is unstable. As seen from (2.25) and (2.26), the stability of A implies that the open-loop

cyber system, consisting of the controller and estimator, is stable. In the one dimensional case, the

stability of A is easy to analyze since A = (A + BL)(A −KCA)A−1. Thus, due to the stability

of A + BL and A − KCA, A is stable if A is unstable. Such analysis does not hold for higher

dimensional systems since the product of stable matrices may not be stable.

Remark 2.10. Additionally, observe that Theorem 2.1 considers the alarm rate βk when k goes

to infinity while in the attack model it is assumed that the replay is performed from time 0 to time

T − 1. However, since T is assumed to be large and βk typically converges quickly, as is illustrated

by the numerical examples, the asymptotic performance of βk serves as an indicator of the detection

performance of the system.

Based on Theorem 2.1, if A is strictly unstable, then the attacker can be detected efficiently as

the detection rate βk converges to 1. However, ifA is stable, then the attacker can perform the replay

attack for an extended period of time given that the false alarm rate α is insignificant, which implies
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that the system is not resilient to this type of attack. In that case, one possible countermeasure is to

redesign the estimation and control gain matricesK and L so that the closed-loop system is stable,

while enforcing A strictly unstable. However, this approach is not always desirable, since the

control and estimation gain matrices are usually designed to satisfy certain safety and performance

constraints and hence cannot be changed arbitrarily. In these scenarios, instead of redesigning K

and L, the watermark signal can be used to enable intrusion detection.

We remark that other defense strategies can be vulnerable to replay attacks, beyond the LQG

controller. A general condition characterizing the stealthiness of a replay attack given a particular

estimator and controller can be found in [15]. More specifically, it can be shown simple output

feedback strategy is susceptible to failure.

Corollary 2.1. Suppose ∆uk = 0 for all k. Moreover, suppose the defender has a control strategy

uk = hk(yk) where hk : Rm → Rp is some deterministic function of yk. If A(I −KC) is Schur

stable, then the detection rate βk of all detectors g converges to the false alarm rate α during the

attack, that is,

lim
k→∞

βk = α. (2.28)

The proof is similar to the proof of Theorem 2.1 and is thus omitted. Under the given system

assumptions,A(I−KC) is stable when using a Kalman filter and as a result a replay attack strategy

against an output feedback strategy is asymptotically stealthy.

2.1.3 Watermark Design and Detection

This section is devoted to developing a design methodology for the watermark signal and

the anomaly detector. To begin, the following assumption is made on the control system.

Assumption 2.1.1. A is stable. That is, ρ((A+BL)(I −KC)) < 1.

Throughout this section, it is assumed that A is stable, since otherwise the watermark sig-

nal would be unnecessary as a consequence of Theorem 2.1. To simplify notations, define the
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symmetric part of a matrix X as

sym(X) , X +XT

2
. (2.29)

Performance Loss

When altering one’s control strategy in order to improve detection performance, one needs

to consider the very real fact that introducing a watermark degrades control performance. As

such, when one considers this technique for active detection, the cost of control and the benefits

of security must be carefully weighed against each other in the design of a potential watermarking

scheme. We attempt to characterize control performance by examining the increase in the LQG

cost. The following theorem provides the LQG control performance loss incurred by the watermark

signal.

Theorem 2.2. The LQG performance of the system described by (2.1), (2.2), (2.4) and (2.10) is

given by

J = J∗ + ∆J, (2.30)

where J∗ is the optimal LQG cost without the watermark signal and

∆J = tr

{
UΓ(0) + 2U sym

[
L

∞∑

d=0

(A+BL)dBΓ(1 + d)

]}
+ tr

[
(W + LTUL)Θ1

]
, (2.31)

where

Θ1 , 2
∞∑

d=0

sym
[
(A+BL)dL1(Γ(d))

]
− L1(Γ(0)),

and L1 : Cp×p → Cn×n is a linear operator defined as

L1(X) =
∞∑

i=0

(A+BL)iBXBT ((A+BL)i)T = (A+BL)L1(X)(A+BL)T +BXBT .

Proof. The “healthy” control system follows


xk+1

ek+1


 =



A+BL −BL

0 A−KCA






xk

ek


+




I 0

I −KC −K







wk

vk+1


+



B∆uk

0


 ,

(2.32)
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and

uk = Lx̂k|k + ∆uk = Lxk − Lek + ∆uk. (2.33)

Since the control system is closed-loop stable, {xk}, {ek} and {uk} are all stationary Gaussian

processes. Hence,

J = E[xT1Wx1 + uT1Uu1] = tr(W Cov(x1)) + tr(U Cov(u1)).

By (2.32),

x1 = l1(w0, w−1, . . . , v0, v−1, . . . ) +
∞∑

i=0

(A+BL)iB∆u−i, e1 = l2(w0, w−1, . . . , v1, v0 . . . ),

where l1 and l2 are linear functions. As a result,

u1 = l3(w0, w−1, . . . , v1, v0, . . . ) + L

∞∑

i=0

(A+BL)iB∆u−i + ∆u1,

where l3 is another linear function. Since the watermark signal is independent from the process

noise {wk} and sensor noise {vk},

Cov(x1) = Cov (l1(w0, w−1, . . . , v0, v−1, . . . )) + Cov

( ∞∑

i=0

(A+BL)iB∆u−i

)
,

and

Cov(u1) = Cov (l3(w0, w−1, . . . , v1, v0, . . . )) + Cov

(
L

∞∑

i=0

(A+BL)iB∆u−i + ∆u1

)
.

When ∆uk = 0, the optimal LQG cost is J∗. Thus, J = J∗ + ∆J where

∆J = tr

[
W Cov

( ∞∑

i=0

(A+BL)iB∆u−i

)]
+ tr

[
U Cov

(
L

∞∑

i=0

(A+BL)iB∆u−i + ∆u1

)]
.

(2.34)

Manipulating the RHS of (2.34) leads to (2.31), which finishes the proof.

Remark 2.11. While the expression for ∆J is complicated, it is linear with respect to the au-

tocovariance functions Γ(d). This linearity will be important as we attempt to formulate an

efficiently solvable optimization problem which addresses the tradeoff between security and control

performance when introducing physical watermarking as a means for active detection
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Optimal Detector

This subsection derives the asymptotically optimal detector. A detector has real time

knowledge of the residue zk, obtained from the estimator, as well as real time knowledge of the

trajectory of the watermark, {∆uk}. Define the covariance of the residue zk of the healthy system

to be

P̄ , CPCT +R. (2.35)

For the “healthy” system, zk is Gaussian distributed with mean 0 and covariance P̄ .

By (2.27), for the system under the replay attack

zk+1 = −CAk+1
(
x̂0|−1 − x̂a0|−1

)
− C

k∑

i=0

Ak−iB∆ui + C

k∑

i=0

Ak−iB∆uai + zak+1. (2.36)

The first term on the RHS of (2.36) converges to 0 sinceA is stable. The second term is a function

of the watermark signal, which is generated and thereby known by the control system and the failure

detector. The third and fourth terms are independent from each other since zk is the residue vector

of the Kalman filter. Further define

µk , −C
k∑

i=−∞
Ak−iB∆ui, (2.37)

and

Σ , lim
k→∞

Cov

[
C

k∑

i=0

Ak−iB∆uai

]
= Cov

[
C

∞∑

i=0

AiB∆u−i

]
. (2.38)

Expanding the RHS of (2.38),

Σ = 2
∞∑

d=0

C sym
[
AdL2(Γ(d))

]
CT − CL2(Γ(0))CT , (2.39)

where L2 : Cp×p → Cn×n is a linear operator on the space of p× p matrices, which is defined as

L2(X) ,
∞∑

i=0

AiBXBT (Ai)T = AL2(X)AT +BXBT .

Therefore, zk has a distribution that converges to a Gaussian distribution with mean µk−1 and

covariance P̄ + Σ. As a result, the null hypothesis is

H0 : the residue zk follows a Gaussian distribution N0(0, P̄ ).
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The alternative hypothesis is

H1 : the residue zk follows a Gaussian distribution N1(µk−1, P̄ + Σ).

By the Neyman-Pearson lemma [22], the optimal detector is given by the Neyman-Pearson detector

as discussed in Theorem 2.3.

Theorem 2.3. The optimal Neyman-Pearson detector rejectsH0 in favor ofH1 if

gNP (zk,∆uk−1,∆uk−2, . . .) = zTk P̄
−1zk − (zk − µk−1)T (P̄ + Σ)−1(zk − µk−1) ≥ η. (2.40)

Otherwise, hypothesisH0 is accepted.

To characterize the performance of the detector, ideally the asymptotic detection rate limk→∞ βk

or expected time to detection is considered. However, the detection rate and expected time to

detection involve integrating a Gaussian distribution, which usually does not have an analytical

solution. In this section, the Kullback-Leibler (KL) divergence, which measures the “distance”

between the two distributions, is used to characterize the detection performance. This choice rests

on the observation that as the KL divergence between two distributions increases, the distributions

become, roughly speaking, easier to distinguish.

The Kullback-Liebler divergence, first described in [23], is a measure of the difference between

two distributions f1(z) and f0(z). For continuous probability density functions f1 and f0, the KL

divergence is given as

DKL(f1‖f0) =

∫

z

f1(z) log

(
f1(z)

f0(z)

)
dz. (2.41)

It can be shown that DKL(f1‖f0) ≥ 0. Moreover, equality holds if and only if f1(z) = f0(z) for

almost all z. Thus, if the distribution f1(z) is close to f0(z), the KL divergence likely approaches

0.

The KL divergence between distributions f1 and f0 can be related to the Neyman-Pearson

detector associated with a binary hypothesis test. Here, consider f1(z) to be the distribution of

the observations z under the alternative hypothesis H1 and f0(z) to be the distribution of the
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observations z under the null hypothesisH0. The optimal Neyman-Pearson detector is a threshold

detector on the log likelihood l(z) = log

(
f1(z)

f0(z)

)
, where if l(z) is greater than a constant c the

alternative hypothesis is chosen. Observe that the KL divergence D(f1‖f0) satisfies

DKL(f1‖f0) = E[l(z)|H1] (2.42)

Thus, maximizing the KL divergence over a subset of possible distributions f1 potentially

increases the probability of an observation z such that l(z) > c, when the alternative hypothesis

is true. As a result, the probability of detection also increases. For additional discussion of the

relationship between the KL divergence and Neyman Pearson lemma, see [24].

The expected KL divergence of the two Gaussian distributions in H1 and H0 is given by the

next theorem

Theorem 2.4. The expected KL divergence of distribution N1 and N0 is

E[DKL(N1‖N0)] = tr(ΣP̄−1)− 1

2
log det(I + ΣP̄−1). (2.43)

Furthermore, the expected KL divergence satisfies the inequality

1

2
tr(ΣP̄−1) ≤ E[DKL(N1‖N0)] ≤ tr(ΣP̄−1)− 1

2
log
[
1 + tr(ΣP̄−1)

]
, (2.44)

where the upper bound is tight if C is of rank 1.

Proof. By the definition of KL divergence, it is known that

DKL(N1‖N0) =
1

2
tr
[
(P̄ + Σ)P̄−1

]
− m

2
− 1

2
log det

[
(P̄ + Σ)P̄−1

]
+

1

2
µk

T P̄−1µk,

=
1

2
tr(ΣP̄−1)− 1

2
log det(I + ΣP̄−1) +

1

2
tr(µkµk

T P̄−1).

Take the expectation on both sides. It is easy to verify that Σ = E[µkµk
T ], which proves (2.43).

Now assume that the eigenvalues of ΣP̄−1 are λ1, · · · , λm. As a result,

tr(ΣP̄−1) =
m∑

i=1

λi,
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and

log det(I + ΣP̄−1) =
m∑

i=1

log(1 + λi).

Since P̄ is positive semidefinite, there exists a positive semidefinite matrix P̄ 1/2, where P̄ 1/2P̄ 1/2 =

P̄ . Hence, ΣP̄−1 shares the same eigenvalues as P̄−1/2ΣP̄−1/2, which implies all λis are real and

nonnegative. As a result, by the concavity of log function, it is known that

log
[
1 + tr(ΣP̄−1)

]
≤ log det(I + ΣP̄−1) ≤ m log

(
1 +

tr(ΣP̄−1)

m

)
≤ tr(ΣP̄−1). (2.45)

The first inequality holds when λ1 = tr(ΣP̄−1) and λ2 = · · · = λm = 0. The second inequality

holds when λ1 = · · · = λm = tr(ΣP̄−1)/m. The third inequality uses the fact that log(1 +x) ≤ x.

Combining (2.45) and (2.43), (2.44) holds.

Furthermore, if C is of rank 1, then by (2.39),

rank(ΣP̄−1) ≤ rank(Σ) ≤ 1.

As a result, the first inequality of (2.45) is tight, which implies that the upper bound in (2.44) is

tight.

It is worth noticing that the expected KL divergence is a convex function of Σ. However,

both the upper and lower bound of the expected KL divergence are monotonically increasing with

respect to tr(ΣP̄−1), which is linear in Σ.

Optimal Watermark Signal

This subsection derives the optimal watermark signal. Ideally, the following optimization

problem should be solved.

maximize
Γ(d)∈G(ρ̄)

E[DKL(N1‖N0)]

subject to ∆J ≤ δ, (2.46)

where δ > 0 is a design parameter.
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However, it is computationally hard to solve this maximization problem since the expected KL

divergence is not a concave function of Γ(d). Hence, the ensuing optimization problem is solved.

maximize
Γ(d)∈G(ρ̄)

tr(ΣP̄−1)

subject to ∆J ≤ δ, (2.47)

Notice that the expected KL divergence is relaxed to tr(ΣP̄−1), using the upper and lower

bound derived in Theorem 2.4. Furthermore, if C is of rank 1, then by Theorem 2.4, optimizing

tr(ΣP̄−1) is equivalent to optimizing the expected KL divergence. For general cases, the optimality

gap can be quantified using the upper and lower bound. It is unclear how we can guarantee that

Γ(d) ∈ G(ρ̄). To address this we make the following additional assumption.

Assumption 2.1.2. Γ̃(d) = ρ̄−|d|Γ(d) is an autocovariance function.

Γ̃(d) can be potentially realized by an alternate HMM

ξ̃k+1 = (Aω/ρ̄)ξ̃k + ψ̃k, ∆ũk = Chξ̃k, (2.48)

Cov(ξ̃0) = AωCov(ξ̃0)ATω + Ψ, (2.49)

ψ̃k ∼ N (0,Cov(ξ̃0)− AωCov(ξ̃0)ATω/ρ̄
2). (2.50)

Note, that if ρ(Aω) > ρ̄, (2.48) can not be a stationary process. This HMM can be realized if and

only if Cov(ξ̃0)−AωCov(ξ̃0)ATω/ρ̄
2 is positive semidefinite. Intuitively, if ρ(Aω) is marginally less

than ρ̄, there is a larger chance that Cov(ξ̃0)− AωCov(ξ̃0)ATω/ρ̄
2 is positive semidefinite.

If ρ̄ = 1, the space is not constricted by assumption 2.1.2 and in fact one will be able to optimize

over all stationary Gaussian watermarks. We rewrite assumption 2.1.2 by defining the setH(ρ̄) as

follows

H(ρ̄) = {Γ : ρ̄−|d|Γ(d) is an autocovariance function of a stationary process}. (2.51)
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The resulting formulation is given as

maximize
Γ(d)∈G(ρ̄),Γ(d)∈H(ρ̄)

tr(ΣP̄−1)

subject to ∆J ≤ δ, (2.52)

Although Σ and ∆J are linear functionals of Γ, convex optimization techniques cannot be

directly applied to solve (2.52), since Γ is in an infinite dimensional space.

As a result, (2.52) is transformed into the frequency domain. Before continuing on, the following

definition is needed.

Definition 2.2. ν is a positive Hermitian measure of size p× p on the interval (−0.5, 0.5] if for a

Borel set SB ⊆ (−0.5, 0.5], ν(SB) is a positive semidefinite Hermitian matrix with size p× p.

The following theorem establishes the existence of a frequency domain representation for Γ(d).

Theorem 2.5 (Bochner’s Theorem [25, 26]). Γ(d) is the autocovariance function of a stationary

Gaussian process {∆uk} if and only if there exists a unique positive Hermitian measure ν of size

p× p, such that

Γ(d) =

∫ 1/2

−1/2

exp(2πjdω) d ν(ω). (2.53)

d ν(ω) can be interpreted as the discrete-time Fourier transform of the function Γ(d). In fact,

if ν(ω) is absolutely continuous with respect to the Lebesgue measure, then

d ν(ω) = f(ω) dω,

and

Γ(d) =

∫ 1/2

−1/2

exp(2πjdω)f(ω) dω,

where f is a mapping from (−0.5, 0.5] to the set of positive semidefinite Hermitian matrices. f is

exactly the “entrywise” Fourier transform of Γ(d).

By the fact that Γ(d) is real, the Hermitian measure ν satisfies the following property, which

can be applied to the Fourier transform of the real valued signals.
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Proposition 1. Γ(d) is real if and only if for all Borel-measureable sets SB ⊆ (−0.5, 0.5],

ν(SB) = ν(−SB). (2.54)

By (2.54), (2.53) can be simplified as

Γ(d) = 2Re

(∫ 1/2

0

exp(2πjdω) d ν(ω)

)
. (2.55)

Theorem 2.6. The optimal solution (not necessarily unique) of (2.52) is

Γ∗(d) = 2ρ̄|d|Re [exp(2πjdω∗)H∗] , (2.56)

where ω∗ and H∗ are the solution of the ensuing optimization problem.

maximize
ω,H

tr
[
F2(ω,H)CT P̄−1C

]

subject to F1(ω,H) ≤ δ, 0 ≤ ω ≤ 0.5,

H Hermitian and Positive Semidefinite, (2.57)

where the function F1 is defined as

F1(ω,H) , tr [UΘ2] + tr
[
(W + LTUL)Θ3

]
, (2.58)

Θ2 ,2Re
{

2 sym
(
sρ̄L[I − sρ̄(A+BL)]−1BH

)
+H

}
,

Θ3 , 2Re
{

2 sym
[
(I − sρ̄(A+BL))−1L1(H)

]
− L1(H)

}
,

and s , exp(2πjω).

The function F2 is defined as

F2(ω,H) , 2Re
{

2 sym
[
(I − sρ̄A)−1L2(H)

]
− L2(H)

}
. (2.59)

Furthermore, one optimal (not necessarily unique) H∗ of Problem (2.57) is of the form

H∗ = hhH , (2.60)
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where h ∈ Cp. The corresponding HMM is given by

ξk+1 = ρ̄




cos 2πω∗ − sin 2πω∗

sin 2πω∗ cos 2πω∗


 ξk + ψk, ∆uk =

[ √
2hr

√
2hi

]
ξk, (2.61)

where hr, hi ∈ Rp are the real and imaginary part of h respectively andΨ = Cov(ψk) = (1−ρ̄2)I .

The proof is found in the appendix.

Remark 2.12. By (2.56), Γ∗(d) can be seen as a sinusoidal signal with a decay factor ρ̄, where

ω∗ and H∗ can be interpreted as the optimal frequency and direction respectively. Since F1 and

F2 are linear with respect to H , when ω is fixed, (2.57) is a semidefinite programing problem and

hence can be solved efficiently. Therefore, (2.57) can be solved in two steps by first calculating

the optimal signal direction for every frequency 0 ≤ ω ≤ 0.5 and then searching over all possible

frequencies ω. In practice, (2.57) can be solved for enough sample frequencies to obtain a near

optimal watermarking signal.

It is worth noticing that regardless of the dimensions of the physical system n or the control input

p, the dimension of the hidden ξk is always 2, which is desirable from a computational perspective

when dealing with a high-dimensional linear system.

There always exists an optimal solution that is a noisy sinusoid. The fact that a single frequency

is optimal occurs because both the objective function and constraint can be expressed as infinite

Riemann sums which are functions of ν(ω). Specifically, both are linear functions of an infinite

sequence {ν(ωi)}. The fact the objective and constraint are linear across ν(ωi) means there

is an optimal solution consisting of a single frequency. Removing these linearities, perhaps by

considering nonlinear systems, could potentially result in an optimal watermark containingmultiple

frequencies.
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2.1.4 Numerical Example

This section illustrates the utility of the watermarking scheme by analyzing detection per-

formance on a control system, with parameters

A =




1 1

0 1


 , B =




0

1


 , C =

[
1 0

]
. (2.62)

The cost matrices in this system,W andU , are equal to the identity. The covariance matrices,Q

and R, are equal to 0.8 times the identity and the identity respectively. As a result, the eigenvalues

of A are -0.339 and -0.105. Consequently, A is stable, thus motivating the use of a watermark

signal for detection. Two watermarking designs are analyzed. First, a stationary watermark is

generated using (2.61) where ρ̄ = 0.6. In the second case, an IID Gaussian process is considered,

similar to the design presented in [15, 27]. Designing a stationary Gaussian watermark requires

solving a semidefinite program for a set of frequencies sampled in 0 ≤ ω ≤ 0.5. A step size of 0.01

is chosen for this system, which requires solving 51 semidefinite programs. On aMacbook Pro with

a 2.4 GHz processor, solving all 51 semidefinite programs takes 12.9 seconds using CVX [28, 29].

First, the asymptotic detection rate limk→∞ βk versus the false alarm rate α for each design is

plotted in Fig 2.4. The additional cost ∆J imposed by the watermark is 10 for each design, roughly

40 percent of the optimal cost J∗ = 23.1.

The relationship between the asymptotic detection rate and false alarm rate is again considered

in Fig 2.5. Here, α is chosen to be less than 0.1, which is typical for real systems, where the cost

considerations of investigating possible attacks make it undesirable to have frequent false alarms

during normal operation. The stationary watermarking design offers a visible improvement in the

asymptotic rate of detection over an IID design. The stationary watermarking scheme with ρ = 0.6

obtains its best relative performance in comparison to independent and identically distributed (IID)

watermarking schemes when the probability of false alarm approaches 0. The percent improvement

in asymptotic detection rate limk→∞ βk of the stationary Gaussian design with ρ̄ = 0.6 over the IID

approach is explicitly examined in Fig 2.6 for α ≤ 0.1. It can be seen that the stationary watermark
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achieves its best relative performance for α in this range. In fact, a 60 percent improvement over

the IID design in the asymptotic rate of detection is obtained when α ≈ 0.005 and ρ̄ = 0.6.
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Figure 2.4: limk→∞ βk as a function of α for a stationary watermark with ρ = 0.6, and an
independent and identically distributed (IID) watermark with ∆J = 10.

Fig 2.7 and Fig 2.8 illustrate the tradeoff between the asymptotic detection rate limk→∞ βk

and the LQG cost ∆J for ∆J ≤ 100 and ∆J ≤ 20 respectively. For this simulation, the false

alarm rate α is fixed to be 0.02. For practical systems, ∆J needs to be carefully chosen to balance

the control cost and the detection performance. These figures show that as more control effort is

expended, the rate of detection increases. In particular, additional linear-quadratic-Gaussian (LQG)

cost corresponds to increasing the magnitude of the watermark’s autocovariances. Through the

dynamics of the system, watermarks with larger autocovariances increase discrepancies between

the replayed sensor outputs and the expected sensor outputs, thus resulting in a higher probability

of detection.

Fig 2.9 shows the detection rate as a function of time k where ∆J = 10 for the watermarking

approaches and α = 0.02. In this scenario, detection performance in the absence of physical

watermarking is also considered. For this case, a χ2 detector is used. It is assumed that the attacker
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Figure 2.5: limk→∞ βk as a function of α,for α ≤ 0.1, for a stationary watermark with ρ = 0.6,
and an independent and identically distributed (IID) watermark with ∆J = 10.
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Figure 2.6: Percentage improvement in limk→∞ βk over the independent and identically distributed
(IID) design versus α for a stationary watermarking scheme with ρ = 0.6 and ∆J = 10.
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Figure 2.7: limk→∞ βk versus ∆J for a stationary watermark with ρ = 0.6 and an independent and
identically distributed (IID) watermark, α = 0.02.
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Figure 2.8: limk→∞ βk versus ∆J for a stationary watermarks with ρ = 0.6 and an independent
and identically distributed (IID) watermark, α = 0.02,∆J ≤ 20.
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gathers measurements from −50 ≤ k ≤ −1 and replays these measurements from 0 ≤ k ≤ 49.

For all chosen designs, the probability of detection quickly rises to a maximum detection rate

at k = 0 due to a mismatch between the expected and received measurements at the beginning

of a replay attack. However, since A is stable, the detection rate quickly decreases back to false

alarm rate without watermarking. Meanwhile, in the watermarking strategies βk converges quickly.

As a result, it is reasonable to design the watermark signal to optimize the asymptotic detection

performance.

k
-10 0 10 20 30 40 50

β
k

0

0.05

0.1

0.15

0.2

0.25

0.3

Stationary Watermark ρ = 0.6
IID Watermark
No Watermark

Figure 2.9: βk versus time k for a stationarywatermarkwith ρ = 0.6, an independent and identically
distributed (IID) watermark, and no watermark. For watermarking schemes, ∆J = 10, and
α = 0.02.

Finally, Fig 2.10 examines the relationship between the expected time of detection and the

additional LQG cost ∆J when α = 0.02. In the absense of physical watermarking, which

corresponds to∆J = 0, the expected time of detection is roughly given by k = 34.3. Watermarking

strategies can significantly reduce the time of detection. For instance, for ∆J = 10, the expected

time of detection for the stationary watermark is k = 5.82 and the expected time of detection for

the IID watermark is k = 6.27.
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Figure 2.10: Expected time of detection versus ∆J for a stationary watermark with ρ = 0.6, and
an independent and identically distributed (IID) watermark, α = 0.02.

2.2 Robust Physical Watermarking

In the prior section, we introduced physical watermarking as an active method for detection,

illustrating its effectiveness against replay attacks. In this section, we aim to demonstrate that this

mechanism for active detection can remain effective in other scenarios, even when considering

attackers who retain model knowledge. The root of trust in the prior section was the watermark and

in general the control input. In particular, it was assumed that the attacker did not have knowledge

of the control input. We relax this assumption by instead assuming the attacker has access to a

subset of control inputs while the defender is able to keep a known subset of inputs hidden from

the attacker. Given this scenario, we aim to design a so called robust watermarking scheme.

2.2.1 System Description

The system description remains unchanged from the prior section. The dynamics are represented

via a LTI control system (2.1) which is monitored by a suite of sensors (2.2). The designers aim to
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minimize an LQG cost (2.3). This is done via a combination of a Kalman filter (2.4),(2.5),(2.6),

and linear state feedback controller (2.7),(2.8),(2.9).

We again examine the binary detection problem of verifying the integrity of sensor measure-

ments. For simplicity, we assume that any integrity attack begins at time 0. Here, we generically

define the null hypothesisH0 and alternative hypothesisH1 as follows.

H0 : The system is operating normally.

H1 : An attacker implements an attack strategy Z.

A detector of the form

g(zk)
H1

≷
H0

η, zk , yk − Cx̂k|k−1, (2.63)

is implemented where zk is the current residue and g : Rm → R is a scalar valued function. The

detector g leverages the fact that under normal operation

zk ∼ N (0, P̄ ), P̄ , CPCT +R, (2.64)

to find faulty data. The probability of detection when the system is under attack βk and the

probability of false alarm α are defined respectively as

βk , Pr(g(zk) > η|H1), α , Pr(g(zk) > η|H0). (2.65)

As before, since zk is stationary under normal operation, α is constant. While we consider the class

of detectors which only consider the current residue, previous residues can also be considered.

It can be shown, that the class of residue detectors are vulnerable to stealthy integrity attacks.

Namely, we have the following result.

Theorem 2.7. Suppose an attacker modifies sensor measurements to yak so that the measurements

yak are statistically identical to measurements yk gathered under normal operation. That is yak is a

zero-mean Gaussian process such that

Cov(yk1 , yk2) = Cov(yak1 , y
a
k2

) ∀ k1, k2. (2.66)
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Furthermore suppose the matrix (A + BL)(I − KC) is stable. Then for all residue detectors g

that are continuous in zk

lim
k→∞

βk = α. (2.67)

The proof is essentially equivalent to that of Theorem 2.1 and is thus omitted.

The above theorem shows that for certain systems, if an attacker is able to generate statistically

correct measurements yak , no residue detector can asymptotically provide any information about

whether an integrity attack has taken place. We showed that an attacker can generate statistically

correct sensor measurements through a replay attack. If the system model is known to the attacker,

yak can be generated if the attacker simulates his own version of the system.

To counter such an adversary, for simplicity, we consider the design of an IID watermark

∆uk ∼ N (0,J ) (first considered in [15]) added on top of the optimal input u∗k,

uk = u∗k + ∆uk. (2.68)

2.2.2 Attack Model

In our attack model, we consider a near omniscient adversary. Such an adversary may be highly

sophisticated such as in Stuxnet. On the other hand, malicious insiders may have significant access

to system components and knowledge that are not publicly available. They can in turn leverage

their knowledge and resources to design stealthy attacks [6]. We consider an attacker with the

following capabilities.

1) The attacker can insert an external control input Bauak starting at time k = 0 where uak is a

control input and Ba denotes the direction.

Remark 2.13. Here, the attacker can take over a subset of control inputs as was done in Stuxnet

so that Ba is contained in B. Alternatively, the attacker can inject his own control input. The

goal of the attacker is to design the input so as to cause physical damage to the system. An

alternative approach would be to perform a purely sensor based false data injection attack so that
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the system destabilizes by the actions of the system operator without the presence of an external

input. However, such an attack can be limited in terms of the range of achievable states or the

speed at which damage can be achieved.

2) The attacker knows the system model,M = {A,B,C,K,L,Q,R,W,U,J }.

Remark 2.14. A sophisticated attacker could potentially perform system identification to obtain

the system matrices. Alternatively, a malicious insider could obtain knowledge of the model.

3) The attacker can arbitrarily modify all sensor measurements from yk to yak starting at time

k = 0. Moreover, the attacker can read the true sensor measurements yk for all k.

Remark 2.15. Unlike replay attacks considered in the prior section as well as in [15],[30],[27],

knowledge of true sensor measurements in real time can be leveraged by the attacker to improve

the statistical properties of yak .

Remark 2.16. In theory, knowledge of yk, the injected control input Bauak, and the system model,

would allow an adversary to subtract his influence and generate undetectable virtual outputs yak .

However, for such a scheme to be successful, the plant must be open loop stable. If A is unstable,

any cancellation errors due to modeling discrepancies would grow exponentially. Moreover, if A

is stable, the input uak could cause the system to enter a nonlinear operating region, nullifying the

attacker’s knowledge of the model.

4) The attacker can read a subset of control inputs for all k. That is uk can, without loss

of generality, be partitioned as uTk = [u1
k
T
u2
k
T

]T where u1
k ∈ Rp1 is known to the attacker while

u2
k ∈ Rp−p1 remains secret.

Remark 2.17. In previous work, all inputs were secret to the attacker. However, if the attacker is

able to modify a subset of control inputs, it is likely that the attacker can read the intended inputs

chosen by the system designer. The root of trust in this system is the set of secret inputs u2
k. If

the attacker has knowledge of all inputs as well as the model, he can generate virtual outputs by
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simulating the system. By assumption, the set of vulnerable inputs are known to both the system

operator and adversary. Again, knowledge of a subset of control inputs can be used by the attacker

to generate yak . The attacker is summarized in Fig. 2.11

Figure 2.11: Diagram of System under Robust Attack

We can again characterize the attacker in terms of the three dimensional attack space. We

will refer to this attack as the robust attack. Relative to the replay attacker, we observe that this

adversary has full model knowledge, as well as the ability to read a subset of inputs. The attack

space is illustrated in Fig. 2.12.

Beforewe continue, we introduce notationwhere the superscript 1 denotes parameters associated
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Figure 2.12: Cyber-Physical Attack Space with Robust Attack

with known inputs and the superscript 2 denotes parameters associated with unknown inputs.

Buk = [B1 B2]



u1
k

u2
k


 = B1u1

k +B2u2
k, u

1
k = L1x̂k + ∆u1

k, u
2
k = L2x̂k + ∆u2

k, (2.69)

∆u1
k ∼ N (0,J1), ∆u2

k ∼ N (0,J2), J1 ≥ εI, ε > 0, J2 ≥ 0, (2.70)

U =



U1 U12

U21 U2


 , L =



L1

L2


 .

Here, we design ∆u1
k and ∆u2

k to be independent using the rationale that the system operator would

not want to provide any information about ∆u2
k in the watermark ∆u1

k if u1
k is vulnerable. Note that

J1 ≥ εI for some ε > 0 to be chosen by the designer. We remark that this assumption allows us

to use theoretical results regarding the discrete algebraic Riccati equation (DARE) included later



CHAPTER 2. PHYSICAL WATERMARKING 46

in the section and can be relaxed by choosing ε to be close to 0. As in the previous section, the

dynamics under attack can be characterized as

xk+1 = Axk +Buk +Bauak + wk, yk = Cxk + vk, (2.71)

x̂k+1|k = Ax̂k|k +Buk, x̂k|k = x̂k|k−1 +K
(
yak − Cx̂k|k−1

)
, (2.72)

uk = Lx̂k|k + ∆uk, zk = yak − Cx̂k|k−1. (2.73)

2.2.3 Attack Strategy

We would like to determine how the attacker should generate virtual outputs as illustrated in Fig.

2.11. To fool a detector g(zk), the adversary would like to generate measurements yak so that residue

under attack yak−Cx̂k|k−1 has statistical properties approaching the residue under normal operation

which has distributionN (0, P̄ ) (or equivalently yk ∼ N0(Cx̂k|k−1, P̄ )) under normal operation. In

the following theorem, we assume the attackerwishes tominimize the distance between distributions

of the residue under attack and normal operation using the available information.

Theorem 2.8. Denote the information available to the adversary at time k as Iak . Suppose the

attacker generates virtual measurements yak such that

yak ∼ N1(µak,Σ
a). (2.74)

The expected KL divergence E [DKL (N1||N0) |Iak ] is minimized by

µak = CE[x̂k|k−1|Iak ], Σa = P̄ . (2.75)

Thus, under attack zk ∼ N1(CE[x̂k|k−1|Iak ]− Cx̂k|k−1, P̄ ).

Proof. Letting νak , µak − Cx̂k|k−1, the expected KL divergence of probability distributions yk ∼

N0(Cx̂k|k−1, P̄ ) and yak ∼ N1(µak,Σ
a) or E[DKL (N1||N0) |Iak ] is given by

E[DKL (N1||N0) |Iak ] =
1

2
tr(ΣaP̄−1) +

1

2

(
E
[
νak

T P̄−1νak |Iak
]
− log det(ΣaP̄−1)−m

)
. (2.76)
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We would like to obtain the minimizing Σa and µak, which can be obtained by solving two opti-

mization problems.

Σa
opt = arg min

Σa

(
tr(ΣaP̄−1)− log det(ΣaP̄−1)

)
. (2.77)

Since the objective is convex in Σa, we can differentiate with respect to Σa
opt and equate to 0,

obtaining

−Σa
opt
−1 + P̄−1 = 0 =⇒ Σa

opt = P̄ . (2.78)

Similarly, the minimizing µak can be obtained by solving

µakopt = arg min
µak

E
[
νak

T P̄−1νak |Iak
]
, (2.79)

where E
[
νak

T P̄−1νak |Iak
]
is given by

∫

x̂k|k−1

νak
T P̄−1νakf(x̂k|k−1|Iak )dx̂k|k−1.

Differentiating with respect to µak, we obtain
∫

x̂k|k−1

P̄−1(µakopt − Cx̂k|k−1)f(x̂k|k−1|Iak )dx̂k|k−1 = 0.

Solving for µak, we have µakopt = CE
[
x̂k|k−1|Iak

]
.

Here, the KL divergence is used as a heuristic to represent the distance between distributions.

From Theorem 2.8, the attacker should generate stealthy virtual inputs yak as follows.

Virtual Output Generation

1. Calculate CE[x̂k|k−1|Iak ].

2. Generate IID noise ζk ∼ N (0, P̄ ).

3. Compute yak = CE[x̂k|k−1|Iak ] + ζk.
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Thus, in an optimal solution, an attacker computes a best approximation of the output a defender

would expect to see and then adds noise of the appropriate distribution, in this case the distribution

of the residue. For the remainder of the section, we determine how the attacker should use all

available information to compute CE[x̂k|k−1|Iak ]. In order to generate yak+1, the attacker at time

k + 1 has knowledge of the outputs yj , and control inputs u1
j up to time k. That is,

Iak+1 = {M, yk, y
a
k , u

a
k, u

1
k, yk−1, y

a
k−1, u

a
k−1, u

1
k−1, . . .}. (2.80)

Remark 2.18. We have assumed that at time k, to generate, yak , the attacker does not have the

ability to incorporate the real time yk into his estimate. This perhaps might be a real time constraint

for an attacker who does not wish to introduce suspicious delays into the system by processing real

time sensor measurements.

To obtain a conditional estimate of x̂k+1|k, using Iak+1, we formulate a new model from the

attacker’s perspective. Suppose an adversary has information Iak+1. Furthermore define,

yuk , u1
k − L1Kyak . (2.81)

Given yak , which is known by the attacker, yuk is an invertible function of u1
k. Thus, Iak+1 can be

rewritten as

Iak+1 = {M, yk, y
a
k , u

a
k, y

u
k , yk−1, y

a
k−1, u

a
k−1, y

u
k−1, . . .}. (2.82)

Lemma 2.1. For k ≥ 0, the attacker’s observations can be formulated as the outputs of a state

space model as follows.



x̂k+1|k

xk+1


 = A



x̂k|k−1

xk


+ B




yak

yuk + L1Kyak

uak




+Wk,



yuk

yk


 = C



x̂k|k−1

xk


+ Vk, (2.83)
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where

A ,




(A+B2L2)(I −KC) 0

B2L2(I −KC) A


 ,B ,




(A+B2L2)K B1 0

B2L2K B1 Ba


 ,

Wk ,




B2∆u2
k

B2∆u2
k + wk


 Vk ,




∆u1
k

vk


 , Wk ∼ N (0,Q) , Vk ∼ N (0,R) ,Wk,Vk IID.

Q ,



B2J 2B2T B2J 2B2T

B2J 2B2T B2J 2B2T +Q


 ,R ,



J 1 0

0 R


 , C ,



L1(I −KC) 0

0 C




Proof. From (2.4), for k ≥ 0, when the attacker inserts virtual outputs and external inputs we have

x̂k+1|k = A(I −KC)x̂k|k−1 +Buk + AKyak . (2.84)

From (2.69), and (2.4), we have

Buk = B1u1
k +B2

(
L2(I −KC)x̂k|k−1 + L2Kyak + ∆u2

k

)
, (2.85)

so that the first state equation immediately follows. The second state equation is trivially obtained

from the dynamic equation (2.1), (2.85), and the attacker’s external input Bauak. From (2.69) and

(2.4),

u1
k = L1(I −KC)x̂k|k−1 + L1Kyak + ∆u1

k, (2.86)

thus arriving at the first output equation. The second output equation is identical to (2.2). Finally,

the noise distributions are easily derived from (2.70), and the process and sensor noise statistics.

We remark that for k < 0, the same state equations hold for the attacker, except that the external

input uak = 0 and the virtual output yak is simply the true output yk. Therefore, before executing his

attack, the attacker can still observe the model up to time k = 0 to obtain the best possible estimate

of the state. Secondly, from Remark 2.16, we note that a subset of outputs may not be useful to the

attacker due to instability or nonlinearities in the plant. The attacker can ignore a subset of sensors

by removing rows from C when defining C. Before deriving a filter to obtain an optimal estimate

E[x̂k|k−1|Iak ], we make the following assumptions.
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Assumption 2.2.1. (A+BL)(I −KC) is stable. From [27], the stability of (A+BL)(I −KC)

is a standard assumption in watermarking algorithms since otherwise detecting the adversary is

trivial. It can be easily shown that the stability (A+BL)(I−KC) implies that (A, C) is detectable.

Assumption 2.2.2. A has no eigenvalues on the unit circle.

Theorem 2.9. Suppose the adversary starts observing the system at time k = −N , where N > 0.

Assume at k = −N

f






x̂k|k−1

xk


 | Iak


 ∼ N







¯̂x

x̄


 ,Σ


 (2.87)

where Σ > 0.

Define

x̃k|k−1 , E[x̂k|k−1|Iak ], x̃k , E[xk|Iak ]. (2.88)

Then, x̃k|k−1 and x̃k satisfies the following recursive filter.

For k = −N :



x̃k|k−1

x̃k


 =




¯̂x

x̄


 , Pk = Σ > 0, (2.89)

For 0 > k ≥ −N :



x̃k+1|k

x̃k+1


 = A(I −KkC)



x̃k|k−1

x̃k


+AKk



yuk

yk


+ B




yk

u1
k

0




(2.90)

where

Kk = PkCT (CPkCT +R)−1, (2.91)

and the covariance satisfies

Pk+1 = APkAT +Q−APkCT (CPkCT +R)−1CPkAT . (2.92)
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Assume N → ∞. Define P , lim
j→∞
Pj , where Pj is recursively defined according to (2.92).

Then, for k ≥ 0, x̃k|k−1 and x̃k satisfy the following recursive filter



x̃k+1|k

x̃k+1


 = A(I −KC)



x̃k|k−1

x̃k


+AK



yuk

yk


+ B




yak

u1
k

uak



, (2.93)

where

K = PCT (CPCT +R)−1. (2.94)

Additionally, A(I −KC) is Schur stable.

Proof. For k < 0, the proof follows from the definition of the standardKalman filter, [31] and is thus

not reported. Observe from assumption 2.2.1, (A, C) is detectable. Moreover, from assumption

2.2.2, (A,Q 1
2 ) has no uncontrollable eigenvalues on the unit circle since A has no eigenvalues on

the unit circle. This combined with the fact thatR > 0 and Σ > 0 implies that Pk converges to the

unique stabilizing solution X of the riccati equation (2.95), [32].

X = AXAT +Q−AXCT (CXCT +R)−1CXAT . (2.95)

This implies A(I −KC) is Schur stable. The proof for k ≥ 0 again follows from the definition of

the standard Kalman filter.

2.2.4 Attack Detection

In this section, we propose a Neyman Pearson detector to determine whether an attack has occurred.

To begin, we would like to characterize the distribution of the stealthy yak generated by the attacker

from the defender’s perspective. Unlike the attacker, the defender has full knowledge of the state

estimate x̂k|k−1 and watermarks ∆u1
k,∆u

2
k. However, the defender does not have access to the

true yk or uak. As such, the defender can not directly calculate the attacker’s state estimate x̃k|k−1.

Nonetheless, it can characterize the distribution of x̃k|k−1 and thus yak in general.
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We let Ik represent the reliable information available to the system operator under attack. Here,

we will ignore all sensor information as that may be corrupted by the attacker. Thus, we say

Ik = {M, x̂k|k−1, uk−1,∆u
1
k−1,∆u

2
k−1, x̂k−1|k−2, uk−2,∆u

1
k−2,∆u

2
k−2, · · · } (2.96)

Lemma 2.2. Assume at k = −N ,

f






x̂k|k−1 − ¯̂x

xk − x̄


 | Ik


 ∼ N







0

0


 , Σ̄


 . (2.97)

Let N →∞. For k ≥ 0, we have

f(yak |Ik) ∼ N1

(
C(x̂k|k−1 − εk|k−1),Py + P̄

)
, (2.98)

where εk|k−1 satisfies the recursive filter ε−N |−N−1 = 0, ε−N = 0. For k < 0



εk+1|k

εk+1


 = A (I −KkC)



εk|k−1

εk


−AKk




∆u1
k

0


+



B2

B2


∆u2

k. (2.99)

For k ≥ 0,


εk+1|k

εk+1


 = A (I −KC)



εk|k−1

εk


−AK




∆u1
k

0


+



B2

B2


∆u2

k. (2.100)

Moreover, Py is defined as

Py ,
[
C 0

]
Pε
([
C 0

])T
, (2.101)

and Pε satisfies the following Lyapunov equation,

Pε = A (I −KC)Pε (A (I −KC))T + U , (2.102)

where

U = AK




0 0

0 R


KTAT +




0 0

0 Q


 . (2.103)
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Proof. To begin, we define

ẽk|k−1 , x̂k|k−1 − x̃k|k−1, ẽk , xk − x̃k. (2.104)

From (2.83) and (2.90), the error dynamics of the attacker’s estimation filter during attack for

−N < k < 0 are 

ẽk+1|k

ẽk+1


 = A (I −KkC)



ẽk|k−1

ẽk


−AKkVk +Wk. (2.105)

Rearranging terms we have


ẽk+1|k

ẽk+1


 = A (I −KkC)



ẽk|k−1

ẽk


−AKk




0

vk


+




0

wk


−AKk




∆u1
k

0


+



B2

B2


∆u2

k.

(2.106)

As N →∞, for k ≥ 0, we have,


ẽk+1|k

ẽk+1


 = A (I −KC)



ẽk|k−1

ẽk


−AK




0

vk


+




0

wk


−AK




∆u1
k

0


+



B2

B2


∆u2

k. (2.107)

Since the states ẽk|k−1 and ẽk initially have a normal distribution given Ik and the system is

linear with IID Gaussian noise, for each k, ẽk|k−1 and ẽk has a normal distribution given Ik. Let

εk|k−1 , E[ẽk|k−1|Ik] = x̂k|k−1 − E[x̃k|k−1|Ik], εk , E[ẽk|Ik]. (2.108)

Taking the expected value of (2.106) and (2.107), we obtain (2.99) and (2.100). Noting that yak has

expected value CE[x̃k|k−1|Ik], we see that

E[yak |Ik] = C(x̂k|k−1 − εk|k−1). (2.109)

Next observe that (2.107) is an unobserved dynamical system from the defender’s perspective.

From the convergence of the gain Kk as N → ∞, and the stability A(I − KC), the covariance of
[
ẽTk|k−1 ẽ

T
k

]T
for k ≥ 0 simply satisfies the Lyapunov equation (2.102) and is thus Pε. From the

attack strategy, to compute yak , the attacker calculates Cx̃k|k−1 + ζk where ζk ∼ N (0, P̄ ). From

here, the covariance of yak is simply C Cov(x̃k|k−1)CT + P̄ = Py + P̄ . Since, ẽk|k−1 has a normal

distribution given Ik, yak has a normal distribution given Ik and the result holds.
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Remark 2.19. We remark that in practice the defender will be unaware of the time−N an attacker

begins observing a system. However, due to the stability of A(I − KC), the effect of the chosen

−N on the distribution of yak asymptotically vanishes.

Using the results of the previous theorem, we can characterize the distribution of our residue

when the system is under attack and when the system is under normal operation. Namely, we can

redefine our null and alternative hypotheses as follows.

H0 : zk ∼ N (0, P̄ ), H1 : zk ∼ N (−Cεk|k−1,Py + P̄ ).

In this case, the optimal detector which maximizes the probability of detection βk for a given

probability of false alarm α is a Neyman Pearson threshold detector (see [33]).

Theorem 2.10. The most powerful test for the hypothesis test H1 vs. H0 is gNP (zk)
H1

≷
H0

η, where

gNP (zk) is given by

zTk P̄
−1zk − (zk + Cεk|k−1)T

(
Py + P̄

)−1
(zk + Cεk|k−1).

In general, we would like to maximize our detection rate using the degrees of freedom we

have in the design of our watermark. However, directly maximizing the probability of detection is

difficult because it involves integrating a Gaussian function. In the next subsection, we propose a

relaxed optimization problem to design a robust watermark.

2.2.5 Watermark Design

In this section, we attempt to maximize the probability we can detect an attack through the design of

our watermark, namely the covariances J1 and J2. Qualitatively, large covariances would increase

the attacker’s uncertainty about the watermark, making statistically sound yak’s difficult to generate.

However, large watermarks also increase the cost to the system (2.3). As such, we would like to

bound the additional cost created by the watermark. As discussed in the prior section, the optimal

LQG cost of the system without the watermark J∗ is given by

J∗ = tr(SQ) + tr((ATSA+W − S)(P −KCP )). (2.110)
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With the watermark, the cost J from [27] is given by J = J∗ + ∆J where

∆J = tr((BTSB + U)J ), (2.111)

= tr((B1TSB1 + U1)J 1 + (B2TSB2 + U2)J 2).

Because it is difficult to directly maximize the probability of detection, we would like to

maximize the distance between distributions of our residues so that they are easier to distinguish.

To obtain a concave metric, we select the expected KL divergence between zk ∼ N3(C(x̃k|k−1 −

x̂k|k−1), P̄ ), the residue generated under attack, and zk ∼ N2(0, P̄ ) the residue generated under

normal operation given the attacker’s information. From Theorem 2.8 and (2.76) the expected KL

divergence is given by

E[DKL(N3||N2)|Iak ] =
1

2
tr
(
Px̂CT P̄−1C

)
, (2.112)

where

Px̂ =

[
I 0

]
P



I

0


 (2.113)

Thus, we arrive at the following optimization problem to design the covariances of our water-

mark.

Problem 1

maximize
J1,J2,P

tr
(
Px̂CT P̄−1C

)

subject to P ,J2 ≥ 0, J1 ≥ εI

tr((B1TSB1 + U1)J 1 + (B2TSB2 + U2)J 2) ≤ δ

P = APAT +Q−APCT (CPCT +R)−1CPAT

Px̂ =

[
I 0

]
P



I

0


 , P is the stabilizing solution of the riccati equation.

In the above formulation, we are maximizing a linear function in P with a cost constraint convex in

J1,J2 . However, the Riccati constraint is not convex and it is not entirely obvious how to enforce
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P to be the stabilizing solution. As a result, we consider the following essentially equivalent convex

optimization problem.

Problem 2

maximize
J1,J2,P

tr
(
Px̂CT P̄−1C

)

subject to P ,J2 ≥ 0, J1 ≥ εI

tr((B1TSB1 + U1)J 1 + (B2TSB2 + U2)J 2) ≤ δ


APAT +Q−P APCT

CPAT CPCT +R


 ≥ 0,Px̂ =

[
I 0

]
P



I

0


 .

We now have the following result.

Theorem 2.11. Let (J 1
2opt ,J 2

2opt) be a maximizing solution to Problem 2. Then, (J 1
2opt ,J 2

2opt) is

also a maximizing solution to problem 1.

Proof. In Problem 2, the semidefinite constraint under the condition that CPCT + R > 0 is

equivalent to

P ≤ APAT +Q−APCT (CPCT +R)−1CPAT , (2.114)

by Schur’s complement condition for positive definiteness. Let (J 1
2opt ,J 2

2opt ,P2opt) be an optimal

solution for Problem 2 and (J 1
1opt ,J 2

1opt ,P1opt) be an optimal solution for problem 1. From (2.114),

the feasible set of solutions for Problem 1 are a subset of the feasible solutions for Problem 2.

Letting Px̂1 = Px̂(J 1
1opt ,J 2

1opt ,P1opt) and Px̂2 = Px̂(J 1
2opt ,J 2

2opt ,P2opt), we thus have

tr
(
Px̂2CT P̄−1C

)
≥ tr

(
Px̂1CT P̄−1C

)
. (2.115)

From Theorem 13.1.1 in [34], for the set of positive semidefinite P satisfying (2.114), we

have Ps ≥ P where Ps is the stabilizing solution of the discrete algebraic riccati equation with

watermark covariances J 1
2opt ,J 2

2opt . Since the objective function is monotone increasing in P this

implies that

tr
(
Px̂(J 1

2opt ,J 2
2opt ,Ps)CT P̄−1C

)
≥ tr

(
Px̂2CT P̄−1C

)
. (2.116)
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However, (J 1
2opt ,J 2

2opt ,Ps) lies in the feasible set of problem 1. As a result, from (2.115) and

(2.116),

tr
(
Px̂2CT P̄−1C

)
= tr

(
Px̂1CT P̄−1C

)
. (2.117)

Therefore, (J 1
2opt ,J 2

2opt ,Ps) is a solution to problem 1 and the result holds.

Note, since we consider IID watermarks, it is clear that the watermarking sequence is not

a sinusoid like the previous section. An interesting future problem is to determine whether a

stationary robust watermarking design generated from a hidden Markov model will induce an

optimal watermark that is a sinusoid.

We conclude this section by noting that the defender can use this optimization problem to select

which inputs he wishes to secure from the attacker. That is, he can optimize his choice of B1 and

B2 subject to some constraints on the number of inputs he wishes to keep secret or the identities

of inputs which he can keep secret. The optimization problem however becomes combinatorial in

nature. Nonetheless, for a small number of inputs the problem remains feasible. Moreover, the

problem only needs to be solved once prior to the system deployment.

2.2.6 Numerical Example

We consider a randomly generated system with n = 10 states, p = 8 inputs and m = 7 sensors.

The matrices A,B, and C are uniform sparsely generated matrices with density 0.3. Moreover

Q,R,U,W were each chosen to be the identity. The optimal cost for the system is J∗ = 25.7. The

matrix (A+BL)(I −KC) is stable, thus motivating the use of a watermark.

We consider four separate scenarios in our system. In three scenarios, we utilize the water-

marking design scheme proposed in this section and seen in Problem 2. In these scenarios we vary

the number of inputs the attacker can see from 1 input, to 4 inputs, to 7 inputs. The more inputs the

attacker can see, the better he can estimate the defender’s state estimate. Moreover, in our fourth

scenario, we consider the case where the attacker knows only 1 input, but the defender uses the
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watermarking scheme seen in [27]. In this case, the watermarks ∆u1
k and ∆u2

k are correlated. As

such, the attacker can estimate u2
k.

In Fig. 2.13 and Fig. 2.14, we plot the asymptotic probability of detection as a function of

the probability of false alarm, where we consider small values of α in Fig. 2.14. Here ∆J = 5,

meaning that the additional cost is roughly 20% of the optimal cost. It can be seen that the proposed

approach offers increased security over the approach in [27], when the inputs are compromised.

Moreover, in this example, knowledge of a single input allows the attacker to fool a detector with the

replay watermarking design [27]. The probability of detection is roughly equal to the probability of

false alarm and thus the detector asymptotically provides little to no information about whether an

attack has taken place. In Fig. 2.15, we plot the asymptotic probability of detection as a function

of the additional cost for fixed α = 0.1. For the proposed watermarking scheme, increasing the

magnitude of the watermark, and thereby the cost, improves the probability of detection. However,

for the previous design, [27] the additional cost does not aid in detection.
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Figure 2.13: Robust Watermark, Asymptotic probability of detection βk vs probability of false
alarm α, ∆J = 5
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α = 0.1



Chapter 3

Environmental Watermarks

In the previous chapter we demonstrated the effectiveness of physical watermarking in detecting

several classes of integrity attacks. The main mechanism of detection in the use of physical

watermarks is a source of randomness that a defender knows, in that case an additive element

to the control input, which the attacker does not. In this chapter, we make the observation that

such sources of randomness may not have to be introduced by the defender, but might simply be

a product of the environment. As an example, a defender might have side information about the

process or sensor noise in a system, which can in turn be leveraged to detect an attacker who does

not have this same information. In this chapter, we will specifically examine how packet drops at

the control input can serve as an environmental watermark. In section 3.1 we will introduce the

idea of a packet drop watermark, which can occur environmentally or as a result of intended action

by the defender. In section 3.2 we will extend this work to consider a joint Gaussian and packet

drop watermark. The results in this chapter are largely based on [35] and [36].

3.1 A Packet Drop Watermark

In this section, we consider how packet drops can serve as an environmental or naturally occurring

watermark that allows us to actively detect malicious adversaries. Packet drops occur naturally

61
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in the context of networked control systems. In particular, both command and measurement

channels could be subjected to packet drops due to, e.g., imperfections at the wireless and/or wired

communication networks [37, 38]. Packet drops at the command andmeasurement channels change

the system dynamics in a specific form, see e.g. [10, 9]. In this section, we view the packet drops as

a means to create watermarked dynamics and we explore the possibility to authenticate the system

via intentional packet drop injections.

We assume there exists independent and identically distributed packet drops at the channel

to the actuators with certain probability. This already occurs naturally and can be intentionally

introduced by a defender to enhance security. Such a mechanism is easy to implement using, e.g.,

switches and pulses and they are applicable for a wide range of applications. We will next evaluate

the benefits of packet drops in terms of detecting stealthy attackers with high probability.

3.1.1 System Description

As in the previous chapter, we model the system using discrete time linear time invariant (LTI)

dynamics. However, here we model packet drops at the control input.

xk+1 = Axk + ηkBuk + wk, (3.1)

yk = Cxk + vk. (3.2)

Again, xk ∈ Rn is the state vector at time k, uk ∈ Rp is the control input at time k, and yk ∈ Rm

denotes sensor measurements taken at time k. In the model, wk ∼ N (0, Q) is IID process noise

and vk ∼ N (0, R) is IID measurement noise. We assume that (A,C) is detectable and R > 0.

Moreover, (A,B) and (A,Q
1
2 ) are stabilizable.

We now consider ηk ∈ {0, 1} which is an independent identically distributed (IID) packet drop

process generated at the controller and known at the actuator and the estimator. Here, ηk = 0

indicates a packet drop and Pr(ηk = 0) = pd is the packet drop probability. If the packet drops are

not introduced intentionally by the defender, but occur naturally due to the environment, we would
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Figure 3.1: System model under normal operation. When a replay attack occurs, the attacker
replaces the output yk with its time lagged version. The plant input may also be compromised.

assume the CPS utilizes a TCP like protocol, where the defender receives acknowledgements when

a control packet is successfully delivered to the plant. An illustrative diagram is found in Fig. 3.1

3.1.2 LQG Control with Packet Drops

Let us assume that the following information set Ik = {M, y−∞:k, u−∞:k−1, η−∞:k−1} is available

to the defender’s estimator at time kwhereM = {A,B,C,Q,R, pd}. This information is leveraged

to obtain an estimate x̂k|k and generate an input uk. As in the prior chapter, we consider LQG cost

optimization:

J = lim
N→∞

E

[
1

2N + 1

N∑

k=−N

(
xTkWxk + ηku

T
kUuk

)
]

(3.3)

where U and W matrices are positive definite and the optimization is performed over all inputs

uk that are measurable with respect to the information set Ik. Note that the separation principle

holds [9] and the optimal estimator and controller can be designed separately. A Kalman filter is

used to obtain minimum mean squared error estimates x̂k|k = E[xk|Ik]. The innovation or residual
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zk = yk − CAx̂k−1|k−1 − ηk−1CBuk−1 is used to recursively update the state estimate as follows:

x̂k|k = x̂k|k−1 +Kzk, x̂k|k−1 = Ax̂k−1|k−1 + ηk−1Buk−1, (3.4)

where K is the stationary Kalman filter gain due to (A,C,Q,R):

K = PCT (CPCT +R)−1, (3.5)

P = APAT +Q− APCT (CPCT +R)−1CPAT , (3.6)

and x̂0|−1 is the initial apriori Kalman state estimate.

The optimal control is in the following form u∗k = Lkx̂k|k where Lk = −(BTSk+1B +

U)−1BTSk+1A and

Sk = ATSk+1A+W − (1− pd)ATSk+1B(BTSk+1B + U)−1BTSk+1A.

We note that Lk converges to L(b) = −(BTS(b)B + U)−1BTS(b)A where S(b) satisfies the Riccati

equation:

S(b) = ATS(b)A+W − (1− pd)ATS(b)B(BTS(b)B + U)−1BTS(b)A.

We assume that pd is sufficiently small so that (3.7) has a solution. The long term average LQG

cost due to the packet drops is (c.f. [9]) given as follows:

Lemma 3.1. The optimal cost J is

J = J(b) = tr(S(b)Q) + tr[(ATS(b)A+W − S(b))(P −KCP )].

Proof. From equation (27) in [9], we have the optimal finite horizon cost, J∗N , found as follows:

J∗N = q−N +
N∑

k=−N
tr(Sk+1Q) +

N∑

k=−N
tr(ATSk+1A+W − Sk)Pk|k,

where q−N is a bounded constant (specified in [9]) and

Pk|k = Pk − PkCT (CPkC
T +R)−1CPk (3.7)

Here, Pk denotes the apriori error covariance. As N → ∞, Pk|k → P − KCP and Sk → S(b).

Thus, 1
2N+1

J∗N → tr(S(b)Q) + tr[(ATS(b)A+W − S(b))(P −KCP )].
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It is worthwhile to note that J can be computed in closed form when packet drops occur only

in the control channel. This is not possible in the general setting of [9] with sensor and control

packet drops. We also note that the dependence of J on pd is due to S(b). In the sequel, we assume

that the system has been running for a long time (i.e. from k = −∞) so that the Kalman and state

feedback gains have converged to K and L(b), respectively.

3.1.3 Packet Drops as a Watermark

We now analyze the role of packet drops as a potential physical watermark. In a scenario where

the control packets are dropped by following an IID Bernoulli sequence ηk as in (3.1), the resulting

dynamics have strong dependence on the realization of the drop sequence. This dependence offers

an advantage to be used for attack detection in the same spirit as the Gaussian physical watermark.

The packet drop sequence, if known to the defender and kept secret from an attacker, acts as a new

type of secret nonce that can be used in active detection.

We next consider packet drop injections in the context of replay attack detection. For ease of

presentation, the replay attack is repeated below as follows:

1. The attacker records a sequence of sensor measurements from time −T to time −1, where

T is a large enough number to ensure that the attacker can replay the sequence later for an

extended period of time.

2. Starting at time 0 to time T − 1, the attacker modifies the sensor signals to yak , which is the

same as the measurements recorded by the attacker at time k − T . In other words,

yak = yk−T , 0 ≤ k ≤ T − 1.

3. Starting at time 0, the attacker injects an external control input Bauak, where uak ∈ Rpa is the

control input and Ba ∈ Rn×pa denotes its direction.

The dynamics of the system

x̂ak|k−1 , x̂k−T |k−T−1, z
a
k = zk−T , η

a
k = ηk−T , 0 ≤ k ≤ T − 1, (3.8)
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are defined above. During the replay (0 ≤ k ≤ T − 1), the system dynamics changes to

xk+1 = Axk + ηkBuk +Bauak + wk, yk = Cxk + vk, (3.9)

x̂k+1|k = Ax̂k|k + ηkBuk, x̂k|k = x̂k|k−1 +K
(
yak − Cx̂k|k−1

)
, (3.10)

uk = L(b)x̂k|k, zk = yak − CAx̂k−1|k−1 − ηk−1CBuk−1. (3.11)

Recall a replay attack may or may not be effective depending on the defender’s control strategy.

FromTheorem 2.1, it is reported that replay attacks are asymptotically stealthy (limk→∞ βk−α = 0)

in an LQG settingwithout drops provided that thematrixA , (A+BL(b))(I−KC) is Schur stable.

On the other hand, if A has a spectral radius greater than 1, then replay attacks are asymptotically

detectable with an exponentially growing detection statistic. We consider the use of packet drop

injections when (A+BL(b))(I −KC) is stable.

In particular, we consider residue detector performance under replay attack. Consider the

residue zk and the delayed version zak during a replay attack with packet drops where k < T . We

start by noting that

zk = zak − CAk(η0:k−1)x̂0|−1 + CAk(ηa0:k−1)x̂a0|−1

− C
k∑

i=1

(
Ak−i(ηi:k−1)(A+ ηi−1BL(b))−Ak−i(ηai:k−1)(A+ ηai−1BL(b))

)
Kyai−1,

(3.12)

For any `1 ≤ `2, we define

A`2−`1(η`2`1+1) = Π`2
j=`1+1(A+ ηjBL(b))(I −KC), (3.13)

where A0 = I and η`1+1:`2 denotes the sequence (η`1+1 . . . η`2). For k ≤ T , we see in (3.12),

{ηk} and {ηak} are two binary drop sequences independent from each other and IID across k.

We note that even when Ak(η0:k−1) vanishes, the additive term νk , C
∑k

i=1(Ak−i(ηi:k−1)(A +

ηi−1BL(b))−Ak−i(ηai:k−1)(A+ ηai−1BL(b)))Ky
a
i−1 renders the residue zk different than the residue

zak . For example, we can show that if ||(A+BL(b))||1−pd||A||pd ||(I−KC)|| < 1 where ||.|| denotes

the matrix norm, then Ak(ηk−1
0 ) vanishes in probability. However, the additive term νk does not
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vanish and creates a difference in the distributions of zk and zak . This additive term has a similar

effect to that of the additive watermark in the previous chapter and can be leveraged to detect replay

attacks. As an example, one can characterize explicit or approximate distributions of the additive

term and analyze detection performance. Also note that when pd = 0 or pd = 1 or (possibly)

the packet drop sequence is periodic, the effect of the additive term is lost since A`2−`1(η`1+1:`2)

is equivalent to A`2−`1(ηa`1+1:`2
). In these cases, the asymptotic stealthiness condition described

in Theorem 2.1 could be adapted to the current setting. In the next subsection, we provide real

life examples and extensive numerical results to determine the effects of packet drop injection

watermarking on both detection performance and overall cost.

3.1.4 Numerical Examples

In this section we evaluate the performance of physical watermarking via packet drop injections

on two systems. We first consider replay attacks in the quadruple tank process [39]. Then, we

examine a microgrid example [30].

Quadruple Tank Process

In the quadruple tank process, the desired system goal is to control the water level of two tanks by

leveraging two input pumps. Two sensors are used to measure the water heights of two tanks. The

chosen sample period is 1 second. We use an LQG controller with weighting matrices determined

using suggestions made in [40]. When examining the quadruple tank process, the optimal state

feedback matrix L(b) is dependent on the probability of drop pd.

A passive detector that recognizes the difference between normal and malicious operation must

be selected. As in the previous chapter, we assume the defender constructs algorithms which

leverage his/her information Ik to make a decision, whether the system operates normally H0 or

under attackH1. In a threshold based detector, this can be formulated as

gk(Ik)
H1

≷
H0

τk. (3.14)
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Noting the difference in the distribution of the residue under attack and normal operation, we select

a χ2 detector.

gk(Ik) =
k∑

t=k−WS+1

zTt (CPCT +R)−1zt (3.15)

Under normal operation zTt (CPCT + R)−1zt should follow a χ2 distribution with m degrees of

freedom. The χ2 detector attempts to exploit this fact by testing to see if the innovations follow the

correct distribution. It is easy to see that large residues, indicating a discrepancy between measured

and expected behavior, create alarms, while smaller residues, which indicate good agreement

between measured and expected behavior, are indicative of normal operation.

Note unlike our previous detectors, here we are allowing the possibility for a larger window

size. A larger window allows the defender to use more information, which can aid the quality of

detection. However, this can come at the cost of time to detection as typically a larger delay is seen

before an attack can significantly impact a detection statistic. In this system, we take the window

sizeWS to be 10.

In Fig. 3.2 we examine security and performance trade-offs through relationships between the

probability of false alarm, the probability of detection, and the packet drop rate. Results were

averaged over 1500 trials where each trial consists of a run with 1000 time steps. In Fig. 3.2(a),

we plot several ROC curves examining the probability of detection as a function of the probability

of false alarm for different packet drop rates. In Fig. 3.2(b), we plot the probability of detection

as a function of the drop rate for different false alarm probabilities ranging from 0.02 to 0.1. Note

that detection performance peaks before the drop rate equals one. This can be understood in the

extreme case where pd = 1. Here, the system is operating in an open loop without control. Thus,

when using a stable estimator, a replay attack will always be asymptotically stealthy.

In Fig. 3.3, we further characterize the tradeoff between security and control performance by

mapping the probability of drop to the increased LQG cost (as a percentage of the optimal LQG

cost when pd = 0). In Fig. 3.3(a), we observe the relationship between control performance and

drop probability over the domain of pd. In Fig. 3.3(b), we examine this relationship over a smaller
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domain where the cost increase is restricted to be less than 150% of the optimal cost. Both the

empirical cost, obtained by averaging results over 4,500 trials, and the theoretical cost are shown.

We observe that they closely agree.
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Figure 3.3: Percent Increase in LQG Cost as a Function of Drop Probability, Quadruple Tank

In Fig. 3.4, we plot our χ2 detection statistic (with window size 10) averaged over 10,000 trials

during a replay attack as a function of time for a system without packet drop injections (Fig. 3.4(a))

and a system with packet drop injections (Fig. 3.4(b)). Replay attacks commence at time 20. The
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probability of false alarm in Fig. 3.4 is fixed to be 0.1 and pd = 0.7. The noticeable temporary

bumps in detection performance seen in both Fig. 3.4(a) and Fig. 3.4(b) are likely due to initial

state mismatches between the true and replayed systems. An intelligent attacker can choose to

delay the start of a replay attack until the true and replayed states closely match.
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Figure 3.4: χ2 Detection Statistic vs Time, Packet Drops in Quadruple Tank

Microgrid

We now investigate a microgrid example borrowed from [30], using an alternative watermarking

design. Here, there are 5 loads and frequency control by a mechanical speed governor is used to

address small imbalances (roughly 1 percent) between load and demand. The frequency should be

kept close to constant near 60 Hz. If the demand in a system far exceeds the generation, resulting

in a measured drop in frequency, loads are shed to account for the imbalance. We use the linear

generator model found in [41, p. 386, Fig. 11.8], see also [30]. ∆Pc, a control input which moves

a steam valve in the generator, is used for watermarking. Additionally, we use ∆ω to denote a

change in angular frequency.

In the attack model, the attacker has the ability to manipulate the system’s frequency sensors.

The goal is to make the operator believe the frequency in the system is dropping. The defender in
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response sheds loads one at a time to address perceived imbalances. The attacker, once a third load

is shed, relinquishes control on the frequency sensor and this way the attacker forces the operator

to supply power to only two loads.

As a response, we assume the defender inserts a watermark at ∆Pc. As opposed to the

packet drop watermark considered in this section, we evaluate a similar zero-mean Bernoulli pulse

watermark. In particular, we have

∆Pc(k) = ηkM(−1)k. (3.16)

whereM is the magnitude of the pulse and ηk is an IID Bernoulli random variable where P(ηk =

0) = pd. Observe that a χ2 detector is ineffective against the proposed attack because it will send

an alarm in both the case that an attacker modifies a frequency sensor as well as the case that a

real drop in frequency has occurred. As a result, we consider the correlation based detectors used

in [30]. Here, a virtual model of the system with input ∆Pc is simulated by the defender. The

response ∆ω̂k is multiplied by the true frequency ∆ω to obtain a correlation detector statistic gk.

Under normal operation,

E[∆ω̂k∆ωk] = E[gk] = σ′2 > 0. (3.17)

Under a replay attack E[∆ω̂k∆ωk] = 0. Unlike the χ2 detector, a higher detection statistic indicates

normal operation.

We simulate the microgrid over 70 seconds. Control inputs are modified every 0.1 seconds.

The amplitudeM controls the variance of the watermark, E[∆P 2
c (k)]. A correlation detector with

window of length 10 seconds is used. We consider two scenarios. We first assume the sensor is not

under attack, but the frequency in the system is dropping. The average frequency profile considered

is given by Fig. 3.5. Secondly, an attacker replays the same profile (with noise independent of the

watermark) from time 10 sec to 57.5 sec to force the defender to incorrectly shed loads.

In Fig. 3.6, we plot several ROC curves averaged over 1500 trials. The probability of detection

is computed over the region where gk has reached a steady state (20 to 57.5 seconds). Three
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different watermark variances E[∆P 2
c (k)] and pd’s are evaluated where we observe that increasing

E[∆P 2
c (k)] improves detection performance.
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Figure 3.6: Probability of Detection vs. Probability of False Alarm: Microgrid Bernoulli Water-
mark

In Fig. 3.7, we observe the detection statistics used by the correlation detector under system

fault and replay attack scenarios as a function of time, averaged over 1500 trials. In this setting,

the variance of the watermark is set to 0.5. Since the replayed profile is independent of the pulse

watermark under a replay attack the correlation drops to 0. Detection delays occur due to the

chosen 10 second detector window.
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As an additional measure of the watermark’s affect on system performance, we consider

the mean absolute deviation of the measured frequency from the average frequency profile with

watermarking. Note that in the absence of watermarking, the mean deviation is 0.0252 Hz for the

simulation setting. Introducing larger, more random, watermarks to improve security of course

increases the frequency deviation in the system.

Table 3.1: Mean Abs. Deviation from Avg. Freq. Profile (Hz)

E[∆P 2
c ] pd = 0.3 pd = 0.5 pd = 0.8

0.005 0.0254 0.0256 0.0258
0.05 0.0275 0.0288 0.0307
0.5 0.0429 0.0513 0.0604
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3.2 A Joint Gaussian and Packet Drop Watermark

We observed that naturally occurring phenomena, specifically packet drops at the control input can

act as a watermark and enable active detection. In this section, we consider the joint design of

Gaussian and packet drop watermarks. This work simultaneously considers two scenarios. First,

the defender is able to design Gaussian watermarks while also accounting for realistic network

uncertainties. Secondly, the defender can introduce a hybrid watermarking scheme that combines

both packet drops and Gaussian watermarks for the goal of maximizing detection performance.

This section will investigate the design of 1) an input with IID Gaussian watermark, multiplied by

a Markovian drop process at the control input 2) an input with a stationary Gaussian watermark,

multiplied by an IID drop process at the control input.

3.2.1 System Description

We consider the same system dynamics (3.1), (3.2) as in the previous section, with the same

assumption on (A,B,C,Q,R). Moreover, we consider the same LQG cost (3.3) which a defender

aims to minimize. For clarity, in this section we differentiate between the control input the defender

computes, uk, and the control input the plant receives, which we define as uk,c. We have

uk,c , ηkuk. (3.18)

A Kalman filter can be used to perform optimal state estimation (in the minimum mean squared

error sense) (3.4)

Once more, if drops occur naturally in the system, we assume an acknowledgement is delivered

when a control input is successfully delivered. We consider both IID and Markovian Bernoulli

drop sequences. In the IID case, Pr(ηk = 1) = 1 − pd. Assume the system has been running for

a long time and pd is chosen so the system can have finite cost J . Then, given an information set
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Fk , {y−∞:k, η−∞:k−1, u−∞:k−1}, the optimal control strategy has control input uk = ubk where

ubk = L(b)x̂k|k, L(b) = −(BTS(b)B + U)−1BTS(b)A,

S(b) = ATS(b)A+W − (1− pd)ATS(b)B(BTS(b)B + U)−1BTS(b)A.

In addition, as shown in the previous section, J = J(b) for this strategy where J(b) is

J(b) = tr
(
S(b)Q+ (ATS(b)A+W − S(b))(P −KCP )

)
. (3.19)

In the Markovian case, considered in [42],we assume packet drops follow a Markovian process.


Pr(ηk+1 = 0|ηk = 0) Pr(ηk+1 = 1|ηk = 0)

Pr(ηk+1 = 0|ηk = 1) Pr(ηk+1 = 1|ηk = 1)


 =




1− α α

β 1− β


 (3.20)

Here, we assume 0 < α ≤ 1, 0 < β ≤ 1 so that ηk is irreducible. Moreover, we assume ηk is

stationary, which can be obtained by letting its initial distribution be Pr(η−∞ = 0) = β
α+β

. Finally,

we assume that α and β are selected (or given) so that the system can have finite cost J . The

optimal control strategy at time k given Fk generates input umk

umk = L(m)x̂k|k, L(m) = −(BTR(m)B + U)−1BTR(m)A,

R(m) = AT (βS(m) + (1− β)R(m))A+W − (1− β)ATR(m)B(BTR(m)B + U)−1BTR(m)A,

S(m) = AT ((1− α)S(m) + αR(m))A+W − αATR(m)B(BTR(m)B + U)−1BTR(m)A,

where L(m), R(m), S(m) are parameters which converged to their steady state values. The resulting

cost of control is

J(m) =
tr(βS(m)Q+ αR(m)Q)

α + β
+

tr((AT ((1− α)S(m) + αR(m))A+W − S(m))(P −KCP ))

α + β
.

Note, we preserve the notation defined in [42] where α and β are use to define the Markovian drop

process. This should not be confused with notation defining the probability of false alarm and the

probability of detection.
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Remark 3.1. The prior strategies are optimal when the defender only has knowledge of the observed

drop sequence η−∞:k−1. However, if the drop sequence is intentionally introduced to improve

watermarking/detection performance by using a pseudo random number generator (PRNG), the

defender knows future values of ηk. The design of a controller that uses this information is left for

future work.

A Joint Bernoulli Gaussian Physical Watermark

We now aim to intelligently combine the Gaussian watermarks with a Bernoulli drop process at the

input. Such a design accomplishes two goals: 1) to expand the analysis of physical watermarking

to a more realistic network setting with packet drops and 2) to potentially improve performance by

considering a more general joint Bernoulli-Gaussian watermark. The joint design allows us to mix

environmental watermarks that may occur naturally within the confines of a system and intentional

physical watermarks in order to attain better detection performance.

We consider two main joint designs.

Watermark 1: IID Gaussian Input + Markovian Drops

uk,c = ηk(u
m
k + ∆uk). (3.21)

{ηk} is a Markovian Bernoulli process and ∆uk ∼ N (0,J ) is an IID Gaussian watermark [15].

We assume ∆uk is independent of other stochastic processes in the system.

Watermark 2: Stationary Gaussian Input + IID Drops

uk,c = ηk(u
b
k + ∆uk). (3.22)

In this case, {ηk} is an IID Bernoulli process. The Gaussian input∆uk is assumed to be a stationary

process generated by a hidden Markov model (HMM) as considered in section 2.1

ξk+1 = Aωξk + ψk, ∆uk = Chξk. (3.23)



CHAPTER 3. ENVIRONMENTAL WATERMARKS 77

ξk is the hidden state of the HMM, Aω has spectral radius ρ(Aω) ≤ ρ̄ ≤ 1, and ψk ∼ N (0,Ψ) is

IID Gaussian noise. For stationarity, Cov(ξ0) = AωCov(ξ0)ATω + Ψ. ∆uk is independent of other

stochastic processes in the system.

Recall that ρ̄, the maximum allowable spectral radius, is a design parameter for the defender.

We observe a larger ρ̄ improves expected detection performance. However, a larger ρ̄ means a

larger correlation between watermarks and this could facilitate the prediction of future watermarks

if the attacker guesses an initial Gaussian input ∆uk. A system diagram is found in Fig. 3.8

Sensors ( C )Plant(A,B)

Controller

LQG
Estimator

Failure Detector

Sequence

Packet Drop

Gaussian Input

um|b
k

yk
uk,c

x̂k

∆uk

ηk

Figure 3.8: System Model with a Joint Packet Drop and Gaussian Watermark

3.2.2 Attack Model

In this section we describe a model of our adversary in terms of knowledge, capabilities, and

potential strategies. We will show the attack is a generalization of a replay attack. In particular, it

can reflect a replay adversary or a model aware attacker who constructs simulations.
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Attacker Capabilities

Without loss of generality, we assume an attack begins at time k = 0. We make the following

assumptions.

1. The attacker can modify all measurements yk, k ≥ 0. The falsified outputs at time k are

denoted by yvk .

2. The attacker inserts an input Bauak into the system.

3. The attacker is unable to read the true control inputs uk,c. As a result, he is unaware of the

drop sequence {ηk} and the Gaussian watermark {∆uk}.

The system under attack is given by

xk+1 = Axk +Buk,c +Bauak + wk, (3.24)

x̂k+1|k+1 = (I −KC)(Ax̂k|k +Buk,c) +Kyvk+1. (3.25)

Attack Strategy

The attacker generates yvk through a virtual system:

xvk+1 = Axvk + ηvkB(Lm|bx̂
v
k|k + ∆uvk) + wvk, yvk = Cxvk + vvk. (3.26)

x̂vk+1|k+1 = (I −KC)(A+ ηvkBLm|b)x̂
v
k|k +Kyvk+1 + ηvk(I −KC)B∆uvk,

(3.27)

In the case of Watermark 1, Lm|b = L(m), ηvk follows a Markovian process (3.20) with parameters α

and β and ∆uvk ∼ N (0,J ) is an IID Gaussian process. In the case ofWatermark 2, Lm|b = L(b), ηvk

is an IID Bernoulli process with drop probability pd and∆uvk is a stationary Gaussian process which

satisfies (3.23). Additionally, vvk ∼ N (0, R) and wvk ∼ N (0, Q) are IID processes. Finally, we

assume the stochastic processes {ηvk,∆uvk, wvk, vvk} are independent of the real system’s stochastic

parameters {ηk,∆uk, wk, vk}.
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The previous attack strategy can be generated (approximately) by the replay attack where

the attacker records a long sequence of outputs y=1:−T and, starting at time 0, replaces yk with

yvk = yk−T for 0 ≤ k ≤ T − 1. Attackers who do not have precise knowledge of the model may

engage in replay attacks, which only require access to the outputs. Alternatively, this attack strategy

can be constructed by an adversary who is familiar with the model, for instance a malicious insider.

In this case, the attacker simulates a virtual copy of the system dynamics to fool a bad data detector.

We refer to such an attack as a simulation attack. The placement of the simulation attack on the

attack space is given in Fig. 3.9.
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Figure 3.9: Cyber-Physical Attack Space with Simulation Attack

A model aware attacker could also potentially pursue an additive attack, for instance a false

data injection attack [43] or a zero dynamics attack [44, 19]. In these attacks, the adversary injects
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an additive bias into the system which preserves the watermark and allows the attacker to remain

stealthy. However, there are scenarios where additive attacks on sensor measurements are not

feasible. As an example, suppose the defender uses public key cryptography, where a public key

is used to encrypt the measurements while a private key is used to decrypt the associated cipher

text. An attacker could send his own virtual measurements encrypted with the public key. If the

encryption is not malleable, such an attack could not leverage information in the true measurement

as that would require access to the defender’s private key to learn yk. In this case, additive

attacks constructed by replacing a true output packet with a virtual packet would be infeasible. By

assumption, an additive networked-based attack on the defender’s control input is also impossible

because the adversary is unable to read the defender’s input.

We argue that alternative attack strategieswhichmanipulate all sensors yk in a settingwith public

key cryptography also fail due to the fact that the resulting attack sequence {yvk} is independent

of the watermarks {∆uk, ηk}. Specifically, an attacker who is unable to read the inputs or outputs

will have no information about the watermarks. As a result, the outputs he can construct will fail

to fool the correlation detector, which we propose in the next subsection.

3.2.3 A Correlation Detector

In the previous sections we have briefly introduced several possible passive detectors including the

Neyman Pearson detector as well as the χ2 detector. In this section, we will now closely examine

the design of a correlation detector. We will see that when combined with active detection, the

correlation detector allows us to detect classes of attacks, and potentially distinguish certain faults

from attacks.

In the correlation detector, (considered in [27]), the defender computes a virtual output y′k,

which explicitly characterizes the effect of watermarks on yk.

x′k+1 = Ax′k + ηkB(Lm|bx̂
′
k|k + ∆uk), y′k = Cx′k, (3.28)

x̂′k+1|k+1 = (I −KC)(A+ ηkBLm|b)x̂
′
k|k +Ky′k+1 + ηk(I −KC)B∆uk (3.29)



CHAPTER 3. ENVIRONMENTAL WATERMARKS 81

where with some abuse of notation x′−∞ = 0, x̂′−∞|−∞ = 0. We can simplify (3.28) and (3.29) to

obtain

x′k+1 = (A+ ηkBLm|b)x
′
k + ηkB∆uk, y′k = Cx′k. (3.30)

This virtual process created by the defender is driven entirely by the sequence of Bernoulli-Gaussian

watermarks {∆uk, ηk}. Thus, if we were to multiply the true outputs yk with the defender’s virtual

outputs y′k wewould expect a positive correlation. However, if an attacker introduces measurements

yvk , which are driven by an independent sequence of watermarks, the expected correlation drops to

0. This motivates consideration of the detection statistic yTk y′k, where a large statistic is indicative

of normal behavior while a small statistic indicates malicious behavior. Observe due to the random

real time selection of watermarks, ‖y′k‖2 may be close to 0, impacting detector performance since

the correlation will likely also approach 0 even under normal operation. As a result, we propose

an event triggered detector:

If ‖y′k‖2
2 ≥ µ Perform Detection

κ = κ+ 1, tκ = k

κ∑

j=κ−WS+1

gj
H0

≷
H1

τ, gκ = yTtκy
′
tκ . (3.31)

The null hypothesis H0 is that the system is operating without malicious behavior while the

alternative hypothesis H1 is that the system is under attack. WS is the size of the detector’s

window. A detection event is triggered if ‖y′k‖2
2 is greater than some user defined threshold µ,

preventing false alarms from being raised when y′k is small, while sacrificing time to detection.

This tradeoff can be addressed by tuning µ. Note that κ corresponds to the time index of the event

triggered correlation detector and increases at instants when a new detection statistic is computed.

Identifying attacks on an individual sensor i can be done by focusing on the correlation between

individual measurements. An appropriate statistic giκ would be yitκy
i
tκ

′ where yitκ is the ith entry of

ytκ .

Remark 3.2. A detector with an adaptive threshold could address issues of small y′k. However,
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such a detector is more prone to misses, mistaking an attack for noise. Incorporation and analysis

of such a detector is left for future work.

Remark 3.3. An adversary that can not read {uk}, {yk} can not take advantage of instances

when detection does not occur, because such instances are entirely dependent on the realization of

previous watermarks. An attacker who is forced to act independently of the real time watermarking

sequence cannot determine if a detection has been triggered.

We now verify that the expected correlation is 0, if the outputs yvk are generated independently

of the watermarks.

Theorem 3.1. If yvk and {∆uk, ηk} are independent, then

E
[
yvk
Ty′k

∣∣∣ ‖y′k‖2
2 ≥ µ

]
= 0.

Proof. Observe that y′k can be written as a linear function of the Gaussian watermarks ∆uk so that

y′k =
k−1∑

j=−∞
Gj(ηj:k−1)∆uj, (3.32)

whereGj is some linear gain, determined by the sequence of Bernoulli drops ηj:k−1. Thus, we have

E[yvk
Ty′k] = E

[
yvk
T

k−1∑

j=−∞
Gj(ηj:k−1)∆uj

∣∣∣∣∣ ‖y
′
k‖2

2 ≥ µ

]

=
k−1∑

j=−∞
E [yvk]

T E
[
Gj(ηj:k−1)∆uj

∣∣∣ ‖y′k‖2
2 ≥ µ

]
= 0.

The proposed detector can often differentiate between faulty and malicious scenarios. During

a fault, we expect to see the effect of the embedded watermarks in the output and it could be

measured through correlation. Alternatively, residue based detectors such as the χ2 detector

(gκ = −zTtκ(CPCT + R)−1ztκ), which measures the difference between measured and expected

behavior, will likely raise an alarm during faulty behavior and malicious behavior. Both detectors
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can be used in tandem. A χ2 detector can raise alarms in the case of faulty or malicious behavior,

while a correlation detector can distinguish these events. In this section, we focus on the correlation

detector.

3.2.4 Markovian - IID Gaussian Watermark

We consider the design of a watermark consisting of an IID Gaussian input and Markovian drops.

This requires the evaluation of a detection and performance trade-off. We wish to maximize the

correlation of yk and y′k to distinguish the system under attack from normal operation. However, we

also need to ensure the system meets an adequate level of performance. We do this by considering

the cost J̄ , starting at k = 0.

J̄ = lim
N→∞

1

N
E

[
N−1∑

k=0

xTkWxk + uTk,cUuk,c

]
(3.33)

As such, we design the parameters α, β,J by solving the following optimization problem

maximize
α,β,J

lim
k→∞

E[yTk y
′
k|H0]

subject to J̄ ≤ δ, 0 < α, β ≤ 1.

(3.34)

To begin with, we use [42, Theorem 3] to analytically compute the cost J̄ as follows.

Theorem 3.2. Suppose α and β are chosen so that the system has finite cost J(m) in the absence of

a Gaussian watermark. The LQG cost J̄ of the control system (3.1), (3.2) with IID Gaussian and

Markovian watermark (3.21) is:

J̄ = J(m)(α, β) +
α

α + β
tr
(
(BTR(m)B + U)J

)
. (3.35)

Proof. Consider the cost to go in a finite horizon, Vk(xk) ,
∑N

j=k E
[
xTjWxj + uTj,cUuj,c|Fk

]
, and

let uN,c = 0. Similar to, [42], it can be shown that

Vk(xk) =





E[xTk Skxk|Fk] + ck (ηk−1 = 0)

E[xTkRkxk|Fk] + dk (ηk−1 = 1)

, (3.36)
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where cN = dN = 0, RN , SN = W, P̃ = P −KCP , F = A+BL(m) and

Rk = W + βATSk+1A+ (1− β)F TRk+1F + (1− β)LT(m)UL(m),

Sk = W + (1− α)ATSk+1A+ αF TRk+1F + αLT(m)UL(m),

ck = −αtr((F TRk+1F − ATRk+1A+ LT(m)UL(m))(P̃ )) + (1− α)[tr(Sk+1Q) + ck+1]

+α[tr(Rk+1Q) + dk+1 + tr((BTRk+1B + U)J )], (3.37)

dk = −(1− β)tr((F TRk+1F − ATRk+1A+ LT(m)UL(m))P̃ ) + β[tr(Sk+1Q) + ck+1]

+ (1− β)[tr(Rk+1Q) + dk+1 + tr((BTRk+1B + U)J )]. (3.38)

Let J̄N = E
[∑N

k=0 x
T
kWxk + uTk,cUuk,c

]
= E[V0(x0)]. We find that

J̄N = Pr(η−1 = 0)
(
E[xT0 S0x0|η−1 = 0] + c0

)
+ Pr(η−1 = 1)

(
E[xT0R0x0|η−1 = 1] + d0

)
.

Leveraging the fact that {ηk} is stationary with Pr(ηk = 0) = β
α+β

as well as (3.37) and (3.38), we

obtain

J̄N =
1

α + β

N−1∑

k=0

(
− αtr((F TRk+1F − ATRk+1A+ LT(m)UL(m))P̃ ) + tr((βSk+1 + αRk+1)Q)

+ αtr((BTRk+1B + U)J )

)
+
βE[xT0 S0x0|η−1 = 0] + αE[xT0R0x0|η−1 = 1]

α + β
.

It can be shown (in a similar manner to the proof of Theorem 3.3) that the last term is bounded.

Note J̄ = limN→∞
1
N
J̄N−1. Moreover, from [42][Theorem 3, Lemma 4], {Sk}, {Rk} converge to

S(m), R(m), respectively. This proves the desired result.

We now compute the expected correlation without attacks.

Theorem3.3. Supposeα and β are chosen so the resulting system has finite cost J(m) [42][Theorem

3] in the absence of a Gaussian watermark. Then, for the control system (3.1),(3.2) with IID

Gaussian and Markovian watermark (3.21), we have

lim
k→∞

E[yTk y
′
k|H0] =

tr(C(αX1 + βX0)CT )

α + β
, (3.39)
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where

X0 = A((1− α)X0 + αX1)AT , (3.40)

X1 = (A+BL(m))(βX0 + (1− β)X1)(A+BL(m))
T +BJBT

Proof. We begin with the Lemma below.

Lemma 3.2. ∀M ∈ R2n×n, limk→∞ Lk0(M) = 0 where,

L0



X

Y


 =




A((1− α)X + αY )AT

(A+BL(m))(βX + (1− β)Y )(A+BL(m))
T


 .

The proof is in the appendix. The closed loop dynamics are

xk+1 = (A+ ηkBL(m))xk − ηkBL(m)ek + wk + ηkB∆uk

ek+1 = (A−KCA)ek + (I −KC)wk −Kvk+1,

where ek = xk − x̂k|k. From (3.30), when ηk = 1. we obtain

E[x′k+1x
T
k+1|ηk = 1]

= FE[x′kx
T
k |ηk = 1]F T −BE[∆uke

T
k |ηk = 1](BL(m))

T

− F
(
E[x′ke

T
k |ηk = 1]LT(m)B

T − E[x′kw
T
k |ηk = 1]

)
+ FE[x′k∆u

T
k |ηk = 1]BT

+BE[∆ukx
T
k |ηk = 1]F T +B

(
E[∆ukw

T
k |ηk = 1] + E[∆uk∆u

T
k |ηk = 1]BT

)
,

where F = (A+BL(m)) and we implicitly condition onH0. x′k is independent of ∆uk, wk, ek and

∆uk is independent of xk, wk, ek. Thus,

E[x′k+1x
T
k+1|ηk = 1] = (A+BL(m))E[x′kx

T
k |ηk = 1](A+BL(m))

T +BJBT . (3.41)

Next, since the Markov process is stationary and xk, x′k and ηk are conditionally independent given

ηk−1, we observe

E[x′kx
T
k |ηk = 1] = Pr(ηk−1 = 1|ηk = 1)E[x′kx

T
k |ηk = 1, ηk−1 = 1] (3.42)

+ Pr(ηk−1 = 0|ηk = 1)E[x′kx
T
k |ηk = 1, ηk−1 = 0],

= (1− β)E[x′kx
T
k |ηk−1 = 1] + βE[x′kx

T
k |ηk−1 = 0].
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It can be similarly shown that

E[x′k+1x
T
k+1|ηk = 0] = AE[x′kx

T
k |ηk = 0]AT . (3.43)

E[x′kx
T
k |ηk = 0] = αE[x′kx

T
k |ηk−1 = 1] + (1− α)E[x′kx

T
k |ηk−1 = 0]. (3.44)

Letting Xk,j = E[x′kx
T
k |ηk−1 = j] we have



Xk+1,0

Xk+1,1


 = L0



Xk,0

Xk,1


+




0

BJBT


 . (3.45)

Since L0 is stable, limk→∞ E[x′kx
T
k |ηk−1 = 0] and limk→∞ E[x′kx

T
k |ηk−1 = 1] are obtained by

solving a fixed point equation which has a unique solutionX0 andX1. (3.40) immediately follows

from (3.45). Next, we find that

lim
k→∞

E[x′kx
T
k ] = Pr(ηk−1 = 1)X1 + Pr(ηk−1 = 0)X0 =

αX1 + βX0

α + β
, (3.46)

Finally, to the conclude the proof, we observe that

E[yTk y
′
k] = tr

(
E[(y′ky

T
k )]
)

= tr
(
CE[x′kx

T
k ]CT

)
. (3.47)

Thus, the watermark design problem (3.34) is given by

maximize
α,β,J

tr(C(αX1 + βX0)CT )

α + β

subject to



X0

X1


 = L0



X0

X1


+




0

BJBT


 ,

J(m)(α, β) + tr((BTR(m)B + U)J ) ≤ δ,

0 < α, β ≤ 1.

For fixed α and β, the problem is an efficiently solvable semidefinite program. However,

to optimize over α and β, we have to solve multiple instances of the problem over a finite 2
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dimensional space. Ideally a designer will sample the space sufficiently. Note, not all (α, β) in

(0, 1] × (0, 1] are feasible as some selections of α and β lead to unbounded cost. Likewise,

naturally occurring drops will constrain α and β. For instance, if we add an artificial Markovian

drop process on top of a naturally occurring IID drop process with drop probability pd, we know

that α ≤ (1− pd), (1− β) ≤ (1− pd).

Remark 3.4. The optimal design of Watermark 1 requires solving multiple instances of a convex

optimization problem with parameters varying over a bounded 2 dimensional space. This will

also be true for Watermark 2. A formulation that considers a stationary Gaussian input with a

Markovian drop process is nontrivial. Even if analysis can be performed, optimal design will likely

require searching over 3 dimensions. This more complicated case is left for future work.

3.2.5 IID Bernoulli - Stationary Gaussian Watermark

We now investigate a watermark consisting of stationary Gaussian noise generated by a HMM

(3.23) and an IID Bernoulli drop process at the control input with drop probability equal to pd.

Again, we design a watermark to address a performance and security trade-off. We wish to solve:

maximize
pd,Aω ,Ch,Ψ

lim
k→∞

E[yTk y
′
k|H0]

subject to J̄ ≤ δ, ρ(Aω) ≤ ρ̄,

0 ≤ pd ≤ 1.

(3.48)

Rather than optimizing over the parameters of the HMM, we instead optimize over the autoco-

variance functions Γ(d) , E[∆uk∆u
T
k+d]. As in section 2.1, for tractable analysis we replace the

constraint ρ(Aω) ≤ ρ̄ with the following related assumption (identical to assumption 2.1.2)

Assumption 3.2.1. Let Γ(d) be an autocovariance function for a Gaussian process generated by

an HMM (Aω, Ch,Ψ). (Aω, Ch,Ψ, ρ̄) is feasible only if Γ̃(d) , ρ̄−|d|Γ(d) is a autocovariance

function of a stationary Gaussian process.
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Remark 3.5. Recall when ρ̄ = 1, assumption 3.2.1, introduces no relaxation. In fact, the resulting

formulation optimizes all stationary Gaussian processes in general. However, in the case ρ̄ = 1,

we will prove that the resulting Gaussian process {∆uk} is entirely deterministic except for the

initial watermark. A lower parameter ρ̄ reduces average performance, but prevents an attacker

who learns or guesses the current hidden state from adequately predicting future watermarks.

We arrive at a relaxed formulation to (3.48) below.

Theorem 3.4. Consider the control system (3.1),(3.2) with IID Bernoulli and stationary Gaussian

watermark (3.23). Suppose pd is chosen so that the system has finite cost J(b) [42][Theorem 3]

in the absence of a Gaussian watermark. An equivalent formulation to (3.48) after replacing the

constraint ρ(Aω) ≤ ρ̄ with Assumption 3.2.1 is given by

maximize
ω,H,pd

tr(CF2(ω,H, pd)C
T )

subject to J(b)(pd) + F1(ω,H, pd) ≤ δ,

0 ≤ pd ≤ 1, 0 ≤ ω ≤ 0.5,

H ∈ Cp×p, H ≥ 0.

(3.49)

where

F2(ω,H, pd) = 2Re
(
2sym

[
L1(M2HB

T )
]

+ L1(BHBT )
)

F1(ω,H, pd) = tr(UΘ) + tr((W + p̄dL
T
(b)UL(b))F2),

Θ(ω,H, pd) = 2Re (2sym [p̄dM1H] + p̄dH) ,

M2 = p̄dρ̄s(A+BL(b))
[
I − sρ̄(A+ p̄dBL(b))

]−1
B,

M1 = p̄dρ̄sL(b)

[
I − sρ̄(A+ p̄dBL(b))

]−1
B,

L1(X) = p̄d
(
(A+BL(b))L1(X)(A+BL(b))

T +X
)

+ pdAL1(X)AT ,

sym(X) =
X +XT

2
, s = exp(2πjω), p̄d = 1− pd.

There is also an optimal solution (H∗, ω∗, pd∗) such thatH∗ = hhH where hH denotes the conjugate

transpose or adjoint of h ∈ Cp. Letting Re and Im be the real and imaginary parts of a
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matrix/vector, respectively, an optimal Aω, Ch,Ψ is

Aω = ρ̄




cos(2πω∗) − sin(2πω∗)

sin(2πω∗) cos(2πω∗)


 ,

Ch =
√

2

[
Re(h) Im(h)

]
, Ψ = (1− ρ̄2)I. (3.50)

The proof is similar in nature to the proof Theorem 2.6. A sketch is found in the appendix.

For fixed pd and ω, the proposed problem is an efficiently solvable semidefinite program. To

approximate a global maximum, we solve the problem repeatedly over the space 0 ≤ ω ≤ 0.5 and

0 ≤ pd ≤ 1. For sufficiently large pd, the cost J̄ becomes infinite in open loop unstable systems [9],

limiting the feasible space. We can account for natural packet drops in the system as before. For

instance, if the input is dropped naturally with probability p′d, we have p′d ≤ pd ≤ 1. Once more,

the optimal watermark is a noisy sinusoid. As mentioned in the previous chapter, the linearity of

the objective and constraints with respect to the autocovariance function in the frequency domain

results in a single frequency being optimal.

Remark 3.6. An optimal watermark for a given pd 6= pd∗ may have better detection performance

than the globally optimal watermark. Future work aims to use objective functions that better

highlight the relative performance of watermarks.

Remark 3.7. In general, introducing intentional drops may or may not improve detection perfor-

mance for a given LQG cost. Future work aims to specifically characterize systems where a jointly

designed watermark can outperform a purely Gaussian watermark.

Remark 3.8. While packet drops at the sensor measurements are not modeled in this chapter,

our framework could be extended to address this behavior without significantly changing the

formulations of the proposed optimization problems. The main effect of packet drops at the sensor

side is a time varying Kalman gain. The objective function and increase in cost J̄ due to the

Gaussian portion of the watermark are not affected by time variations in the Kalman gain in both
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watermarking settings. Both J(m) and J(b) can be empirically evaluated for fixed (α, β) and pd,

respectively, to account for packet drops at the sensor measurements.

3.2.6 Numerical Examples

In this section, we illustrate the performance of the proposed watermarking designs through exten-

sive numerical results. We tested our watermark designs in various randomly generated systems

and, unless otherwise stated, averaged results over 1500 trials. Replay attacks are considered.

In Fig. 3.10, we utilize the first watermark, which has a Markovian drop process defined

by parameters (α, β) and an IID Gaussian watermark. The watermark is tested on a randomly

generated open loop stable system with 5 states, 4 inputs, and 2 outputs. We plot the receiver

operating characteristic (ROC) curve for both the proposed correlation detector and a χ2 detector.

Theχ2 detector serves as a benchmark, having been previously used for attack detection [15, 27, 45]

in watermarked systems. The threshold µ is chosen to be a constant multiple of limk→∞E[yTk y
′
k].

The ROC curves are collected at multiple different costs ∆J = 1.05J∗, ∆J = 0.45J∗ and

∆J = 0.15J∗. Here, ∆J represent the increase in the cost J̄ relative to optimal cost J∗ without

drops or a Gaussian watermark. We compare a system with drops (α = 0.69, β = 0.9) to a system

without drops (α = 1, β = 0). The proposed detector outperforms the χ2 detector in all cases and

packet drops improve the ROC curve for both detectors. The improvement appears to be higher

for moderately valued ∆J before saturating. In Fig. 3.11, we plot the expected time to detection

for both detectors in a system with the Markovian watermark. The packet drop process introduces

an additional delay in the time to detection though this additional time is less significant as ∆J is

increased.

In Fig. 3.12, we introduce the second watermark, which has IID drops (with probability of drop

pd) and a stationary Gaussian watermark. The watermark is added to a randomly generated open

loop stable system with 6 states, 5 inputs, and 5 outputs. We plot ROC curves generated by both

the correlation detector and χ2 detector for a system with drops (pd = 0.6) and a system without



CHAPTER 3. ENVIRONMENTAL WATERMARKS 91

drops (pd = 0), at various costs of control ∆J = 0.95J∗, ∆J = 0.45J∗ and ∆J = 0.15J∗. Time

to detection plots are provided in Fig. 3.13. The results and patterns observed here are similar to

the results seen in the system with the first watermark.

In Figs. 3.14 and 3.15, we plot χ2 detector and correlation detector statistics (averaged over

500 trials) during a fault in the system. The fault introduced (at time 210) is a constant additive bias

added to a subset of sensors (i.e. due to disturbances/sensor drift). While the χ2 detector raises

an alarm, the correlation detector does not since the watermark is preserved in the system. This

motivates the use of both the correlation and χ2 detector to distinguish faults from attacks. If both

detectors raise an alarm, indicating the watermark is absent in the outputs, we consider a likely

attack scenario. If only the χ2 detector raises an alarm, we expect that the watermark is preserved

while the dynamics are inconsistent with modeling. As such, we anticipate a fault.
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Figure 3.10: Detection probability versus false alarm rate for χ2 and correlation detectors for a
system using Markovian Bernoulli and IID Gaussian Watermark.
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Figure 3.11: Expected time to detection for χ2 and correlation detectors for a system using
Markovian Bernoulli and IID Gaussian Watermark.
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Figure 3.12: Detection probability versus false alarm rate for χ2 and correlation detectors for a
system using IID Bernoulli and Stationary Gaussian Watermark.
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Figure 3.13: Expected time to detection for χ2 and correlation detectors for a system using IID
Bernoulli and Stationary Gaussian Watermark.
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Figure 3.14: Average correlation detector and χ2 detector statistics under a fault at the sensor output
for a system using Markovian Bernoulli and IID Gaussian Watermark.
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Figure 3.15: Average correlation detector and χ2 detector statistics under a fault at the sensor output
for a system using IID Bernoulli and Stationary Gaussian Watermark.



Chapter 4

Moving Target Approach

In the previous chapters, we investigated how physical watermarking can be use to detect classes

of stealthy attacks. In particular, we demonstrated physical watermarking as being particularly

effective against replay attacks as well as some model aware attackers. However, model knowledge,

when combined with channel access can lead to extremely powerful, yet stealthy attackers. The

primary example is a covert attack, where an adversary is able to completely take control of a

system, while using model knowledge to hide his impact. This chapter will examine how removing

knowledge of the model allows us to actively detect attackers. Specifically, we introduce the

moving target approach. In the moving target, the defender introduce time varying perturbations

to the plant in order to limit an attacker’s understanding of the system dynamics. By limiting an

attacker’s understanding of the system, the defender prevents an attacker from carrying out stealthy

attacks, thus enabling active detection. This chapter introduces two methods for constructing a

moving target. In section 4.1, we examine the addition of an authenticating subsystem. This

subsystem, which can take the form of some external hardware will be affected by the dynamics of

the true system. The time varying perturbations of the authenticating subsystem will be leveraged

to actively detect an attacker. In section 4.2, we consider a plant with multiple discrete modes of

operation (i.e. a hybrid system). We consider the design of a switched linear system to enable

not only the detection, but also the isolation of malicious attackers. The results in this chapter are

98
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largely based on [46] and [47].

4.1 The Authenticating Subsystem Approach

In this subsection, we consider the first method for a moving target, the authenticating subsystem

approach. This approach is meant to counter an attacker with significant disclosure and disruption

resources. In particular, we consider a strong adversary who can read and modify all input and

sensor channels. If an attacker has knowledge of the system dynamics he or she can arbitrarily and

stealthily perturb a system using a covert attack [21]. To prevent such a scenario, the defender has to

keep the adversary unaware of the full system model. This can be challenging for several reasons.

The dynamics of the system may be well known for instance by physical laws. Alternatively,

an attacker can use his disclosure resource to learn the model through passive observations. We

describe our approach to deal with this problem in this section.

4.1.1 System Description

As in the prior section our cyber-physical system can be modeled as a discrete time control system

where

xk+1 = Axk +Buk + wk, (4.1)

yk = Cxk + vk. (4.2)

Here xk ∈ Rn is the state vector at time k and uk ∈ Rp is a collection of control inputs. A suite of

sensors are used tomonitor the state. Here yk ∈ Rm is a vector of sensormeasurements taken at time

k. wk is the independent and identically distributed (IID) process noise with probability distribution

given by N (0, Q) where Q ≥ 0. Meanwhile, vk is the IID measurement noise with distribution

given by vk ∼ N (0, R) where R > 0. We assume that (A,C) is detectable. Additionally, (A,B)

and (A,Q
1
2 ) are assumed to be stabilizable.
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As in prior chapters, a bad data detector can be utilized to determine whether a malicious attack

is occurring.

gk(Ik)
H1

≷
H0

τk. (4.3)

Here, Ik is the information available to the defender. The null hypothesis H0 is that the system

is operating normally while the alternate hypothesis H1 is that the system is under attack. The

probability of detection βk and false alarm αk are

βk = Pr (gk (Ik) > ηk|H1) , αk = Pr (gk (Ik) > ηk|H0) . (4.4)

Regardless of the chosen passive detector, an attacker with knowledge of the input to output

model as well as the ability to manipulate sensor measurements and control inputs, can in theory

generate undetectable attacks.

For instance, assume at time 0 an adversary simply subtract the influence he inserts through the

control inputs from the system outputs as follows

xk+1 = Axk +B(uk + uak) + wk, (4.5)

yk = Cxk + vk + dak, (4.6)

where dak is given by

xak+1 = Axak +Buak, x
a
0 = 0 (4.7)

dak = −Cxak. (4.8)

From the linearity of the system, we observe that yk = y′k where y′k is given by

x′k+1 = Ax′k +Buk + wk, x
′
0 = x0 (4.9)

y′k = Cx′k + vk. (4.10)

In this case, the attacker has zero net effect on the outputs and as a result is perfectly stealthy.

Moreover, the attacker can cause significant damage by perturbing the system arbitrarily along the
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control subspace of (A,B). We observe that watermarking techniques are ineffective against this

attacker as the realization of the defender’s control strategy is independent of the effectiveness of

the attack. Here, we argue that knowledge of the system model is the predominant tool that allows

an attacker to remain hidden. As such, we design a technique to limit the attacker’s knowledge of

the model, which we refer to as the moving target.

4.1.2 Modeling the Moving Target

We propose introducing extraneous states which are causally affected by the ordinary states of

the system. The extraneous states are part of an authenticating subsystem, which has linear time-

varying dynamics, known to the system operator and hidden from the adversary. The dynamics

are designed so that an attacker who impacts the original system will necessarily impact the

authenticating sybsystem. Moreover, the time varying dynamics ideally act as a moving target,

changing fast enough so the adversary does not have adequate opportunity to identify the extraneous

system. While essentially an attempt to prevent covert attacks, the moving target by removing an

attacker’s model knowledge, can also defend against weaker zero dynamics and false data injection

attacks.

Mathematically, we introduce an authenticating subsystem with time varying dynamics on top

of the original system as follows:


x̃k+1

xk+1


 = Ak



x̃k

xk


+ Bkuk +



w̃k

wk


 , Ak ,



A1,k A2,k

0 A


 , Bk ,



Bk

B


 . (4.11)

Moreover, we introduce additional sensors ỹk ∈ Rm̃ to measure the extraneous states.


ỹk

yk


 = Ck



x̃k

xk


+



ṽk

vk


 , Ck ,



Ck 0

0 C


 . (4.12)

The matrices are taken as IID random variables which are independent of the sensor and process

noise processes with distribution

A1,k, A2,k, Bk, Ck+1 ∼ fA1,k,A2,k,Bk,Ck+1
(A1, A2, B, C). (4.13)
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Furthermore, we also assume that


w̃k

wk


 ∼ N (0,Q) ,



ṽk

vk


 ∼ N (0,R) , (4.14)

where

Q =



Q̃ Q̃12

Q̃T
12 Q


 ≥ 0, R =



R̃ R̃12

R̃T
12 R


 > 0. (4.15)

Since the moving target system is linear and the noises remain Gaussian, we can use a Kalman

filter to still perform state estimation.




ˆ̃xk+1|k

x̂k+1|k


 = A




ˆ̃xk|k

x̂k|k


+ Bkuk,




ˆ̃xk|k

x̂k|k


 = (I −KkCk)




ˆ̃xk|k−1

x̂k|k−1


+Kk



ỹk

yk


 ,

zk =



ỹk

yk


− Ck




ˆ̃xk|k−1

x̂k|k−1


 , Kk = PkCTk (CkPkCTk +R)−1, (4.16)

Pk+1 = AkPkATk +Q−AkPkCTk (CkPkCTk +R)−1CkPkATk

Here,Kk is the Kalman gain,Pk is the apriori state estimation error covariance, ˆ̃xk+1|k, x̂k+1|k is

the apriori state estimates and ˆ̃xk|k, x̂k|k are the aposteriori state estimates. Given this, a χ2 detector

can be used for passive detection. Recall, in a χ2 detector,

gk(Ik) =
k∑

t=k−WS+1

zTt (CPCT +R)−1zt. (4.17)

Under normal operation zTt (CPCT + R)−1zt should follow a χ2 distribution with m degrees

of freedom. The χ2 detector attempts to exploit this fact by testing to see if the innovations

follow the correct distribution. It is easy to see that large residues, indicating a discrepancy

between measured and expected behavior create alarms, while smaller residues which indicate

good agreement between measure and expected behavior are indicative of normal operation.

Remark 4.1. While the system introduced above involves IID matrices A1,k, A2,k, Bk, Ck+1, the

moving target design can still be effective in other scenarios. For instance, the dynamics need not
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be linear as long as the defender can accurately model the system. Moreover, the system parameters

can evolve at multiple time scales. In this case, the longer the target remains in place, the easier it

is for the adversary to identify the system.

Remark 4.2. The defender must be able to introduce extraneous states with time-varying dynamics

correlated to the original state of the system. The extraneous states are application dependent

and are to be decided by the system operator. Nonetheless, the system operator can leverage extra

products of the system, for instance the heat dissipated by a reaction or process. The dynamics

can be made time-varying by changing conditions at the plant. Alternatively, the defender can

introduce dynamics into the system. For instance, the defender can introduce RLC circuits which

measure the states. Time varying dynamics can be incorporated by including variable resistors or

capacitors. By varying the components of the circuit according to an IID distribution at each time

step, the defender can generate IID system matrices.

Remark 4.3. Unlike physical watermarking the moving target approach does not need to result

in a suboptimal control performance. Specifically, if we assume the defender does not care about

controlling the extra states, then no online performance has to be sacrificed. The cost of the moving

target approach is likely primarily developmental. In particular, a defender may have to expend

financial resources along with man hours to design, build, or purchase hardware which can be

used to generate an appropriate authenticating subsystem.

In the above formulation we assume that the defender is aware of the real time system matrices

although they are random. In general, this information should not be sent over the network since

doing so amounts to the existence of a secure communication channel. The secure communication

channel could be leveraged to detect an attack without considering a moving target approach.

Alternatively, we can generate pseudo random system matrices using a pseudo random number

generator (PRNG). In this case, the seed of the PRNG is known to the defender and kept hidden

from the attacker. The moving target approach is illustrated in Fig. 4.1
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Figure 4.1: Moving Target for Active Detection in Cyber-Physical Systems

The moving target shares similarities with message authentication codes or MACs used for

authentication in cyber security. This is described below. Example: In cyber security, MACs

can be used to verify the integrity of a message. A message authentication code is computed by

computing a keyed pseudorandom function of the sender’s message. The receiver obtains both the

sender’s message and the MAC. The receiver, using the secret key shared with the sender, verifies

that the MAC corresponds to the message. An attacker who attempts to modify the message will

almost certainly fail to generate an appropriate MAC because he or she does not have access to the

shared key.

We argue that the moving target approach allows us to introduce a cyber physical MAC. In the

context of the moving target approach, suppose the message m corresponds to outputs yk while

the MAC is ỹk. The MAC ỹk is correlated to the message yk through the state xk−1 and the input

uk−1. The key is the seed which determines the sequence of system matrices. The defender uses

knowledge of yk and the sequence of system matrices to estimate ỹk. Under normal operation, ỹk

and its estimate ˆ̃yk closely agree, as seen by a residue based detector, and as a result the MAC is

verified.

On the other hand, suppose an adversary performs integrity attacks using knowledge of

(A,B,C,Q,R). The attacker could generate convincing outputs yk, while biasing the states

xk through a false data injection or zero dynamics attack. At the same time, (s)he will also bias the

states x̃k and thus the MAC outputs ỹk if the time varying matrices are properly chosen. Having no
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knowledge of the seed, the adversary can not know the time varying matrices. Moreover, the time

varying dynamics act as a moving target, hindering system identification. As a result, the attacker

can not generate a convincing cyber-physical MAC output ỹk.

4.1.3 Attack Model against Moving Target

In this subsection, we consider possible attacks on the moving target. This will motivate an

examination of bounds which characterize fundamental detectability with this approach. We

assume the following attacker capabilities:

1) The attacker can insert arbitrary inputs into the system and can arbitrarily alter the sensor

measurements. As a result, when under attack, the system has dynamics given by


x̃k+1

xk+1


 = Ak



x̃k

xk


+ Bk(uk + uak) +



w̃k

wk


 , (4.18)



ỹak

yak


 = Ck



x̃k

xk


+



ṽk

vk


+



d̃ak

dak


 =



ỹk

yk


+



d̃ak

dak


 . (4.19)

where uak is the attacker’s control input and d̃ak and dak are the biases injected on the extraneous

sensors and ordinary sensors respectively.

2) The attacker can read the true outputs of the system ỹk, yk and the inputs being sent by the

defender to the plant uk for all time k. Note that this essentially corresponds to a man in the middle

attack occurring between the plant and system operator so that the attacker can manipulate and read

all communication channels arbitrarily.

3) The attacker has full knowledge of the systemmodelM , {A,B,C,K,L,Q,R}. Moreover,

the adversary knows the probability density function (pdf) of randommatricesA1,k, A2,k, Bk, Ck+1.

While conservative, the adversary can obtain his knowledge of the system model by observing the

communication channels for an extended period of time and performing system identification.

Note, we introduce some slight notational differences from the attacks modeled in the previous

chapters. In particular, to more easily distinguish the attacker’s information and the defender’s
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information, we differentiate between the modified outputs the defender receives ỹak , yak and the true

outputs of the system ỹk, yk.

Based on the above definitions we can define the private information available to the attacker

(IAk ) and defender (IDk ) and the public information (IPk ) available to all parties at time k in the

same order as follows:

IAk , {ỹj, yj, d̃aj−1, d
a
j−1, u

a
j−1} ∀ j ≤ k, (4.20)

IDk , {A1,j−1, A2,j−1, Bj−1, Cj} ∀ j, (4.21)

IPk , {M, f(A1, A2, B, C), uj−1, ỹ
a
j−1, y

a
j−1} ∀ j ≤ k. (4.22)

Thus the defender’s information is Ik , IDk ∪IPk while the attacker’s information is Iak , IAk ∪IPk .

We illustrate this moving target adversary via the cyber-physical attack space, see Fig. 4.2.

While the attacker has full disclosure and disruption resource here, in particular the ability to read

and modify all inputs and outputs, the attacker is limited by his or her imperfect understanding of

the authenticating subsystem.

We now propose two main attack strategies. Without loss of generality we assume any attack

begins at k = 0.

Attack Strategy 1 - Subtract Influence:

In the first attack strategy the attacker aims to estimate his influence on the control system and

subtract it. Define d̄ak , [d̃a Tk da Tk ]T . Recall that if

x̄ak+1 = Akx̄ak + Bkuak, d̄ak = −Ckx̄ak, (4.23)

with initial state x̄a0 = 0, an attack is completely stealthy. As the adversary does not know the

time varying matrices, we assume he computes an estimate of Ckx̄ak and uses that to subtract his

influence on the sensor measurements. Thus, we would have

d̄ak = −E[Ckx̄ak|Iak ]. (4.24)
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Figure 4.2: Cyber-Physical Attack Space with Moving Target Adversary

Observe that the adversary can exactly subtract his influence from measurements yk due to his

knowledge of the system model. However, the adversary should be unable to completely subtract

his bias from the extraneous sensors ỹk.

Define ȳak , [ỹaTk yaTk ]T , x̄k , [x̃Tk x
T
k ]T , w̄k , [w̃Tk w

T
k ]T , v̄k , [ṽTk v

T
k ]T , and ȳk , [ỹTk y

T
k ]T .

The adversary’s observations can be formulated through the following linear time-varying system,


x̄k+1

x̄ak+1


 =



Ak 0

0 Ak






x̄k

x̄ak


+


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Bk Bk
0 Bk






uk

uak


+



w̄k

0


 , (4.25)

ȳk =

[
Ck 0

]


x̄k

x̄ak


+ v̄k. (4.26)

To estimate ∆ȳak at time k, assume the adversary knows the following distribution f(x̄k, x̄
a
k, Ck|Iak ).
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Then we have

d̄ak = −
∫

x̄k

∫

x̄ak

∫

Ck

Ckx̄akf(x̄k, x̄
a
k, Ck|Iak )dx̄kdx̄akdCk. (4.27)

We show that the pdf can be recursively computed at each step. Letting ζk+1 = {x̄k+1, x̄
a
k+1, Ck+1}

we have

f(ζk+1|Iak+1) = f(ζk+1|Iak , ȳak , ȳk+1, d̄
a
k, u

a
k, uk),

= f(ζk+1|Iak , ȳk+1, u
a
k, uk),

=
f(ȳk+1|Iak , ζk+1)f(ζk+1|Iak , uk, uak)

f(ȳk+1|Iak , uk, uak)
. (4.28)

The second equality follows from the conditional independence of ζk+1 and ȳak , d̄ak given ȳk and uk.

The last equality follows fromBayes rule and the conditional independence of ȳk+1 and uk, uak given

ζk+1. We note that this distribution can be theoretically computed given the attacker’s information.

That is, we know that

f(ȳk+1|Iak , ζk+1) ∼ N (Ck+1x̄k+1,R) . (4.29)

Moreover, ζk+1 and ȳk+1 are deterministic functions of ζk, uk, uak and random variables A1,k, A2,k,

Bk, Ck+1, w̄k, v̄k+1, which are independent of ζk given Iak . Thus, f(ζk+1|Iak+1) can be recursively

computed from f(ζk|Iak ).

Remark 4.4. If the attacker subtracts his influence, he might be susceptible to a growing can-

cellation error if he attempts to excite the system’s unstable dynamics. Instead of subtracting his

influence the attacker can instead directly estimate what the defender expects to see as summarized

in the next section.

Attack Strategy 2 - Estimate the Defender’s State Estimate:

In the next strategy, the adversary aims to track the system operator’s state estimate. This attack

is very similar to the robust attack formulated in Chapter 2. Using the system operator’s state

estimate, the adversary attempts to generate stealthy outputs. Let ˆ̄xk = [ˆ̃xTk|k−1x̂
T
k|k−1]T . The
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attacker’s observations and strategy can be formulated as follows



x̄k+1

ˆ̄xk+1


 =



Ak 0

0 Ak(I −KkCk)






x̄k

ˆ̄xk


+


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w̄k

0


+



Bk Bk 0

Bk 0 AkKk






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uak

ȳak



, (4.30)

ȳk =

[
Ck 0

]


x̄k

ˆ̄xk


+ v̄k, d̄ak = E[Ck ˆ̄xk|Iak ]− ȳk. (4.31)

The attacker wishes to track ζk = {x̄k, ˆ̄xk, Ck,Pk}. The use of the preceding attack design

is motivated by the ensuing result which states that the chosen attack vector minimizes a fixed

quadratic function of the measurement residues. This illustrates the potential effectiveness of the

attack, when countered by a χ2 detector.

Theorem 4.1. Let Σ � 0 be a positive semidefinite matrix.

E[Ck ˆ̄xk|Iak ]− ȳk = arg min
d̄ak

E[zTk Σzk|Iak ]. (4.32)

Proof. Observe that

E[zTk Σzk|Iak ] =

∫

ζk

zTk Σzkf(ζk|Iak )dζk. (4.33)

Taking the gradient with respect to d̄ak and setting the resulting expression equal to 0, we obtain
∫

ζk

Σ(ȳk + d̄ak − Ck ˆ̄xk)f(ζk|Iak )dζk = 0. (4.34)

Solving gives

d̄ak = −ȳk +

∫

ζk

Ck ˆ̄xkf(ζk|Iak )dζk, (4.35)

and the result holds.

To determine d̄ak at time k assume the adversary has access to the following distribution

f(ζk|Iak ). As done before, the attacker can theoretically compute d̄ak by taking a conditional

expectation. Additionally, similar to (4.28) we have

f(ζk+1|Iak+1) =
f(ȳk+1|Iak , ζk+1)f(ζk+1|Iak , uk, uak, ȳak)

f(ȳk+1|Iak , uk, uak, ȳak)
. (4.36)
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Moreover, by similar analysis as in the first attack strategy, we can demonstrate that f(ζk+1|Iak+1)

can be recursively computed from f(ζk|Iak ). The main difference here is that the adversary must

also estimate Pk.

In practice the proposed attacks are likely impossible to execute for an adversary since it is

numerically intractable to compute the necessary distribution functions and expected values. This

makes it difficult in general to quantify the potential detectability of intelligent attackers. As a

result, we next aim to provide bounds on the attacker’s estimation performance in terms of mean

square error matrices.

4.1.4 Bounds on Attack Detectability

We now attempt to characterize lower bounds on the error matrices associated with the states ζk

defined in attack strategy 1 and 2. This will be a measure of how well an attacker can estimate

the relevant states in our moving target system. From there, we can attempt to characterize how

well the adversary can design d̄ak to fool the bad data detector. We leverage conditional posterior

Cramer-Rao lower bounds for Bayesian sequences derived by [48]. The authors here make use of

the Bayesian Cramer-Rao lower bound or Van Trees bound derived in [49] which states that for

observations y and states ζ the mean squared error matrix is bounded by the Fisher information as

follows

Ef(ζ,y)

[
[ζ̂(y)− ζ][ζ̂(y)− ζ]T

]
≥ I−1, (4.37)

where the Fisher information matrix I is given by

I = Ef(ζ,y)

[
−4ζ

ζ logf(ζ, y)
]
. (4.38)

Note that

4y
xg(x, y) , OxOT

y g(x, y),
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where O is the gradient operator. In [48], this result is extended to nonlinear Bayesian sequences

with dynamics given by

ζk+1 = Fk(ζk, ωk), ȳk = Gk(ζk, v̄k), (4.39)

where ωk and v̄k are independent process and sensor noise respectively. In our case, we slightly

adapt these results to account for the fact there is feedback in our system so that

ζk+1 = Fk(ζk, ȳ1:k, ωk), ȳk = Gk(ζk, v̄k). (4.40)

The inputs uk, uak and d̄ak are incorporated into the definition of Fk, while uncertainty in the model

(A1,k, A2,k, Bk, Ck+1) can be incorporated in the process noise ωk.

To obtain a conditional Cramer Rao lower bound, let f ck+1 , f(ζ0:k+1, ȳk+1|ȳ1:k).

Assumption 4.1.1. For any entry ζ of ζ0:k+1, ȳk+1,
∂fck+1

∂ζ
and ∂2fck+1

∂ζ2
exist and both are absolutely

integrable with respect to ζ0:k+1 and ȳk+1

Assumption 4.1.2. For any entry ζ i of ζ0:k+1, ζ i is defined over a compact interval −∞ ≤ ai ≤

ζ i ≤ bi ≤ ∞. Moreover,

lim
ζi→ai

f(ζ0:k+1) = lim
ζi→ai

aif(ζ0:k+1) = lim
ζi→bi

bif(ζ0:k+1) = lim
ζi→bi

f(ζ0:k+1) = 0.

Then from Proposition 1 of Chapter 3 in [50], we have.

Efck+1

[
ē0:k+1ē

T
0:k+1|ȳ1:k

]
≥ I−1(ζ0:k+1|ȳ1:k), (4.41)

where

ē0:k+1 , ζ0:k+1 − ζ̂0:k+1(ȳk+1|ȳ1:k), (4.42)

I(ζ0:k+1|ȳ1:k) , Efck+1

[
−4ζ0:k+1

ζ0:k+1
log f ck+1|ȳ1:k

]
. (4.43)

Remark 4.5. We remark that since Fk is defined by inputs uk, uak and s̄ak, f ck+1 is implicitly

conditioned on u0:k, s̄
a
1:k, u

a
0:k. Moreover, f ck+1 is defined given the adversary’s knowledge of

M, f(A1, A2, B, C).
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Observe that (4.41) gives us an expected lower bound for the error matrix associated with the

entire state history ζ0:k+1 with knowledge of measurements ȳ1:k. This expectation is taken over the

state history as well the measurement ȳk+1 so that ζ̂0:k+1 is a function of the measurement ȳk+1.

Observe that unlike the traditional Cramer-Rao bound which is limited to unbiased estimators, the

Bayesian Cramer-Rao bound here considers both biased and unbiased estimators ζ̂ .

While the lower bound given here applies to the entire state history ζ0:k+1, in practice we care

about estimating a lower bound on the current state ζk+1. Nonetheless, it can be easily shown that

Efck+1

[
ek+1e

T
k+1|ȳ1:k

]
≥ I−1(ζk+1|ȳ1:k), (4.44)

where I−1(ζk+1|ȳ1:k) is the dim(ζk) × dim(ζk) lower right submatrix of I−1(ζ0:k+1|ȳ1:k). In

practice, computing I−1(ζk+1|ȳ1:k) from I−1(ζ0:k+1|ȳ1:k) is impractical since it requires computing

and taking the inverse of a Fisher information matrix which grows in dimension at each time step.

As a result, we would like a recursion to compute I−1(ζk+1|ȳ1:k). From [48] we have the following

result,

I(ζk+1|ȳ1:k) = D22
k −D21

k

[
D11
k + IA(ζk|ȳ1:k)

]−1
D12
k , (4.45)

where

D11
k = Efck+1

[
−4ζk

ζk
log f(ζk+1|ζk, ȳ1:k)

]
,

D12
k = Efck+1

[
−4ζk+1

ζk
log f(ζk+1|ζk, ȳ1:k)

]
= (D21

k )T ,

D22
k = Efck+1

[
−4ζk+1

ζk+1
log f(ζk+1|ζk, ȳ1:k)f(ȳk+1|ζk+1)

]
.

In addition,

IA(ζk|ȳ1:k) = E22
k − E21

k

(
E11
k

)−1
E12
k , (4.46)

where

E11
k = Ef(ζ0:k|ȳ1:k)

[
−4ζ0:k−1

ζ0:k−1
log f(ζ0:k|ȳ1:k)

]
,

E12
k = Ef(ζ0:k|ȳ1:k)

[
−4ζk

ζ0:k−1
log f(ζ0:k|ȳ1:k)

]
= (E21

k )T ,

E22
k = Ef(ζ0:k|ȳ1:k)

[
−4ζk

ζk
log f(ζ0:k|ȳ1:k)

]
.
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We observe that it is still difficult to obtain matrices E11
k , E

12
k , E

21
k , E

22
k so [48] introduces the

following approximate recursion

IA(ζk|ȳ1:k) ≈ S22
k − S12 T

k

[
S11
k + IA(ζk−1|ȳ1:k−1)

]−1
S12
k , (4.47)

where

S11
k = Ef(ζ0:k|ȳ1:k)

[
−4ζk−1

ζk−1
log f(ζk|ζk−1, ȳ1:k−1)

]
,

S12
k = Ef(ζ0:k|ȳ1:k)

[
−4ζk

ζk−1
log f(ζk|ζk−1, ȳ1:k−1)

]
,

S22
k = Ef(ζ0:k|ȳ1:k)

[
−4ζk

ζk
log f(ζk|ζk−1, ȳ1:k−1)f(ȳk|ζk)

]
.

We observe that in practice it may still be difficult to compute the exact expectations because high

dimensional integration is generally involved. Nonetheless, particle filters as described in [51] can

be used to approximate these expectations. Alternative approximations for the conditional posterior

Cramer-Rao lower bound can be found in [52]. Unconditional bounds can be found in [53].

The algorithm above enables the defender to compute an approximate lower bound on the mean

square error matrix of the attacker’s state ζk for a given set of inputs ua0:k, d̄
a
1:k and observation

history ȳ1:k. This allows us to obtain a lower bound on the expected value of the squared 2-norm

of our residue zk (defined in (4.16)). As we have seen, the residue is a common statistic used to

characterize the health of a system. Under normal operation, there exists good agreement between

measured and expected behavior so the residue is expected to be small. We are able to characterize

how small an attacker is able to make a residue given his information.

Theorem 4.2. Consider the special case that {Cj} is known to the adversary for all j ∈ Z. Suppose

an attacker attempts to estimate ζk = {x̄k, ˆ̄xk,Pk} as in attack strategy 2. Let ˆ̄xek(ȳk) be an estimate

of ˆ̄xk as a function of ȳk given ȳ1:k−1 and êk = ˆ̄xk − ˆ̄xek(ȳk). Suppose a lower bound Zk on the

error matrix of ˆ̄xk is obtained so that

Efck
[
êkê

T
k

]
≥ Zk. (4.48)
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Then we have

min
ȳak

Ef∗
[
zTk zk

]
≥ tr(CkZkCTk ), (4.49)

where f ∗ = f(ˆ̄xk, ȳk|Iak−1, u
a
k−1, d̄

a
k−1, uk−1).

Proof. First, observe from Remark 4.5

f(ζ0:k, ȳk|Iak−1, u
a
k−1, d̄

a
k−1, uk−1) = f ck . (4.50)

We now have the following.

min
ȳak

Ef∗
[
zTk zk

]
(4.51)

= min
ȳak

Ef∗
[
tr
(
(ȳak − Ck ˆ̄xk)(ȳ

a
k − Ck ˆ̄xk)

T
)]
,

= min
ȳak

tr
(
Ef∗

[
(ȳak − Ck ˆ̄xk)(ȳ

a
k − Ck ˆ̄xk)

T
])
,

= tr
(
min
ȳak

(
Ef∗

[
(ȳak − Ck ˆ̄xk)(ȳ

a
k − Ck ˆ̄xk)

T
]))

,

= tr
(
Ckmin

ˆ̄xek

(
Ef∗

[
(ˆ̄xek − ˆ̄xk)(ˆ̄xek − ˆ̄xk)

T
])
CTk
)
,

= tr
(
Ckmin

ˆ̄xek

(
Efck

[
(ˆ̄xek − ˆ̄xk)(ˆ̄xek − ˆ̄xk)

T
])
CTk
)
,

≥ tr(CkZkCTk ).

The first two equalities follow from properties of the trace and expectation. The third equality

follows from monotonicity properties of the trace function. The fourth equality is based on the fact

that given Ck, a minimizer lies in the range space of Ck. The fifth equality is due to (4.50). The

final inequality follows from (4.48).

Remark 4.6. In general, the adversary’s ability to estimate {ζk} is dependent on the inputs

{uak}, {d̄ak}. For instance, the more the adversary biases the state away from its expected region

of operation, the more challenging it is to perform estimation. Thus, if the system operator wishes

to analyze how well an adversary can generate stealthy outputs, he must consider a particular

sequence of attack inputs uak, d̄ak.
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Remark 4.7. In practice, it may be difficult to perform performance analysis when assuming Pk
is an unknown state. However, one can still approximate a lower bound on the error matrix by

assuming that the adversary has an oracle which allows him to know Pk, Kk, I −KkCk.

Remark 4.8. The design of the authentication subsystem matrices is not considered in this thesis

and left for future work. However, we expect that increasing the covariance of the random matrices

will make the problem of system identification more difficult for the attacker, thereby increasing the

lower bound. Similar to watermarking, there likely exists an optimal direction for our perturbations

that maximize performance.

4.1.5 Numerical Example

As in section 3.1, we test the moving target on the quadruple tank process, a four state system [39].

The goal is to control the water level of two of four tanks using two pumps. Two sensors measure

water heights. We use an LQG controller with weights following suggestions in [40]. Q and R

are created by generating a matrix from a uniform distribution, multiplying it by its transpose, and

dividing by 100.

4 extra states and 2 extra outputs are added. The time varying matrices A1,k, A2,k, Bk, Ck+1 are

somewhat sparse (50% of entries nonzero). The non-zero elements follow a multivariate Gaussian

distribution with means generated from U(−0.5, 0.5). The covariances of the nonzero parameters

are created by generating a matrix from a uniform distribution, multiplying it by its transpose, and

dividing by 100.

We consider an adversary who, starting at time 200 sec, adds a constant input (in Volts) to

the optimal LQG input and avoids detection by trying to subtract his own influence from the

measurements. First, in Figs. 4.3(a), 4.4(a), we assume the attacker knows the time varying system

matrices. Secondly, we assume the attacker does not know the realization of A1,k, A2,k, Bk, Ck+1,

but instead performs his attack by sampling the matrices from the appropriate distribution, (Figs.
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4.3(b), 4.4(b)). Note, that any sort of optimal attack as described in this section is in practice

infeasible due to the required numerical and computational complexity.

We plot a χ2 detector statistic (window 10, α = 10−7) in Fig. 4.3(a) and 4.3(b) and system

performance in Fig. 4.4(a) and 4.4(b), both averaged over 1000 trials. The asymptotic probability

of detection vs false alarm is found in Fig. 4.5. Here α corresponds to the probability of false

alarm, which is constant in time due to the stationary behavior of the state. Given full knowledge

of the system matrices, the attacker can significantly affect water levels while remaining perfectly

stealthy. However, with stochastic knowledge of the system matrices, the attack is easily revealed,

even for small system perturbations and small α. In practice, the attack can be improved by using

the measurements ỹk to perform system identification. We expect improvements to be marginal

since the system changes at each time step. Thus, it is important to analyze the effectiveness of an

attacker who performs machine learning in a scenario where the moving target changes at a lower

frequency.
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Figure 4.3: Detection Statistic of Moving Target: Quadruple Tank
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4.2 The Hybrid System Approach

In this section, we consider an alternative moving target design, which we refer to as the hybrid

system approach. Here, instead of introducing an additional authenticating subsystem to a cyber-
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physical system that we do not care about, we perform active detection by changing the parameters

of the true plant itself in a discrete fashion. We will demonstrate how this technique can aid us not

only in the detection of malicious adversaries, but also the problem of identification. We will focus

in particular on sensor attacks.

4.2.1 System Description

To begin, we model our control system as a discrete deterministic system. We will consider the

stochastic case later in the section. The dynamics are given by

xk+1 = Axk +B(uk(y0:k)), yk = Cxk +Dadak. (4.52)

where xk ∈ Rn is the state at time k, uk(y0:k) ∈ Rp is the control input, and yk ∈ Rm are the

sensor outputs. The sensor outputs, yk, consist of m scalar sensor outputs, defined by the set

S = {1, 2, · · · ,m}. We assume for now that (A,C) is observable.

The adversary performs an attack on an ordered set of sensors K = {s1, s2, · · · , s|K|} ⊆ S

using additive inputs dak ∈ R|K|, starting at time k = 0. Here, a denotes that the input is an attack

input. Consequently, we define Da ∈ Rm×|K| entrywise as

Da
uv(K) = Iu=si,v=i, (4.53)

where I is the indicator function. Note that Da is fully determined by the set K. Implicitly, we

assume that the set of sensors which the adversary targets is constant due to (ideally) the inherent

difficulty in the task of hijacking sensors. When performing an integrity attack, the adversary’s goal

is to adversely affect the physical system by preventing proper feedback. In particular, a defender

with incorrect sensor measurements may not be able to perform adequate state estimation and thus

will not be able to apply appropriate corrective measures to the system.

We assume that the defender knows the system dynamicsM = {A,B,C} as well as the input

and output histories given by u0:k−1 and y0:k, but is unaware of the setK. Furthermore, we assume

that in the deterministic setup, the defender is unaware of the initial state x0. Thus, the information
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Ik available to the defender at time k is given by

Ik = {M, u0:k−1, y0:k}. (4.54)

Remark 4.9. In the deterministic case, we explore attacks where the defender has no knowledge of

the initial state. While this is certainly not realistic, the attack vectors developed in this scenario

can still remain stealthy in a practical stochastic setting if the adversary carefully ensures that his

initial attack inputs remain hidden by the noise of the system.

From a defender’s perspective it is important to identify trusted sensor nodes. Estimation

and control algorithms can then be tuned to ignore attacked nodes. We note that the problem of

identifying malicious nodes is independent of the control input, since the defender is aware of the

model and input history. Thus, in the ensuing discussions we will disregard the control input so

that

xk+1 = Axk, yk = Cxk +Dadak. (4.55)

Prior Results on Attack Identification

In this section, beyond looking at the problem of detection, we focus on how active techniques can

enable attack isolation or identification. The ability to isolate the actions of malicious defenders

aids a defender in his endeavor to provide resilient countermeasures. For instance, identifying

malicious sensors could allow a defender to design resilient feedback control laws which bypass

these sensors and are still able to meet system specifications. Similar to [44], we define a notion of

attack identification in control systems.

Definition 4.1. An attack input {Da(K)dak} on a deterministic system with unknown state x0 is

unidentifiable if and only if

1. there exists setsK ′ ⊂ S with K ′ 6= K

2. |K ′| ≤ |K|
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3. there exists x′0 ∈ Rn and inputs {d̄ak} satisfying

y(x0, D
a(K)dak, k) = y(x′0, D

a(K ′)d̄ak, k), ∀ k ≥ 0. (4.56)

We assume every sensor in K is attacked at least once given input {Da(K)dak} and every sensor

in K ′ is attacked at least once given input {Da(K ′)d̄ak}

Here, y(x0, D
a(K)dak, k) is the output yk due to the initial state x0 and the sequence of attacks

{Da(K)da0, · · · , Da(K)dak}. An attack is unidentifiable if there exists an alternative attack on a

smaller set of sensors that achieves the same output. Note, here we must make the restriction that

|K ′| ≤ |K|. This is due to the fact that there always exists an attack on the complement ofK which

can generate the same outputs as an attack on K ′.

In particular, supposeDa(K)dak = Ψ(K)CAk∆x0, where we define Ψ(K) ∈ Rm×m entrywise

as

Ψ(K)(i, j) = Ii=j,i∈K (4.57)

We then have

y(x0, D
a(K)dak, k) = y(x0 + ∆x0, D

a(Kc)d̄ak, k), ∀ k ≥ 0. (4.58)

where Da(Kc)d̄ak = −Ψ(Kc)CAk∆x0. Here, Kc = S −K. More generally, we can equate the

existence of an unidentifiable attack to sparse observability. A similar result is obtained in [54].

The proof is included here for completeness.

Definition 4.2. A system (A,C) is s−sparse observable if and only if one can remove any s rows

from the matrix C and the resulting system remains observable.

Theorem 4.3. Suppose (A,C) is observable. There exists an unidentifiable attack on q or fewer

sensors if and only if (A,C) is 2q sparse observable.

Proof. Suppose (A,C) is not 2q sparse observable. Supposem > 2q. Choose setsK1, K2, K3 ⊆ S

such thatK1∩K2 = ∅, max(|K1|, |K2|) ≤ q, |K1|+ |K2| ≤ 2q,K3 = S−K2−K1 and (A,CK3)
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is not observable. Here, CX are the rows of C indexed by X . Let x1
0 be arbitrary. Let x2

0 6= 0

belong to the unobservable subspace of (A,CK3).

For all k ≥ 0, let Da(K1)dak = Ψ(K1)CAkx2
0 and Da(K2)d̄ak = −Ψ(K2)CAkx2

0. Without

loss of generality, assume injecting Da(K1)dak = Ψ(K1)CAkx2
0 requires attacking a set K ′1 ⊆ K1

where every sensor inK ′1 is attacked at least once, and supposeDa(K1)dak = Da(K ′1)da
′
k . Moreover

assume without loss of generality, injecting Da(K2)d̄ak = −Ψ(K2)CAkx2
0 requires attacking a set

K ′2 ⊆ K2 where every sensor inK ′2 is attacked at least once, and supposeDa(K2)d̄ak = Da(K ′2)d̄a
′
k .

Finally, without loss of generality assume |K ′1| ≥ |K ′2|. Since, (A,C) is observable, |K ′1| > 0.

Moreover, the number of sensors attacked is less than or equal to q. Observe, for all k ≥ 0

CK3Akx1
0 = CK3Ak(x1

0 + x2
0).

Thus, y(x1
0, D

a(K ′1)da
′
k , k) = y(x1

0 + x2
0, D

a(K ′2)d̄a
′
k , k) for all k ≥ 0, where |K ′2| ≤ |K ′1| and

K ′2 6= K ′1. Thus, there is an unidentifiable attack.

If m ≤ 2q, take K1 and K2 such that K1 ∪K2 = S, K1 ∩K2 = ∅, and max(|K1|, |K2|) ≤ q.

Select arbitrary x1
0 and x2

0 6= 0. For all k ≥ 0, let Da(K1)dak = Ψ(K1)CAkx2
0 and Da(K2)d̄ak =

−Ψ(K2)CAkx2
0. Without loss of generality, assume injecting Da(K1)dak = Ψ(K1)CAkx2

0 re-

quires attacking a set K ′1 ⊆ K1 where every sensor in K ′1 is attacked at least once, and suppose

Da(K1)dak = Da(K ′1)da
′
k . Moreover assume without loss of generality, injecting Da(K2)d̄ak =

−Ψ(K2)CAkx2
0 requires attacking a setK ′2 ⊆ K2 where every sensor inK ′2 is attacked at least once,

and suppose Da(K2)d̄ak = Da(K ′2)d̄a
′
k . Finally, without loss of generality assume |K ′1| ≥ |K ′2|.

Since, (A,C) is observable, |K ′1| > 0. Moreover, the number of sensors attacked is less than or

equal to q. Again,y(x1
0, D

a(K ′1)da
′
k , k) = y(x1

0+x2
0, D

a(K ′2)d̄a
′
k , k) for all k ≥ 0, where |K ′2| ≤ |K ′1|

and K ′2 6= K ′1. Thus, there is an unidentifiable attack.

Now suppose there exists a nonzero unidentifiable attack on a set of K, where |K| ≤ q. Then

there exists set K ′ and inputs dak and d̄ak such that for some x0 and x′0, (4.56) holds. Where

|K ′| ≤ |K| andK ′ 6= K. If x0 = x′0, thenDa(K)dak = Da(K ′)d̄ak, for all k ≥ 0, which contradicts

K 6= K ′. Thus, without loss of generality assume x0 6= x′0. Then, by linearity, there exists set K∗
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with |K∗| ≤ 2q and input d̃ak such that

y(x0 − x′0, Da(K∗)d̃ak, k) = 0, ∀ k ≥ 0

However, this implies that x1
0−x2

0 6= 0 lies in the unobservable subspace of (A,CS−K∗). Note that

|S −K∗| ≥ m− 2q. As such, (A,C) is not 2q-sparse observable.

We see here that in order to identify q attacks, one must be able to perform state estimate

even when 2q sensors are removed. This is because the defender must have enough redundant

information to distinguish m − q trusted sensors from q malicious sensors. In a system with 2q

sensors, a defender would be unable to determine in general which sensors are trustworthy and

which sensors are malicious. As such additional sensors are necessary to ensure identifiability. In

particular, we need enough additional sensors to guarantee 2q sparse observability.

4.2.2 A Hybrid System Moving Target

In the previous section we demonstrated that there exist limitations on the number of attacks a

defender can potentially identify. Specifically, we saw that to identify all attacks of size q, the

system must be 2q sparse observable. This can result in expenditures to add more sensing in order

to withstand more attacks or sacrificing security in order to use fewer components. However, in

this section we argue that generating unidentifiable attacks requires knowledge of the model. By

limiting this knowledge, we hope to prevent such attacks. To begin we define the following.

Definition 4.3. A nonzero attack on sensor s is unambiguously identifiable at time t if there is

no x∗0 ∈ Rn satisfying ysk = ys(x∗0, 0, k) for 0 ≤ k ≤ t. An attack on sensor s is unambiguously

identifiable if it is unambiguously identifiable for all t.

The notion of unambiguous identifiability characterizes when the defender can be certain that

sensor s is faulty or under attack. This scenario occurs only if there exists no initial state which

produces the output sequence at ys. We envision designing a system that forces the attacker to
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generate unambiguously identifiable attacks on all sensors which he targets. Consequently, we can

identify misbehaving sensors.

Thus, instead of requiring our system to be 2q sparse observable to perform perfect estimation

with q attacks or 2q detectable to perform stable estimation [55], forcing an attacker to generate

unambiguously identifiable attacks will allow the defender to perform stable estimation when the

system is only q detectable (detectable after removing any q sensors). This allows the system to

withstand more powerful attacks or use fewer sensing devices while maintaining the same level of

security. We now characterize attacks which are not unambiguously identifiable. For notational

simplicity let the sth row of Da be denoted as Ds.

Theorem 4.4. An attack on sensor s is not unambiguously identifiable at time t if and only if there

exists an x∗0 such thatDsdak = CsAkx∗0 for all 0 ≤ k ≤ t andCsAkx∗0 6= 0 for some time 0 ≤ k ≤ t.

Proof. Suppose Dsdak = CsAkx∗0 for time 0 ≤ k ≤ t. Assume this attack is nonzero. Then,

ysk = ys(x0 + x∗0, 0, k). Suppose instead that there is no x∗0 such that Dsdak 6= CsAkx∗0 for

0 ≤ k ≤ t. Then there is no x̄0 such that CsAkx0 + Dsdak = CsAkx̄0. The result immediately

follows.

As a result, to prevent attacks on sensor s from being unambiguously identifiable at time k, an

adversary must insert attacks which lie in the image of Osk+1 given by

Osk+1 =

[
(Cs)T (CsA)T · · · (CsAk)T

]T
. (4.59)

To insert such attacks, the adversary likely has to be aware of both the matrix A and the matrix

Cs. In the sequel, we aim to minimize this knowledge to prevent an attacker from generating

unidentifiable attacks.

Ideally, we would like to simply assume the adversary has no knowledge of (A,C) and con-

sequently will likely always be unambiguously identifiable. However, in practice, the processes

associated with the physical plant may be well known or previously public so that the attacker

is aware of (A,C). Alternatively, the defender can change parameters of the system to ensure a
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knowledgeable adversary is still thwarted. Specifically, we propose changing the system matrix A

and C in a time varying and unpredictable fashion from the adversary’s point of view so that

xk+1 = Akxk, yk = Ckxk +Dadak. (4.60)

We assume that (Ak, Ck) ∈ Γ = {(A(1), C(1)), · · · , (A(l), C(l))}. The system matrices are

changed in a discrete fashion, resembling a hybrid system. We henceforth refer to this design as the

hybrid system moving target approach. For this time varying system, we can similarly characterize

the set of unambiguously identifiable attacks.

Theorem 4.5. An attack on sensor s in (4.60) is not unambiguously identifiable at time t if

and only if there exists an x∗0 such that Dsdak = Cs
k(
∏k−1

j=0 Aj)x
∗
0 for all time 0 ≤ k ≤ t and

Cs
k(
∏k−1

j=0 Aj)x
∗
0 6= 0 for some time 0 ≤ k ≤ t.

Proof. The proof is similar to that of Theorem 4.4.

Changing the systemmatrices as a function of time allows the system to act like a moving target.

In particular, even if an attacker is aware of the existing configurations of the system, defined by Γ,

he will likely be forced to generate unambiguously identifiable attacks since he is not aware of the

sequence of system matrices. Moreover, since the system matrices keep changing, it is unlikely the

attacker can remain unidentifiable by pure chance.

Remark 4.10. The matrices (Ak, Ck) can be changed randomly using a cryptographically secure

pseudo random number generator where the random seed is known both by the defender and the

plant, but is unavailable to the adversary. From a security perspective, the seed would form the root

of trust. The set Γ can be obtained by leveraging or introducing degrees of freedom in the dynamics

and sensing in our control system. While the defender likely would have to change his control

strategy to account for the time varying dynamics, we will leave the analysis of such strategies for

future work.

Remark 4.11. Compared to the authenticating subsystem approach, the hybrid system approach

has the advantage that it may not need to introduce external dynamics if there exists means to
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Figure 4.6: A Comparison of the underlying structure of the Hybrid and Authenticating Subsystem
Moving Targets

switch parameters in the plant. The disadvantage as mentioned above is that one must consider

system performance and control when switching dynamics of the original plant. Fig. 4.6 provides

a high level look at the underlying structure of both moving target strategies. This thesis focuses on

necessary design recommendations for the time varying dynamics, which do not take into account

constraints in control. Investigating fundamental tradeoffs is left for future work.

Given the proposed setup, we are now ready to define the attacker’s information and an admis-

sible attacker strategy.

Attacker Information

1. The adversary has no knowledge of either the input sequence u0:k or the true output sequence.
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2. Iak = {Γ, Dada0:k−1, f({(Ak, Ck)})}.

If the adversary can observe the output sequence in a zero input deterministic setting, he can

multiply the true outputs by some constant factor to avoid generating unambiguously identifiable

inputs. The control inputs are also secret so that the attacker will be unable to leverage the input

process to gain information about the system model. A realistic adversary may use physical attacks

to bias sensors without reading their outputs. Another possible scenario with such a adversary can

occur if an attacker uses public key encryption, but the encryption is homomorphic with respect

to addition. In this case, the attacker would not be able to gauge the true measurement ysk from its

ciphertext. However, knowing the ciphertext would allow the attacker to compute the encrypted

version of ysk +Dsdak. Future work will examine relaxing restrictions on the attacker’s information.

We assumeΓ is known aswell as the sequence of attack inputs. Also, the probability distribution

of the sequence of system matrices, f({(Ak, Ck)}), is public.

Definition 4.4. An admissible attack policy is a sequence of deterministic mappings Ωk : Iak →

Im(Da(K)) such that Dadak = Ωk(Iak ).

Here, we assume the attacker can only leverage his information to construct a stealthy attack

input. Consequently, while there may exist attacks that bypass identification, in order to be

admissible, they must leverage the attacker’s knowledge and can not be a function of unknown

and unobserved stochastic processes (namely the sequence of {Ak} and {Ck}). A real adversarial

strategy may be to bias sensors with the goal of affecting state estimation, without being identified

by the defender. Thus, the adversary can impact the system without corrective measures being put

in place.

4.2.3 System Design for Deterministic Identification

We now consider criteria that can allow a defender to design an effective set Γ. Given the attacker’s

knowledge of Γ, an adversary can guess the sequence of system matrices chosen by the defender. If
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the adversary guesses correctly, he can generate attacks which are not unambiguously identifiable.

We would now like to characterize the scenario where an attacker can guess the sequence of

matrices incorrectly yet still generate an unambiguously identifiable attack.

Theorem 4.6. Suppose an adversary generates an attack on sensor s by guessing a sequence {lk}

where li ∈ {1, · · · , l} and creating inputs by applying Theorem 4.5. Specifically, there exists an

x1
0 such that Dsdak = Cs(lk)(

∏k−1
j=0 A(lj))x

1
0 for all time 0 ≤ k ≤ t and Dsdaη 6= 0 for some time

0 ≤ η ≤ t. Such a strategy may avoid generating an unambiguously identifiable attack on sensor

s at time t if and only if

null
(
O(ls, t) O(s, t)

)
> null

(
O(ls, t)

)
+ null

(
O(s, t)

)
, (4.61)

O(ls, t) =

[
(Cs(l0))T (Cs(l1)A(l0))T · · · (Ci(lt)

∏t−1
j=0A(lj))

T

]T
,

O(i, t) =

[
(Cs

0)T (Cs
1A0)T · · · (Cs

t

∏t−1
j=0Aj)

T

]T
,

where null refers to the dimension of the null space.

Proof. From Theorem 4.5, an attack is not unambiguously identifiable at time t if and only if there

exists some x2
0 such that Dsdak = Cs

k(
∏k−1

j=0 Aj)x
2
0 for 0 ≤ k ≤ t and this sequence is nonzero.

Thus, the proposed strategy can generate a nonzero unambiguously identifiable attack on sensor s

at time t if and only if

Cs(lk)

(
k−1∏

j=0

A(lj)

)
x1

0 = Cs
k

(
k−1∏

j=0

Aj

)
x2

0,

for all 0 ≤ k ≤ t and moreover for some 0 ≤ k ≤ t this expression is nonzero. The result

immediately follows.

It is undesirable to change the parameters of the system at each time step due to the system’s

inertia. Consequently, we would like to consider systems where (Ak, Ck) remains constant for

longer periods of time. For now, we assume (Ak, Ck) ⊂ {Γ}, but is constant. An adversary, can
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use his knowledge of Γ to guess a pair (Ak, Ck) ∈ Γ and generate unidentifiable attack inputs.

Define the matrix

OSt,j =

[
CS(j)

T
(CS(j)A(j))T · · · (CS(j)A(j)t−1)T

]T
. (4.62)

If the attacker guesses thematrices (A(j), C(j)) and chooses to attack sensor s, hewould need to

ensure
[
(Dsda0)T · · · (Dsdat )

T

]T
lies in the image ofOst+1,j to avoid deterministic identification.

We next determine when an attacker is able to guess an incorrect pair and avoid generating an

unambiguously identifiable attack.

Theorem 4.7. Suppose (A,C) = (A(1), C(1)) and an adversary generates a nonzero attack input

on sensor s using (A(2), C(2)) by inserting attacks along the image ofOst,2. LetΛ1 = {λ1
1, · · · , λ1

q1
}

be the set of distinct eivenvalues associated withA(1) and Λ2 = {λ2
1, · · · , λ2

q2
} be the set of distinct

eigenvalues of A(2). Let

{vλ,j1,1 , · · · vλ,jr1,1, v
λ,j
1,2 , · · · vλ,jr2,2, · · · , v

λ,j
1,lλ,j

, · · · vi,jrlλ,j ,lλ,j}

be a maximal set of linearly independent (generalized) eigenvectors associated with eigenvalue λ

of A(j) satisfying

A(j)vλ,j1,l = λvλ,j1,l , A(j)vλ,jk+1,l = λvλ,jk+1,l + vλ,jk,l . (4.63)

Noting that each ri is in general fully determined by λ and j, let r(λ) = maxi,j ri(λ, j). Define

V λ,j
s,k ∈ Cr(λ)×rk as




Cs(j)vλ,j1,k Cs(j)vλ,j2,k Cs(j)vλ,j3,k · · · · · · Cs(j)vλ,jrk−1,k Cs(j)vλ,jrk,k

0 Cs(j)vλ,j1,k Cs(j)vλ,j2,k · · · · · · Cs(j)vλ,jrk−2,k Cs(j)vλ,jrk−1,k

0 0 Cs(j)vλ,j1,k · · · · · · Cs(j)vλ,jrk−3,k Cs(j)vλ,jrk−2,k

0 0 0
. . . . . . ... ...

0 0 0 · · · · · · Cs(j)vλ,j1,k Cs(j)vλ,j2,k

0 0 0 · · · · · · 0 Cs(j)vλ,j1,k

0 0 0 · · · · · · 0 0




.
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There exists an attack on sensor s, which is not unambiguously identifiable for all time if and only

if Λ1 ∩ Λ2 6= ∅ and there exist some λ ∈ Λ1 ∩ Λ2 such that

null
(
Vλ,1s Vλ,2s

)
> null

(
Vλ,1s

)
+ null

(
Vλ,2s

)
,

where

Vλ,js =

(
V λ,j
s,1 · · · V λ,j

s,lλ,j

)
.

Otherwise the attack can be detected in time t ≤ 2n− 1.

Proof. The proof is lengthy and found in the appendix.

Roughly speaking, given enough observations, the output at sensor s for a time invariant

system will be dominated by the observable mode(s) that have the largest eigenvalue. Thus, if

the eigenvalues between two system matrices are distinct, we are able to distinguish the resulting

outputs. The previous theorem gives the defender an efficient way to determine if the attacker can

guess Γ incorrectly yet still remain undetected in the case that system matrices are kept constant

for at least a period of 2n time steps. It also prescribes a means to perform perfect identification.

Design Recommendations

1. For all pairs i 6= j ∈ {1, · · · l}, Λi ∩ Λj = ∅.

2. The system matrices (Ak, Ck) are periodically changed after every N ≥ 2n time steps.

3. Let {lk} be a sequence where lk ∈ {1, · · · , l}. Let qk denote the indices of a subsequence.

Pr((Aqk , Cqk) = (A(lk), C(lk)), ∀k) = 0.

4. The pair (A(i), C(i)) is observable all i ∈ {1, · · · , l}.

5. For all i ∈ {1, · · · l}, 0 /∈ Λi.

Corollary 4.1. Assume a defender follows the design recommendations. Suppose sensor s is

attacked and there is no t∗ such that Dsdak = 0 for all k ≥ t∗. Then, the sensor attack will be

unambiguously identifiable with probability 1.
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Proof. Since the attack is persistently nonzero, the adversary must guess a correct infinite subse-

quence of system matrices due to recommendations 1 and 2. From recommendation 3, this occurs

with probability 0.

As a result, an attacker who persistently biases a sensor will be perfectly identified. Note that

recommendation 3 can be achieved with an IID assumption or an aperiodic and irreducible Markov

chain. The last 2 recommendations are not needed for this result, but are justified in the next

subsection when we consider stochastic systems.

Remark 4.12. Note, the fact that we would like to keep system matrices constant for a long enough

period of time appears counter-intuitive for a moving target. However, the given adversary is not

performing system identification and is instead guessing the system matrices. As such, keeping the

dynamics constant does not provide useful information for an attacker. Additionally, keeping the

matrices constant long enough gives the defender the information he needs to distinguish between

the different hybrid states. Similar to the problem of observability, the problem of identification

involves a rank deficient matrix until enough measurements have been gathered.

Before concluding, we would like to provide some intuition into the difficulty of changing

the eigenvalues of a matrix. To begin we combine the results of [56][Theorem 7, pg. 130] and

[57][Theorem 6.3.12].

Theorem 4.8. Let A,E ∈ Rn×n and suppose λ is a simple eigenvalue of A. Let x and y be right

and left eigenvectors of A associated with λ so that wTA = λwT and Av = λv. Then

1. for each given ε > 0 there exists a δ > 0 such that, for all t ∈ R such that |t| < δ, there is a

unique eigenvalue λ(t) of A+ tE, such that |λ(t)− λ− twTEv/wTv| ≤ |t|ε.

2. λ(t) is continuous at t = 0 and limt→0 λ(t) = λ.

3. For t small enough, λ(t) depends differentiably on t. Moreover,

dλ(t)

dt
|t=0 =

wTEv

wTv
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From Theorem 4.8, we can obtain the following.

Corollary 4.2. Suppose matrix A ∈ Rn has n distinct eigenvalues. Moreover, suppose there exists

i ∈ {1, · · · , n}, j ∈ {1, · · · , n} such that the ith entry of each left eigenvector of A is nonzero and

the jth entry of each right eigenvector of A is nonzero. Select such an i and j. Let Eij ∈ Rn×n

be a matrix of zeros except the (i, j) entry, which has value 1. Then for all t ∈ R, t 6= 0,

Λ(A) ∩ Λ(A+ tEij) = ∅.

Proof. Since A has distinct eigenvalues {λ1, · · · , λn} all the eigenvalues are simple. Let wq, vq be

left and right eigenvectors associated with λq. For each q ∈ {1, · · · , n} select an εq > 0 such that

εq <
|wTq Eijvq|
|wTq vq|

. (4.64)

This is possible because by construction wTq vq is nonzero, and by assumption the ith entry of

wq and the jth entry of vq is nonzero. For each q ∈ {1, · · · , n}, we know that |λq(t) − λq −

twTq Eijvq/w
T
q vq| ≤ |t|εq if |t| < δq(εq). LetDλ = mins,r∈{1,··· ,n},s 6=r |λs−λr|. Choose t∗ > 0 such

that

|t∗|εq + |t∗wTq Eijvq/wTq vq| < Dλ/2, t∗ < δq(εq), ∀ q ∈ {1, · · · , n}. (4.65)

Then we have ||λq(t∗)− λq| − t∗|wTq Eijvq/wTq vq|| ≤ t∗εq, which implies

− t∗εq + t∗|wTq Eijvq/wTq vq| ≤ |λq(t∗)− λq| ≤ t∗εq + t∗|wTq Eijvq/wTq vq| (4.66)

From (4.64) and (4.66), we know that 0 < |λq(t∗) − λq|. Moreover, from (4.65) and (4.66), we

have for arbitrary s, r ∈ {1, · · · , n}, s 6= r

|λs(t∗)− λr| = |λs(t∗)− λs + λs − λr|

≥ |λs − λr| − |λs − λs(t∗)|

> Dλ −Dλ/2

> 0.
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Consequently, the eigenvalue spectra of A + t∗Eij is disjoint from the eigenvalue spectra of A.

From Laplace’s formula, we observe that there are polynomials g(λ) and h(λ) such that

det(λI − A− tEij) = g(λ) + th(λ).

For a given λq, we know that g(λq) = 0 and t∗h(λq) 6= 0. Thus h(λq) 6= 0. As a result, for t 6= 0,

we have det(λqI − A− tEij) 6= 0. The result follows.

We see that the ability to modify the eigenvalues of a matrix, is heavily linked to the sparsity

of the eigenvectors. Previous work [58, 59] has has investigated the sparsity of eigenvectors as a

function of the nonzero structure of the matrix A. Further analysis here is left for future work.

4.2.4 False Data Injection Detection

In this section, we examine the effectiveness of the moving target defense for detection in the case

of a stochastic system. Here, we assume that

xk+1 = Akxk + wk, yk = Ckxk +Dadak + vk. (4.67)

wk and vk are independent and IID Gaussian process and sensor noise where wk ∼ N (0, Q) and

vk ∼ N (0, R). For notational simplicity we assume that the covariances Q ≥ 0 and R > 0 are

constant. However, we can obtain the ensuing results even in the case that Q and R are dependent

on Ak and Ck.

The adversary’s and defender’s information and strategy is unchanged except we assume

the defender has knowledge of the distribution of the initial state. Specifically, f(x0|I−1) =

N (x̂−0 , P0|−1). Moreover, both the defender and attacker are aware of the noise statistics. We first

would like to show that a moving target defense leveraging the design recommendations listed

above can almost surely detect harmful false data injection attacks. To characterize detection

performance, we consider the additive bias the adversary injects on the normalized residues ∆zk

due to his sensor attacks. The residues, zk, are the normalized difference between the observed
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measurements and their expected values. This is slightly different from the residues considered in

previous chapters which were unnormalized. The bias on the normalized residues is given by

∆ek = (Ak−1 −KkCkAk−1)∆ek−1 −KkD
adak, ∆e−1 = 0,

∆zk = P̄
− 1

2
k (CkAk−1∆ek−1 +Dadak) ,

P̄k = (CkPk|k−1C
T
k +R), Kk = Pk|k−1C

T
k (CkPk|k−1C

T
k +R)−1,

Pk+1|k = AkPk|k−1A
T
k +Q− AkPk|k−1C

T
k (CkPk|k−1C

T
k +R)−1CkPk|k−1A

T
k ,

where ∆ek is the bias injected on the a posteriori state estimation error obtained by an optimal

Kalman filter, and Pk|k−1 is the a priori error covariance. As we have seen, a residue detector such

as the χ2 detector will recognize large residues and mark them as belonging to an attack. We now

show that an admissible adversary is restricted in the bias he can inject on the state estimation

error without significantly biasing the residues and incurring detection. In particular, we have the

following result.

Theorem 4.9. Suppose a defender uses a moving target defense leveraging the design recom-

mendations listed above. Then lim supk→∞ ‖∆ek‖ = ∞ =⇒ lim supk→∞ ‖∆zk‖ = ∞ with

probability 1.

Proof. In this section, the norm ‖ · ‖ refers specifically to the 2 norm. Assume to the contrary

that the residues are bounded ‖∆zk‖ ≤ M . Define the indices of a peak subsequence as follows.

i0 = 0, ik = minκ such that κ > ik−1, ‖∆eκ‖ > ‖∆et‖ ∀t ≤ κ. Such a sequence exists since the

estimation bias is unbounded. Also define the indices jk such that jk = minκ such that jk ≥ ik, jk

mod N = N − 1. Observe that

∆ek = Ak−1∆ek−1 −KkP̄
1
2
k ∆zk. (4.68)

As a result, we have Ajk∆ejk = Ajk−ik+1
ik

∆eik −
∑jk

t=ik+1A
jk+1−t
ik

KtP̄
1
2
t ∆zt. Define am > 0 and

aM > 0 as

am , min
j∈{1,··· ,l}
q∈{0,··· ,N}

σmin(A(j)q), aM , max
j∈{1,··· ,l}

q∈{0,··· ,N−1}

‖A(j)q‖.
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where σmin(·) denotes the smallest singular value. Moreover let pM and cM be given by

pM = sup
k
‖Pk|k−1‖, cM = max

j∈{1,··· ,l}
‖C(j)‖.

Observe that am is nonzero since each A(i) is invertible from recommendation 5. aM and cM are

bounded above since we are taking the maximum over a finite set of bounded elements. Moreover,

pM is bounded above since the error covariance is bounded above. A complete argument is

omitted due to space considerations. However, since all pairs (A(i), C(i)) ∈ Γ are observable

from recommendation 4 it can be shown that xNk+n, k ∈ N is a linear combination of yNk:Nk+n−1

and 2n random variables, where the linear combination is dependent only on (A(Nk), C(Nk)).

Thus, the covariance of xNk+n given y0:Nk+n−1 is bounded. It can be shown that the covariance

of xNk+n+j, j ∈ {1, · · · , N − 1} is bounded given y0:Nk+n+j−1 simply by computing predictive

covariances given y0:Nk+n−1. As a result, we have

‖Ajk∆ejk‖ ≥ am‖∆eik‖ − (N − 1)aMpMcM
M√

λmin(R)
.

where λmin(R) is the smallest eigenvalue of R. λmin(R) is nonzero since R > 0. Therefore, since

‖∆eik‖ → ∞, we have that ‖Ajk∆ejk‖ → ∞.

Now, with some abuse of notation let Dadat1:t2
=

[
(Dadat1)

T · · · (Dadat2)
T

]T
. Suppose

(Ajk+1
, Cjk+1

) = (A(q1), C(q1)). Then,

Dadjk+1:jk+N = −OSN,q1Ajk∆ejk + Fjk+1(q1)∆z
(q1)
jk+1:jk+N .

where Fjk+1(q1) =




P
1
2
jk+1(q1) 0 · · · 0

C(q1)A(q1)Kjk+1(q1)P̄
1
2
jk+1(q1) P̄

1
2
jk+2

(q1) · · · 0

C(q1)A2(q1)Kjk+1(q1)P̄
1
2
jk+1(q1) C(q1)A(q1)Kjk+2(q1)P̄

1
2
jk+2

(q1) · · · 0

... ... . . . ...

C(q1)AN−1(q1)Kjk+1(q1)P̄
1
2
jk+1(q1) C(q1)AN−2(q1)Kjk+2(q1)P̄

1
2
jk+2(q1) · · · P̄

1
2
jk+N(q1)




.

(4.69)
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Through a similar analysis as done above, it can shown that ‖Fjk+1(q1)‖ is bounded above.

Alternatively, if q2 6= q1, is chosen then

Dadjk+1:jk+N = −OSN,q2Ajk∆ejk + Fjk+1(q2)∆z
(q2)
jk+1:jk+N .

Thus, to insert valid inputs for modes q1 and q2, we require

(OSN,q1 −OSN,q2)Ajk∆ejk = Fjk+1(q1)∆z
(q1)
jk+1:jk+N − Fjk+1(q2)∆z

(q2)
jk+1:jk+N . (4.70)

If the residues are bounded in both scenarios, then the right hand side of (4.70) is bounded. Next, due

to design recommendations 1 and 2 andTheorem4.7, there is no solution to 0 6= OSN,q1v1 = OSN,q1v2.

Using this fact and the assumption that each (Ak, Ck) pair is observable, (OSN,q1 − OSN,q2) has no

nontrivial null space. Thus, the left hand side of (4.70) is unbounded. As a result, there is no way

for the attacker to guess incorrectly and insert bounded residues. From, recommendation 3, there

is a nonzero probability the attacker guesses (Ajk+1, Cjk+1) incorrectly and the result holds.

Thus the attacker is able to destabilize the estimation error only by destabilizing the residues.

As such, there is a point where an attacker is unable to introduce additional bias to the estimation

error without revealing his presence due to his effect on the measurement residues.

Remark 4.13. Design recommendation 1 can be relaxed in the stochastic case for purposes of

detecting false data injection attacks. In particular for all non-equal pairs i, j ∈ {1, · · · , l} we

only require 0 6= OSN,iv 6= OSN,jv for all v instead of 0 6= OSN,ivi 6= OSN,jvj for all vi, vj . Here, a

big difference is that in the stochastic case we give the defender some knowledge of the distribution

of the initial state.

4.2.5 Resilient Estimation and Identification

While the moving target approach guarantees we can detect unbounded false data injection attacks,

we wish to also identify specific malicious sensors as in the deterministic case. In the remainder of

this section, we construct a resilient estimator. We will fuse state estimates generated by individual
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sensors since previous results [60, 61] suggest such an estimator has better fault tolerance. This is

desirable in our work since we are attempting to force a normally stealthy adversary to generate

faults. We will show that an attacker can destabilize this estimator only if the culprit sensors can

be identified. In particular, we will show that the estimation error will become unbounded only if

the bias on a sensor residue is also unbounded.

To begin, we assume that for each sensor s,

NS(Osn,1) = NS(Osn,2) = · · · = NS(Osn,l), (4.71)

whereNS(A) denotes the null space ofA. Such a condition is realistic since it implies that changing

the system dynamics does not affect what portion of the state the sensor itself can observe. As

a result, using the Kalman decomposition, for each sensor s, there exists a state transformation

Ts =

[
T uos T os

]
such that

[
T uos T os

]


ζuok,s

ζk,s


 = xk,

[
T uos T os

]


ωuok,s

ωk,s


 = wk.

Here, the columns of T uos are a basis for NS(Osn,1), while the columns of T os should be chosen so

the resulting Ts is invertible.

Moreover, using the same transform Ts, there exists a Γs = {(Cs(1), As(1)), · · · (Cs(l), As(l))}

corresponding to Γ such that

ζk+1,s = Ak,sζk,s + ωk,s, ysk = Ck,sζk,s + vsk, (4.72)

where each pair (Ak,s, Ck,s) is observable and belongs to Γs.

Before we continue, we remark that (4.71) allows us to improve the guarantees obtained in

the deterministic case with Corollary 4.1. In particular, we argue the attacker will be forced

to perpetually insert inputs to remain stealthy. In particular, if an attacker has inserted input[
(Cs(i))

T (Cs(i)As(i))
T · · · (Cs(i)A

N−1
s (i))T

]T
ζ∗0 for some ζ∗0 not equal to 0, he must next

insert
[
(Cs(j))

T (Cs(j)As(j))
T · · · (Cs(j)A

N−1
s (j))T

]
AN−1
s (i)ζ∗0 for some j ∈ {1, · · · , l}
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to have an opportunity to remain stealthy. We argue these next set of N inputs are nonzero. First,

AN−1
s (i)ζ∗0 is nonzero. This is becauseA(j) is by assumption invertible and thusAs(j) is invertible

by properties of the Kalman decomposition. As a result, since (As(j), Cs(j)) is observable, the

conjecture holds.

By performing a change of variables on x̂−0 , a Kalman filter with bounded covariance (see proof

of Theorem 4.9) can be constructed to estimate ζk,i given yi0:k. Specifically, define


−

ζ̂−0,s


 , T−1

s x̂−0 ,



− −

− Qs1,s2


 , T−1

s1
QT−1 T

s2
,



− −

− P s1,s2
0|−1


 , T−1

s1
P0|−1T

−1 T
s2

.

From the definition of the Kalman filter, we have

ζ̂k,s = (I −Kk,sCk,s)ζ̂
−
k,s +Kk,sy

s
k, ζ̂−k+1,s = Ak,sζ̂k,s, (4.73)

Kk,s = P s,s
k|k−1C

T
k,s(Ck,sP

s,s
k|k−1C

T
k,s +Rss)

−1, P s1,s2
k+1|k = Ak,s1P

s1,s2
k ATk,s2 +Qs1s2 ,

P s,s
k = P s,s

k|k−1 −Kk,sCk,sP
s,s
k|k−1, zk,s = (Ck,sP

s,s
k|k−1C

T
k,s +Rss)

− 1
2 (ysk − Ck,sζ̂−k,s),

where Rij is the (i, j) entry of R.

Here ζ̂k,s = E[ζk|ys0:k], ζ̂
−
k,s = E[ζk|ys0:k−1] are optimal estimates of the reduced state for sensor

s. In the construction of our fusion estimator, we will also need to compute E[ek,s1e
T
k,s2

] and

E[e−k,s1e
−T
k,s2

] where ek,s , ζk,s − ζ̂k,s and e−k,s = ζk,s − ζ̂−k,s. We observe that P s,s
k = E[ek,se

T
k,s] and

P s,s
k|k−1 = E[e−k,se

−T
k,s ]. Moreover, note that P s1,s2

0|−1 = E[e−0,s1e
−T
0,s2

]. The error dynamics for a given

sensor s are given by

ek,s = (I −Kk,sCk,s)e
−
k,s −Kk,sv

s
k, e−k+1,s = Ak,sek,s + ωk,s (4.74)

Let P s1,s2
k , E[ek,s1e

T
k,s2

] and P s1,s2
k|k−1 , E[e−k,s1e

−T
k,s2

]. From (4.74), we have

P s1,s2
k = (I −Kk,s1Ck,s1)P

s1,s2
k|k−1(I −Kk,s2Ck,s2)

T +Kk,s1Rs1s2K
T
k,s2

, (4.75)

P s1,s2
k+1|k = Ak,s1P

s1,s2
k ATk,s2 +Qs1s2 .

Note that (4.75) also holds for s1 = s2. We would like to use the individual state estimates ζ̂k,s

associated with each sensor s to obtain an overall state estimate of xk. To do this, first define xok,s
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as

xok,s = T os ζ̂k,s + ηk,s (4.76)

where ηk,s is an IID sequence of Gaussian random variables with ηk,s ∼ N (0, εI) for some small

ε > 0. Moreover {ηk,s1} and {ηk,s2} are independent sequences. ηk,s is a mathematical artifact

introduced so the subsequent estimator has a simplified closed form and can be easily removed or

mitigated by letting ε tend to 0. Now, we observe that

xk = T uos ζuok,s + xok,s + T os ek,s − ηk,s. (4.77)

From here we obtain

ŷk = Wxk + ηk, (4.78)

ŷk =




xok,1

xok,2
...

xok,m



,xk =




ζuok,1

ζuok,2
...

ζuok,m

xk




, ηk =




−T o1 ek,1 + ηk,1

−T o2 ek,2 + ηk,2
...

−T omek,m + ηk,m



,W =




−T uo1 0 · · · 0 I

0 −T uo2 · · · 0 I

... ... . . . ... ...

0 0 · · · −T uom I



.

It can be seen that ηk is normally distributed so that ηk ∼ N (0,Q), where Q > 0 consists of

m ×m blocks where the (i, j) block is given by (T oi P
i,j
k T oTj + δijεI). Here, δij is the Kronecker

delta. The minimum variance unbiased estimate (MVUB) [33] of xk given ŷk is given by

x̂k = (W TQ−1W )−1W TQ−1ŷk (4.79)

The last n entries of x̂k, denoted as x̂∗k, constitute a (MVUB) estimate of xk given the set of sensor

estimates ŷk. The covariance of this estimate is given by

Cov(xk − x̂k) = (W TQ−1W )−1. (4.80)

The proposed estimator is well defined since NS(W ) = 0. If,W had a nontrivial null space, this

would imply there exists x 6= 0 and ζ1, · · · , ζm such that

T uoi ζi = x, ∀ i ∈ {1, · · · ,m}. (4.81)
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This would imply that ∩mi=1NS(Oin,1) 6= 0, which contradicts the observability of each pair

(Ak, Ck). We next show that the proposed estimator of xk has bounded covariance.

Theorem 4.10. Consider the estimator of xk defined by (4.73),(4.75),(4.76),(4.78),(4.79). The

estimator has bounded covariance.

Proof. We first prove that Q > 0 is bounded above. The ith diagonal block of Q has covariance

(T oi P
i,i
k T

oT
i + εI). Using the same argument as in the proof of Theorem 4.9, we see that P i,i

k is

bounded. Consequently (T oi P
i,i
k T

oT
i + εI) and Q are bounded.

Next consider x̂uw
k = (W TW )−1W T ŷk. Since xk − x̂uw

k = −(W TW )−1W Tηk, x̂uw
k is an

unbiased estimator of xk with covariance (W TW )−1W TQW (W TW )−1. Since W is fixed and

Q > 0 is bounded above, (W TW )−1W TQW (W TW )−1 is also bounded above.

Finally, since the proposed estimator is MVUB, we see

tr
(
(W TQ−1W )−1

)
≤ tr

(
(W TW )−1W TQW (W TW )−1

)
.

Thus, Cov(xk − x̂k) and the covariance of xk defined by the last n× n block of Cov(xk − x̂k) are

bounded.

To close this subsection, we demonstrate that the proposed estimator is sensitive to biases in

individual residues ∆zk,s, specifically showing that an infinite bias introduced into the estimator

implies that the residues are also infinite. Define ek , xk − x̂k and ∆ek as the bias inserted on

ek due to the adversary’s inputs. Moreover, let e∗k = xk − x̂∗k and let ∆e∗k and ∆ek,i be the bias

inserted on e∗k and ek,i respectively due to the adversary’s inputs. We have the following result.

Theorem 4.11. Consider the estimator of xk defined by (4.73),(4.75),(4.76),(4.78),(4.79). Then,

with probability 1, lim supk→∞ ‖∆e∗k‖ = ∞ =⇒ lim supk→∞ ‖∆zk,i‖ = ∞ for some i ∈

{1, · · · ,m}.
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Proof. First, we observe that

ek = −(W TQ−1W )−1W TQ−1ηk. As a result,

∆ek = (W TQ−1W )−1W TQ−1Tdiag∆ek,S. (4.82)

where

Tdiag =




T o1 0 · · · 0

0 T o2 · · · 0

... ... . . . ...

0 0 · · · T om



, ∆ek,S =




∆ek,1

∆ek,2
...

∆ek,m



.

Next, we will show that K∗ = (W TQ−1W )−1W TQ−1Tdiag has bounded norm. In particular

observe that

‖K∗‖ = ‖(W T Q−1

‖Q−1‖W )−1W T Q−1

‖Q−1‖Tdiag‖ ≤ ‖(W
T Q−1

‖Q−1‖W )−1‖‖W T Q−1

‖Q−1‖Tdiag‖.

Clearly, ‖W T Q−1

‖Q−1‖Tdiag‖ has bounded norm. Moreover, using a similar argument as in the proof

of Theorem 4.10, ‖(W T Q−1

‖Q−1‖W )−1‖ has bounded norm. Thus, ‖K∗‖ is bounded. Consequently,

from (4.82), lim supk→∞ ‖∆e∗k‖ =∞ =⇒ lim supk→∞ ‖∆ek,i‖ =∞ for some i ∈ {1, · · · ,m}.

However, from Theorem 4.9, this implies lim supk→∞ ‖∆zk,i‖ =∞ and the result holds.

While the proposed estimator does not guarantee each malicious sensor will be identified,

it does guarantee that the defender will be able to identify and remove sensors whose attacks

cause unbounded bias in the estimation error simply by analyzing each sensor’s measurements

individually. This is due to the fact that the bias on residues of such sensors will grow unbounded,

which can be easily detected by some χ2 detector. As a result, for each individual sensor s, we

propose the following detector at time k, which can be used to identify malicious behavior,

k∑

j=k−T ∗+1

z2
j,s

Hs1
≷
Hs0
τ ik. (4.83)

In this scenario,Hs
1 is the hypothesis that sensor s is malfunctioning andHs

0 is the hypothesis that

sensor s is working normally. In practice a sensor s who repeatedly fails detection can be removed
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from consideration when obtaining a state estimate and the proposed fusion based estimation

scheme can be adjusted accordingly.

4.2.6 Numerical Example

We consider a numerical example where l = 7 and A(j) and C(j) are given by

A(k) =




A11(j) A12(j) 0 0 0

0 A22(j) 0 A24(j) 0

0 0 A33(j) 0 A35(j)

0 0 0 A44(j) A45(j)

0 0 0 0 A55(j)




,

C(j) =



C1(j)

C2(j)


 ,

Ci(j) =




C1,i(j) 0 0 0 0

0 C2,i(j) 0 0 0

0 0 C3,i(j) 0 0

0 0 0 C4,i(j) 0

0 0 0 0 C5,i(j)




.

where Aij(j) ∈ R3×3 and Ci,j(j) ∈ R1×3 are scaled uniformly random matrices with Aii(j)

unstable. Moreover Q and R are appropriately sized matrices generated by multiplying a uniform

random matrix by its transpose. The system matrices are changed independently and randomly

every 2n time steps where n = 15 and each (A(j), C(j)) pair has equal likelihood.

We assume that the adversary biases the last 5 sensors (measured by C2(j)) by performing the

attack formulated in Theorem 4.5. Here, the attacker guesses the system matrices randomly every

2n time steps and x∗0 is chosen identically for each sensor. A χ2 detector (4.83) with window 5

and false alarm probability αik = 6.9 × 10−8 is implemented for each sensor based on their local
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Figure 4.7: Estimation error vs time under attack when the adversary knows the system dynamics
using Hybrid Moving Target

Kalman filters. A centralized χ2 detector with window 3 derived from the optimal centralized

Kalman filter performs detection with false alarm probability αk = 4.2× 10−4.

We first note that under normal operation, the estimators achieve similar performance, with the

average mean squared of the optimal Kalman filter at 22.9 and the average mean squared error of

the proposed estimator at 23.4. In Fig. 4.7 and 4.8, we consider the system with the moving target

under attack. However, we assume the attacker is aware of the exact sequence of time varying

matrices. As such the attacker is able to destabilize the estimation error in Fig. 4.7 while the sensor

residues appear normal in Fig. 4.8.

Finally, in Fig. 4.9, we plot the norm of the estimation error for both the proposed estimator and

optimal Kalman filter as a function of time when the attacker is forced to randomly guess the system

model. Here the attacker is detected in 2 time steps and perfectly identified in 8 time steps. When

a sensor is identified, it is removed from consideration when performing fusion or optimal Kalman

filtering. It can be seen that while under attack, the proposed fusion based estimator is better able

to recover from the adversary’s actions. While the estimation error becomes large, the attacker’s
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Figure 4.8: Residue vs time under attack when the adversary knows the system dynamics. The
defender is using the Hybrid Moving Target

effect on the system can be mitigated. In particular, since an attack is detected within two time

steps, a robust controller ignoring the incorrect state estimates can be utilized until identification

has occurred. This will limit the effects of incorrect feedback.
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Figure 4.9: Estimation error vs time under attack when the adversary does not know the true
dynamics of the Hybrid Moving Target. All sensor attacks are identified. The proposed fusion
based estimator and the centralized Kalman filter are illustrated.



Chapter 5

Structural System Design

In the previous chapters, we have considered active detection as an online mechanism for detect-

ing classes of integrity attacks. However, offline or robust design can be used to dampen the

effectiveness of potential attackers. In this chapter, we consider how structural properties of the

plant and sensing infrastructure can impact our ability to detect perfect attacks and zero dynamics

attacks. Perfect attacks are able to characterize the set of stealthy attacks when the defender has

knowledge of the initial state while zero dynamics attacks characterize the set of stealthy attacks

when the defender has no knowledge of the initial state. By the careful design of these topologies,

we can almost surely eliminate these attacks when considering a resource limited attacker. In

the deterministic case, this forces a resource limited attacker to be deterministically detectable,

while in the stochastic case, this can limit the impact of an attacker that wishes to remain stealthy.

The chapter is summarized as follows. In section 5.1, we introduce background on perfect and

zero dynamics attacks. In section 5.2, we provide structural conditions which allow a defender to

eliminate the existence of these attacks. Finally, in section 5.3, we consider the minimal robust

design of distributed control system to balance the costs of sensing and communication with the

need for security. The results in this chapter are partially based on [62], [63], and [64].

145
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5.1 A Background on Zero Dynamics Attacks

5.1.1 Detection in Deterministic Systems

We commence the study of zero dynamics and perfect attacks by examining the set of stealthy

attacks against a deterministic control system.

xk+1 = Axk +Buk +Bauak, yk = Cxk +Dadak. (5.1)

In this section, wewill assume (A,C) is observable. Additionally, assume that an attack commences

at time 0 and that x0 is known to the defender.

We make the assumption here that an attacker is restricted to manipulate a fixed set of inputs

and outputs described by the matrices Ba and Da. Unless otherwise stated, we without loss of

generality, assume Ba is full column rank. We define the set of attackable inputs and outputs

respectively as Kau , {δ1, · · · , δp∗∗} and Kay , {η1, · · · , ηm∗}. In this case, j ∈ Kau and l ∈ Kay
implies an attack can modify the jth entry of uk and lth entry of yk for all k. Ba can be constructed

as a matrix whose columns are basis vectors of a subspace generated by {Bδ1 , · · · , Bδp∗∗} where

Bj is the jth column of B. Ba can be extended accordingly if an attacker introduces additional

actuators. We assume Ba ∈ Rn×p∗ . The sensor attack matrix Da ∈ Rm×m∗ can be defined

entrywise as follows

Da(s, t) , Is=ηi,t=i. (5.2)

Moreover, assume the defender’s control policy at time k is a deterministic function of the

modelM = (A,B,C), the previous inputs u0:k−1, the previous outputs y0:k, and the initial state

x0 so that

uk = Uk(A,B,C, u0:k−1, y0:k, x0). (5.3)

For this system, it can be inductively shown that uk is deterministic. As a result, yk is deterministic

for all k. Let yk(x0, u0:k−1, u
a
0:k−1, d

a
0:k) denote the output of yk as a function of the initial state, the

defender’s input, and the attacker’s input. Since yk is deterministic for all k, we have the following

definition:
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Definition 5.1. A nonzero attack ua0:T−1, d
a
0:T on a deterministic system (5.1) with controller (5.3)

and known state x0 is stealthy or undetectable up to time T if and only if

yk(x0, u0:k−1, u
a
0:k−1, d

a
0:k) = yk(x0, u0:k−1, 0, 0), 0 ≤ k ≤ T. (5.4)

By leveraging the linearity of the system, we arrive at the following equivalent result, charac-

terizing the set of stealthy attacks.

Theorem 5.1. A nonzero attack ua0:T−1, d
a
0:T on a deterministic system (5.1) with controller (5.3)

and known state x0 is stealthy up to time T if and only if, there exists δx0, · · · , δxT such that

δxk+1 = Aδxk +Bauak, 0 ≤ k ≤ T − 1, δx0 = 0, (5.5)

0 = Cδxk +Dadak, 0 ≤ k ≤ T. (5.6)

Proof. From (5.4), there exists a nonzero stealthy attack if and only if there exists inputsua0:T−1, d
a
0:T ,

that satisfy
k−1∑

j=0

CAk−1−jBauaj +Dadak = 0, 0 ≤ k ≤ T

This is true if and only if 0 = Cδxk +Dadak for 0 ≤ k ≤ T , where δxk =
∑k−1

j=0 A
k−1−jBauaj . The

result immediately follows.

Note that the stealthiness of an attacker’s inputs is independent of the defender’s control strategy

in the deterministic case. We next consider attacks that are stealthy for all k ≥ 0. We define a

perfect attack as follows.

Definition 5.2. A nonzero attack {uak}, {dak} is perfect if it satisfies

yk(x0, u0:k−1, u
a
0:k−1, d

a
0:k) = yk(x0, u0:k−1, 0, 0), k ≥ 0. (5.7)

In other words, the set of perfect attacks is the set of all attacks in deterministic systems with

known initial state that are stealthy for all time k. We can relate perfect attacks to the fundamental

property of left invertibility.
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Definition 5.3. Consider a system defined by (A,B,C,D), where

xk+1 = Axk +Buk, yk = Cxk +Duk,

A system is left invertible if yk = 0, k ≥ 0 and x0 = 0 implies that uk = 0, k ≥ 0.

Fundamentally, the left invertibility of a system implies that there exists a unique input sequence

generating every output sequence. This is formalized below.

Theorem 5.2. There exists a perfect attack on the system defined in (5.1) if and only if the system

(A, [Ba 0n×m∗ ], C, [0m×p∗ D
a]) is not left invertible.

The proof of this result is similar to the proof of Theorem 5.1 and is thus omitted. We see

an attacker is able to stealthily perturb the system if and only if he can change the state without

changing the output. The ability to change an input without changing the output requires that the

system not be left invertible.

The conditions for analyzing the left invertibility of a system can be analyzed by looking at the

matrix pencil. In particular, we have the following based on results in [65] [Corollary 8.10].

Corollary 5.1. There exists no perfect attack on the system defined in (5.1) if and only if for all but

finitely many λ ∈ C, we have

rank






λI − A −Ba 0n×m∗

C 0m×p∗ Da





 = n+m∗ + p∗. (5.8)

The existence of perfect attacks can also be described graphically by considering the underlying

structure of the inputs, outputs, and state variables. This will be revisited later in the chapter. The

set of stealthy attacks in deterministic control systems can be increased if the defender is unaware

of the initial state. We assume now that the defender’s control strategy satisfies

uk = Uk(A,B,C, u0:k−1, y0:k), (5.9)
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where Uk is some deterministic function. It can be inductively shown that a system with the

same output history will have the same input history. We can consequently define a stealthy or

undetectable attack as follows.

Definition 5.4. A nonzero attack ua0:T−1, d
a
0:T on a deterministic system (5.1) with controller (5.9)

and unknown state x0 is stealthy or undetectable up to time T if and only if

yk(x0, u0:k−1, u
a
0:k−1, d

a
0:k) = yk(x

′
0, u0:k−1, 0, 0), 0 ≤ k ≤ T. (5.10)

for some x′0 ∈ Rn. We refer to a nonzero attack that is stealthy for all time k ≥ 0 as a zero dynamics

attack.

Theorem 5.3. A nonzero attack ua0:T−1, d
a
0:T on a deterministic system (5.1) with controller (5.9)

and unknown state x0 is stealthy up to time T if and only if, there exists δx0, · · · , δxT such that

δxk+1 = Aδxk +Bauak, 0 ≤ k ≤ T − 1, δx0 ∈ Rn, (5.11)

0 = Cδxk +Dadak, 0 ≤ k ≤ T. (5.12)

Proof. From (5.10), there exists a nonzero stealthy attack if and only if there exists inputs

ua0:T−1, d
a
0:T , that satisfy

CAk(x0 − x′0) +
k−1∑

j=0

CAk−1−jBauaj +Dadak = 0, 0 ≤ k ≤ T

This is true if and only if 0 = Cδxk + Dadak for 0 ≤ k ≤ T , where δxk = Ak(x0 − x′0) +
∑k−1

j=0 A
k−1−jBauaj . Since x′0 is arbitrary, the result immediately follows.

We remark that perfect attacks are a subclass of zero dynamics attacks. In practice, a defender

may have some imperfect information about x0. Thus, x′0 must be chosen carefully to avoid an

alarm. The existence of zero dynamics attacks is related to the strong observability of a system.

Definition 5.5. Consider a system defined by (A,B,C,D), where

xk+1 = Axk +Buk, yk = Cxk +Duk,

A system is strongly observable if yk = 0, k ≥ 0 implies that x0 = 0.
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We now aim to characterize systems that are vulnerable to zero dynamics attacks. We have the

following result.

Theorem 5.4. Suppose (A,C) is observable. The following statements are equivalent.

1. There exists no zero dynamics attack on system (5.1).

2. There exists no nonzero inputs {uak}, {dak} satisfying

δxk+1 = Aδxk +Bauak, 0 = Cδxk +Dadak, δx0 ∈ Rn k ≥ 0. (5.13)

3. (A, [Ba 0n×m∗ ], C, [0m×p∗ D
a]) is strongly observable and left invertible.

4. rank






λI − A −Ba 0n×m∗

C 0m×p∗ Da





 = n+m∗ + p∗, ∀ λ ∈ C

Proof. Statement 1 is equivalent to the absence of nonzero inputs such that

CAkx0 +Dadak +
k−1∑

j=0

CAk−1−j(Buj +Bauaj ) = CAkx′0 +
k−1∑

j=0

CAk−1−jBuj, k ≥ 0.

Since x′0 is arbitrary, statement 1 is equivalent to the absence of nonzero inputs and δx0 ∈ Rn such

that

CAkδx0 +Dadak +
k−1∑

j=0

CAk−1−jBauaj = 0, k ≥ 0.

This is in fact equivalent to statement 2. Statement 2 implies that if the output is Cδxk +Dadak = 0

for all k, the attack inputs must be identically 0. This implies left invertibility since the initial

state is never specified. Since the system is observable, this implies δx0 = 0, which implies strong

observability. As a result, statement 2 implies statement 3. Moreover, strong observability in

statement 3 implies that if Cδxk + Dadak = 0 in (5.13) for all k, δx0 = 0. Left invertibility in

statement 3 would then imply the inputs are necessarily 0. Thus statement 2 and 3 are equivalent.

Finally statement 3 and 4 are equivalent due to Theorem 7.17 and Corollary 8.10 in [65].
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We remark that ifBa andDa each have full column rank (as currently constructed), then strong

observability will imply the left invertibility of a system. We now wish to assess the impact of zero

dynamics attacks. The true impact of the attack is dependent on the control strategy Uk. For our

purposes, we assume the defender’s goal is to stabilize the system at 0. This can be accomplished

even if x0 is unknown if (A,B) is stabilizable and (A,C) is detectable by using state feedback and

a stable observer.

Assume yk(x0, u0:k−1, u
a
0:k−1, d

a
0:k) = yk(x

′
0, u0:k−1, 0, 0) for all k ≥ 0. Let

xk(x0, u0:k−1, u
a
0:k−1, d

a
0:k−1) denote the state xk generated by (5.1) as a function of the initial state,

the defender’s input, and the attacker’s inputs. Under attack xk = xk(x0, u0:k−1, u
a
0:k−1, d

a
0:k−1).

The defender, however has designed his feedback control inputs u0:k−1 so that he stabilizes a system

with initial state x′0.

In this case, we make the assumption that

lim
k→∞

xk(x
′
0, u0:k−1, 0, 0) = 0. (5.14)

By the linearity of the system we see that

xk(x0, u0:k−1, u
a
0:k−1, d

a
0:k−1) = xk(x

′
0, u0:k−1, 0, 0) + xk(x0 − x′0, 0, ua0:k−1, d

a
0:k−1). (5.15)

Thus, if the attacker’s goal is to destabilize a control system, he may wish to maximize ‖xk(x0 −

x′0, 0, u
a
0:k−1, d

a
0:k−1)‖2. Using linearity, we can show that 0 = yk(x0 − x′0, 0, ua0:k−1, d

a
0:k−1). As a

result, the attackers perturbations on the state xk in our CPS can be approximately described by the

dynamics of δxk in (5.13). To understand the dynamics of δxk we define the weakly unobservable

subspace.

Definition 5.6. The weakly unobservable subspace Vu(A,Ba, C,Da) is the set of δx0 ∈ Rn for

which there exists {uak}, {dak} which allow (5.13) to hold.

It can be shown that δxk ∈ Vu(A,Ba, C,Da) for all k ≥ 0. Moreover, we have the following

result from [65][Theorem 7.10] characterizing the weakly unobservable subspace.
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Lemma 5.1. Vu(A,Ba, C,Da) is the largest subspace of Rn for which there exists linear maps

F1 ∈ Rp∗×n and F2 ∈ Rm∗×n satisfying

(A+BaF1)Vu ⊂ Vu, (C +DaF2)Vu = 0 (5.16)

Methods to compute Vu as well as (non-unique) matrices F1 and F2 are provided in [65]. We

can now describe the class of input strategies that allow an attacker to remain stealthy. To begin

we define the subspace (Ba)−1Vu = {u ∈ Rp∗ |Bau ∈ Vu}. Moreover let L1, L2 be a linear maps

such that Im(L1) = (Ba)−1Vu and Im(L2) = Ker(Da) We have the following result based on the

characterization of inputs exciting a system’s zero dynamics found in [65] [Theorem 7.11].

Theorem 5.5. An attack {uak}, {dak} satisfies (5.13) if and only if δx0 ∈ Vu and

uak = F1δxk + L1ω
1
k, d

a
k = F2δxk + L2ω

2
k (5.17)

where {ω1
k} and {ω2

k} are arbitrary sequences of real inputs of the proper dimension and F1, F2

satisfy (5.16).

We remark that since Da is full column rank, in practice L2 is an empty or zero matrix. We

can see that δxk can be expressed as

δxk = (A+BaF1)kδx0 +
k−1∑

j=0

(A+BaF1)k−1−jBaL1ω
1
j . (5.18)

If the system is not left invertible the attacker is further restricted. In particular, we have the

following result.

Corollary 5.2. Suppose (A, [Ba 0n×m∗ ], C, [0m×p∗ D
a]) is left invertible and that Ba and Da are

full column rank. Then {uak}, {dak} satisfies (5.13) if and only if

uak = F1δxk, d
a
k = F2δxk. (5.19)

Proof. Suppose the system is left invertible. We argue there is no nonzero input u∗ such that

Bau∗ ∈ Vu. If there was such a u∗, we could let da0 = 0, ua0 = u∗ and δx0 = 0. The resulting
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δx1 is nonzero (since Ba is full column rank) and is in Vu. Consequently, there is a nonzero input

sequence that would force Cδxk + Dadak = 0 for all k ≥ 0 with δx0 = 0. This would contradict

left invertibility. Thus, Im(L1) = 0. Since Da is full column rank, Im(L2) = 0. As such (5.19)

holds. Moreover, from Theorem 5.5, (5.19) implies that (5.13) holds. The result follows.

Note, that if a system is left invertible, but has nontrivial zero dynamics, the adversary’s entire

attack sequence will be trajectory that is a deterministic function of his chosen perturbation δx0.

Indeed, if a system is left invertible, but not strongly observable, δxk can be expressed as

δxk = (A+BaF1)kδx0. (5.20)

On the other hand, if the system is not left invertible, the attacker would instead be able to excite

specific controllable subspaces. As such, we can see that an attacker can stealthily destabilize a

system if the system is not left invertible. However, if the system is left invertible, with nontrivial

zero dynamics, the attacker’s ability to act on the system will depend on the stability of the zero

dynamics as we will next see.

Theorem 5.6. Suppose (A, [Ba 0n×m∗ ], C, [0m×p∗ D
a]) is not left invertible and thatBa andDa are

full column rank. Then there exists inputs {uak}, {dak} satisfying (5.13) while lim supk→∞ ‖δxk‖2 =

∞. Now suppose is (A, [Ba 0n×m∗ ], C, [0m×p∗ D
a]) left invertible but not strongly observable.

Then there exists inputs {uak}, {dak} satisfying (5.13) while lim supk→∞ ‖δxk‖2 =∞ if and only if

there exists v ∈ Vu satisfying lim supk→∞ ‖(A+BaF1)kv‖2 =∞.

Proof. If the system is not left invertible, there exists a nonzero input u∗ such that Bau∗ ∈ Vu.

If not, then for a system satisfying (5.13), we have δxk = 0 for all k when δx0 = 0. This also

implies {dak} and {uak} are 0, which is a contradiction. Thus L1 is nonzero and an attacker is

able to perturb δxk along the controllable subspace of (A + BaF1, B
aL1), which is nonzero. As

such the attacker can destabilize δxk. If the system is left invertible but not strongly observable.

Then δxk = (A + BaF1)kδx0. As such, δxk can be destabilized if and only if there exists v ∈ Vu
satisfying lim supk→∞ ‖(A+BaF1)kv‖2 =∞. The result follows.
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The resources required by a zero dynamics attacker is also evident from Theorem 5.5 and

Lemma 5.1. In particular, the attacker’s system knowledge must include (A,Ba, C,Da). The

adversary, furthermore requires disruption resources to insert an attack along Ba and Da. Finally,

if an attacker can introduce additive perturbations, he or she will require no disclosure resources.

If additive perturbations are impossible, then the attacker will need to be able to read the inputs and

outputs of the actuators and sensors he chooses to modify. Fig. 5.1 illustrates the attack space with

the zero dynamics attack. We distinguish between the scenario where an attacker is able to insert

additive signals without reading the associated measurements and inputs and the scenario where

an attacker must be able to read the appropriate channels.

System	Knowledge	

Disclosure	
Resources	

Disrup6on	
Resources	

Covert	
A)ack	

Eavesdropping	
A)ack	

Replay	A)ack	

DoS		
A)ack	

Moving		
Target	
A)ack	

Simula=on		
A)ack	

Zero		
Dynamics	
A)ack:	
Read	

Zero		
Dynamics	
A)ack:	
No	Read	

Figure 5.1: Cyber-Physical Attack Space with Zero Dynamics Attack
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5.1.2 Detection in Stochastic Systems

Consider a stochastic system under integrity attacks.

xk+1 = Axk +Buk +Bauak + wk, yk = Cxk +Dadak + vk. (5.21)

We assume the process noise wk ∈ Rn and sensor noise vk ∈ Rm are IID and independent of each

other with wk ∼ N (0, Q) and vk ∼ N (0, R), We assume that R > 0, (A,C) is detectable, and

(A,Q
1
2 ) is stabilizable. Moreover, x0 is independent of the noise processes and has distribution

N (x̄0|−1,Σ).

Estimation

We obtain a minimum mean squared error estimate by using a Kalman filter as follows:

x̂k+1|k = Ax̂k|k +Buk, x̂k|k = x̂k|k−1 +Kkzk, (5.22)

zk = yk − Cx̂k|k−1, Kk = Pk|k−1C
T (CPk|k−1C

T +R)−1, (5.23)

Pk|k = Pk|k−1 −KkCPk|k−1, Pk+1|k = APk|kA
T +Q, (5.24)

where we define

x̂k|k , E[xk|y0:k], x̂k|k−1 , E[xk|y0:k−1], (5.25)

Pk|k , E[eke
T
k |y0:k], ek , xk − x̂k|k, (5.26)

Pk|k−1 , E[ek|k−1e
T
k|k−1|y0:k−1], ek|k−1 , xk − x̂k|k−1. (5.27)

We observe that Pk|k−1 and Kk converge to unique matrices, which we define as P and K

respectively. Assuming that the system has been running for a long time, we assume Pk|k−1 = P

and Kk = K for all k. Thus, here Σ = P .

We examine the effect of zero dynamics attacks on the stochastic control system. (5.21). In the

case of a perfect attack, we can show that an adversary remains stealthy. Specifically, we have the

following.
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Theorem 5.7. Suppose an attacker performs a perfect attack on (5.21). Moreover, assume the

defender’s control policy at time k is a deterministic function of Ik = {M, y0:k, u0:k−1, x̂−1|0}. Then

the probability distribution of yk under attack f(yk|H1) is equal to the probability distribution of

yk under normal operation f(yk|H0).

Proof. Let yk(x0, x̂−1|0, u0:k−1, u
a
0:k−1, d

a
0:k−1, w0:k−1, v0:k) denote the output as a function of the

initial states, the defender’s and attacker’s inputs, and the noise sequences. From the properties of

a perfect attack and the linearity of the system

yk(x0, x̂−1|0, u0:k−1, u
a
0:k−1, d

a
0:k−1, w0:k−1, v0:k) = yk(x0, x̂−1|0, u0:k−1, 0, 0, w0:k−1, v0:k).

Using the fact uk is a deterministic function of Ik, we can inductively show the sequence of control

inputs remains the same both in the presence and absence of an attack. The result follows.

To understand the impact of general zero dynamics, we examine attacker’s effect on the residue

zk. Note under attack (5.21) applies to the system dynamics. The Kalman filter equations

(5.22),(5.23),(5.24) are unchanged (though we assume Kk and Pk|k−1 have converge to K and P ).

Let zk(e0|−1, v0:k, w0:k−1, u
a
0:k−1, d

a
0:k) be the residue zk generated from (5.21),(5.22),(5.23),(5.24)

due to the initial state estimation error, the sensor noise, the process noise, and the attacker inputs.

The attacker’s bias on the residues is given by

∆zk , zk(e0|−1, v0:k, w0:k−1, u
a
0:k−1, d

a
0:k)− zk(e0|−1, v0:k, w0:k−1, 0, 0). (5.28)

We arrive at the ensuing result.

Theorem 5.8. Suppose an attacker performs a zero dynamics attack on (5.21). Then, we have

∆zk = −C(A− AKC)kδx0. (5.29)

Proof. We begin with the following Lemma.

Lemma 5.2. For all k ≥ 0,

Ak −
k−1∑

j=0

Ak−jKC(A− AKC)j = (A− AKC)k. (5.30)
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Proof. We prove by induction. For Case k = 0: Both the left and right side of (5.30) are equal to

the identity matrix.

For Case k = t: We assume (5.30) holds for k = t.

Case k = t+ 1. We observe that

At+1 −
t∑

j=0

At+1−jKC(A− AKC)j,

= A

(
At −

t−1∑

j=0

At−jKC(A− AKC)j

)
− AKC(A− AKC)t,

= A(A− AKC)t − AKC(A− AKC)t,

= (A− AKC)t+1.

Thus, by induction the assertion holds.

Under normal operation, we have

ek = (A−KCA)ek−1 + (I −KC)wk−1 −Kvk, zk = CAek−1 + Cwk−1 + vk.

Under attack,

ek = (A−KCA)ek−1 + (I −KC)wk−1 −Kvk + (I −KC)Bauak−1 −KDadak,

zk = CAek−1 + Cwk−1 + CBauak−1 + vk +Dadak.

Define ∆ek as

∆ek , ek(e0|−1, w0:k−1, v0:k, u
a
0:k−1, d

a
0:k)− ek(e0|−1, w0:k−1, v0:k, 0, 0).

As a result, we have that

∆ek = (A−KCA)∆ek−1 + (I −KC)Bauak−1 −KDadak,

∆zk = CA∆ek−1 + CBauak−1 +Dadak,

where ∆e−1 = 0. Rearranging terms we have

∆ek = A∆ek−1 +Bauak−1 −K∆zk, ∆zk = CA∆ek−1 + CBauak−1 +Dadak.
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As a result, an inductive argument can be used to show

∆ek−1 =
k−2∑

j=0

Ak−2−jBauaj −
k−1∑

j=0

Ak−1−jK∆zj,

We then have

∆zk =
k−1∑

j=0

CAk−1−jBauaj +Dadak −
k−1∑

j=0

CAk−jK∆zj,

= −CAkδx0 −
k−1∑

j=0

CAk−jK∆zj. (5.31)

We now prove the main assertion now through induction.

Case k = 0. From (5.31), ∆z0 = −Cδx0.

Case k = t. We assume ∆zj = −C(A− AKC)jδx0 for j ≤ t.

Case k = t+ 1. From (5.31) and Lemma 5.2 we have

∆zt+1 = −CAt+1δx0 + C

t∑

j=0

At+1−jKC(A− AKC)jδx0,

= −C(A− AKC)t+1δx0.

This proves the main assertion.

From the stability of the Kalman filter the bias on the residue ∆zk asymptotically approaches

0. In this case, we see that an attacker will be asymptotically stealthy against a χ2 detector. The

prior result also applies to alternative continuous residue based detectors with finite memory. We

will soon demonstrate that small values of ∆zk fundamentally lead to poor detection performance.

Using the same rationale as in the deterministic case, the impact of a zero dynamics attack on the

state xk in a stochastic system can be characterized using the state δxk in (5.13). Specifically, we

see that

xk(x0, u0:k−1, w0:k−1, v0:k−1, u
a
0:k−1, d

a
0:k−1)

= xk(x
′
0, u0:k−1, w0:k−1, v0:k−1, 0, 0) + xk(x0 − x′0, 0, 0, 0, ua0:k−1, d

a
0:k−1).
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If the control strategy allows for limk→∞ E[xk(x
′
0, u0:k−1, w0:k−1, v0:k−1, 0, 0)] = 0, then we have

lim
k→∞

E[xk(x0, u0:k−1, w0:k−1, v0:k−1, u
a
0:k−1, d

a
0:k−1)]− xk(x0 − x′0, 0, 0, 0, ua0:k−1, d

a
0:k−1) = 0.

Consequently, in this case, the zero dynamics capture the expected asymptotic state trajectory.

Finally, we show that the presence of zero dynamics is necessary to secretly destabilize a noisy

system. Consider the error and residue bias as defined earlier. The attacker designs his input

sequence so that
√

∆zTk (CPCT +R)−1∆zk ≤ B, ∀ k ≥ 0 (5.32)

where we assume an attack begins at k = 0, ∆zk is defined in (5.28) and B is some chosen bound

for the attacker. We remark that due to the stochastic nature of a system, an attacker practically

does need not choose the bound B = 0 to remain hidden, as long as the perturbations introduced

in the measurements are within the uncertainty of the system.

Theorem 5.9. Consider a false data injection attack {uak}, {dak}. There exists a feasible attack

input sequence satisfying (5.32), which destabilizes ∆ek so that lim supk→∞ ‖∆ek‖2 = ∞ only if

there exists a real matrix La and vector v ∈ Rn satisfying

1. Cv ∈ Im(Da),

2. v is an eigenvector of (A+BaLa).

Proof. Let

∆ek|k−1 , ek|k−1(e0|−1, w0:k−1, v0:k−1, u
a
0:k−1, d

a
0:k−1)− ek|k−1(e0|−1, w0:k−1, v0:k−1, 0, 0).

Observe that

∆ek+1|k = (A− AKC)∆ek|k−1 +Bauak − AKDadak, ∆zk = C∆ek|k−1 +Dadak.

From Lemma 1 in [66], there exists feasible actions with unbounded ∆ek|k−1 only if there exists

v ∈ Rn satisfying
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1. (C +DaL2)v = 0,

2. v is an eigenvector of A− AKC +BaLa − AKDaL2

for arbitrary real matrices La and L2. Note that (A− AKC + BaLa − AKDaL2)v = λv implies

(A + BaLa)v = λv since (C + DaL2)v = 0. Moreover, (C + DaL2)v = 0 implies Cv is in the

image of Da. Note under normal operation x̂k|k = (I −KC)x̂k|k−1 + KCxk + Kvk while under

attack x̂k|k = (I −KC)x̂k|k−1 +KCxk +Kvk +KDadak. Thus,

∆ek = ∆ek|k−1 −K∆zk

As a result, for a feasible attack sequence, ∆ek|k−1 is unbounded if and only if ∆ek is unbounded.

The result immediately follows.

We can leverage the prior theorem to relate the existence of zero dynamics attacks to destabi-

lizing integrity attacks in the following result.

Corollary 5.3. Consider a false data injection attack. Suppose (A,C) is observable. There exists

a feasible attack input sequence satisfying (5.32), which destabilizes ∆ek so that

lim supk→∞ ‖∆ek‖2 =∞ only if there exists a zero dynamics attack.

Proof. Theorem 5.9 implies the existence of matrices F1 and F2 and nonzero vector v ∈ Rn such

that (A + BaF1)v = λv and (C + DaF2)v = 0. From Lemma 5.1, this implies that the weakly

unobservable subspace Vu has nonzero dimension. Since (A,C) is observable this in turn implies

the existence of zero dynamics attacks.

5.1.3 Identification and Estimation in Deterministic Systems

We conclude our study of zero dynamics attacks, by relating such attacks to the class of uniden-

tifiable attacks in control systems. We assume an adversary is unable to insert their own ac-

tuators. Suppose an attacker targets actuators Kau = {δ1, · · · , δp∗} ⊂ {1, · · · , p} and sensors

Kay = {η1, · · · , ηm∗} ⊂ {p + 1, · · · , p + m}. To write the corresponding Ba and Da uniquely
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as a function of their attack set we, without loss of generality, assume all attack sets are given in

ascending order. Here, Ba(Kau) =

[
Bδ1 · · · Bδp∗

]
where Bδi is the δith column of B. Da(Kay)

can be obtained entrywise as followsDa(s, t) , Is=ηi−p,t=i. We assume that if a sensor or actuator

is targeted in a window 0 ≤ k ≤ T , its value has been modified by an attacker at least once during

this time frame.

We let Ba(K)ua0:k = {Ba(K)ua0, · · · , Ba(K)uak}. Similarly, we have

Da(K)da0:k = {Da(K)da0, · · · , Da(K)dak}. Roughly speaking, we say an attack is unidentifiable,

if there exists an attack targeting a different (but possibly intersecting) set of nodes with size less

than or equal to the original attack set. In other words, the nodes an adversary targets provides the

unique simplest explanation of an attack. Similar to the notion of identifiability in [44], we have

the following definition.

Definition 5.7. An attack input Ba(Ku)ua0:T−1, Da(Ky)da0:T on a deterministic system (5.1) with

controller (5.9) and unknown state x0 is unidentifiable up to time T if and only if

1. there exists sets K′u ⊂ {1, · · · , p} and K′y ⊂ {p+ 1, · · · , p+m} with Ku 6= K′u or Ky 6= K′y

2. |K′u|+ |K′y| ≤ |Ku|+ |Ky|.

3. there exists x′0 ∈ Rn and inputs ūa0:T−1, d̄
a
0:T satisfying.

yk(x0, u0:k−1, B
a(Ku)ua0:k−1, D

a(Ky)da0:k) = yk(x
′
0, u0:k−1, B

a(K′u)ūa0:k−1, D
a(K′y)d̄a0:k),

(5.33)

for 0 ≤ k ≤ T .

We assume every sensor in Ky is attacked at least once given input Da(Ky)da0:T . We assume every

actuator in Ku is attacked at least once given Ba(Ku)ua0:T−1. Likewise we assume every sensor in

K′y and every actuator in K′u is attacked at least once given Da(K′y)d̄a0:T and Ba(K′u)ūa0:k−1.

Additionally, we say attack setKu ∪Ky is unidentifiable if there exists an attack input targeting

these nodes which is unidentifiable up to time T =∞. Otherwise we say Ku ∪ Ky is identifiable.
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To be explicit here, when we write yk as a function, we must specify the set of attacked sensors

and inputs. We can easily see that undetectable attacks are also unidentifiable as the attack input

can be mistaken for a 0 attack. The class of unidentifiable attack inputs is closely related to the

class of zero dynamics attacks. For instance, we have the following result.

Theorem 5.10. There exist an unidentifiable attack set of size q or less if and only if there exists a

zero dynamics attacks on a set of 2q or fewer actuators or sensors.

Proof. Suppose K = Ku ∪ Ky is an unidentifiable attack set with |K| ≤ q and Ku ⊂ {1, · · · , p}

and Ky ⊂ {p + 1, · · · , p + m}. Then, there exists K′ = K′u ∪ K′y with |K′| ≤ |K|, K′ 6= K,

K′u ⊂ {1, · · · , p} and K′y ⊂ {p+ 1, · · · , p+m} satisfying (5.33) for all k ≥ 0. It is assumed that

for each entry j ∈ {1, · · · , |K′u|} there exists k ≥ 0 satisfying ūak(j) 6= 0, where ūak(j) is the jth

entry of ūak(j). The assumption also applies to {d̄ak}. This implies the existence of a sequence of

states {δxk}, and nonzero input sequence {ũak}, {d̃ak}

δxk+1 = Aδxk +Ba(Ku ∪ K′u)ũak, 0 = Cδxk +Da(Ky ∪ K′y)d̃ak. (5.34)

The input sequence is nonzero since K′ 6= K and all sensors and actuators are attacked. Thus,

there exists a zero dynamics attack on a set of 2q or fewer actuators or sensors. Now suppose there

is a zero dynamics attack on a set of 2q or fewer nodes K∗. Assume, without loss of generality

that all nodes are attacked. In addition, without loss of generality assume K∗ = K ∪ K′ where

K = Ku∪Ky,K′ = K′u∪K′y,K′u,Ku ⊂ {1, · · · , p} , andK′y,Ky ⊂ {p+1, · · · , p+m}. Moreover,

without loss of generality, assume K ≤ q, K′ ≤ q, K ∩ K′ = ∅, and |K′| ≤ |K|. We know there

exists a zero dynamics attack {uak},{ūak},{dak},{d̄ak}, with each node being attacked satisfying

δxk+1 = Aδxk +Ba(Ku)uak −Ba(K′u)ūak, (5.35)

0 = Cδxk +Da(Ky)dak −Da(K′y)d̄ak. (5.36)

Thus, for all k ≥ 0, we have an attack sequence {ūak},{dak} targeting all sensors and actuators in K
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satisfying

yk(x0, u0:k−1, B
a(Ku)ua0:k−1, D

a(Ky)da0:k) = yk(x0 − δx0, u0:k−1, B
a(K′u)ūa0:k−1, D

a(K′y)d̄a0:k)

As a result, preventing zero dynamics attacks coming from all sets of 2q sensors and actuators

will simultaneously prevent unidentifiable attacks. This can be done by guaranteeing strong

observability and left invertibility for all sets of 2q sensors and actuators.

Corollary 5.4. Suppose (A,C) is observable. There exist no unidentifiable attack set of size q or

less if and only if for allK = Ku∪Ky satisfyingKu ⊂ {1, · · · , p} andKy ⊂ {p+1, · · · , p+m}with

|K| ≤ 2q,
(
A, [Ba(Ku) 0n×|Ky |], C, [0m×|Ku| D

a(Ky)]
)
is strongly observable and left invertible.

This result follows immediately from Theorem 5.4 and Theorem 5.10. We note that if B is

not injective, this provides a path for an adversary to generate unidentifiable attacks. For instance,

if redundant actuators are used and one or more are compromised, it would be impossible for a

defender to determine which if any actuators are secure. While redundancy could compromise the

ability to identify attacks, it does not affect the ability to perform resilient estimation.

Definition 5.8. Suppose an attacker can target up to q sensors and actuators so that |Ku∪Ky| ≤ q.

We say that a defender can uniquely recover the state xj given {yj, yj+1, · · · } in the presence of

attack input {Ba(Ku)uak}, {Da(Ky)dak} on a deterministic system (5.1) with controller (5.9) if there

exists no x′j ∈ Rn with x′j 6= xj and sequences {Ba(K′u)ūak}, {Da(K′y)d̄ak} satisfying

yk(xj, uj:k−1, B
a(Ku)uaj:k−1, D

a(Ky)daj:k) = yk(x
′
j, uj:k−1, B

a(K′u)ūaj:k−1, D
a(K′y)d̄aj:k), k ≥ j

(5.37)

where |K′u ∪ K′y| ≤ |Ku ∪ Ky|. It is assumed all mentioned sensors and actuators are attacked at

least once.

In other words, we state that a defender can recover xj for a given attack sequence, if there is no

other state x′j and feasible set of attack inputs that can generate the same output sequence. Similar,

to Corollary 5.4, we can characterize systems for which the initial state is always recoverable.
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Theorem 5.11. Suppose an attacker can target up to q sensors and actuators. A defender

can recover the state xj for all feasible attack sequences if and only if for all K = Ku ∪

Ky satisfying Ku ⊂ {1, · · · , p} and Ky ⊂ {p + 1, · · · , p + m} with |K| ≤ 2q, we have
(
A, [Ba(Ku) 0n×|Ky |], C, [0m×|Ku| D

a(Ky)]
)
is strongly observable.

Proof. Without loss of generality let j = 0. Suppose x0 can not be recovered given q sensor and

actuator attacks. Then there exists sets Ku,K′u,Ky,K′y such that |Ku ∪ Ky| ≤ q and |K′u ∪ K′y| ≤

|Ku ∪ Ky| that satisfy

yk(x0, u0:k−1, B
a(Ku)ua0:k−1, D

a(Ky)da0:k) = yk(x
′
0, u0:k−1, B

a(K′u)ūa0:k−1, D
a(K′y)d̄a0:k),

for x0 6= x′0 and for all k ≥ 0. By linearity, we have for some K∗u ⊂ {1, · · · , p},K∗y ⊂ {p +

1, · · · , p+m} where |K∗u ∪ K∗y| ≤ 2q

yk(x0 − x′0, 0, Ba(K∗u)ũa0:k−1, D
a(K∗y)d̃a0:k) = 0,

for all k ≥ 0. Since x0−x′0 6= 0, we have that
(
A, [Ba(K∗u) 0n×|K∗y |], C, [0m×|Ku| D

a(K∗y)]
)
is not

strongly observable.

Now suppose
(
A, [Ba(K∗u) 0n×|K∗y |], C, [0m×|K∗u| D

a(K∗y)]
)
is not strongly observable where

K∗u ⊂ {1, · · · , p},K∗y ⊂ {p + 1, · · · , p + m} and |K∗u ∪ K∗y| ≤ 2q. Then, there exists some

x0 − x′0 6= 0 such that

yk(x0 − x′0, 0, Ba(K∗u)ũa0:k−1, D
a(K∗y)d̃a0:k) = 0.

Let Ku ∪ K′u = K∗u where Ku ∩ K′u = ∅ and let Ky ∪ K′y = K∗y where Ky ∩ K′y = ∅. Moreover,

construct these sets so |K′u ∪ K′y| ≤ |Ku ∪ Ky| ≤ q. Then, we can construct outputs such that

yk(x0, u0:k−1, B
a(Ku)ua0:k−1, D

a(Ky)da0:k) = yk(x
′
0, u0:k−1, B

a(K′u)ūa0:k−1, D
a(K′y)d̄a0:k).

for all k ≥ 0. Thus, x0 is not recoverable.

Note that the index j is arbitrary. Thus, if the property of strong observability is satisfied as

stated in Theorem 5.11, then we know that given the output sequence {y0, y1, y2, · · · }, we can

uniquely recover the state sequence {x0, x1, x2, · · · }.
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5.2 Structural Analysis of Systems with Undetectable Attacks

In the previous section, we demonstrated that the class of perfect and zero dynamics attacks can

be stealthy and harmful. We would like to begin the process of considering how we can design

systems to prevent such attacks. In this section, we demonstrate the properties of left invertibility

and strong observability are linked to the nonzero structure of a control system. In particular, we

can use structural systems and graph theory to characterize systems which almost surely are strong

observable and/or left invertible for all sets of feasible attacks.

5.2.1 System Model

Consider the control system

x(k + 1) = Ax(k) +Baua(k), y(k) = Cx(k) +Daua(k).

Here x(k), the state, is in Rn. Next, y(k), the output, is in Rm. The system represents the

attacked subsystem where ua(k) ∈ Rq′ is the attacker’s input. From a notational perspective, in

this section on robust structural analysis, we write the discrete time index k as an argument of

the states, inputs, and measurements as opposed to a subscript in order to distinguish vertices in

graphs from numerical parameters. Also, for simplicity, when constructing corresponding graphs,

we let ua(k) collect inputs that both directly compromise actuators and sensors. Without loss of

generality, we assume that



Ba

Da


 has full column rank. We will consider two scenarios, one where

the adversary is able to attack both actuators and sensors, and one where the attacker is only able

to attack actuators so Da = 0.

We associate a tuple of structuralmatrices ([A], [Ba], [C], [Da])with (A,Ba, C,Da). Formatrix

[M ] associated with M , we have that [M ](i, j) = 0 implies M(i, j) is fixed to be 0. However,

if [M ](i, j) 6= 0, then M(i, j) is a free parameter. It can be shown that the properties of left

invertibility and strong observability are generic properties that are directly linked to structure of a

system. Specifically, we have the following.
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Definition 5.9. ([A], [Ba], [C], [Da]) is structurally strongly observable if an admissible realization

of (A,Ba, C,Da) is strongly observable. ([A], [Ba], [C], [Da]) is structurally left invertible if an

admissible realization of (A,Ba, C,Da) is left invertible.

From the definition, a system that is not structurally strongly observable (structurally left

invertible) can not be strongly observable (left invertible). It has been shown that if a system

is structurally strongly observable, it is strongly observable for all valid parameters except those

lying on some low dimensional algebraic variety which has Lebesgue measure 0 [67]. Likewise, a

system that is structurally left invertible is left invertible for all valid parameters except those lying

on some low dimensional algebraic variety which has Lebesgue measure 0 [68]. Motivated by this

fact, we wish to design systems that are structurally strongly observable and/or left invertible for

all feasible attacks.

We next define a feasible attack. Here, we will consider a resource limited adversary so that at

most q inputs in a system can be inserted. Without loss of generality, we also would like to make

the assumption that



Ba

Da


 has full column rank. To do this graphically, we introduce the notion of

the structural rank of a matrix.

Definition 5.10. The structural rank of [M ] is the maximum rank of an admissible realization of

[M ].

Except for a set of measure 0, the structural rank of a matrix is equivalent to its rank. We are

now ready to define a feasible attack.

Definition 5.11. An attack on sensors and actuators is feasible if




[Ba]

[Da]


 has full column structural

rank and the structural rank of




[Ba]

[Da]


 is less than or equal to q.

In the case of actuator only attacks, we have the following definition for feasibility.
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Definition 5.12. An attack on only actuators is feasible if [Ba] has full column structural rank and

the structural rank of [Ba] is less than or equal to q.

A defender may wish to remove all feasible zero dynamics attacks in a system. As shown in

the previous section, this will eliminate all stealthy destabilizing attacks in stochastic systems as

well as eliminate all stealthy attacks in deterministic systems when the defender does not know the

initial state. We will say a system that has some zero dynamics for a feasible attack strategy is

discreetly attackable.

Definition 5.13. A system ([A], [C]) is discreetly attackable if there exists a feasible attack strategy

for which ([A], [Ba], [C], [Da]) is not structurally strongly observable and left invertible.

In some cases it may be sufficient for a defender to design a system to prevent perfect attacks.

For instance, this can be the case if the zero dynamics are stable for all feasible attack strategies, or

if the defender has exact knowledge of the initial state. We will say a system that can be targeted

with a perfect attack is perfectly attackable.

Definition 5.14. A system ([A], [C]) is perfectly attackable if there exists a feasible attack strategy

for which ([A], [Ba], [C], [Da]) is not structurally left invertible.

Before, we conclude this section, we wish to construct the graphs associated with our structured

system. For the system without attacks ([A], [C]), we define G = (V , E) where V = X ∪ Y . Here,

X = {x1, · · · , xn}. We let the vertex xi be associated with the ith entry of x(k). Additionally,

Y = {y1, · · · , ym}. We let the vertex yi be associated with the ith entry of y(k). We let

E = EX ,X ∪ EX ,Y . Here, EX ,X = {(xi, xj) : [A](j, i) 6= 0} and EX ,Y = {(xi, yj) : [C](j, i) 6= 0}.

For the system with ([A], [Ba], [C], [Da]), we define Ga = (Va, Ea) where V = Ua ∪ X ∪ Y .

Here Ua = {u1, · · · , uq′}. We let the vertex ui be associated with the ith entry of u(k). In

addition, Ea = EX ,X ∪ EUa,X ∪ EX ,Y ∪ EUa,Y where EUa,X = {(ui, xj) : [Ba](j, i) 6= 0} and

EUa,Y = {(ui, yj) : [Da](j, i) 6= 0}.
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We will also consider the special case where an attacker introduces dedicated inputs to a set of

nodes F ⊂ X ∪ Y . Here, each input has a directed edge to exactly one node and no two inputs

have a directed edge to the same node. We denote the corresponding attack input nodes as UaF .

5.2.2 Graph Theory Preliminaries

In this section we introduce necessary preliminaries from graph theory. Consider a graph G =

(V,E). The incoming neighbors to a node vi or N I
vi
⊂ V , and the outgoing neighbors NO

vi
⊂ V

from vi are

N I
vi
, {vj| (vj, vi) ∈ E}, NO

vi
, {vj| (vi, vj) ∈ E}. (5.38)

The in-degree of vi is |N I
vi
| and the out-degree of vi is |NO

vi
|.

Two edges (v1, v2) and (v′1, v
′
2) are vertex disjoint or v-disjoint if v1 6= v′1 and v2 6= v′2. A set of

edges are v-disjoint if each pair are v-disjoint. Consider sets A ⊂ V and B ⊂ V . An edge (v1, v2)

from A to B has v1 ∈ A and v2 ∈ B. We define

θ(A,B) , max number of v − disjoint edges from A to B.

θ allows us to characterize the structural rank of a matrix.

Theorem 5.12 ([69]). The structural rank of




[Ba]

[Da]


 is θ(Ua,X ∪ Y). Moreover, the structural

rank of [Ba] is θ(Ua,X ).

As such a necessary condition for attack feasibility based on our prior definitions is that

θ(Ua,X ∪Y) = |Ua| for actuator and sensor attacks and θ(Ua,X ) = |Ua| for actuator only attacks.

A path from a set A ⊂ V to B ⊂ V , is a sequence v1, v2, · · · , vr where v1 ∈ A , vr ∈ B, and

(vi, vi+1) ∈ E for 1 ≤ i ≤ r− 1. An input output path fromA ⊂ V to B ⊂ V or IOP from (A,B)

is a path fromA to B with vj /∈ A∪B, 2 ≤ j ≤ r−1. A simple path has no repeated vertices. An

A-rooted (topped) path is a simple path with begin (end) vertex inA. Two paths are disjoint if they

contain no common vertices. Two paths are internally disjoint if they have no common vertices
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except for possibly the starting and ending vertices. In general l paths are (internally) disjoint if

every pair of paths are (internally) disjoint. A set of l disjoint and simple paths from A ⊂ V to

B ⊂ V is referred to as a linking of size l or a l-linking from A to B. We define

ρ(A,B) , size of the largest linking between A and B.

A vertex separator between nonadjacent vertices a ∈ V and b ∈ V is a set S ⊂ V \{a, b}whose

removal deletes all paths from a to b. As shorthand, we refer to S as a vertex separator between

(a, b). A minimum vertex separator S between (a, b) is a vertex separator between (a, b) with the

smallest size.

Theorem 5.13 (Menger [70]). The size of a minimum vertex separator S between (a, b) is equal to

the maximum number of internally disjoint paths between a and b.

We define the set of essential vertices, Vess(A,B) ⊂ V :

Vess(A,B) , {x|x ∈ all ρ(A,B)− linkings from A to B}.

Suppose we add new vertices a and b to graphGwhere a has directed edges toA and b has directed

edges coming from B. Then, we have Vess(A,B) = ∪S∈SS, where S is the set of all minimum

vertex separators between (a, b) [67].

5.2.3 Perfectly Attackable Systems

In this section, we obtain structural conditions to describe when our system is perfectly attackable.

Before beginning, we would like to characterize systems that are structurally left invertible for a

given Ga. We have the following result.

Theorem 5.14 ([68],[71]). The system [A], [Ba], [C], [Da] associated with graph Ga is structurally

left invertible if ρ(Ua,Y) = |Ua|.

Thus, in a structurally left invertible system, we must have a linking of size |Ua| from the attack

inputs to the outputs. Intuitively, to recover the inputs of a system, we need an independent path
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from each input to the set of outputs. At a minimum this implies that we need as many sensors as

we have attack inputs. We now define conditions which ensure a system is not perfectly attackable

regardless of the inputs the adversary is able to corrupt.

Define the graph f(G) , (V ∪ o, E ′) by adding a node o with incoming directed edges from all

sensors Y to graph G. We have the following.

Theorem 5.15. A system with sensor and actuator attacks is not perfectly attackable iff for all

xi ∈ X , the minimum vertex separator Si between (xi, o) in f(G) has size |Si| ≥ q.

Proof. Suppose |Si| ≥ q for all xi ∈ X .

Now suppose WLOG an adversary implements a feasible attack policy where |Ua| = q′ ≤ q.

Construct a graph ga(Ga) by adding an additional vertex u with outgoing edges to Ua and an

additional vertex o with incoming edges from Y . The system is structurally left invertible if and

only if the size of the minimum vertex separator between (u, o) in ga(Ga) is of size q′.

By assumption, we know that there exists F ⊂ X ∪ Y such that θ(Ua, F ) = |Ua|. Fix

such a F and without loss of generality, let F = {x1, · · · , xl, yl+1, · · · , yq′}. Moreover, assume

(ui, xi) ∈ Ea for 1 ≤ i ≤ l and (uj, yj) ∈ Ea for l + 1 ≤ j ≤ q′. Let Su be a minimum vertex

separator between (u, o) in ga(Ga). Suppose |Su| < q′. Since |Su| < q, there must be a pair of

nodes in {{u1, x1}, · · · , {ul, xl}, {ul+1, yl+1}, · · · , {uq′ , yq′}}, which does not belong to Su. If

{uj, yj} does not belong to Su, there is a path u, uj, yj, o which remains even when Su is removed,

contradicting Su as a vertex separator. Instead suppose {ui, xi} does not belong to Su. We know

that xi has q > |Su| disjoint paths to o. As a result, even when Su is removed, a path xi, P ∗, o

remains. Thus, u, ui, xi, P ∗, o forms a path from u to o when Su is removed. Thus |Su| can not be

less than q′. As a result, the system is structurally left invertible.

Now suppose (x1, o) has minimum vertex separator S1 = {x2, · · · , xl, yl+1, · · · , yr+1} in f(G)

where r < q. Choose Ua to be dedicated inputs where (ui, xi) ∈ Ea for 1 ≤ i ≤ l and (uj, yj) ∈ Ea

for l+ 1 ≤ j ≤ r+ 1. Such an attack is feasible since r+ 1 ≤ q. Now construct ga(Ga) as before.

We argue S1 is a vertex separator between u and o. Indeed remove S1. There are no paths from
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uj to o for 2 ≤ j ≤ r + 1 since each input uj was a dedicated input to a vertex in S1. Next, any

path from u1 to o must contain x1 since u1 is a dedicated input to x1. But x1 has no paths to o after

removing S1. Thus u1 has no paths to o. As a result, ρ(Ua, Y ) < |Ua| and the system is not left

invertible.

Consequently to ensure each feasible set of inputs has a maximum linking to the set of outputs,

we require that each vertex has q disjoint paths to the set of outputs. In the special scenario where

the system has dedicated sensors and dedicated inputs, the prior result still holds. In particular,

we assume each sensors measures exactly one state and no 2 sensors measure the same state.

Additionally, we assume each attack node manipulates exactly one agent/sensor node, and no two

attacks manipulate the same agent/sensor node. In this case we have the following.

Corollary 5.5. A system with dedicator sensors, dedicated inputs, and sensor and actuator attacks

is not perfectly attackable iff for all xi ∈ X , the minimum vertex separator Si between (xi, o) in

f(G) has size |Si| ≥ q.

We next consider a system with only actuator/agent attacks. In this scenario, we make the

assumption that each agent has a dedicated sensor so that each sensor measures exactly one state.

Moreover, we assume no 2 sensors measure the same state. We have the following result.

Theorem 5.16. A system with actuator attacks and dedicated sensors is not perfectly attackable

iff for all unobserved xi ∈ X , the minimum vertex separator Si between (xi, o) in f(G) has size

|Si| ≥ q.

Proof. Suppose |Si| ≥ q for all unobserved xi.

Now suppose WLOG an adversary implements a feasible attack policy where |Ua| = q′ ≤ q.

Again, construct a graph ga(Ga) by adding an additional vertex u with outgoing edges to Ua and

an additional vertex o with incoming edges from Y . The system is structurally left invertible if and

only if the size of the minimum vertex separator between (u, o) in ga(Ga) is of size q′.
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By assumption, we know that there exists F ⊂ X such that θ(Ua, F ) = |Ua|. Fix such a F and

without loss of generality, let F = {x1, · · · , xl, xl+1, · · · , xq′}. Moreover, assume (ui, xi) ∈ Ea for

1 ≤ i ≤ q′. Assume for 1 ≤ i ≤ l, xi is unobserved. For l + 1 ≤ i ≤ q′, xi is directly observed by

sensor yi. LetSu be aminimumvertex separator between (u, o) in ga(Ga). Suppose |Su| < q′. Since

|Su| < q, there must be a set of nodes in {{u1, x1}, · · · , {ul, xl}, {ul+1, xl+1, yl+1}, {uq′ , xq′ , yq′}},

which does not belong to Su. If {uj, xj, yj} does not belong to Su, there is a path u, uj, xj, yj, o

which remains even when Su is removed, contradicting Su as a vertex separator. Instead suppose

{ui, xi} does not belong to Su where xi is an unobserved agent. We know that xi has q > |Su|

disjoint paths to o. As a result, even when Su is removed, a path xi, P
∗, o remains. Thus,

u, ui, xi, P
∗, o forms a path from u to o when Su is removed. Thus |Su| can not be less than q′. As

a result, the system is structurally left invertible.

Now suppose (x1, o) has minimum vertex separator S∗1 = {x2, · · · , xl, yl+1, · · · , yr+1} in f(G)

where r < q and x1 is unobserved. Assume dedicated sensor yj observes state xtj . We argue that

S1 = {x2, · · · , xl, xtl+1
, · · · , xtr+1} is a vertex separator between xi and o. If, S1 is not a vertex

separator, then if we remove S1, any remaining path must contain a vertex in {yl+1, · · · , yr+1}

since S∗1 is a vertex separator. However, since yj are dedicated outputs, any path from x1 to yj

must contain xtj . As a result, S1 is a vertex separator. Since S∗1 is a minimum vertex separator,

we know |S1| = |S∗1 | and there are no repeated vertices in S1. Without loss of generality let

S1 = {x2, · · · , xl, xl+1, · · · , xr+1}.

Choose Ua to be dedicated inputs where (ui, xi) ∈ Ea for 1 ≤ i ≤ r + 1. Such an attack

is feasible since r + 1 ≤ q. Now construct ga(Ga) as before. We argue S1 is a vertex separator

between u and o. Indeed remove S1. There are no paths from uj to o for 2 ≤ j ≤ r + 1 since each

input uj was a dedicated input to a vertex in S1. Next, any path from u1 to o must contain x1 since

u1 is a dedicated input to x1. But x1 has no paths to o after removing S1. Thus u1 has no paths to

o. As a result, ρ(Ua, Y ) < |Ua| and the system is not structurally left invertible.

Thus, by considering a smaller class of attacks, we reduce the structural requirements on the



CHAPTER 5. STRUCTURAL SYSTEM DESIGN 173

system. Instead of requiring all agents to have q disjoint paths to the set of outputs, only the

unobserved agents require q disjoint paths.

If we introduce the assumption that the attack inputs are dedicated, the prior result still holds.

Corollary 5.6. A system with actuator attacks, dedicated inputs, and dedicated sensors is not

perfectly attackable iff for all unobserved xi ∈ X , the minimum vertex separator Si between (xi, o)

in f(G) has size |Si| ≥ q.

5.2.4 Discreetly Attackable Systems

In this section, we obtain structural conditions to describe when our system is discreetly attackable.

Define the graph f(G) , (V ∪ o, E ′) by adding a node o with incoming directed edges from all

sensors Y to graph G. We have the following:

Theorem 5.17. A system with sensor and actuator attacks is not discreetly attackable iff:

C1 For all T ⊂ X ∪ Y with |T | = q, θ(X , (X ∪ Y)\T ) = n.

C2 For all xi ∈ X , the minimum vertex separator Si between (xi, o) in f(G) has size |Si| ≥ q+ 1.

Proof. Sufficiency: We leverage the following result:

Lemma 5.3 ([72, 73]). For fixed Ua, a system is structurally strongly observable + left invertible

iff for Ga

ci θ(X ∪ Ua,X ∪ Y) = n+ |Ua|.

cii Every agent xi ∈ X has a path to Y .

ciii ∆0 ⊂ Vess(Ua,Y)

where ∆0 = {x ∈ X |ρ(x ∪ Ua,Y) = ρ(Ua,Y)}.



CHAPTER 5. STRUCTURAL SYSTEM DESIGN 174

C1 =⇒ ci : Suppose C1 holds. We know by construction that θ(Ua,X ∪ Y) = |Ua|. Let

Z ⊂ X ∪ Y where |Z| = |Ua| and θ(Ua,Z) = |Ua|. We know that θ(X , (X ∪ Y)\Z) = n since

|Ua| ≤ q. Thus, θ(X ∪ Ua,X ∪ Y) = n+ |Ua|.

C2 =⇒ cii, ciii: Suppose C2 holds. Then, cii trivially follows for all feasible attacks. Now,

consider arbitrary feasible attack vertices Ua. Suppose ciii does not hold so there exists xi ∈ X

satisfying xi ∈ ∆0, xi /∈ Vess(Ua,Y).

Define fa(Ga) , (Va ∪ o ∪ u ∪ ui, Ea′) by adding to graph Ga, a node o with edges from Y ,

a node u with edges to Ua, and a node ui with edges to Ua ∪ xi. Then, there is a vertex separator

S in fa(Ga) between (ui, o) of size ρ(Ua,Y) ≤ q, which is also a vertex separator between (u, o).

Thus, S ⊂ Vess(Ua,Y). xi /∈ Vess(Ua,Y) implies xi /∈ S. Since xi has q + 1 disjoint paths to

o, removing S from fa(Ga), does not delete all paths from ui to o, contradicting S as a vertex

separator. Thus, ciii holds for all feasible attacks.

Necessity: ∼ C1 =⇒ ∼ ci. Suppose C1 does not hold for some F ′ ⊂ X ∪ Y with

|F ′| = q. Assume an adversary attacks F ′. Since UaF ′ only has directed edges to F ′, and

θ(X , (X ∪ Y)\F ′) < n, we have θ(X ∪ UaF ′ ,X ∪ Y) < n+ q.

Suppose C2 fails to hold. We show an attack to illustrate the presence of zero dynamics so that

y(k) = 0 for all k ≥ 0, but x(0) 6= 0. We let x(0) = ei, the ith canonical basis vector. Let S∗i be a

minimumvertex separator betweenxi and o in f(G). WLOG, letS∗i = {x1, · · · , xl, ysl+1
, · · · , ysq′},

q′ ≤ q and q′ > 0 (needed for cii). Let F = S∗i and add inputs UaF . Moreover, select ua(k) so

yS
∗
i ∩Y(k),x1(k), · · · ,xl(k) = 0 for all k ≥ 0. Here, yH(k) corresponds to values of y(k) for

sensors inH . WLOGY/S∗i 6= ∅ and we must show yY/S
∗
i (k) = 0. X can be partitioned as follows:

1. X1 = {x ∈ X |x /∈ xi-rooted path, x ∈ Y/S∗i -topped path},

2. X2 = {x ∈ X |x /∈ xi-rooted path, x /∈ Y/S∗i -topped path},

3. X3 = {x ∈ X |x ∈ xi-rooted path, x /∈ Y/S∗i -topped path},

4. X4 = {x ∈ X |x ∈ xi-rooted path, x ∈ Y/S∗i -topped path}.
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Note any vertex xj ∈ X not in a xi-rooted path, cannot be part of a UaF -rooted path. Otherwise,

if there was a UaF -rooted path, then ∃ a simple path from S∗i /Y to xj . Since xi has a simple path to

all s ∈ S∗i /Y , xj is part of an xi-rooted path, which is a contradiction. Permuting x(k), we have:

A =




A11 0 0 0

A21 A22 0 0

A31 A32 A33 A34

A41 0 0 A44



, Ba =




0

0

0

B4



, CY/S

∗
i =

[
C1 0 0 C4

]
, x(k) =




x1(k)

x2(k)

x3(k)

x4(k)



.

xj(k) is associated with agents Xj . CY/S∗i is the portion C associated with Y/S∗i . Since X1 and

X2 are not part of xi-rooted paths, they cannot be affected by X3,X4. Since X2,X3 are not part of

Y/S∗i -topped paths, they do not affect X4 or X1. Ba is obtained from the fact that S∗i /Y ⊂ X4.

CY/S
∗
i is obtained since X2,X3 do not have Y/S∗i -topped paths.

Since x1(k + 1) = A11x
1(k), x1(0) = 0, x1(k) = 0 for all k. Thus, the dynamics of sensors

Y/S∗i are given by

x4(k + 1) = A44x
4(k) +B4u

a(k) + 0, (5.39)

yY/S
∗
i (k) = C4x

4(k) + 0. (5.40)

In the special case that S∗i ⊂ Y , X4 = ∅ and the result follows. WLOG, assume S∗i 6⊂ Y . To

analyze X4, consider the partition X̄1, X̄2, X̄3, X̄4, X̄5 = S∗i /Y , X̄6 = xi where

1. X̄1 = {x ∈ X4\(X̄5 ∪ X̄6)|x ∈ IOP from (xi, S
∗
i /Y)},

2. X̄2 = {x ∈ X4\X̄5|x ∈ IOP from (S∗i /Y ,Y/S∗i )},

3. X̄3 = {x ∈ X4|x ∈ IOP from (xi,Y/S∗i )} − (X̄1 ∪ X̄2 ∪ X̄5 ∪ X̄6),

4. X̄4 = {x ∈ X4|x /∈ IOP from (xi,Y/S∗i )}.

We verify this is a partition. If x ∈ X̄1, ∃ an IOP from (xi,Y/S∗i ) containing x since ∃ a path

from s ∈ S∗i /Y to Y/S∗i without xi. Indeed, consider q′ internally disjoint paths from xi to owhich
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WLOG do not contain xi as an intermediate vertex. Each path contains exactly one vertex of S∗i

and thus ∃ a path from s ∈ S∗i /Y to Y/S∗i not containing xi. If x ∈ X̄2, ∃ an IOP from (xi,Y/S∗i )

containing x since there is a path from xi to any s ∈ S∗i /Y and an IOP from (S∗i /Y ,Y/S∗i ) cannot

contain xi. It is clear, ∪6
j=1X̄1 = X4.

Next, observe X̄3 and X̄5 are pairwise disjoint from all other subsets. Additionally, since S∗i is

vertex separator between (xi, o) we note xi /∈ X̄2. Thus, since xi /∈ X̄1 and xi /∈ X̄4, X̄6 is pairwise

disjoint from all other subsets. We next show X̄1 ∩ X̄2 = ∅. The existence of x ∈ X̄1 ∩ X̄2, implies

∃ a path from xi to Y/S∗i not containing S∗i /Y , which contradicts S∗i as a vertex separator. Finally,

(X̄1 ∪ X̄2) ∩ X̄4 = ∅ since x ∈ X̄4 cannot be part of an IOP from (xi,Y/S∗i ).

We make the following claims about the partitioned sets.

Lemma 5.4. Let x ∈ X̄3. There is a path from S∗i /Y to x.

Proof. Suppose Not. If x ∈ X̄3, ∃ an IOP from (xi,Y/S∗i ) with x. Since @ path from S∗i /Y to x,

∃ an IOP from (xi, S
∗
i /Y) with x, contradicting X̄1 ∩ X̄3 = ∅.

Lemma 5.5. θ(X̄1 ∪ X̄3 ∪ X̄4 ∪ X̄6, X̄2 ∪ Y/S∗i ) = 0.

Proof. If there was a directed edge from a ∈ X̄1 ∪ X̄6 to b ∈ X̄2 ∪ Y/S∗i , then there is a path from

xi to Y/S∗i containing edge (a, b), not containing S∗i /Y , contradicting S∗i as a vertex separator.

If there was a directed edge from a ∈ X̄3 to b ∈ X̄2 ∪ Y/S∗i , by Lemma 5.4 there is a IOP from

(S∗i /Y ,Y/S∗i ) containing edge (a, b). This contradicts X̄3 ∩ X̄2 = ∅. If there was a directed edge

from a ∈ X̄4 to b ∈ X̄2∪Y/S∗i , there would be an IOP from (xi,Y/S∗i ) containing a, contradicting

the definition of X̄4.

Let x̄j(k) be states associated with X̄j . Leveraging Lemma 5.5 and the fact that only X̄5 has

edges from UaF :

x̄2(k + 1) = Ā22x̄
2(k) + Ā25x̄

5(k),

yY/S
∗
i (k) = C̄2x̄

2(k) + C̄5x̄
5(k), x̄2(0) = 0.
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Recall, that ua(k) is chosen so that x̄5(k) = 0. We then have that yY/S∗i (k) = 0 and Theorem 5.17

holds.

As such, preventing zero dynamics attacks as opposed to only perfect attacks requires additional

structural considerations. Specifically, an extra independent path is needed from each state to the

set of outputs. This may necessitate extra sensors.

Corollary 5.7. A system with sensor and actuator attacks is not discreetly attackable only if it

contains at least q + 1 sensors.

Moreover, an extra maximum matching condition C1 is required. In general, it appears the

problem of verifying C1 is combinatorial since we must verify there is a maximum matching in

m + n choose q distinct graphs. Fortunately, we can simplify required analysis if we consider the

instance where each agent has a self-loop.

Corollary 5.8. Suppose each agent xi ∈ X has a self-loop. A system with sensor and actuator

attacks is not discreetly attackable iff the minimum vertex separator Si between (xi, o) has size

|Si| ≥ q + 1.

Proof. It is sufficient to show that the self-loop condition implies ci for all feasible attacks. WLOG,

consider an arbitrary feasible attack. We know that there exists F ⊂ X ∪ Y such that θ(Ua,F) =

|Ua|. Construct a maximum linkingL from Ua toY . Since each agent has q+1 paths to o, we know

ρ(Ua,Y) = |Ua| from Theorem 5.15. Let XL be the set of vertices in X belonging to L. L gives a

maximum set of v− disjoint edges fromUa∪XL toXL∪Y . Thus, θ(Ua∪XL,XL∪Y) = |XL|+|Ua|.

Since each agent has a self-loop, θ(X\XL,X\XL) = |X\XL|. Therefore, θ(Ua ∪ X ,X ∪ Y) =

n+ |Ua|.

As with perfect attacks, we note that Theorem 5.17 and Corollary 5.8 also hold in the special

case when the system has dedicated sensors and dedicated inputs. This can be seen since Theorem

5.17 never makes an assumption about the structure of C and the proposed attack considers a

strategy with dedicated inputs. We formalize this below.
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Corollary 5.9. A system with dedicated sensors, dedicated inputs, and sensor and actuator attacks

is not discreetly attackable iff:

C1 For all T ⊂ X ∪ Y with |T | = q, θ(X , (X ∪ Y)\T ) = n.

C2 For all xi ∈ X , the minimum vertex separator Si between (xi, o) in f(G) has size |Si| ≥ q+ 1.

If such a system has self loops for each agent xi ∈ X , then it is not discreetly attackable by sensor

and actuator attacks iff the minimum vertex separator Si between (xi, o) has size |Si| ≥ q + 1.

Next, we consider the special case of actuator/agent only attacks. Here, wemake the assumption

each sensor is a dedicated sensor. That is each sensor measures exactly one agent. Moreover, we

will assume no 2 sensors measure the same agent.

Theorem 5.18. A system with actuator attacks and dedicated sensors is not discreetly attackable

iff:

D1 For all T ⊂ X with |T | = q, θ(X , (X ∪ Y)\T ) = n.

D2 For all unobserved agents xi the minimum vertex separator Si between (xi, o) in f(G) has size

|Si| ≥ q + 1.

Proof. D1 =⇒ ci : Suppose D1 holds. We know by construction that θ(Ua,X ) = |Ua|. Let

Z ⊂ X where |Z| = |Ua| and θ(Ua,Z) = |Ua|. We know that θ(X , (X ∪ Y)\Z) = n since

|Ua| ≤ q. Thus, θ(X ∪ Ua,X ∪ Y) = n+ |Ua|.

D2 =⇒ cii, ciii: Suppose D2 holds. cii follows from the fact that observed agents have

direct edges to Y and unobserved agents have a nontrivial vertex separator to o. Now, consider

arbitrary feasible attack vertices Ua. Suppose ciii does not hold so there exists xi ∈ X satisfying

xi ∈ ∆0, xi /∈ Vess(Ua,Y).

We first argue xi can not be observed vertex. Suppose Not, so that xi is observed by yi. We

define fa(Ga) , (Va ∪ o∪ u∪ ui, Ea′) by adding to graph Ga, a node o with edges from Y , a node

u with edges to Ua, and a node ui with edges to Ua ∪ xi. Then, there is a vertex separator S in
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fa(Ga) between (ui, o) of size ρ(Ua,Y) ≤ q, which is also a vertex separator between (u, o), which

also satisfies S ∩ yi = ∅. If yi ∈ S, then we argue that S ′ = S ∪ xi − yi is also a vertex separator

between (ui, o). Indeed if one removes S − yi from fa(Ga) any path to o from ui must contain yi.

Since yi is a dedicated output, such a path must also contain xi. However, if S ′ is a vertex separator

between ui and o, it must also be a vertex separator between u and o. As such S ′ ⊂ Vess(Ua,Y).

However, by assumption xi /∈ Vess(Ua,Y). Thus, S ′ is not a vertex separator between ui and o and

as such S can not contain yi. Again xi /∈ S because S ⊂ Vess(Ua,Y). Thus, if S is removed from

fa(Ga), the path ui, xi, yi, o still exists, contradicting S as a vertex separator.

As a result, xi must be unobserved. Define fa(Ga) as before. Then, there is a vertex separator

S in fa(Ga) between (ui, o) of size ρ(Ua,Y) ≤ q, which is also a vertex separator between (u, o).

Thus, S ⊂ Vess(Ua,Y). xi /∈ Vess(Ua,Y) implies xi /∈ S. Since xi has q + 1 disjoint paths to

o, removing S from fa(Ga), does not delete all paths from ui to o, contradicting S as a vertex

separator. Thus, ciii holds for all feasible attacks.

Necessity: ∼ D1 =⇒ ∼ ci. Suppose D1 does not hold for some F ′ ⊂ X with |F ′| = q.

Assume an adversary attacks F ′ with dedicated inputs. Since UaF ′ only has directed edges to F ′

and θ(X , (X ∪ Y)\F ′) < n, we have θ(X ∪ UaF ′ ,X ∪ Y) < n+ q.

Suppose D2 fails to hold for some unobserved xi. We argue there exists a minimum vertex

separator S∗i between xi and o in f(G) such that S∗i ⊂ X . To see this let Si be a minimum vertex

between xi containing vertex yj observing xj . We argue that Si ∪ xj − yj is a minimum vertex

separator between xi and o. Indeed, if we remove Si − yj , any path from xi to o must contain yj ,

which in turn must contain xj , since yj is a dedicated sensor for xj . As a result, Si ∪ xj − yj is

a vertex separator between xi and o in f(G) and this vertex separator is minimal. An inductive

argument shows we can construct S∗i ⊂ X . We can then proceed as in the proof of 5.17 by attacking

S∗i to obtain the final result.

Considering agent only attacks reduces the structural requirements once more. Observed agents

no longer need p + 1 disjoint paths to the set of outputs and we only need a maximum matching
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for n choose q graphs instead of n+m choose q graphs. Again, verifying condition D1 appears to

be combinatorial. Once more, we can simplify required analysis if we consider the instance where

each agent has a self-loop.

Corollary 5.10. Suppose each agent has a self-loop. A system with actuator attacks and dedicated

sensors is not discreetly attackable iff the minimum vertex separator Si between each unobserved

agent xi and o has size |Si| ≥ q + 1.

Proof. It is sufficient to show that the self-loop condition implies ci for all feasible attacks. WLOG,

consider an arbitrary feasible attack. We know that there exists F ⊂ X such that θ(Ua, F ) =

|Ua|. Construct a maximum linking L from Ua to Y . Since each unobserved agent has q + 1

paths to o, we know ρ(Ua,Y) = |Ua| from Theorem 5.16. Let XL be the set of vertices in X

belonging to L. L gives a maximum set of v − disjoint edges from Ua ∪ XL to XL ∪ Y . Thus,

θ(Ua∪XL,XL∪Y) = |XL|+ |Ua|. Since each agent has a self-loop, θ(X\XL,X\XL) = |X\XL|.

Therefore, θ(Ua ∪ X ,X ∪ Y) = n+ |Ua|.

If we introduce the additional assumption that the attack inputs are dedicated, the prior results

analyzing discreetly attackable systems with agent/actuator attacks still hold. Specifically, we have

the following.

Corollary 5.11. A system with actuator attacks, dedicated inputs and dedicated sensors is not

discreetly attackable iff:

D1 For all T ⊂ X with |T | = q, θ(X , (X ∪ Y)\T ) = n.

D2 For all unobserved agents xi the minimum vertex separator Si between (xi, o) in f(G) has size

|Si| ≥ q + 1.

Moreover, if each agent has a self-loop, a system with actuator attacks, dedicated inputs, and

dedicated sensors is not discreetly attackable iff the minimum vertex separator Si between each

unobserved agent xi and o has size |Si| ≥ q + 1.
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5.2.5 System Verification

If f(G) has self-loops at each agent, we can efficiently determine if a system is discreetly attackable

in a system with both sensor and actuator attacks. We do not require the self-loop assumption to

determine if a system is perfectly attackable. To determine if a fixed agent (xi, o) has minimum

vertex separatorSi of size q+1 (or q), we solve a 0−1maximumflow problem. We consider a graph

hi(f(G)) = (VHi , EHi), where |VHi| = 2|V| and |EHi| ≤ |E ′|+ |V| − 1. First, all self-loops can be

eliminated. Then, every v ∈ V\xi is converted to a pair of nodes, vin and vout, where N I
vin

= N I
v ,

NO
vin

= vout,N I
vout = vin,NO

vout = NO
v . Moreover, all incoming edges to xi are removed. All edges

in EHi have capacity 1. (xi, o) has minimum vertex separator Si of size at least q + 1 (or q) if and

only if the maximum flow from source xi to sink o in hi(f(G)) is at least q+1 (or q). Using Dinic’s

algorithm, [74, 75] this can be determined in O((2|V|) 1
2 (|E ′| + |V| − 1)) time. Since, we must

verify |Si| ≥ q + 1 (or |Si| ≥ q) for each of n agents, the worst case computational complexity

is O(n(2|V|) 1
2 (|E ′| + |V| − 1)). This outperforms algebraic methods based on the matrix pencil

[65] and graphical methods based on Lemma 5.3 which verify a system’s strong observability/left

invertibility for fixed attack nodes, which is a combinatorial task.

The problem of system verification becomes simpler in a system with actuator only attacks and

dedicated sensors. In this case we have the following proposition.

Lemma 5.6. Let f ′(G) be constructed from G by removing all nodes in Y , adding a node o, and

adding directed edges from each observed node to o. An unobserved node xi has minimum vertex

separator to o of size r in f(G) if and only if unobserved node xi has minimum vertex separator to

o of size r in f ′(G).

Proof. We first observe that if S is a vertex separator between xi and o in f ′(G), it is also a vertex

separator of xi and o in f(G). Suppose Not. Then, after deleting S in f(G), there is a path

xi, P, yj, o in f(G). However, this means there is a path xi, P, o in f ′(G), which is a contradiction.

As a result, the size of a minimum vertex separator in Si between xi and o in f(G) is less than or

equal to the size of a minimum vertex separator S ′i between xi and o in f ′(G). That is |Si| ≤ |S ′i|.
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Let Si be a minimum vertex separator between xi and o in f(G). If yj observing xj is in Si,

we argue that Si ∪ xj − yj is a minimum vertex separator. Indeed if one removes Si − yj from

f(G), there must must be a path from xi to o, which must contain yj . However any path to yj must

also contain xj since yj is a dedicated observer. Thus, Si ∪ xj − yj is a minimum vertex separator.

Consequently, without loss of generality, we can assume Si ⊂ X . Suppose we remove Si from

f ′(G). Then, there would be no path from xi to o in f ′(G). If such a path xi, P, o existed, then

we would be able to construct a path xi, P, yk, o in f(G) after removing Si. Thus, Si is a vertex

separator between xi and o in f ′(G). As such, the size of minimum separator between xi and o

in f(G) is greater than or equal to the size of a minimum vertex separator S ′i between xi and o in

f ′(G). That is |Si| ≥ |S ′i|. The result follows.

Thus, we can solve maximum flow problems on a smaller graph to determine if a system is

perfectly or discreetly attackable. Moreover, we only need to solve a maximum flow problem

at most once for each unobserved node. More specifically, in the case of actuator only attacks

and dedicated sensors, we consider a graph hi′(f ′(G)) = (V ′Hi , E ′Hi), where |V ′Hi | = 2|X | and

|EHi |′ ≤ |E| + |X | − 1 for each unobserved xi. First, all self-loops are eliminated. Then, every

v ∈ X\xi is converted to a pair of nodes, vin and vout, whereN I
vin

= N I
v ,NO

vin
= vout,N I

vout = vin,

NO
vout = NO

v . Moreover, all incoming edges to xi are removed. All edges in E ′Hi have capacity 1.

For unobserved xi, (xi, o) has minimum vertex separator Si of size at least q + 1 (or q) if and only

if the maximum flow from source xi to sink o in hi′(f ′(G)) is at least q + 1 (or q). Using Dinic’s

algorithm, [74, 75] this can be determined in O((2|X |) 1
2 (|E + |X | − 1)) time. Since, we must

verify |Si| ≥ q+1 (or |Si| ≥ q) for each of n−m unobserved agents, the worst case computational

complexity is O((n−m)(2|X |) 1
2 (|E|+ |X | − 1)).
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5.3 Robust Structural Design of Distributed Control Systems

Distributed control systems (DCSs) have become prevalent in today’s world. A DCS is a system

where components such as sensors, actuators, and controllers are separated over a large network.

DCSs allows operators to controlmultiple local environmentswhile simultaneouslymeeting various

global objectives. The ability of a DCS to meet society’s demands for large scale control has made

such systems common in a variety of applications including sensor networks, the smart grid,

vehicular systems, and manufacturing.

We consider the setting of DCS where no more than q agents and/or sensors may be compro-

mised. Here we formulate and solve optimization problems which minimize sensing and communi-

cation in DCS while ensuring resilience to undetectable attacks. We first consider an unconstrained

minimization problem, where there are no restrictions on which agents may communicate or be

observed. For a fixed number of observers, we find the minimum number of communication links

that can guarantee perfect detectability. Furthermore, we completely characterize the subset of

networks which solve the optimization problem and contain no cycles among unobserved agents.

We then show the problem of jointly minimizing the number of sensors and communication links

strictly depends upon the cost of sensing and communicating. This work is the extended to the

constrained case where a set of agents are not able to communicate. We consider the optimal

design of these systems as a means of active detection. In particular, we introduce systems which

are design fundamentally to ensure adversarial behavior is detectable.

5.3.1 System Model

Graphical Model: We will model a Distributed Control System (DCS) both graphically and

algebraically. We assume there are n agents, X , {x1, · · · , xn} that communicate with each

other and are observed by m sensors, Y , {y1, · · · , ym} where we assume m ≤ n. We model

interactions using a directed graph G = (V , E) with vertices V , X ∪ Y . The edges E ⊂ V × V

capture agent/sensor interactions. If (xi, xj) ∈ E , agent xi sends messages to xj . If sensor yj
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measures state xi, (xi, yj) ∈ E . Each agent xi ∈ X has a self-loop, therefore (xi, xi) ∈ E .

Algebraic Model: We assume each agent xi has a scalar time dependent state xi(k) with

dynamics given as follows:

xi(k + 1) = aiixi(k) + ui(k). (5.41)

The input ui(k) is a linear function of the states of xi’s incoming neighbors and a centrally known

input uffi (k) so

ui(k) = uffi (k) +
∑

j 6=i
aijxj(k), (5.42)

where xj /∈ N I
xi
∩ X =⇒ aij = 0. Without loss of generality uffi (k) = 0. Each agent is assumed

to have a scalar state. From a notational perspective, in this section on robust structural design,

we again write the discrete time index k as an argument of the states, inputs, and measurements as

opposed to a subscript in order to distinguish vertices in graphs from numerical parameters.

Remark 5.1. The state xi(k) can refer to a physical quantity such as temperature or simply a

quantity for distributed processing (e.g. consensus). While it is assumed each agent has a scalar

state in this subsection, similar tools for DCS analysis and design can be incorporated in the vector

case. Examining the vector case is a subject of current research.

A set of dedicated sensors Y measure the state of a subset of agents. The outputs are sent to a

central operator for estimation and detection. A dedicated sensor measures the state of one agent

and no two sensors measure the state of the same agent. The output of sensor yi measuring xj at

time k is

yi(k) = xj(k). (5.43)

Remark 5.2. The assumption of dedicated sensors is based on the fact that the system is distributed

and it’s likely that sensors would not have the physical access to measure multiple agents accurately.

While we assume there are no redundant sensors, in practice multiple sensors can be added to

measure a single state in the physical system for robustness. However, for our treatment, it is likely

that if an attacker can manipulate one sensor that measures a state xj , he has the ability to access
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and manipulate all sensors that measure the state xj , especially if the hardware itself is redundant.

As a result, for the purposes of modeling attacks, we can consider redundant sensors as a single

node.

For simplicity, we concatenate state and output vectors

x(k) ,
[
x1(k) · · ·xn(k)

]T
, y(k) ,

[
y1(k) · · ·ym(k)

]T
,

so that the dynamics of the full control system are given by

x(k + 1) = Ax(k), y(k) = Cx(k). (5.44)

The pair (A,C) is assumed to be observable. Letting I be the indicator function, A and C can be

defined entrywise:

A(i, j) = aij, C(i, j) = I(xj ,yi)∈E .

Since (A,C) is observable, the state can be estimated using a linear filter.

x̂(k + 1) = (A−KCA)x̂(k) +Ky(k + 1), (5.45)

z(k + 1) = y(k + 1)− CAx̂(k). (5.46)

Here, K is chosen so (A − KCA) is Schur stable. The residue z(k) can be used to perform

detection. As we have seen. smaller residues are often indicative of normal behavior while larger

residues are associated with faulty or malicious behavior.

5.3.2 DCS Attack Model

Graphical Model: We now define our DCS model under attack. At time 0 an unknown subset of

the agents and sensors F are compromised. No more than q agents and sensors can be corrupted.

In other words, the operator would like the system to be resilient to up to q malicious failures. The

set of all feasible sets of attacked sensor and agent nodes is given by Fxy:

Fxy = {F ⊂ V : |F | ≤ q}. (5.47)
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It may be the case an adversary is only able to perform agent only attacks. For example,

suppose the information broadcast by an agent to its neighbor is the same information that is sent

to a central monitor. In this scenario, there can be no deviation between an agents measured state

and broadcasted state. The set of all feasible attacks on agents is given by Fx:

Fx = {F ⊂ X : |F | ≤ q}. (5.48)

We define the graph GaF = (VaF , EaF ) of a DCS when a set F of agents/sensors is compromised.

F = {xl1 , · · · , xlp , ylp+1 , · · · , ylq′}, (q′ ≤ q)

We introduce attack input vertices UaF = {ua1, · · · , uaq′}. We assume there exists directed edges

from UaF to F given by

EUaF ,X , {(ua1, xl1), · · · , (uap, xlp)}

EUaF ,Y , {(uap+1, ylp+1), · · · , (uaq∗ , ylq′ )}

We then define EaF , E ∪ EUaF ,X ∪ EUaF ,Y and VaF , V ∪ UaF . In the case of agent only attacks EUaF ,Y
is empty.

Algebraic Model: We let xai (k) represent the state of xi under attack. If (ual , xi) ∈ EaF , then the

dynamics are

xai (k + 1) = aiix
a
i (k) +

∑

j 6=i
aijx

a
j (k) + ual (k), (5.49)

where ual (k) is an input from node ual at time k. If xi is secure then ual (k) = 0. We define yai (k)

as the output of yi at time k under attack. If (ual , yi) ∪ (xj, yi) ⊂ EaF , then

yai (k) = xaj (k) + ual (k). (5.50)

If yi is secure then in (5.50), ual (k) = 0. Concatening xai (k), yai (k), and uai (k) into xa(k),ya(k),

and ua(k), we have :

xa(k + 1) = Axa(k) +Ba
Fu

a(k), xa(0) = x(0), (5.51)

ya(k) = Cxa(k) +Da
Fu

a(k), (5.52)
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with Ba
F (i, j) , I(uaj ,xi)∈EUaF ,X

, Da
F (i, j) , I(uaj ,yi)∈EUaF ,Y

. Again, in the case of agent only attacks

Da
F is empty. We assume the attacker knows (A,Ba

F , C,D
a
F ). The estimator policy remains

unchanged during an attack.

x̂a(k + 1) = (A−KCA)x̂a(k) +Kya(k + 1), (5.53)

za(k + 1) = ya(k + 1)− CAx̂a(k). (5.54)

5.3.3 Optimal Unconstrained Network Design of DCS for Detection

We will now consider the minimal design of robust DCS to ensure that such systems are not

discreetly attackable. The case for perfectly attackable systems follows similarly. Specifically the

posed optimization problems tominimally design DCS to avoid zero dynamics attacks coming from

q malicious nodes is equivalent to minimally designing DCS to avoid perfect attacks coming from

q + 1 malicious nodes We consider this a technique of active detection, in that we are intelligently

designing our system in order to ensure the detectability of attacks. Unlike our previously discussed

methods, this approach for active detection takes place offline.

Communication Design: Agent and Sensor Attacks

We first assume the structure of C, or [C] is given. Here in order to ensure the system is not

discreetly attackable, we have at least q + 1 dedicated sensors. That is, m ≥ q + 1. Let Si be a

minimal vertex separator between (xi, o) in f(G). We have:

minimize
[A]

‖A‖0 (5.55)

subject to |Si| ≥ q + 1, [A](i, i) 6= 0, i ∈ {1, . . . , n},

The objective function represents the number of communication links in our system. The constraint

ensures that the system is not discreetly attackable.

Theorem 5.19. The optimal solution to problem (5.55) is ‖A‖∗0 = m(q + 1) + (n−m)(q + 2) =

n(q + 2)−m.
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Proof. We begin by showing that n(q + 2) − m is a lower bound of the optimal solution ‖A‖∗0.

Without loss of generality, assume that {x1, · · · , xm} are the set of agents which are observed by

Y . Then,

‖A‖∗0 =
m∑

k=1

(|NO
xk
| − 1) +

n∑

k=m+1

|NO
xk
|,

≥ m(q + 1) + (n−m)(q + 2). (5.56)

The first equality is obtained by noting that the number of nonzero entries in each row i of A is

equal to the out-degree of xi if the agent xi is unobserved and equal to the out-degree of xi minus

1 if it is observed. The last inequality is obtained from the necessary conditions for a system to not

be discreetly attackable from Corollary 5.9. Thus nq + 2n−m is a lower bound for ‖A‖∗0.

We now show that nq+ 2n−m is an upper bound for ‖A‖∗0 by constructing a feasible [A] with

a minimal number of edges. To do this we consider the following lemma.

Lemma 5.7. Consider a realization ([A], [C]) of a DCS with graph G where every nontrivial cycle

(cycles not containing self-loops) contains an observed agent. Assume there are at least q + 1

dedicated sensors. Then ([A], [C]) is an optimal solution to problem (5.55) if and only if each agent

xi has out-degree q + 2 with (xi, xi) ∈ E , i = 1, · · · , n.

We first show there exists a graph G which satisfies these assumptions. WLOG we assume

that agents {x1, · · · , xm} are observed so that there exists a directed edge from xj to yj for j ∈

{1, · · · ,m}. Next for j ∈ {1, · · · ,m}, we have |NO
xj
| = q+ 2 andNO

xj
⊂ {yj, x1, · · · , xm}. Thus,

each observed agent has q + 2 outgoing edges, 1 to its observer, q edges to other observed agents,

and 1 to itself. Finally, for j ∈ {m+ 1, · · · , n}, we have dOxj = q+ 2 andNO
xj
⊂ {x1, · · · , xm, xj}.

Each unobserved agent has q + 1 neighbors besides itself, all of which are observed. Thus, there

are no cycles which only contain unobserved agents.

We next show G in Lemma 5.7 satisfies the constraints of problem (5.55). By inspection, the

graph immediately satisfies [A](i, i) 6= 0. We must verify that |Si| ≥ q + 1. Suppose there exists

a vertex separator Si of (xi, o) in f(G) where |Si| < q + 1. Suppose we remove all vertices Si
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Algorithm 1 Find Path from xi to o in f(G) when Si is removed
1: function Find Path(f(G), xi)
2: z = xi, P = xi.
3: if (z, yj) ∈ E for some yj ∈ V \ Si then
4: P = P, yj, o. return P
5: break
6: end if
7: if ∃ xj, yk ∈ V \ Si such that (z, xj), (xj, yk) ∈ E then
8: P = P, xj, yk, o. return P
9: break
10: end if
11: Find xl ∈ X \ Si such that (z, xl) ∈ E and (xl, yk) /∈ E , ∀yk ∈ Y .
12: z = xl, P = P, xl.
13: Proceed to step 7.
14: end function

from f(G). We can construct a path from xi to o even when vertices from Si are removed using

Algorithm 1.

Since |Si| < q+1 and xi has q+1 outgoing neighbors besides itself, xi must either be observed

by a node yj /∈ Si, have outgoing edge to an observed agent xj /∈ Si with observer yk /∈ Si, or have

outgoing edge to unobserved agent xl /∈ Si. The algorithm terminates successfully if either of the

first two conditions hold. Otherwise, the path is extended to the unobserved agent xl. Since xl is

unobserved, the algorithm proceeds to step 7. The same argument holds for xl. This process will

eventually encounter an observed agent xj /∈ Si with observer yk /∈ Si in step 7 since G is finite and

every cycle must contain an observed agent. Consequently, this process will eventually terminate

and give a path P from xi to o. Thus, Si is not a vertex separator and G is feasible.

We now show G constructed with the rules presented in Lemma 5.7 is optimal. We note that

each agent has out-degree q+2. Thus, from (5.56) we have ‖A‖0 = nq+2n−m. Sincenq+2n−m

is a lower bound for the number of edges in an optimal solution, G is an optimal solution.

We can see in an optimal solution that each observed agent has q agent neighbors besides itself

and each unobserved agent has q + 1 agent neighbors besides itself. This is clearly required for

each agent to have q + 1 disjoint paths to the output. The prior result however also shows that no
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additional edges are required.

Communication Design: Agent Attacks

We now consider the scenario of agent only attacks and obtain similar results to the agent and

sensor attack case. Again, assume the structure of C, or [C] is given. Here in order to ensure the

system is not discreetly attackable, we have at least q + 1 dedicated sensors. That is, m ≥ q + 1.

Let Si be a minimal vertex separator between (xi, o) in f ′(G) as considered in the previous section

where xi is unobserved. We have:

minimize
[A]

‖A‖0 (5.57)

subject to [A](i, i) 6= 0, i ∈ {1, . . . , n},

|Si| ≥ q + 1, ∀ i s.t. θ(xi,Y) = 0.

The objective function represents the number of communication links in our system. The constraint

ensures that the system is not discreetly attackable. Here, we make use of the results in Lemma 5.6

which state that minimum vertex separator between unobserved xi and o in f(G) has size r if and

only if that minimum vertex separator between xi and o in f ′(G) has size r.

Theorem 5.20. The optimal solution to problem (5.57) is ‖A‖∗0 = m+ (n−m)(q + 2).

Proof. We begin by showing thatm+(n−m)(q+2) is a lower bound of the optimal solution ‖A‖∗0.

Without loss of generality, assume that {x1, · · · , xm} are the set of agents which are observed by

Y . Then,

‖A‖∗0 =
m∑

k=1

(|NO
xk
| − 1) +

n∑

k=m+1

|NO
xk
|,

≥ m+ (n−m)(q + 2). (5.58)

The first equality is obtained by noting that the number of nonzero entries in each row i of A is

equal to the out-degree of xi if the agent xi is unobserved and equal to the out-degree of xi minus
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1 if it is observed. The last inequality is obtained from the necessary conditions for a system to not

be discreetly attackable from Corollary 5.11. Thusm+ (n−m)(q+ 2) is a lower bound for ‖A‖∗0.

We now show thatm+ (n−m)(q + 2) is an upper bound for ‖A‖∗0 by constructing a feasible

[A] with a minimal number of edges. To do this we consider the following lemma.

Lemma 5.8. Consider a realization ([A], [C]) of a DCS with graph G where every nontrivial cycle

(cycles not containing self-loops) contains an observed agent or an agent with a directed edge to

an observed agent. Assume there are at least q+1 dedicated sensors. Then ([A], [C]) is an optimal

solution to problem (5.57) if and only if each unobserved agent xi has out-degree q + 2 and each

observed agent xi has out-degree equal to 2 with (xi, xi) ∈ E , i = 1, · · · , n.

We first show there exists a graph G which satisfies these assumptions. WLOG we assume

that agents {x1, · · · , xm} are observed so that there exists a directed edge from xj to yj for

j ∈ {1, · · · ,m}. Next for j ∈ {1, · · · ,m}, we have |NO
xj
| = 2 and NO

xj
= {yj, xj}. Thus, each

observed agent has 2 outgoing edges, 1 to its observer and 1 to itself. Finally, for j ∈ {m+1, · · · , n},

we have dOxj = q + 2 and NO
xj
⊂ {x1, · · · , xm, xj}. Each unobserved agent has q + 1 neighbors

besides itself, all of which are observed. Thus, there are no nontrivial cycles.

We next show G in Lemma 5.8 satisfies the constraints of problem (5.57). By inspection, the

graph immediately satisfies [A](i, i) 6= 0. We must verify that |Si| ≥ q + 1 for unobserved agents

xi in f ′(G). Suppose there exists a vertex separator Si of (xi, o) in f ′(G) where |Si| < q + 1.

Suppose we remove all vertices Si from f ′(G). We can construct a path from xi to o even when

vertices from Si are removed using Algorithm 2.

Since |Si| < q + 1 and xi has q + 1 outgoing neighbors besides itself, xi must either have an

outgoing edge to an observed node xj /∈ Si, have an outgoing edge to an unobserved agent xj /∈ Si
that has outgoing edge to observed agent xk /∈ Si, or have outgoing edge to unobserved agent

xl /∈ Si that has no outgoing edge to an observed agent. The algorithm terminates successfully

if either of the first two conditions hold. Otherwise, the path is extended to the unobserved agent

xl. Since xl is unobserved, and has no outgoing edge to an observed agent the algorithm proceeds
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Algorithm 2 Find Path from xi to o in f ′(G) when Si is removed
1: function Find Path(f ′(G), xi)
2: z = xi, P = xi.
3: if (z, xj) ∈ E for some observed xj ∈ X \ Si then
4: P = P, xj, o. return P
5: break
6: end if
7: if ∃ xj, xk ∈ X \ Si such that (z, xj), (xj, xk) ∈ E and xk is observed then
8: P = P, xj, xk, o. return P
9: break
10: end if
11: Find xl ∈ V \ Si such that (z, xl) ∈ E and (xl, xk) /∈ E , ∀ observed xk ∈ X .
12: z = xl, P = P, xl.
13: Proceed to step 7.
14: end function

to step 7. The same argument holds for xl. This process will eventually encounter an unobserved

agent xj /∈ Si with outgoing edge to observed agent xk /∈ Si in step 7 since G is finite and every

cycle must contain an observed agent or an unobserved agent with directed edge to an observed

agent. Consequently, this process will eventually terminate and give a path P from xi to o. Thus,

Si is not a vertex separator and G is feasible.

We now show G constructed with the rules presented in Lemma 5.7 is optimal. We note that

each unobserved agent has out-degree q+ 2 and each observed agent has out-degree 2. Thus, from

(5.58) we have ‖A‖0 = m+ (n−m)(q + 2). Sincem+ (n−m)(q + 2) is a lower bound for the

number of edges in an optimal solution, G is an optimal solution.

As expected, in a system with agent only attacks, fewer communication edges are required.

Observed agents only need to communicate to sensors while unobserved agents will have exactly

q + 1 neighbors besides themselves. We note that while the general graphical solution to both

(5.55) and (5.57) is unknown, Lemmas 5.7 and 5.8 gives us the structure for optimal graphs in

specially defined scenarios.
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5.3.4 Optimal Unconstrained Joint Design of DCS for Detection

Instead of fixing the number of sensors m under consideration, the number of sensors can be a

design variable which is chosen concurrently with the network. We can alter the optimization

problem to consider this as follows.

Joint Design: Agent and Sensor Attacks

Let Si be a minimal vertex separator between xi and o in f(G). The joint design problem is given

as follows.

minimize
[A],[C]

α1‖A‖0 + α2m (5.59)

subject to |Si| ≥ q + 1, [A](i, i) 6= 0, i ∈ {1, . . . , n},

C ∈ Rm×n, m ∈ {q + 1, · · · , n},

‖Cj‖0 ≤ 1, j ∈ {1, . . . , n},

‖Ct‖0 = 1, t ∈ {1, . . . ,m}.

The last three constraints convey that [C] implements a set of m dedicated sensors where m ∈

{q + 1, · · · , n}.

Theorem 5.21. Consider problem (5.59). If α1 > α2. Then every agent should be observed

(m = n). Alternatively, if α2 > α1, then m = q + 1. Finally, if α1 = α2, then m can be chosen

arbitrarily from {q + 1, · · · , n}

Proof. For a fixed set of dedicated sensors, we can solve (5.55) to obtain the joint solution. Since

‖A‖∗0 = (q+2)n−m for a fixed set of sensors, the optimal value of (5.59) is (α2−α1)m+α1(q+2)n.

The result follows.

If α1 > α2, so that communication is more costly than sensing, it is optimal to observe all

agents. If α2 > α1 so sensing is more costly than communication, it is optimal to observe the

fewest number of sensors that enable a robust solution, which is q+ 1. Roughly speaking the prior
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result is based on the idea that in sensor and agent attacks, the combined number of communication

edges and sensing nodes is fixed and equal to (q + 2)n. Thus, if sensing cost more, we want to

have as few sensors as possible contribute to this fixed quantity. Likewise if communication costs

more, we want to have as few links as possible contribute to this fixed quantity.

An optimal graphical solution can be obtained by first selecting an arbitrary set of observed

nodes and then constructing a feasible graphical solution, for instance as is described in the proof

of Lemma 5.7.

Joint Design: Agent Attacks

In the case of agent only attacks, it can be shown that sensing must be significantly more costly

than communication to justify additional communication links. The joint design problem is given

by:

minimize
[A].[C]

α1‖A‖0 + α2m (5.60)

subject to [A](i, i) 6= 0, i ∈ {1, . . . , n},

|Si| ≥ q + 1, ∀ i s.t. θ(xi,Y) = 0,

C ∈ Rm×n, m ∈ {q + 1, · · · , n},

‖Cj‖0 ≤ 1, j ∈ {1, . . . , n},

‖Ct‖0 = 1, t ∈ {1, . . . ,m}.

where Si is a vertex separator between unobserved xi and o in f ′(G).

Theorem 5.22. Consider problem (5.59). If (q+ 1)α1 > α2. Then every agent should be observed

(m = n). Alternatively, if α2 > (q + 1)α1, then m = q + 1. Finally, if (q + 1)α1 = α2, then m

can be chosen arbitrarily from {q + 1, · · · , n}

Proof. For a fixed set of dedicated sensors, we can solve (5.60) to obtain the joint solution.

Since ‖A‖∗0 = (q + 2)(n − m) + m for a fixed set of sensors, the optimal value of (5.60) is

(α2 − (q + 1)α1)m+ α1(q + 2)n. The result follows.
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Unlike the joint sensor and agent attacks, if all agents are observed, no additional communication

is required. Indeed, in this case ‖A‖∗0 = n, where the remaining edges are the self loops. The

significant difference in agent only attacks is that the combined number of links and sensors is no

longer fixed. Rather, an observed agent only has a self loop and an edge to a sensor, while an

unobserved has a self loop and q + 1 other agent neighbors. Thus, one must determine which is

more expensive, q + 1 communication links or 1 sensor to determine an optimal joint solution.

An optimal graphical solution can be obtained by first selecting an arbitrary set of observed

nodes and then constructing a feasible graphical solution, for instance as is described in the proof

of Lemma 5.8.

5.3.5 Constrained Optimization of Communication of DCS for Detection

In the previous subsection, we found minimal designs of systems which prevent all possible zero

dynamics attacks. In these problems, we assumed that there were no restrictions among which

agents can communicate. In practice, due to physical constraints, certain agents may not be able to

communicate. We assume constraints on communication are encoded into [Ā] where agent xi can

speak to agent xj if and only if [Ā](j, i) 6= 0. Given a set of observers [C], we formulate a problem

to robustly minimize the amount of communication among agents subject to constraints given by

[Ā]. We demonstrate that introducing these constraints does not change the optimal number of

links in a system.

Constrained Design: Agent and Sensor Attacks

Let Si be a vertex separator between xi and o in f(G).

minimize
[A]

‖A‖0 (5.61)

subject to |Si| ≥ q + 1, [A](i, i) 6= 0, i ∈ {1, . . . , n},

[Ā](u, v) = 0 =⇒ [A](u, v) = 0, u, v ∈ {1, . . . , n}.
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Algorithm 3 Constrained Optimization of DCS
1: function Optimization(([Ā], [C]))
2: Let graph G be generated from [Ā], [C], [A] = [Ā].
3: while ‖A‖0 > nq + 2n−m do
4: Find an edge (xi, xi′) whose removal still ensures there are no zero dynamics attacks

on G.
5: G = G − (xi, xi′), [A]i′i = 0.
6: end while
7: return [A]
8: end function

We now obtain the following result related to problem (5.61) which states that if the problem is

feasible, there always exists a solution to problem (5.61)which is also a solution to the unconstrained

optimization problem (5.55).

Theorem 5.23. Suppose there exists a feasible solution to problem (5.61). Then, the optimal

solution to problem 5.61 satisfies ‖A‖∗0 = nq + 2n−m.

Proof. We argue that Algorithm 3 can be used to obtain an optimal solution to problem (5.61).

It suffices to show step 4 is feasible for an arbitrary G which is not discreetly attackable and is

non-minimal. To do this, we observe there must exist an agent xi with out-degree |NO
xi
| > q + 2

if the system is non-minimal. Since the system is not discreetly attackable, there exists at least

q + 1 disjoint paths from xi to o. Because xi has out-degree greater than q + 2, there exists an

edge (xi, xi′) whose removal ensures xi still has q + 1 disjoint paths to o so that |Si| ≥ q + 1 in

f(G) − (xi, xi′). Indeed, construct q + 1 disjoint paths from xi to o. Without loss of generality

assume xi is not in one of these q+ 1 disjoint paths. There must exists an outgoing neighbor of xi,

which is not in these disjoint paths. If this neighbor is an agent xj , one can delete (xi, xj) and still

have q + 1 disjoint paths to o. If the only remaining neighbor (not in this set of q + 1 paths) is an

observer , one can remove an arbitrary agent neighbor and there will still be q + 1 disjoint paths to

o.

Now consider arbitrary xj not equal to xi in G. We must show that |Sj| ≥ q + 1 where

Sj is a minimum vertex separator of xj and o in f(G) − (xi, xi′). Suppose |Sj| < q + 1. We
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observe that {Sj, xi} is a vertex separator of xj and o in f(G). Since G is not discreetly attackable,

|{Sj, xi}| ≥ q + 1. Consequently, xi /∈ Sj , |Sj| = q, and {Sj, xi} is a minimal vertex separator of

(xj, o) in f(G).

Lets remove Sj from f(G) − (xi, xi′). We first argue there must still be a path from xj to xi.

Suppose instead that removing Sj from f(G) − (xi, xi′) deletes all paths from xj to xi. Then,

removing Sj from f(G) deletes all paths from xj to xi in f(G). However, since {Sj, xi} is a

minimal vertex separator of xj and o in f(G), removing Sj from f(G) would mean there still exists

a path from xj to o containing xi. By contradiction, there must still be a path from xj to xi after

deleting Sj from f(G)− (xi, xi′).

We now show there exists a path from xi to o after removing Sj from f(G) − (xi, xi′). By

assumption, there are at least q + 1 disjoint paths from xi to o in f(G) − (xi, xi′). Deleting Sj ,

which has q vertices, can remove at most q paths. Thus, there is still a path from xi to o.

As a result, even after deleting Sj from f(G)− (xi, xi′), there exists a path from xj to xi and a

path from xi to o. Consequently, there exists a path from xj to o so that Sj is not a vertex separator.

Thus, by contradiction, any vertex separator Sj of (xj, o) in f(G)− (xi, xi′) satisfies |Sj| ≥ q + 1.

Therefore, G − (xi, xi′) is not discreetly attackable and step 4 is feasible.

Theorem 5.23 shows we can obtain a minimal network resilient to zero dynamics attacks even

with constraints on communication. While Algorithm 3 gives amethod to construct such an optimal

communication network, the method and complexity of this approach is unclear. Nonetheless, if we

can compute amaximum set of vertex disjoint paths from a vertexxi to o, we can determine outgoing

neighbors of agent xi which should not be deleted. In particular, we should keep edges from xi to

q+ 1 neighbors through which there exists q+ 1 disjoint paths to o, with the condition that none of

these paths should contain xi as an intermediate vertex. We use Dinic’s algorithm in Algorithm 4

to solve problem (5.61). The worst case complexity is less thanO(n(2|V|) 1
2 (|E ′|+ |V|− 1)) where

V and E ′ are associated with matrices [Ā], [C]. While not considered here, it will be interesting to

evaluate the scenario where links are not restricted to have the same cost. We might not be able to
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Algorithm 4 Practical Solution to Constrained Optimization of DCS
1: function Optimization(([Ā], [C]))
2: Let graph G be generated from [Ā], [C], [A] = [Ā].
3: for i = 1 : n do
4: if |NO

xi
| > q + 2 then

5: Solve maximum flow by using Dinic’s algorithm on hi(f(G)) from source xi to
sink o

6: If xi is observed (or unobserved), keep q (or respectively q + 1) neighbors in X
through which ∃ a maximum flow. Delete edges to other outgoing neighbors in X − xi

7: Update G, [A]
8: end if
9: end for
10: return [A]
11: end function

solve such a problem optimally, though some sort of greedy algorithms may be used.

Constrained Design: Agent Attacks

Let Si be a vertex separator between xi and o in f ′(G).

minimize
[A]

‖A‖0 (5.62)

subject to [A](i, i) 6= 0, i ∈ {1, . . . , n},

|Si| ≥ q + 1, ∀ i s.t. θ(xi,Y) = 0,

[Ā](u, v) = 0 =⇒ [A](u, v) = 0, u, v ∈ {1, . . . , n}.

We now obtain the following result related to problem (5.62) which states that if the problem is

feasible, there always exists a solution to problem (5.62)which is also a solution to the unconstrained

optimization problem (5.57).

Theorem 5.24. Suppose there exists a feasible solution to problem (5.62). Then, the optimal

solution to problem 5.62 satisfies ‖A‖∗0 = m+ (n−m)(q + 2).

Proof. We argue that Algorithm 5 can be used to obtain an optimal solution to problem (5.62).

It suffices to show step 4 is feasible for an arbitrary G which is not discreetly attackable and is
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Algorithm 5 Constrained Optimization of DCS
1: function Optimization(([Ā], [C]))
2: Let graph G be generated from [Ā], [C], [A] = [Ā].
3: while ‖A‖0 > m+ (n−m)(q + 2) do
4: Find an edge (xi, xi′) whose removal still ensures there are no zero dynamics attacks

on G.
5: G = G − (xi, xi′), [A]i′i = 0.
6: end while
7: return [A]
8: end function

non-minimal. To do this, we observe there must exist an unobserved agent xi with out-degree

|NO
xi
| > q + 2 or an observed agent xi with out-degree |NO

xi
| > 2 if the system is non-minimal.

Select such an xi. If xi is unobserved there exists at least q+ 1 disjoint paths from xi to o. Because

xi has out-degree greater than q + 2, there exists an edge (xi, xi′) whose removal ensures xi still

has q + 1 disjoint paths to o so that |Si| ≥ q + 1 in f ′(G) − (xi, xi′). If xi is observed and has

out-degree greater than 2, we can delete an arbitrary edge (xi, xi′).

Now consider arbitrary unobserved xj not equal to xi in G. We must show that |Sj| ≥ q + 1

where Sj is a minimum vertex separator of xj and o in f ′(G)− (xi, xi′). Suppose |Sj| < q+ 1. We

observe that {Sj, xi} is a vertex separator of xj and o in f ′(G). Since G is not discreetly attackable,

|{Sj, xi}| ≥ q + 1. Consequently, xi /∈ Sj , |Sj| = q, and {Sj, xi} is a minimal vertex separator of

(xj, o) in f ′(G).

Lets remove Sj from f ′(G) − (xi, xi′). We first argue there must still be a path from xj to xi.

Suppose instead that removing Sj from f ′(G) − (xi, xi′) deletes all paths from xj to xi. Then,

removing Sj from f ′(G) deletes all paths from xj to xi in f ′(G). However, since {Sj, xi} is a

minimal vertex separator of xj and o in f ′(G), removing Sj from f ′(G) would mean there still

exists a path from xj to o containing xi. By contradiction, there must still be a path from xj to xi

after deleting Sj from f ′(G)− (xi, xi′).

We now show there exists a path from xi to o after removing Sj from f ′(G) − (xi, xi′). If xi

is unobserved there are at least q + 1 disjoint paths from xi to o in f ′(G)− (xi, xi′). Deleting Sj ,
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Algorithm 6 Practical Solution to Constrained Optimization of DCS with Agent Attacks
1: function Optimization(([Ā], [C]))
2: Let graph G be generated from [Ā], [C], [A] = [Ā].
3: for i = 1 : n do
4: if xi is unobserved then
5: if |NO

xi
| > q + 2 then

6: Solve maximum flow by using Dinic’s algorithm on hi′(f ′(G)) from source xi
to sink o

7: Keep q + 1 neighbors in X through which ∃ a maximum flow from xi to o.
Delete edges to other outgoing neighbors in X − xi

8: Update G, [A]
9: end if
10: end if
11: if xi is observed then
12: if |NO

xi
| > 2 then

13: Delete edges to outgoing neighbors in X − xi
14: end if
15: end if
16: end for
17: return [A]
18: end function

which has q vertices, can remove at most q paths. Thus, there is still a path from xi to o. If xi is

observed, there is a directed edge from xi to o.

As a result, even after deleting Sj from f ′(G)− (xi, xi′), there exists a path from xj to xi and a

path from xi to o. Consequently, there exists a path from xj to o so that Sj is not a vertex separator.

Thus, by contradiction, any vertex separator Sj of (xj, o) in f ′(G)− (xi, xi′) satisfies |Sj| ≥ q + 1

if xj is unobserved. Therefore, G − (xi, xi′) is not discreetly attackable and step 4 is feasible.

Theorem 5.24 shows we can obtain a minimal network resilient to zero dynamics attacks even

with constraints on communication. We can again use Dinic’s algorithm in Algorithm 6 to solve

problem (5.62). The worst case complexity is less than O((n−m)(2|X |) 1
2 (|E|+ |V| − 1)) where

X and E are associated with matrices [Ā], [C].
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5.3.6 Joint Constrained Optimization of DCS for Detection

Since the constrained optimal solution, is also unconstrained optimal if it exists, the results in the

joint constrained case are similar to the joint unconstrained case. A significant deviation however

occurs when a solution calls us to minimize the number of sensors.

Joint Constrained Design: Agent and Sensor Attacks

Let Si be a minimal vertex separator between xi and o in f(G). The joint constrained design

problem is given as follows.

minimize
[A],[C]

α1‖A‖0 + α2m (5.63)

subject to |Si| ≥ q + 1, [A](i, i) 6= 0, i ∈ {1, . . . , n},

[Ā](u, v) = 0 =⇒ [A](u, v) = 0, u, v ∈ {1, . . . , n},

C ∈ Rm×n, m ∈ {q + 1, · · · , n},

‖Cj‖0 ≤ 1, j ∈ {1, . . . , n},

‖Ct‖0 = 1, t ∈ {1, . . . ,m}.

Theorem5.25. Consider problem (5.63). Suppose there exists a feasible solution. That is [Ā], [C] is

not discreetly attackable. Ifα1 > α2. Then every agent should be observed (m = n). Alternatively,

if α2 > α1, then m = q∗ where q∗ is the fewest number of sensors for which Problem (5.61) is

feasible. Finally, if α1 = α2, thenm can be chosen arbitrarily from {q∗, · · · , n}

Proof. For a fixed set of dedicated sensors, we can solve (5.61) to obtain the joint solution. Since

‖A‖∗0 = (q+2)n−m for a fixed set of sensors, the optimal value of (5.59) is (α2−α1)m+α1(q+2)n.

The result follows.

Again, if α1 > α2, so that communication is more costly the sensing, it is optimal to observe

all sensors. If α2 > α1, we must first obtain a set of dedicated sensors [C∗] with C∗ ∈ Rq∗×n which

makes Problem (5.61) feasible. Given C∗, Problem (5.63) can be solved using Problem (5.61).
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We note that determining q∗ is a combinatorial problem. Future work aims to discover efficient

solutions.

Joint Constrained Design: Agent Attacks

In the case of agent only attacks, we have

minimize
[A]

α1‖A‖0 + α2m (5.64)

subject to [A](i, i) 6= 0, i ∈ {1, . . . , n},

|Si| ≥ q + 1, ∀ i s.t. θ(xi,Y) = 0,

[Ā](u, v) = 0 =⇒ [A](u, v) = 0, u, v ∈ {1, . . . , n},

C ∈ Rm×n, m ∈ {q + 1, · · · , n},

‖Cj‖0 ≤ 1, j ∈ {1, . . . , n},

‖Ct‖0 = 1, t ∈ {1, . . . ,m}.

where Si is a vertex separator between unobserved xi and o in f ′(G).

Theorem 5.26. Consider problem (5.64). If (q+ 1)α1 > α2. Then every agent should be observed

(m = n). Alternatively, if α2 > (q + 1)α1, then m = q∗ where q∗ is the fewest number of sensors

for which Problem (5.62) is feasible. Finally, if (q + 1)α1 = α2, thenm can be chosen arbitrarily

from {q∗, · · · , n}

Proof. For a fixed set of dedicated sensors, we can solve (5.62) to obtain the joint solution.

Since ‖A‖∗0 = (q + 2)(n − m) + m for a fixed set of sensors, the optimal value of (5.64) is

(α2 − (q + 1)α1)m+ α1(q + 2)n. The result follows.

Again, if α2 > (q+ 1)α1, we must first obtain a set of dedicated sensors [C∗] with C∗ ∈ Rq∗×n

which makes Problem (5.62) feasible. Given C∗, Problem (5.64) can be solved using Problem

(5.62). Again determining q∗ is a combinatorial problem.
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In the case that q = 0 for zero dynamics attacks, we can efficiently determining the minimum

number of sensors required and thus obtain an efficient solution. Note that q = 0 for zero dynamics

attacks corresponds to solving the problem for q = 1 and perfect attacks. Thus, this solution is

relevant.

Strongly Connected Component Decomposition

We first consider the graph GX = (X , EX ,X) obtained by removing all observers and only consid-

ering the structural system associated with [Ā]. The digraph GX is strongly connected if there is a

path between any pair of vertices. Moreover, a strongly connected component (SCC) is a maximum

subgraph of GX , that is strongly connected.

It is noted that any digraph can be uniquely decomposed into disjoint SCCs. Moreover, we

can represent such a decomposition using a directed acyclic graph (DAG), that is, a graph without

cycles [76]. A supernode in such a graph corresponds to a single SCC and there exists a directed

edge between two SCCs if and only if there exists an edge between vertices belonging to the

corresponding SCCs. We say that an SCC is non-bottom linked if there is no outgoing directed

edge from that SCC to another SCC. Otherwise it is bottom linked. Let GXS = (VS, ES) denote the

DAG obtained from the SCC decomposition of GX . We can obtain the DAG in O(|X | + |EX ,X |)

time complexity [77].

Case q = 1

Given the SCC decomposition of GX we can characterize the number of observers needed to ensure

structural left invertibility when the defender must be resilient to q = 1 attackers. In particular we

have the following result.

Theorem 5.27. The minimum number of observers needed for [Ā] to avoid being perfectly attack-

able when q = 1 is given by the number of non-bottom linked SCCs in GXS .
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Proof. To avoid perfect attacks when q = 1, there must exist at least one directed path from every

node to an observer. This holds both for agent attacks, and agent and sensor attacks. We first argue

that each non-bottom linked SCC requires one unique observer. Suppose instead that a non-bottom

linked SCC X1 ∈ VS does not have an observer. Let xi ∈ X1. There must be a directed path

from xi to an observer. However, since X1 has no outgoing edges to another SCC, such a path can

not exist. Thus, the number of non-bottom linked SCCs in GXS is a lower bound on the number of

observers needed.

We next show that there exists a system which is not perfectly attackable with a number of

observers equal to the number of non-bottom linked SCCs in GXS . To do this, we arbitrarily assign

an observer to each non-bottom linked SCC. Suppose xi is in a non-bottom linked SCC. Since

the SCC is strongly connected, there exists a path from xi to an observer. Suppose instead that xi

is in a bottom linked SCC. We observe that in GXS , there must exist a path from a bottom linked

SCC Xj ∈ VS to a non-bottom linked SCC Xl ∈ VS . If not, GXS contains a cycle. However, by

construction [76], GXS is an acyclic graph. Thus, there exists a path from a bottom linked SCC to a

non-bottom linked SCC. This implies that there exists a directed path from xi to an observer. As a

result, the system is not perfectly attackable.

In the case that q = 1 for perfect attacks, the above theorem states that the fewest number of

observers needed is equal to the number of non-bottom linked SCCs. This allows us to solve the

joint constrained problem for design in (5.63) and (5.64) when q = 1 for perfect attacks by first

obtaining a minimum sensor placement and then solving (5.61) or (5.62).

5.3.7 Examples

Illustrative Example

We provide an illustrative example which shows how we obtain the solution of Problem 5.61

based on Algorithm 4. Consider a 6-state system measured by 3 sensors, as depicted in Fig. 5.2.

The graphical representation of the constraint matrix [Ā] is depicted in Fig. 5.2(a) with self loops
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n r ‖[A]‖0 q m ‖A‖∗0 Runtime (sec)
100 0.15 732 1 10 290 425.58
100 0.2 1080 1 10 290 776.31
100 0.3 2120 1 10 290 1766.97
100 0.2 1070 2 15 385 768.49
100 0.2 1038 3 20 480 682.13
50 0.2 232 1 10 140 25.11
150 0.2 2536 1 10 440 1.1430× 104

Table 5.1: Runtime of Algorithm 4 for different n, q, r parameters to obtain Minimal Constrained
DCS Network Design.

abstracted away. If [Ā](u, v) is not a fixed zero, there exists an edge (xv, xu). Suppose the goal is

to design an optimal communication network which prevents all perfect attacks when q = 2 and

all zero dynamics attacks when q = 1. Recalling Algorithm 4, we start with the digraph associated

with [Ā], and for each of the state vertices xi we keep enough outgoing agent neighbors to ensure

the size of the minimum vertex separator between (xi, o) is q + 1 (to ensure the system is not

discreetly attackable) or q (to ensure the system is not perfectly attackable). Figs. 5.2(b)-5.2(d)

show the results of these iterations.

Formation Control

Consider a multi-agent system with n agents, where the agents are able to locally communicate

with each other. The goal of formation control could be organizing the agents according to certain

2-D formations. In the simulation, we generated an n×2matrix of random variables under uniform

distribution U [0, 1], which represent the initial location of n agents.

We again consider problem (5.61). Due to communication cost and noise, the communications

between agents are restricted to a certain radius r. As a result, we can compute the constraint

matrix [Ā] by enumerating the distance between every pair of agents. More precisely, if the

distance between the i-th agent and j-th agent is less than r, then [Ā](i, j) = [Ā](i, j) 6= 0.

Otherwise, [Ā](i, j) = [Ā](i, j) = 0. Under such a constraint matrix, the goal is to design a

minimum communication network [A], which prevents zero dynamics attacks (the defender does
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(a) Original graph, i.e., the constraint matrix (b) For x1, x3 and x5, delete edge to x2, x4,
and x6, respectively.

(c) For x2, delete edge to x1. (d) For x4 and x6, delete edge to x2.

Figure 5.2: Process of Algorithm 4, startingwith the constraint matrix in (a). This obtainsminimum
constrained DCS Network Design.

not know the initial state) from q malicious sensors and actuators. To generate [C], we apply graph

clustering [78] to the graph associated with [Ā] and group the vertices into five clusters. In each

cluster, we assign q + 1 sensors to q arbitrary state vertices.

Note that the structural system ([Ā], [C]) constructed based on the previous discussion is not

necessarily left invertible and strongly observable with respect to q attacks. In other words, feasible
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solutions may not exist for some of the randomly generated pairs ([Ā], [C]). The following results

only consider those ([Ā], [C]) pairs with a feasible solution. Table 5.1 lists the simulation results,

where we consider different values of n, q and r, and record the runtime of Algorithm 4 using a

Macbook Pro running Ubuntu Linux with a 2.7 GHz Intel Core i5 processor. In order to compute

q + 1 essential neighbors of xi, we incorporate the toolbox TOMLAB/CPLEX.



Chapter 6

Information Flow for Attack Detection

In the previous chapters we have discussed several methods for performing active detection. Specif-

ically, we have introduced physical watermarking, the moving target, and robust structural design.

In this chapter, we introduce a formal architecture which can help guide a defender in the analysis

and design of systems that are resilient to undetectable attacks. In particular, we introduce the

notion of information flows as a means to characterize detectability of attacks. Here, we borrow

nomenclature from the study of information flow in software security, which was used to charac-

terize properties of secrecy. Roughly speaking, a designer’s goal in such systems was to restrict the

flow of information to ensure sensitive information was available to only the appropriate parties. In

our work, our goal is to in fact design systems that elicit the flow of information from an attacker’s

actions to the defender’s outputs. We propose the KL divergence as a suitable metric to character-

ize this information flow and demonstrate its effectiveness in characterizing the stealthiness of an

attacker. We conclude by offering a design methodology, which can aid a defender in designing

systems that can actively detect an adversary, and investigating the information flow generated by

several attack and defense strategies. The results in this chapter are largely based on [79] and [80].

208
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6.1 Active Detection as Causal Information Flow

6.1.1 System Model

We consider a control system with discrete linear time varying model given below.

xk+1 = Akxk +Bkuk + wk, yk = Ckxk + vk. (6.1)

As done previously, xk ∈ Rn is the state, uk ∈ Rp is the set of control inputs and yk ∈ Rm

is the set of sensor outputs. Once more, wk ∼ N (0, Q) and vk ∼ N (0, R) are independent and

identically distributed (IID) process and IIDmeasurement noise respectively whereR > 0. Wewill

additionally consider a version of the system where Ak, Bk, Ck are constant and given by A,B,C

respectively. We assume here that (A,Q
1
2 ) is stabilizable. We consider a finite horizon T . We will

also consider a deterministic setup where

xk+1 = Akxk +Bkuk, yk = Ckxk. (6.2)

We let Ik be the information available to the defender at time k after making a measurement.

In the stochastic setting, the initial state x0 is unknown. However, the defender knows that

f(x0|I−1) = N (x̂0|−1, P0|−1). The defender at time −1 is aware of the system model M =

{{Ak, Bk, Ck}, Q,R, x̂0|−1, P0|−1}. In the deterministic setting, if the defender knows x0, we have

M = {{Ak, Bk, Ck}, x0} If the defender does not know x0, we haveM = {{Ak, Bk, Ck}}. In

total the defender’s information at time k is given by

Ik = {y0:k, u0:k−1,M}. (6.3)

Thus, I−1 = M. Therefore, the defender is a central entity having cumulative knowledge of the

dynamics of the system and the history of outputs and inputs. We now aim to define an admissible

defender strategy.

Definition 6.1. An admissible defender strategy is a sequence of deterministic functions

{U−1,U0, · · · ,UT−1} which take the defender’s information and maps it to a feasible action on the

system. The set of feasible defense strategies are denoted by UT = {U−1:T−1|U−1:T−1 is feasible }
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We keep the definition of an admissible defender strategy general to account for the various

actions the defender can introduce. Physical watermarking at the control input, either through

additive Gaussian inputs or intentional packet drops represent a viable defender action. In this

case, for k ≥ 0, uk = Uk(Ik). The action can be represented as a deterministic function since the

watermark is in fact a deterministic function of the seed of a pseudo random number generator,

which is known to the defender. Other possible actions can include a change in system parameters

according a moving target approach. In this case U−1(I−1) = {Ak, Bk, Ck}. Since {Ak, Bk, Ck}

is chosen exclusively using a pseudorandom number generator, it is a deterministic function of the

defender’s information. Aone time change in the systemmatrices as dictated in our chapter on robust

structural design can also be captured using U−1. For instance, we can have U−1(I−1) = {A,C}.

In this chapter, we assume uk = Uk(Ik) for k ≥ 0. In addition, if the defender has available degrees

of freedom, U−1(I−1) = {Ak, Bk, Ck}.

We assume that the defender implements some passive bad data detector to determine whether

the system is operating normally, denoted by a null hypothesisH0, or if there exist an abnormality

(or possible attack), denoted by a state ofH1. We define an admissible detector as follows.

Definition 6.2. An admissible defender detector strategy is a sequence of deterministic functions

{Ψ0,Ψ1, · · · ,ΨT}, which take the defender’s information and maps it to a binary decision H0 or

H1.

Thus, at each time k, the defender intelligently constructs a function Ψk which maps the

defender’s available information to a decision about the state of the system, whether it is operating

normally or has faulty and/or malicious behavior. The probability of detection βk and false alarm

αk are given by

βk = Pr(Ψk(Ik) = H1|H1), αk = Pr(Ψk(Ik) = H1|H0). (6.4)
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6.1.2 Adversarial Model

We now aim to model an attacker in a CPS. The attacker’s actions are a function of the adversarial

information. Unlike the defender, the adversary in our setting has potentially two opportunities to

act on the system. The attacker can first act given information Ia−k which potentially includes the

control input uk−1 sent by the defender, but does not include the true output of the system. The

attacker can again act when the true measurement is received. We refer to the attacker’s information

at this point to be Iak . With this, we can define an admissible attack strategy.

Definition 6.3. An admissible attack strategy is a sequence of deterministic functions

{Ua0 ,Ua−1 ,Ua1 , · · · ,Ua−T ,UaT} which take the attacker’s information and maps it to a feasible action

on the system.

The given definition can capture very general attack strategies. For instance, a topology attack

time k can be represented as Uak (Iak ) = {Ak}. A denial of service attack can introduce packet

drops at the input or output. For instance a drop at the control input can can be characterized as

uk−1 = Ua−k (Ia−k ) = 0. However, as considered in the rest of this thesis, we focus on integrity

attacks. In this case, the system model is given by

xk+1 = Akxk +Bkuk +Bauak + wk, (6.5)

yk = Ckxk +Dadak + vk. (6.6)

Wemake the assumption here that an attacker is restricted to manipulate a fixed set of inputs and

outputs described by the matrices Ba and Da. We assume Ba ∈ Rn×p∗ . The sensor attack matrix

Da ∈ Rm×m∗ is constructed under the assumption that some setm∗ sensors can be modified. Note

for simplicity we assume Ba andDa are constant matrices with no nontrivial null space. However,

we can also consider the time varying case.

Here, we assume at a minimum that the adversary is aware of his or her own input history.

Moreover, the adversary may have the ability to read a subset of control inputs uk or sensor outputs

yk from the defender. For instance, if the attacker can modify channels, he may also be able to
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intercept signals sent along these channels, thereby utilizing a man in the middle attack. The

portion of inputs and outputs the attacker and defender can read are public and are denoted upuk , y
pu
k .

Finally, the adversary may have some imperfect prior knowledge of the plant M̂, the controller Ĉ,

and the detector D̂. The adversary’s information is

Ia−k = {ua0:k−2, d
a
0:k−1, u

pu
0:k−1, y

pu
0:k−1,M̂, Ĉ, D̂}. (6.7)

Iak = {ua0:k−1, d
a
0:k−1, u

pu
0:k−1, y

pu
0:k,M̂, Ĉ, D̂}. (6.8)

As a result, in this setting uak−1 = Ua−k (Ia−k ) and dak = Uak (Iak ).

6.1.3 Information Flow: Background

In this subsection we introduce the notion of information flows as it relates to software security and

propose its use for characterizing detectability in control systems.

Definition 6.4 ([81]). An information flow exists from object x to object y whenever information

stored in x is transferred to, or used to derive information transferred to y.

Information flow has been traditionally used to restrict flows of information to ensure properties

of secrecy. For instance, [82] considered a lattice based security structure with a finite number

of security classes having a partial ordering. Each object such as a variable, array, or file has a

security class. In US intelligence, examples of security classes includes unclassified, confidential,

secret, and top secret. Information can flow from unclassified objects to top secret objects but not

vice versa. [81] proposed program certifications to ensure only valid information flows existed.

Goguen and Meseguer [83] demonstrated that information flow can be used to express very

general security policies including multi-level security, capability passing, confinement, discre-

tionary access control, downgrading, and channel control. These policies can be implemented

using noninterference assertions.

Definition 6.5. An object H is non-interfering with an object L if the behavior of H has no effect

on the information of L. Thus, there is no information flow from H to L.
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Significant research has investigated how to design systems with non-interference properties

[84], [85], [86]. We however wish to design systems where there does in fact exist interference.

Specifically, it has been recently noted that information flow can be related to the problem of

detection [87]. For instance, aspects of digital watermarking to detect copyright infringement

and traitor tracing to detect stolen keys make use of information flow analysis in order to detect

malicious flows of information.

Moreover, the authors propose information flow experiments in order to detect information

flows. The specific application considered is web data usage detection where the aim is to determine

if the information collected by a user at a website impacts the treatment of the user on that and

affiliated websites. During an information flow experiment subjects are randomly assigned to either

an experimental group or control group. The differences between each group is carefully controlled.

In the case of web data usage detection, the experimental group interacted with websites while

the control group remained idle. A hypothesis test is used to determine if the resulting website

treatment (as determined by ads) is different.

In the CPS security case, the experimental group is the true system which may or may not be

under attack, while the control group is represented by a model. The measurements of a system

are compared to the expected outputs to determine if there exists an information flow from a

potential adversary to the sensor measurements. A hypothesis test in particular is leveraged to

detect an information flow coming from an adversary. If an adversarial strategy does not generate

measurements that can be distinguished from themeasurements of a system under normal operation,

we would say no information flow exists. Such an attack can not be detected. On the other hand, if

the attacker’s actions generate measurements that can be distinguished from the expected behavior

of the system operating normally, then an information flow has been generated. In this case, an

attack can be detected.

In stochastic systems, we would like a metric to characterize attack detectability. Quantitative

information flow has been studied in the past. Most quantitative measures have been associative

[88]. Associative measures of information flow, which quantify correlation, attempt to evaluate
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how much information is leaked between two objects and thus provide utility in secrecy and

privacy applications. More recently, causal measures for information flow have been explored [89].

Causal measures quantify the extent to which changing an input changes the system output. This

is suitable for detection as we aim to characterize how much an attacker’s influence perturbs the

sensor measurements in our system.

6.1.4 The KL Divergence as a measure of Information Flow

Deterministic Systems

In this section, we propose metrics to measure the information flow introduced by the attacker’s

inputs. In deterministic systems, we assume wk and vk are 0. Detection in deterministic systems is

also deterministic. As a result, we propose a binary measure of information flow below.

Definition 6.6. Assume x0 is known to the defender. The deterministic information flow IFD
T from

the attacker’s inputs (Ua0:T ,Ua−1:T ) to the defender’s outputs y0:T at time T is 0 if for 0 ≤ k ≤ T

yk(x0,U−1:k−1, 0, 0) = yk(x0,U−1:k−1,Ua0:k,Ua−1:k ).

Otherwise IFD
T =∞.

By construction, the control inputs are a deterministic function of the prior inputs and outputs,

the initial state, and the known sequence of systemmatrices. As such, the sequence of sensor outputs

is entirely deterministic and known to the defender, thus validating our measure of detectability.

Definition 6.7. Assume x0 is not known to the defender. The deterministic information flow IFD
T

from the attacker’s inputs (Ua0:T ,Ua−1:T ) to the defender’s outputs y0:T at time T is 0 if for 0 ≤ k ≤ T

there exists x′0 ∈ Rn

yk(x
′
0,U−1:k−1, 0, 0) = yk(x0,U−1:k−1,Ua0:k,Ua−1:k ).

Otherwise IFD
T =∞.
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By construction, the control inputs are a deterministic function of the prior inputs and outputs

and the known sequence of system matrices. As such, for a given initial state, the sequence of

sensor outputs is entirely deterministic and known to the defender, thus validating our measure of

detectability.

Stochastic Systems

We propose the KL divergence as a measure of information flow in the stochastic setting. We

introduced the KL divergence in Chapter 2, but revisit here. For definiteness, we assume that all

discrete time stochastic processes of interest considered hereafter induce (joint) distributions on the

path space that are absolutely continuous with respect to Lebesgue measure. Thus, they possess

densities in the usual sense. The KL divergence between a distribution with probability density

function p(x) and a distribution with probability density function q(x) over a sample space X is

given by

DKL(p(x)||q(x)) =

∫

X

log

(
p(x)

q(x)

)
p(x)dx. (6.9)

The above definition can be generalized to probability measures. The KL divergence has the

following properties

1. DKL(p(x)||q(x)) ≥ 0 .

2. DKL(p(x)||q(x)) = 0 if and only if p(x) = q(x) almost everywhere.

3. DKL(p(x)||q(x)) 6= DKL(q(x)||p(x)).

We now use the KL divergence to define information flows in a physical system. To begin, denote

the conditional distribution of the output based on apriori information as follows.

DI−1,U−1:k−1,Ua0:k,U
a−
1:k

y0:k = f(y0:k|I−1,U−1:k−1,Ua0:k,Ua−1:k ).
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Definition 6.8. The information flow from the attacker’s inputs (Ua0:T ,Ua−1:T ) to the defender’s outputs

y0:T at time T is

IFT =
1

T + 1
DKL(DI−1,U−1:T−1,Ua0:T ,U

a−
1:T

y0:T ||DI−1,U−1:T−1,0,0
y0:T

).

The proposed definition of information flows, both in the deterministic and stochastic settings,

has many desirable properties, which make it compatible with existing measures of information

flow in cyber security. First, our measures allows us to recover the property of noninterference in

deterministic systems and probabilististic noninterference [90] in stochastic systems. There exists

interference from a high level object H to a low level object L if changing the behavior of H changes

the information of L.

In our model, the low level inputs are the defender’s actions, the high level inputs are the

attacker’s actions, and the low level outputs are the defender’s outputs y0:k. In a deterministic

system, with known initial state, if an adversary’s actions change the output y0:k, the information

flow is infinite, reflecting the fact that there is interference. However, if the output y0:k is the

same when the system is operating normally and under attack, indicating noninterference, the

deterministic information flow is 0. There exists probabilistic interference from a high level user to

a low level user if changing high level inputs measurably alters the distribution of low level outputs.

We see IFT = 0 if and only if there exists probabilistic noninterference.

While for simplicity, we consider a fixed window T for detection, we can consider the infor-

mation flow generated at each T as a means to characterize time to detection. For instance, in a

deterministic setting, if the deterministic information flow is 0 from time 0 to k − 1 but is infinite

at time k, then the time to detection is k.

We can use prior work to relate our measure of information flow to properties of detectability.

This brings us to the following theorem from [91] and [92].

Theorem 6.1. Let ε > 0. Suppose lim supk→∞ IFk > ε. Then there exists 0 < δ < 1 and a
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detector {Ψk} such that βk ≥ δ for all k ≥ 0 and

lim sup
k→∞

− 1

k + 1
log(αk) > ε.

In addition suppose the outputs generated under attack are ergodic. Suppose limk→∞ IFk ≤ ε.

For any detector {Ψk} that satisfies βk ≥ δ for all k ≥ 0, where 0 < δ < 1, we have

lim sup
k→∞

− 1

k + 1
log(αk) ≤ ε.

Finally IFT = 0 for all T ≥ 0 if and only if there is no k ≥ 0 and detector satisfying βk > αk.

The information flow is essentially equivalent to the optimal decay rate in the probability of

false alarm. As a result, information flow allows us to generically evaluate and compare the

detectability of different attack policies as a function of the defender’s active detection strategy.

However unlike other potential measures such as βk, the KL divergence can, in many case, be

efficiently characterized.

We note that it may be difficult to compute the KL divergence of the outputs y0:T directly. For

instance, if a control policy includes nonlinear feedback, the Gaussian property of the output is

destroyed, which likely removes the ability to obtain closed form distributions of the output. We

can instead consider the normalized residue zk, obtained from a Kalman filter. The Kalman filter

is given by:

x̂k+1|k = Akx̂k|k +Bkuk, x̂k|k = (I −KkCk)x̂k|k−1 +Kkyk,

Pk+1|k = AkPk|k−1A
T
k +Q− AkPk|k−1C

T
k (CkPk|k−1C

T
k +R)−1CkPk|k−1A

T
k ,

Kk = Pk|k−1C
T
k (CkPk|k−1C

T
k +R)−1, zk = (CkPk|k−1C

T
k +R)−

1
2 (yk − Ckx̂k|k−1).

Recall that the normalized residue zk is a normalized measure of the difference between the

defender’s outputs and the expected outputs derived from the state estimate. We now have the

following result.
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Lemma 6.1. Consider the stochastic setting. The set of residues f(z0:k|I−1,U−1:k−1) = N (0, I)

when the system is operating normally. Moreover given I−1 and an admissible defense strategy

U−1:k−1, z0:k is an invertible function of y0:k.

Proof. We know f(z0:k|I−1,U−1:k−1) = N (0, I) from [93]. We use the fact the time varying

system matrices are known to the defender due to I−1 and the fact the residue is independent of the

control input.

We now prove that z0:k is an invertible function of y0:k for an admissible control strategy by

induction on k. We can trivially obtain z0:k from y0:k using a Kalman Filter so we focus on obtaining

y0:k from the residues z0:k.

1) Case k = 0: y0 = C0x̂0|−1 + (C0P0|−1C
T
0 +R)

1
2 z0 and the result holds.

2) Case k = j: We assume z0:j is an invertible function of y0:j .

3) Case k = j + 1, we observe that

x̂j+1|j = Ajx̂j|j−1 + AjKj(CjPj|j−1C
T
j +R)

1
2 zj +Bjuj.

First, ul = Ul(Il) = Ul(y0:l, u0:l−1,M) for l ≤ j. Given z0:l, by our induction assumption, we can

obtain y0:l and consequently compute u0:l for l ≤ j. As such, given z0:j we can compute x̂j+1|j .

We then see that yj+1 = (Cj+1Pj+1|jCT
j+1 +R)

1
2 zj+1 +Cj+1x̂j+1|j which concludes the proof.

Because the residues and outputs are related by an invertible mapping, we can show their KL

divergences are equal [94].

Theorem 6.2. The KL divergence between sensor outputs and between residues are equivalent.

DKL(DI−1,U−1:T−1,Ua0:T ,U
a−
1:T

y0:T ||DI−1,U−1:T−1,0,0
y0:T

) = DKL(DI−1,U−1:T−1,Ua0:T ,U
a−
1:T

z0:T ||DI−1,U−1:T−1,0,0
z0:T

)

Due to Theorem 6.2, we can analyze the residues operating normally and under attack instead

of the system output when computing the information flow. Residues under normal operation have

a known zero-mean Gaussian distribution. If the distribution of the residue under attack remains
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Gaussian, a closed form solution exists for the KL divergence. The KL divergence between two

Gaussian distributions N1 = N1(µ1,Σ1) and N0 = N0(µ0,Σ0) with µ1 ∈ Rl is [95]

DKL(N1||N0) = − l
2

+
1

2
tr(Σ−1

0 Σ1) +
1

2
log det

(
Σ0Σ−1

1

)
+

1

2
(µ1 − µ0)TΣ−1

0 (µ1 − µ0).

Even if the attacker’s policy preserves the Gaussianity of the residues, it may still be difficult

to compute the KL divergence of z0:k since it is a growing sequence. Fortunately, we can leverage

the independence of the residues to obtain the following bound.

Theorem 6.3. The information flow generated by an adversary can be lower bounded by the sum

of the residue-based KL divergences generated at each time step.

IFT ≥
T∑

k=0

DKL(DI−1,U−1:k−1,Ua0:k,U
a−
1:k

zk ||DI−1,U−1:k−1,0,0
zk )

T + 1
.

Proof. By Theorem 6.2 and Bayes rule we know

IFT =
T∑

k=0

DKL(DI−1,U−1:k−1,Ua0:k,U
a−
1:k

zk|z0:k−1
||DI−1,U−1:k−1,0,0

zk )

T + 1
.

Thus, we observe

IFT − IFLB
T =

T∑

k=0

I
I−1,U−1:k−1,Ua0:k,U

a−
1:k

zk,z0:k−1

T + 1
.

where IFLB
T is the obtained lower bound and Izk,z0:k−1

is the mutual information between zk and

z0:k−1 which is nonnegative.

Instead of computing the KL divergence of vectors z0:k ∈ Rmk, which in general requires us to

store and compute the determinant of a matrix in Rmk×mk, we can instead obtain a recursive lower

bound by computing the sum of T divergences for vectors zk ∈ Rm. Moreover, note that the gap

between the lower bound and IFT is the scaled sum of mutual informations between zk and z0:k−1

so that if attack residues are independent, the gap is 0.
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6.1.5 A Methodology for Design

In this section, we provide loose guidelines for the design of resilient CPS in order to detect

adversaries actively. To do this, we first introduce the following definitions.

Definition 6.9. An attack strategy {Ua0:T ,Ua−1:T} generates an unconditional ε−weak information

flow at time T if for all feasible defense strategies U−1:T−1 in UT , we have IFT ≤ ε.

Definition 6.10. Let UT ⊂ UT . An attack strategy {Ua0:T ,Ua−1:T} generates an UT conditional

ε−weak information flow at time T if for all feasible defense strategies U−1:T−1 in UT , we have

IFT ≤ ε.

Definition 6.11. A defense strategy U−1:T−1 generates an Ua
T conditional ε−strong information

flow at time T if for all feasible attack strategies {Ua0:T ,Ua−1:T} in Ua
T , we have IFT > ε.

Note in deterministic systems, we will consider the metric IFD
T instead of IFT in the above

definitions. Consider a defender who has degrees of freedom represented by UT and a current

defense policy given by U−1:T . Suppose the defender wishes to detect an attack {Ua0:T ,Ua−1:T} with

IFT > ε. We first require the defender categorize the information flow. If the defense strategy

U−1:T−1 generates a {Ua0:T ,Ua−1:T} conditional ε−strong information flow at time T , then adequate

detection performance is obtained and no further actions need to be taken.

On the other hand, suppose {Ua0:T ,Ua−1:T} generates anUT conditional ε−weak information flow

at time T where U−1:T−1 ⊂ UT , but UT is a strict subset of UT . Then, we must try to search

for defense policies (active detection strategies) in UT which allow us to generate a {Ua0:T ,Ua−1:T}

conditional ε−strong information flow. Such a policy, in addition to security, must balance

performance and cost constraints. Moreover, ideally we can find such a defense policy (active

detection strategy) that retains our ability to detect other realistic attack vectors. For instance, if

we desire that IFT > ε for all feasible attack vectors in Ua
T , we need U−1:T−1 to generate an Ua

T

conditional ε−strong information flow.
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Finally, suppose {Ua0:T ,Ua−1:T} generates an unconditional ε−weak information flow at time T .

In this case, regardless of the chosen active detection policy, we are unable to obtain adequate

levels of detection. In this case, it might be necessary to increase the defender’s degrees of freedom

(i.e. expand UT ) in order to achieve adequate detection of a given attack vector. The design

methodology is illustrated in Fig. 6.1.

Figure 6.1: A simple design methodology for introducing adequate information flows via active
detection
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6.1.6 Examples

In this section, we consider several simple examples which illustrate the utility of our information

flow metric for detection.

False Data Injection Attacks

Assume that the adversary injects additive inputs which are independent of the defender’s system

outputs. Thus, we assume

uak−1 = Ua−k (ua0:k−2, d
a
0:k−1,M̂, Ĉ, D̂),

dak = Uak (ua0:k−1, d
a
0:k−1,M̂, Ĉ, D̂). (6.10)

Such attacks are known as false data injection attacks. We now have the following result, allowing

us to compute the information flow generated by false data injection attacks.

Theorem 6.4. Consider an admissible adversarial policy which satisfies (6.10). Then,

IFT =
1

2(T + 1)
∆zT0:T∆z0:T , (6.11)

where ∆zk satisfies ∆e−1 = 0 and

∆ek+1 = (Ak −Kk+1Ck+1Ak)∆ek + (I −Kk+1Ck+1)Bauak −Kk+1D
adak+1

∆zk = (CkPk|k−1C
T
k +R)−

1
2

(
CkAk−1∆ek−1 + CkB

auak−1 +Dadak
)
. (6.12)

Proof. Let zk be the normalized residue under attack and zsk be the normalized residue under

normal operation. Similar to the proof of Theorem 5.8, we know that

zk = zsk + ∆zk.

Moreover, froman inductive argument, we see that∆zk is a deterministic variable sinceUa0:k andUa−1:k

are known functions of deterministic variables. As a result, DI−1,U−1:k−1,Ua0:k,U
a−
1:k

z0:k = N (∆z0:k, I).

Finally, from Lemma 6.1, we know DI−1,U−1:k−1,0,0
z0:k = N (0, I). The result follows by computing

the KL divergence between normal distributions.
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We remark that ∆ek is the bias introduced in the estimation error of our Kalman filter due to

the false data injection attack.

There exists scenarios where a false data injection attack can be incredibly effective. Suppose

Ak, Bk, Ck are constant matrices and the Kalman filter has converged to a fixed gainK. Moreover,

define UT so that all defense strategies can only alter the control input. We have the following

result from [43].

Theorem 6.5. Given someB > 0, there exists a sensor attack satisfying ‖∆zk‖2 ≤ B for all k ≥ 0

while lim supk→∞ ‖∆ek‖2 = ∞ if and only if A has an unstable eigenvalue with corresponding

eigenvector v satisfying

1. Cv = Image(Da)

2. v is a reachable state of ∆ek = (A−KCA)∆ek−1 −KDadak.

This result can be framed in the context of information flows.

Corollary 6.1. There exists a destabilizing sensor false data injection which can generate an

unconditional ε−weak information flow for all time T ≥ 0 if A has an unstable eigenvalue with

corresponding eigenvector v satisfying

1. Cv = Image(Da)

2. v is a reachable state of ∆ek = (A−KCA)∆ek−1 −KDadak.

This result is easily seen by taking B =
√

2ε. We remark that such an attack generates an

unconditional ε−weak information flow sinceUT only allows a defender to provide active detection

through the control input. By increasing the feasible design space, such an attack may only generate

a U−1:T−1 conditional ε−weak information flow.

Intelligent active detection can allow us to elicit a strong information flow. For example, we can

utilize the hybridmoving target proposed in Chapter 4. In this caseU−1(I−1) = {Ak, Ck+1}. Recall
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from Theorem 4.9 that if a defender uses a moving target defense leveraging the design recommen-

dations listed in Chapter 4.2, then lim supk→∞ ‖∆ek‖2 =∞ =⇒ lim supk→∞ ‖∆zk‖2 =∞ with

probability 1. In other words, a destabilizing attacks results in an unbounded residue. We remark

that lim supk→∞ ‖∆zk‖2 =∞ on its own does not allow us to make any definitive statements about

the information flow as currently defined. However, if we redefine the time that k = 0, then we can

obtain unbounded information flow. In particular, we have the following.

Corollary 6.2. Define {Uk} so that the defender uses a moving target defense leveraging the design

recommendations listed inChapter 4.2. Suppose, using a sensor only attack, lim supk→∞ ‖∆ek‖2 =

∞. Then, with probability 1, for any ε > 0, there exists k′ ≥ k ≥ 0 which satisfy

1

k′ − k + 1
DKL(DI−1,U−1:k′−1,Ua0:k′ ,U

a−
1:k′

yk:k′ ||DI−1,U−1:k′−1,0,0
yk,k′ ) > ε.

Another effective technique for active detection was the robust design of systems in Chapter 5.

For example, suppose we design our system (A,C) so that (A, [Ba 0n×m∗ ], C, [0m×p∗ D
a]) is left

invertible and strongly observable for all feasible Ba and Da. As a result, U−1(I−1) = {A,C}.

FromTheorem 5.4 andCorollary 5.3, if lim supk→∞ ‖∆ek‖2 =∞, then lim supk→∞ ‖∆zk‖2 =∞.

Again, if we redefine the time that k = 0, we can obtain a strong information flow.

Corollary 6.3. Define {Uk} so that the defender designs (A,C) so (A, [Ba 0n×m∗ ], C, [0m×p∗ D
a])

is left invertible and strongly observable. Suppose, lim supk→∞ ‖∆ek‖2 =∞. Then, for any ε > 0,

there exists k′ ≥ k ≥ 0 which satisfy

1

k′ − k + 1
DKL(DI−1,U−1:k′−1,Ua0:k′ ,U

a−
1:k′

yk:k′ ||DI−1,U−1:k′−1,0,0
yk,k′ ) > ε.

Perfect Attacks and Zero Dynamics Attacks

Consider an LTI control system under attack defined by system matrices (A,B,C) and at-

tack matrices Ba and Da. Here, we assume Ba and Da have full column rank. Suppose

(A, [Ba 0n×m∗ ], C, [0m×p∗ D
a]) is not left invertible. Moreover, assume the defender’s strategy
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U−1:k−1 only changes the control input. From Theorem 5.2 and Theorem 5.6, we know we can

construct a destabilizing perfect attack. In the deterministic setting we know that for all k ≥ 0,

yk(x0,U−1:k−1, 0, 0) = yk(x0,U−1:k−1,Ua0:k,Ua−1:k ).

As a result IFD
T = 0 for all T . Such an attacker fails to generate an information flow. Perfect

attacks in a stochastic setting are equally effective. Since, a perfect attack introduces no net bias

into the sensor measurements, we know that

f(y0:k|I−1,U−1:k−1,Ua0:k,Ua−1:k ) = f(y0:k|I−1,U−1:k−1, 0, 0)

As such, IFT = 0 for all k in a perfect attack.

Suppose the defender does not know x0 in a deterministic setting. Suppose (A,C) is observable

but (A, [Ba 0n×m∗ ], C, [0m×p∗ D
a]) is not strongly observable. Moreover, assume the defender’s

strategy U−1:k−1 only changes the control input. From Theorem 5.4, we know we can construct a

zero dynamics attack. Here, there exists x′0 ∈ Rn such that for all k ≥ 0

yk(x
′
0,U−1:k−1, 0, 0) = yk(x0,U−1:k−1,Ua0:k,Ua−1:k ).

As a result IFD
T = 0 for all T . Here, in the absence of initial state information, the adversary avoids

generating an information flow. We can compute the information flow generated by a zero dynamics

attack in the stochastic setting. Here, we assume the Kalman gain Kk and error covariance Pk|k−1

have converged to K and P respectively. We have the following result.

Theorem 6.6. Suppose an attacker performs a zero dynamics attacks with the sequence of attack

inputs determined by (5.13). Thus, the zero dynamics attack is associated with initial state deviation

δx0. The information flow IFT generated by a zero dynamics attack is given by

IFT =
1

2(T + 1)

T∑

k=0

δxT0 ((A− AKC)k)TCT (CPCT +R)−1C(A− AKC)kδx0. (6.13)

Moreover, limT→∞ IFT = 0.
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Proof. We observe (6.13) is an immediate consequence of Theorem 5.8 and Theorem 6.4. Next,

let Σ = limT→∞
∑T

k=0((A−AKC)k)TCT (CPCT +R)−1C(A−AKC)k. Since (A−AKC) is

Schur stable, Σ is the finite solution to the following Lyapunov equation

Σ = (A− AKC)TΣ(A− AKC) + CT (CPCT +R)−1C.

As a result, we have limT→∞ IFT = limT→∞
1

2(T+1)
δxT0 Σδx0 = 0.

If the defender only has the degrees of freedom, as defined by UT , to change the control

input, we see that a perfect attack generates an unconditional 0-weak information flow both in the

deterministic and stochastic settings. In addition, if the defender does not know the initial state,

a zero dynamics attack generates an unconditional 0-weak information flow in the deterministic

setting. Finally, for any ε > 0, there exists a T ′ > 0 such that a zero dynamics attack generates an

unconditional ε-weak information flow at time T ≥ T ′ in the stochastic setting.

Increasing the degrees of freedom UT can allow a defender to actively detect these integrity

attacks and elicit a strong information flow.

Theorem 6.7. Suppose the defender designs (A,C) so that (A, [Ba 0n×m∗ ], C, [0m×p∗D
a]) is left

invertible. Thus, U−1(I−1) = (A,C). Assume x0 is known to the defender. Without loss of

generality assume that either da0 or ua0 is nonzero. Then for T ≥ n, IFD
T =∞.

Proof. We prove by contradiction. Suppose for some T ≥ n, we have

yk(x0,U−1:k−1, 0, 0) = yk(x0,U−1:k−1,Ua0:k,Ua−1:k ),

for 0 ≤ k ≤ T . From Theorem 5.1, this implies

δxk+1 = Aδxk +Bauak, 0 ≤ k ≤ T − 1, δx0 = 0, (6.14)

0 = δyk = Cδxk +Dadak, 0 ≤ k ≤ T. (6.15)

From, Corollary 1 of [96], since the system is left invertible, it is n delay invertible. Thus, we

can uniquely recover input ua0, da0 given δy0, · · · δyn. when δx0 = 0. We see that δyk = 0 for

0 ≤ k ≤ n. As a result, this implies both ua0 = 0 and da0 = 0, which is a contradiction.
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Let ε > 0. In the deterministic setting, for T ≥ n, we know that U−1:T−1 generates an

(Ua0:T ,Ua−1:T ) conditional ε−strong information flow at time T if the attacker’s strategy dictates da0

or ua0 is nonzero. We can obtain similar results by designing strongly observable systems.

Theorem 6.8. Suppose the defender designs (A,C) so that (A, [Ba 0n×m∗ ], C, [0m×p∗ D
a]) is left

invertible and strongly observable. Thus, U−1(I−1) = (A,C). Assume x0 is not known to the

defender. Without loss of generality assume that either da0 or ua0 is nonzero. Then for T ≥ n,

IFD
T =∞.

Proof. We prove by contradiction. Suppose for some T ≥ n, we have

yk(x0,U−1:k−1, 0, 0) = yk(x
′
0,U−1:k−1,Ua0:k,Ua−1:k ),

for 0 ≤ k ≤ T . From Theorem 5.3, this implies

δxk+1 = Aδxk +Bauak, 0 ≤ k ≤ T − 1, δx0 ∈ Rn, (6.16)

0 = δyk = Cδxk +Dadak, 0 ≤ k ≤ T. (6.17)

From, Theorem 4 of [97], since the system is strongly observable, we can uniquely recover input

δx0 given δy0, · · · δyn and unknown inputs. Since δy0, · · · δyn are all zero, we know δx0 = 0. Since

the system is left invertible, δyk = 0 for 0 ≤ k ≤ n, and δx0 = 0, we can uniquely recover ua0 and

da0. This implies both ua0 = 0 and da0 = 0, which is a contradiction.

Again in the deterministic setting, for T ≥ n, we know that U−1:T−1 generates an (Ua0:T ,Ua−1:T )

conditional ε−strong information flow at time T if the attacker’s strategy dictates da0 or ua0 is

nonzero.

Replay Attacks

Consider a stochastic LTI control system with system matrices A,B,C. In a replay attack, the

adversary observes a sequence of measurements from y−N to y−N+T−1. Then, without loss of

generality, at time 0, the attacker replays these measurements. Here, we will assume N ≥ T is
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large so that the adversary has an adequate buffer and that the replayed outputs are independent of

the current outputs. Moreover we assume the system at time −N is in steady state. In the ensuing

asymptotic results, we will make the assumption that N and T approach∞. We first argue that a

replay attack generates a conditional ε-weak information flow for common control policies U0:k−1.

For instance, consider a defender that uses state feedback with gain L so Uk(Ik) = Lx̂k|k. Let

A , (A+BL)(I −KC) and P̄ , (CPCT +R). It has been shown that [27]

zk = zk−N − P̄−
1
2CAk(x̂0|−1 − x̂−N |−N−1). (6.18)

If A is Schur stable, the second term converges to 0. Therefore, we have the following result.

Theorem 6.9. Suppose that our control system (2.1), (2.2) with state feedback control is under

replay attack, where A is Schur stable. Then, lim
T→∞

IFT = 0.

Proof. We observe from (6.18) that under replay attack

z0:k ∼ N (µr,Σr), (6.19)

µr(jm : jm+m− 1) = −P̄− 1
2CAkx̂0|−1, (6.20)

Σr(jm : jm+m− 1, lm : lm+m− 1) = P̄−
1
2CAjW(Al)TCT P̄−

1
2 + δ(l −m)I, (6.21)

whereW is the steady state covariance of x̂k|k−1 and δ refers to the discrete delta dirac function.

From Theorem 6.2, and Sylvester’s determinant theorem we have

DKL(DI−1,U−1:k−1,Ua0:k,U
a−
1:k

y0:k ||DI−1,U−1:k−1,0,0
y0:k

) =
c1 + c2 + c3

2

where

c1 = tr

(
k∑

j=0

P̄−
1
2CAjW(Aj)TCT P̄−

1
2

)
,

c2 =
k∑

j=0

x̂T0|−1(Aj)TCT P̄−1CAjx̂0|−1,

c3 = − log det

(
I +

k∑

j=0

W 1
2 (Aj)TCT P̄−1CAjW 1

2

)
.
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Let X1 and X2 be given by

X1 =
∞∑

j=0

AjW(Aj)T = AX1AT +W ,

X2 =
∞∑

j=0

(Aj)TCT P̄−1CAj = ATX2A+ CT P̄−1C.

From Lyapunov’s equation and since A is stable, the matrices X1 and X2 exist and are bounded.

Since c1, c2, and |c3| are monotonic in k, we have for all k

c1 ≤ tr
(
P̄−

1
2CX1C

T P̄−
1
2

)
, c2 ≤ x̂T0|−1X2x̂

T
0|−1, |c3| ≤ log det

(
I +W 1

2X2W
1
2

)
.

Consequently, for all k there existsM∗ satisfying

DKL(DI−1,U−1:k−1,Ua0:k,U
a−
1:k

y0:k ||DI−1,U−1:k−1,0,0
y0:k

) ≤M∗,

Dividing by k + 1, the result follows.

If A is stable, the adversary’s actions are asymptotically undetectable since the information

flow is 0. This result agrees closely with Theorem 2.1, but is obtained independently using our

new measure of information flow.

In this example, the defender’s control strategy U−1:T−1 of state feedback, leaves the system

vulnerable to a replay attack. We have observed that watermarking can be effective against replay

attacks. It is our argument that introducing a physical watermark can allow us to obtain a strong

information flow. We assume uk = Uk(Ik) = Lx̂k|k + ∆uk where ∆uk ∼ N (0,J ) is an IID

watermark. Note that while the watermark is random, it can be predetermined offline so that

Uk(Ik) remains a deterministic function. We now show watermarking creates a strong information

flow.

Theorem 6.10. Suppose the system (2.1), (2.2) with state feedback control and watermarking is

under replay attack, where ρ(A) < 1. Then, almost surely lim
T→∞

IFT ≥ ε, where

ε =
tr
(
P̄−1CΣCT

)

2
, Σ = AΣAT +BJBT .
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Proof. When under a replay attack, we have [27]

zk = zk−N − P̄−
1
2CAk(x̂0|−1 − x̂−N |−N−1)− P̄− 1

2C
k−1∑

j=0

Ak−1−jB (∆uj −∆uj−N) ,

where N is some unknown, but large delay between the replayed sequence and the true sequence.

Thus, under attack zk ∼ N (µk,Σk + I) with

µk = P̄−
1
2CAkx̂0|−1 + P̄−

1
2C

k−1∑

j=0

Ak−1−jB∆uj,

Σk = P̄−
1
2C[AkWAk T +

k−1∑

j=0

AjBJBTAj T ]CT P̄−
1
2 .

Thus, the KL divergence between zk under attack and under normal operation is given by

DKL(DI−1,U−1:k−1,Ua0:k,U
a−
1:k

zk ||DI−1,U−1:k−1,0,0
zk

) =
c1
k + c2

k + c3
k

2
, (6.22)

where

c1
k = µTk µk, c

2
k = − log det (I + Σk) , c

3
k = tr(Σk).

From (2.45), it is known that

c2
k + c3

k ≥ 0. (6.23)

Furthermore, by the law of large numbers, we know

lim
T→∞

1

T + 1

T∑

k=0

c1
k
a.s.→ tr

(
P̄−1CΣCT

)
. (6.24)

Using (6.22), (6.23) and (6.24), we know almost surely that

lim
T→∞

T∑

k=0

DKL(DI
−1,U−1:k−1,Ua0:k,U

a−
1:k

zk ||DI−1,U−1:k−1,0,0
zk )

T + 1
≥ ε. (6.25)

By Theorem 6.3, the result immediately follows.

From the theorem above, the defender can make the asymptotic information flow from an adver-

sarial input arbitrarily large (generating a strong information flow) by increasing tr
(
P̄−1CΣCT

)

which is a linear function of the watermark covariance J .
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In fact, previous work on IID watermarking [27] does aim to design watermarks by maximizing

tr
(
P−1CΣCT

)
subject to constraints on control performance in the system. Thus, our results

motivate the choice of this objective function. The use of information flows also allow us to extend

previous results to analyze optimal detection of replay attacks under watermarking scenarios.

Corollary 6.4. Consider a system with state feedback control and IID Gaussian watermarking

under a replay attack, where ρ(A) < 1. Let ε > 0. Then for some 0 > δ > 1 there exists a detector

such that βk ≥ δ, ∀ k ≥ 0 and

lim sup
k→∞

− 1

k + 1
log(αk) >

1

2
tr
(
P−1CΣCT

)
− ε. (6.26)

Proof. The result follows from Theorems 6.10 and 6.1.

6.1.7 Conclusions: Information Flow

In this chapter, we proposed a measure to characterize the detectability of an attack strategy as

a function of the defender’s strategy, motivated by the study of causal information flow. We

then briefly discussed a design methodology to ensure attacks generate adequate information flow.

Finally, we demonstrated how techniques for active detection allow us to increase the information

flow generated by a given adversary. This captures fundamentally the idea of active detection.

Specifically, active detection enables us to design systems where we can better distinguish between

adversarial and normal output sequences. As such, our passive algorithms for detection are more

effective. In general the notion of information flow was not necessary to obtain the mathematical

results in this section. However, using this terminology provides two main advantages as we

consider future work. A language of security in terms of information flow will allow scientists to

begin to develop unifying theories that incorporate both control system security and software/cyber

security. In addition, recognizing the parallels between the proposed work and other methods that

leverage information flow analysis could eventually result in an exchange of tools, techniques, and

ideas which can advance the field of CPS security.



Chapter 7

Summary and Conclusions

In this dissertation, we proposed the technique of active detection for the purposes of designing re-

silient cyber-physical systems that can detect integrity attacks generated by resourceful, intelligent,

and powerful attackers. Here, we were motivated by the fact that standard or passive detection can

fail to distinguish between normal and adversarial outputs. Consequently, the defender needed to

leverage available degrees of freedom to design resilient systems and controllers. Through such

intelligent design, we have shown we are able to detect otherwise stealthy attacks. We proposed

several mechanisms, which allow us to achieve active detection.

To begin, we considered physical watermarking where the defender introduces a noisy Gaussian

signal into the control input. We designed stationary watermarks, which allowed us to detect replay

attacks. Moreover, we designed robust watermarks to counter a class of attackers with model

knowledge. We then considered environmental watermarks, which occur naturally within a control

system and evaluated how the inherent randomness of these phenomena can allow us to detect

replay and simulation attacks. In particular, we considered packet drops at the control input. We

then considered the design of a Gaussian watermark that is composed with (possibly) intentional

packet drops.

Next, motivated by the idea that physical watermarking can fail against classes of model aware

adversaries, we proposed themoving target approach. Here, we attempted to introduce time varying

232
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system dynamics in order to limit an attacker’s understanding of the dynamic behavior of a system

and thus limit his/her ability to construct stealthy attacks. An authenticating subsystem approach,

where an additional time varying system is introduced to the plant, was considered. Here, we

obtained bounds characterizing the effectiveness of an adversary that attacks the CPS. In addition,

we evaluated a hybrid system approach where a system switched among multiple modes. In this

case, we offered design recommendations which enable a defender to detect and identify sensor

attacks in a control system.

As an alternative to the moving target, we considered the robust offline design of systems to

limit the presence of stealthy and harmful attacks. Here, we characterized the effectiveness of both

perfect attacks and zero dynamics attacks. We demonstrated that designing systems that are left

invertible and strongly observable for all feasible attack strategies enable us to detect all stealthy

attacks in deterministic systems, eliminate destabilizing stealthy attacks in stochastic systems, and

possibly perform attack identification and resilient estimation. We used structural system theory

to arrive at graphical conditions which allow us to design left invertible and strongly observable

systems and then solved optimization problems which allowed us to achieve minimal robust design

in distributed control systems.

We concluded by providing brief investigations into the concept of information flow. We argued

that information flow can be used to characterize attack detectability in CPS, proposed a measure

of information flow, and suggested a fundamental design methodology based on this measure.

Significant tasks remain in our goal to achieve resilient cyber-physical systems. This thesis

in large part assumes model knowledge was available to the defender. However, this may not be

the case. It is our argument that active techniques for detection remain effective even when the

model is uncertain or unknown. Here, it is only important to understand how the system responds

to the perturbations a defender introduces and to ensure attacks can not mimic these perturbations.

Passive detection, must however be tuned to recognize the deviations between normal andmalicious

outputs in the absence of precise model knowledge.

In addition, this dissertation largely focused on the task of detection. We note that attack
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detection is a critical first step towards responding to an adversary. If an attacker can remain

stealthy for long periods of time, he or she can maximize their impact and cause significant damage

without having to worry about defender interference. However, once an attack is detected, the

defender must respond in order to assure the graceful degradation of cyber-physical systems.

A first task upon detection is to identify the malicious nodes in a CPS. Identifying malicious

nodes allows a defender to design attack specific countermeasures that can allow a system to recover.

For instance, upon identifying malicious sensors, a defender can construct resilient estimators that

bypass misleading output nodes. Additional techniques for active identification can be explored in

future work. Upon attack identification, it is also imperative to design actions that lead to system

recovery. Ideally, to save time, such actions should be obtained automatically upon identification.

Of course, in general the number of possible failure modes can be extremely large in a CPS and as

such developing countermeasures in all scenarios may be intractable. Thus, an important research

problem is to consider how to incorporate risk when designing mechanisms for response and

recovery.

This dissertation explored the process of securing cyber-physical systems from a largely system

theoretic viewpoint. However, a complete study of secure cyber-physical systems must be able to

simultaneously consider both system theoretic security and cyber security. An important problem to

consider is compositional security. We need to understand how properties of security are preserved

or compromised when we combine traditional control systems with communication networks,

software systems, and cryptographic primitives.

Finally, our current treatment does not specialize in challenges which may arise in specific

applications such as transportation systems, the smart grid, health care, and water distribution. For

the results we developed in this dissertation to have a direct impact on society, one has to investigate

how the presented tools can be applied to real world scenarios. While it is unavoidable to reach

different conclusions based on more specific practical models, the mathematical frameworks in

this dissertation offer methods to formally handle many problems that emerge when securing

cyber-physical systems.
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Appendix A

Proof of Theorem 2.6

Proof. We first define function Γ̃ : Z→ Rp×p as

Γ̃(d) , ρ̄−|d|Γ(d). (A.1)

From the constraints of the optimization problem, we observe Γ̃ is an autocovariance function of a

stationary Gaussian process. The proof is divided into steps.

Step 1 Rewrite the objective function and the contraint of Problem (2.52) in terms of the Fourier

transform ν̃ of Γ̃.

Consider a partition of [0, 1/2] into disjoint intervals I1, I2, . . . , Iq, where

Ii
⋂
Ij = ∅,

q⋃

i=1

Ii = [0,
1

2
].

Define σ as the maximum length of interval Iis. By Riemann-Stieltjes integral and Theo-

rem 2.5, Γ̃(d) can be written as

Γ̃(d) = lim
σ→0

2Re

[
q∑

i=1

exp(2πjdωi)ν̃(Ii)
]
,

242
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where ωi ∈ Ii. By (2.39) and (A.1),

Σ = lim
σ→0

C

q∑

i=1

2Re

{
2
∞∑

d=0

sym
[
exp(2πjdωi) (ρ̄A)d L2(ν̃(Ii))

]
− L2(ν̃(Ii))

}
CT ,

= lim
σ→0

C

q∑

i=1

2Re
{

2 sym
[
(I − exp(2πjωi)ρ̄A)−1L2(ν̃(Ii))

]
− L2(ν̃(Ii))

}
CT ,

= lim
σ→0

C

q∑

i=1

F2(ωi, ν̃(Ii))C
T .

Notice that the order of summation and limit changes, which is feasible as A is stable. As a

result,

tr(ΣP̄−1) = lim
σ→0

q∑

i=1

tr
[
F2(ωi, ν̃(Ii))C

T P̄−1C
]
. (A.2)

Similarly,

∆J = lim
σ→0

q∑

i=1

F1(ωi, ν̃(Ii)). (A.3)

Step 2 Prove that the upper bound for Problem (2.52) is the optimal value of the objective function

of Problem (2.57).

Since ∆J and Σ are always nonnegative, for all ω ∈ [0, 1/2] and H positive semidefinite,

F1(ω,H) ≥ 0, F2(ω,H) ≥ 0. (A.4)

Suppose that the optimal solution of (2.57) is ω∗, H∗ and the optimal value of the objective

function is ϕ. Since F1 and F2 are linear with respect to H , it can be shown that

F1(ω∗, H∗) = δ.

Hence, for all ν̃(Ii) and ωi ∈ [0, 1/2]

tr
[
F2(ωi, ν̃(Ii))C

T P̄−1C
]
≤ ϕ

δ
F1(ωi, ν̃(Ii)). (A.5)

By (A.2)-(A.5), for all watermark signals {∆uk} with ∆J ≤ δ,

tr(ΣP̄−1) ≤ ϕ.
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Step 3 Prove that the upper bound is tight.

Consider the point mass measure ν̃∗,

ν̃∗(SB) = H∗ I{ω∗∈SB} +H∗ I{−ω∗∈SB},

where I is the indicator function. It can be shown that Γ∗(d) is generated by ν̃∗. Furthermore,

by (A.2) and (A.3), the corresponding ∆J = δ and tr(ΣP̄−1) = ϕ. Hence, Γ∗(d) achieves

the upper bound of Problem (2.52). Now it only remains to prove that Γ∗(d) can be generated

by an HMM with ρ(Aω) ≤ ρ̄.

Notice that the boundary of the cone of positive semidefinite Hermitian matrices is of the

form hhH . Furthermore, since F1 and F2 are linear with respect to H , for fixed ω, the

optimization problem (2.57) attains its maximum on the boundary of the cone (through it is

possible that an interior point is also optimal), which proves (2.60). As a result,

H∗ = (hr + jhi)(h
T
r − jhTi ) = hrh

T
r + hih

T
i − j(hrhTi − hihTr ).

It can be shown that the watermark signal {∆uk} generated by the HMM (2.61) follows

(2.56), which proves that (2.56) is the optimal autocovariance function for Problem (2.52).
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Proof of Lemma 3.2

Proof. We begin with the following Lemma.

Lemma B.1. Assume {ηk} is a stationary Markovian drop process. Suppose α > 0 and β > 0

are chosen so that the system has finite cost J(m) [42][Theorem 3] in the absence of a Gaussian

watermark. Consider x̄k+1 = (A+ ηkBL(m))x̄k and x̄′k+1 = (A+ ηkBL(m))x̄
′
k,

x̄0 =





x0
0 η−1 = 0

x1
0 η−1 = 1

, x̄′0 =





x0′
0 η−1 = 0

x1′
0 η−1 = 1

. (B.1)

Then, we have

lim
k→∞

E[x̄ikx̄
j′
k |ηk−1 = 0] = 0, lim

k→∞
E[x̄ikx̄

j′
k |ηk−1 = 1] = 0,

lim
k→∞

E[x̄ikx̄
j′
k ] = 0, lim

k→∞
E[(x̄ik)

2] = 0,

where i, j ∈ {1, · · · , n} and x̄ik is the ith element of x̄k and x̄j′k is the jth element of x̄′k.

Proof. Define JN ,
∑N

k=0 εE[x̄Tk x̄k] where ε > 0 is chosen so εI ≤ W . Moreover the cost to go

function is defined as V̄j(x̄j) ,
∑N

k=j εE[x̄Tk x̄k|η−1:j−1]. We show that

V̄k(x̄k) =





E[x̄Tk S̄kx̄k|η−1:k−1] (ηk−1 = 0)

E[x̄Tk R̄kx̄k|η−1:k−1] (ηk−1 = 1)

, (B.2)

245



APPENDIX B. PROOF OF LEMMA 3.2 246

where

S̄k = g1(S̄k+1, R̄k+1), R̄k = g2(S̄k+1, R̄k+1),

g1(X, Y ) , εI + (1− α)ATXA+ αF TY F, g2(X, Y ) , εI + βATXA+ (1− β)F TY F,

and F = A + BL(m), S̄N = εI , R̄N = εI . The proof is by induction. (B.2) holds for k = N .

Assume it holds for k = t+ 1. We next show (B.2) holds for k = t. Conditioned on ηt−1 = 0, we

have

V̄t(x̄t) = E[εx̄Tt x̄t + V̄t+1(x̄t+1)|η−1:t−1],

= E[εx̄Tt x̄t + x̄Tt ((1− α)AT S̄t+1A+ αF T R̄t+1F )x̄t|η−1:t−1],

= E[x̄Tt g1(S̄t+1, R̄t+1)x̄t|η−1:t−1] = E[x̄Tt S̄tx̄t|η−1:t−1].

The case when ηt−1 = 1 is similar. Thus,

JN = E[V̄0(x̄0)] =
βx0

0
T
S̄0x

0
0 + αx1

0
T
R̄0x

1
0

α + β
. (B.3)

We claim that limN→∞ JN exists. Consider the sequence

Sk+1 = g1(Sk,Rk), Rk+1 = g2(Sk,Rk), R0 = S0 = εI. (B.4)

We observe that g1(X, Y ) and g2(X, Y ) are monotonically increasing functions in (X, Y ). Because

S1 ≥ S0 andR1 ≥ R0, we see that {Sk} and {Rk} are monotonically increasing in the semidefinite

sense. Now consider the sequence

S̄k+1 = h1(S̄k, R̄k), R̄k+1 = h2(S̄k, R̄k), R̄0 = S̄0 = εI, (B.5)

where we define

h1(X, Y ) , W + αLT(m)UL(m) + (1− α)ATXA+ αF TY F,

h2(X, Y ) , W + (1− β)LT(m)UL(m) + βATXA+ (1− β)F TY F.

Again, we observe that h1(X, Y ) and h2(X, Y ) are monotonically increasing in (X, Y ). Because

S̄1 ≥ S̄0 and R̄1 ≥ R̄0, it can be seen that {S̄k} and {R̄k} are monotonically increasing in the
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semidefinite sense. Moreover, due to Lemma 4 in [42], {S̄k} and {R̄k} converge. We observe that

if X ≤ X̄ and Y ≤ Ȳ , then g1(X, Y ) ≤ h1(X̄, Ȳ ) and g2(X, Y ) ≤ h2(X̄, Ȳ ). Since R0 = R̄0

and S0 = S̄0, it can be seen that Sk ≤ S̄k andRk ≤ R̄k for all k.

As a result, {Sk} and {Rk} are bounded above by a monotonically increasing, convergent

sequence, which in turn means that {Sk} and {Rk} are bounded. From the monotone convergence

theorem {Sk} and {Rk} converge to some S∗ andR∗. It is immediately seen that

lim
N→∞

JN =
βx0

0
TS∗x0

0 + αx1
0
TR∗x1

0

α + β
. (B.6)

Note that JN =
∑N

k=0 εE[x̄Tk x̄k]. Since JN converges to a finite constant, limk→∞ E[x̄Tk x̄k] = 0.

Since 0 ≤ E[(x̄ik)
2] ≤ E[x̄Tk x̄k], we immediately obtain

lim
k→∞

E[(x̄ik)
2] = 0. (B.7)

By symmetry this also implies that limk→∞ E[(x̄j′k )2] = 0. By Cauchy Schwartz, we see

0 ≤ (E[x̄ikx̄
j′
k ])2 ≤ E[(x̄ik)

2]E[(x̄j′k )2]. (B.8)

Since E[(x̄ik)
2]E[(x̄j′k )2] converges to 0, we know (E[x̄ikx̄

j′
k ])2 converges to 0 and thus

lim
k→∞

E[x̄ikx̄
j′
k ] = 0. (B.9)

Next, we observe that

0 ≤ min(α, β)

α + β
E[(x̄ik)

2|ηk−1 = l] ≤ E[(x̄ik)
2], (B.10)

where l ∈ {0, 1}. As α, β > 0 by assumption, we know limk→∞ E[(x̄ik)
2|ηk−1 = l] = 0. Using the

Cauchy Schwartz inequality in a similar manner as before, we see

lim
k→∞

E[x̄ikx̄
j′
k |ηk−1 = 1] = 0, lim

k→∞
E[x̄ikx̄

j′
k |ηk−1 = 0] = 0. (B.11)
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We are now ready to prove the desired result. To this end, we first observe that


E[x̄′k+1x̄

T
k+1|ηk = 0]

E[x̄′k+1x̄
T
k+1|ηk = 1]


 = L0



E[x̄′kx̄

T
k |ηk−1 = 0]

E[x̄′kx̄
T
k |ηk−1 = 1]


 . (B.12)

As a result, 

E[x̄′kx̄

T
k |ηk−1 = 0]

E[x̄′kx̄
T
k |ηk−1 = 1]


 = Lk0



x0′

0 x
0 T
0

x1′
0 x

1 T
0


 . (B.13)

Leveraging (B.11), we see that limk→∞ E[x̄′kx̄
T
k |ηk−1 = l] = 0 for l ∈ {0, 1}. Consequently, we

have

lim
k→∞
Lk0



x0′

0 x
0 T
0

x1′
0 x

1 T
0


 = 0. (B.14)

Note that x0′
0 , x

0
0, x

1′
0 , and x1

0 can be chosen so that Lk0 is applied to an arbitrary canonical basis

vector in R2n×n. Thus, for allM ∈ R2n×n, limk→∞ Lk0(M) = 0. Thus, L0 is stable.
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Proof of Theorem 3.4

Proof. We begin with the following Lemma.

Lemma C.1. Suppose pd is chosen so the system with IID drops has finite cost J(b) [42][Theorem

3]. Then the matrix (A + p̄dBL(b)) is Schur stable. Moreover, the operator L1(X) , p̄d(A +

BL(b))X(A+BL(b))
T+pdAXA

T is stable. Specifically, ∀M ∈ Rn×n, we have limk→∞ Lk1(M) = 0

Proof. Consider the systems x̄k+1 = (A+ ηkBL(b))x̄k, and x̄′k+1 = (A+ ηkBL(b))x̄
′
k. where ηk is

an IID drop process with drop probability pd and x̄0 = x0,∗, x̄′0 = x′0,∗. Observe that

E[x̄k] = (A+ p̄dBL(b))
kx0,∗. (C.1)

Noting that the IID drop case is a special instance of Markovian drops, we know from Lemma B.1

that limk→∞ E[(x̄ik)
2] = 0. Using the fact that E[(x̄ik)

2] ≥ (E[x̄ik])
2 ≥ 0, we have limk→∞ E[x̄k] =

0. As a result, for all x0,∗ ∈ Rn

lim
k→∞

(A+ p̄dBL(b))
kx0,∗ = 0. (C.2)

Thus, (A+ p̄dBL(b)) is Schur stable. Next, we note that

E[x̄′k+1x̄
T
k+1] = L1(E[x̄′kx̄

T
k ]). (C.3)

As a result,

E[x̄′kx̄
T
k ] = Lk1(x′0,∗x

T
0,∗). (C.4)

249
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Leveraging (B.9), we note limk→∞ E[x̄′kx̄
T
k ] = 0 and this implies

lim
k→∞
Lk1(x′0,∗x

T
0,∗) = 0. (C.5)

Note that x′0,∗ and x0,∗ can be chosen so that Lk1 is applied to an arbitrary canonical basis vector in

Rn×n. Thus, for allM ∈ Rn×n, limk→∞ Lk1(M) = 0. Thus, L1 is stable.

We now proceed to the main proof. We obtain an equivalent realization to (3.48) by using

autocovariance functions Γ(d) , E[∆uk∆uk+d].

Step 1: Calculate J̄ in terms of Γ(d):

Let us first compute

E[xTt Wxt + uTt,cUut,c] = tr(WCov(xt)) + tr(UCov(ut,c)),

for fixed t ≥ 0. It can be seen that

xt = l1,{ηk}(w−∞:t−1, v−∞:t−1) + γt(∆u−∞:t−1), (C.6)

ut,c = l2,{ηk}(w−∞:t−1, v−∞:t) + ηtL(b)γt(∆u−∞:t−1) + ηt∆ut,

γt(∆u−∞:t−1) =
∞∑

i=1−t

[ t−1∏

j=1−i
(A+ ηjBL(b))

]
η−iB∆u−i,

where l1 and l2 are linear functions of the process and sensor noise for fixed realizations of the drop

process ηk. Since {wk} and {vk} are independent of ∆uk, we observe that

J̄ = J(b)(pd) +
1

N
lim
N→∞

N−1∑

t=0

(
tr(WCov(γt)) + tr(UCov(ηt[L(b)γt + ∆ut]))

)
. (C.7)

Step 1a: Calculate Cov(γt):

Define Zt ,
∑∞

i=1−t γi,tγ
T
i,t where

γi,t ,
[ t−1∏

j=1−i
(A+ ηjBL(b))

]
η−iB∆u−i.

We see that E[Zt+1] is equal to

E[(A+ ηtBL(b))Zt(A+ ηtBL(b))
T + η2

tB∆ut∆u
T
t B

T ].
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Since ηt is independent of Zt, we have

E[Zt+1] = L1(E[Zt]) + p̄dBΓ(0)BT .

Since L1 is stable and the system has been running since k = −∞, E[Zt] is the unique solution of

the following fixed point equation.

E[Zt] = L1(E[Zt]) + p̄dBΓ(0)BT = L1(BΓ(0)BT ).

In addition, let

Y d
t ,

∞∑

i=1−t
ξdi,tγ

T
i,t, ξ

d
i,t ,

[ t−1∏

j=1−i−d
(A+ ηjBL(b))

]
η−i−dB∆u−i−d.

By similar reasoning, we find that E[Y d
t ] equals

L1

(
p̄d(A+BL(b))(A+ p̄dBL(b))

d−1BΓ(d)BT
)
.

We argue

Cov(γt) = E

[
Zt +

∞∑

d=1

Y d
t + (Y d

t )T

]
= 2

∞∑

d=1

sym[Y d
∗ ] + L1(BΓ(0)BT ), (C.8)

where

Y d
∗ = L1

(
p̄d(A+BL(b))(A+ p̄dBL(b))

d−1BΓ(d)BT
)
.

Step 1b: Calculate Cov(ηt[L(b)γt + ∆ut]):

We argue that

E[η2
tL(b)γt∆u

T
t ] = p̄2

dL(b)

∞∑

d=0

(A+ p̄dBL(b))
dBΓ(d+ 1).

Therefore, we obtain

Cov(ηt[L(b)γt + ∆u1]) = p̄d
(
Γ(0) + L(b)Cov(γ)LT(b)

)

+ 2sym

(
p̄2
dL(b)

∞∑

d=0

(A+ p̄dBL(b))
dBΓ(d+ 1)

)
, (C.9)
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where Cov(γ) , Cov(γt) is given in (C.8). Note, Cov(γt) is constant in t. Substituting (C.9) into

(C.7), we have

J̄ = J(b)(pd) + tr(p̄dUΓ(0)) + tr((W + p̄dL
T
(b)UL(b))Cov(γ))

+ tr

(
2Usym

(
p̄2
dL(b)

∞∑

d=0

(A+ p̄dBL(b))
dBΓ(d+ 1)

))
.

Step 2: Calculate E[yTk y
′
k|H0] in terms of Γ(d):

Recall from the proof of Theorem 3.3 and (3.47)

E[yTk y
′
k|H0] = tr

(
CE[x′kx

T
k ]CT

)
.

We observe that x′k = γk. Thus, from (C.6), we assert

lim
k→∞

E[yTk y
′
k|H0] = tr

(
CCov(γ)CT

)
. (C.10)

Step 3: Convert to Frequency Domain:

Optimizing over the autocovariance functions is intractable as there are infinitelymany optimization

variables. In this case, as in Theorem 2.6, we will leverage Bochner’s theorem in [25, p.64] (see also

[26]). For ease of presentation, the theorem is repeated here. This theorem provides a frequency

domain representation of an autocovariance function of a stationary process:

Theorem C.1 (Bochner’s theorem). Γ(d) is an autocovariance function of a stationary Gaussian

process {∆uk} if and only if there exists a unique positive Hermitian measure ν of size p × p

satisfying

Γ(d) =

∫ 0.5

−0.5

exp(2πjdω)dν(ω).

Note that a positive Hermitian measure ν takes a Borel set in [−0.5, 0.5] and outputs a positive

semidefinite Hermitian matrix in Cp×p. We choose to optimize over Γ̃(d), which has bijective

relationship with Γ(d). By assumption Γ̃(d) is an autocovariance function of a stationary Gaussian

process. As a result, we can use Bochner’s theorem to rewrite Γ̃(d) in terms of a Riemann sum.

Specifically,

Γ̃(d) = lim
σ→0

2Re

[
q∑

i=1

exp(2πjdωi)ν̃(Ii)

]
, (C.11)
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where Ii ∩ Ij = ∅, ∪qi=1 Ii = [0, 0.5], ωi ∈ Ii and σ is the maximum length of Ii. Here, we also

leverage the fact that Γ̃(d) is real. Moreover, from (C.8), we see that

Cov(γ) = lim
σ→0

q∑

i=1

(
2Re

[
2sym

(
L1

[
p̄d exp(2πjωi)Ω1Bν̃(Ii)B

T
])

+ L1

[
Bν̃(Ii)B

T
]])

= lim
σ→0

q∑

i=1

(
2Re

[
2sym

(
L1

[
p̄d exp(2πjωi)Ω2Bν̃(Ii)B

T
])

+ L1

[
Bν̃(Ii)B

T
]])

,

= lim
σ→0

q∑

i=1

F2(ωi, ν̃(Ii), pd).

where

Ω1 = ρ̄(A+BL(b))
∞∑

d=1

(ρ̄ exp(2πjωi)(A+ p̄dBL(b)))
d−1,

Ω2 = ρ̄(A+BL(b))(I − ρ̄ exp(2πjωi)(A+ p̄dBL(b)))
−1.

The inverse is well defined since we showed (A + p̄dBL(b)) is Schur stable. By similar reasoning

it can be shown that

J̄ = J(b)(pd) + lim
σ→0

q∑

i=1

F1(ωi, ν̃(Ii), pd). (C.12)

Replacing ρ(Aω) ≤ ρ̄ with Assumption 1 in problem (3.48), we arrive at the following equivalent

formulation:

maximize
ν̃(Ii),pd

lim
σ→0

q∑

i=1

tr(CF2(ωi, ν̃(Ii), pd)C
T )

subject to J(b)(pd) + lim
σ→0

q∑

i=1

F1(ωi, ν̃(Ii), pd) ≤ δ,

0 ≤ pd ≤ 1.

(C.13)

Step 4: Demonstrate Equivalence:

The rest of the result follows from Steps 2 and 3 in the proof of Theorem 2.6 when pd < 1. In

particular, we can leverage the linearity of F2 and F1 in H for fixed pd < 1 and ω to show that the

optimal value of (3.49) is an upper bound on the optimal value for problem (C.13). Then, we show

that for Borel set Sb ⊂ [−0.5, 0.5], the measure

ν̃(Sb) = Iω∗∈SbH∗ + I−ω∗∈Sbconj(H∗), (C.14)
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where I is the indicator function and conj refers to the complex conjugate, achieves this upper

bound. The resulting autocovariance function is

Γ(d) = 2ρ̄|d|Re(exp(2πjdω∗)H∗), (C.15)

and can be generated by the HMM (3.50) if there exists an optimalH∗, which has rank 1. Theorem

7 of [27] demonstrates the existence of such a solution, while the associated proof shows how such

a solution can be constructed from an optimal H∗ with rank greater than 1. When pd = 1, F2 and

F1 are identically 0, establishing the equivalence of (3.49) and (C.13) in this scenario. Note also in

this case, (if J(b)(pd) ≤ δ) any stationary Gaussian process in the feasible region is optimal since

the resulting additive input is immediately dropped.



Appendix D

Proof of Theorem 4.7

Proof. For simplicity let the sth row ofDa be referred to asDs. We first proof sufficiency. Suppose

∃λ ∈ Λ1 ∩ Λ2 and α1 ∈ C
∑
i ri(λ,1), α2 ∈ C

∑
i ri(λ,2) such that

Vλ,1s α1 = Vλ,2s α2 6= 0. (D.1)

Let V̄ λ,j be given by
[
vλ,j1,1 vλ,j2,1 · · · vλ,jr1,1 vλ,j1,2 vλ,j2,2 · · · vλ,jr2,2 · · · vλ,j1,lλ,j

vλ,j1,lλ,j
· · · vi,jrlλ,j ,lλ,j

]
,

and let xa0(j) = V̄ λ,jαj . Suppose Dsdak(j) = Cs(j)A(j)kxa0(j). It can be shown that for k ≥ 0

Dsdak(j) =





λk

0!
Vλ,js,1αj + 1

1!
d
dλ

(λk)Vλ,js,2αj + · · · 1
k!

dk

dλk
(λk)Vλ,js,k+1αj k ≤ r(λ)− 1

λk

0!
Vλ,js,1αj + 1

1!
d
dλ

(λk)Vλ,js,2αj + · · ·+ 1
(r(λ)−1)!

dr(λ)−1

dλr(λ)−1 (λk)Vλ,js,r(λ)αj, k ≥ r(λ),

(D.2)

where Vλ,js,k is the kth row of Vλ,js . From (D.1), Dsdak(1) = Dsdak(2). Moreover, using (D.1), it can

be inductively shown that the attack is nonzero for some time k. If the attack is purely real, the

result holds. IfDsdak(j) is 0 or purely imaginary for all k, then α1 and α2 can be scaled by a factor

of i and the result will hold with a purely real attack. Finally, if alternatively, Dsdak(j) contains

both real and imaginary components, then an attack can be constructed by adding the conjugate so

255



APPENDIX D. PROOF OF THEOREM 4.7 256

that

Dsdak(j) = Cs(j)A(j)kxa0(j) + Cs(j)A(j)kxa0(j) = Cs(j)A(j)k(xa0(j) + xa0(j)).

Therefore,

Dsdak(1) = Cs(1)A(1)k(xa0(1) + xa0(1)) = Cs(2)A(2)k(xa0(2) + xa0(2)) = Dsdak(2),

which will be nonzero since Cs(j)A(j)kxa0(j) has real components for some k ≥ 0. Thus, the

result holds.

We now prove the necessary assumption. Without loss of generality, suppose the first z

eigenvalues ofΛ1 andΛ2 are the same so that λ1
k = λ2

k for k ≤ z. Assume the rest of the eigenvalues

are different. In particular let Λ1 = {λ1, · · · , λq1} and Λ2 = {λ1, · · · , λz, λq1+1, · · · , λq1+q2−z}.

Let r∗(λ, j) = maxi ri(λ, j), characterize the maximum block size of eigenvalue λ for A(j) and

let τ + 1 ≥ 2n.

Define G(λi, j) ∈ Cτ+1×r∗(λi,j) as



1 0 · · · 0

λi 1 · · · 0

λ2
i 2λi · · · 0

... ... · · · ...

λτi τλτ−1
i · · · 1

(r∗(λi,j)−1)!
dr
∗(λi,j)−1

dr∗(λi,j)−1
(λτi )




, (D.3)

where the kth column is obtained by taking entrywise, the corresponding (k − 1) derivative of the

associated entry in the first column and dividing by (k − 1)!. Let Ga, Gb, Gc be given by

Ga =

[
G(λ1, 1) G(λ1, 2) · · · G(λz, 1) G(λz, 2)

]
,

Gb =

[
G(λz+1, 1) · · · G(λq1 , 1)

]
,

Gc =

[
G(λq1+1, 2) · · · G(λq1+q2−z, 2)

]
.

Finally, let G∗ =

[
Ga Gb Gc

]
. Note that G∗ ∈ Cτ+1×κ where κ ≤ 2n by construction.
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Consider vectors ηi,j ∈ C
∑
k rk(λi,j) and define Ṽλi,js , Ṽas , Ṽbs , Ṽcs , Ṽs as

Ṽλi,js =

[
Vλi,js,1 η

i,j · · · Vλi,js,r∗(λi,j)
ηi,j
]T
,

Ṽas =

[
(Ṽλ1,1s )T (Ṽλ1,2s )T · · · (Ṽλz ,1s )T (Ṽλz ,2s )T

]T
,

Ṽbs =

[
(Ṽλz+1,1

s )T · · · (Ṽλq1 ,1s )T
]T
,

Ṽcs =

[
(Ṽλq1+1,2

s )T · · · (Ṽλq1+q2−z ,2s )T
]T
,

Ṽs =

[
(Ṽas )T (Ṽbs)T (Ṽcs)T

]
.

From Theorem 4.6, the attack is not unambiguously identifiable up to time τ if and only if there

exists real vectors x1
0 and x2

0 such that

C(1)A(1)kx1
0 = C(2)A(2)kx2

0, 0 ≤ k ≤ τ. (D.4)

with C(1)A(1)kx1
0 6= 0 for some time in 0 ≤ k ≤ τ . It can be shown that (D.4) holds only if there

exists vectors ηi,j ∈ C
∑
k rk(λi,j) such that G∗Ṽs = 0. We now analyze the null space of G∗. We

observe by construction that G∗ has rmin =
∑z

i=1 minj r
∗(λi, j) pairs of identical columns. Thus,

null(G∗) ≥ rmin. Let G̃∗ ∈ Cτ+1×rmax be obtained by deleting duplicate columns of G∗ where

rmax ≤ 2n ≤ τ + 1 is given by

rmax =
z∑

i=1

max
j
r∗(λi, j) +

q1∑

i=z+1

r∗(λi, 1) +

q2+q1−z∑

i=q1+1

r∗(λi, 2).

Let G̃∗trunc be a square matrix obtained by removing the last τ + 1− rmax rows of G̃∗.

We first show that the null space G̃∗Ttrunc is empty. Suppose it was not. This would imply the

existence of a complex nonzero polynomial p∗(x) of degree rmax − 1 with the property

p∗(λk) = 0,
dp∗

dx
(λk) = 0, · · · , d

maxj r
∗(λk,j)−1p∗

dxmaxj r∗(λk,j)−1
(λk) = 0,

for 1 ≤ k ≤ z,

p∗(λk) = 0,
dp∗

dx
(λk) = 0, · · · , d

r∗(λi,1)−1p∗

dxr∗(λk,1)−1
(λk) = 0,
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for z + 1 ≤ k ≤ q1, and

p∗(λk) = 0,
dp∗

dx
(λk) = 0, · · · , d

r∗(λi,2)−1p∗

dxr∗(λk,2)−1
(λk) = 0,

for q1 + 1 ≤ k ≤ q1 + q2 − z.

But this contradicts the fundamental theorem of algebra since it would imply a polynomial of

degree rmax − 1 has rmax zeros. Thus, the null space of G̃∗
T

trunc is empty.

Therefore, by the rank nullity theorem G̃∗trunc is full rank and therefore G̃∗ is full rank.

Consequently, rank(G∗) ≥ rmax. However, null(G∗) ≥ rmin and the number of columns in G∗ is

rmax + rmin. Therefore, strict equality holds and rank(G∗) = rmax and null(G∗) = rmin. As a

result, one excites the null space of G∗ only by exciting pairs of identical columns in G∗.

Thus (D.4) holds only if there exists ηi,j ∈ C
∑
k rk(λi,j) such that for 1 ≤ i ≤ z




Vλi,1s,1

Vλi,1s,2

...

Vλi,1s,minj r∗(λi,j)



ηi.1 +




Vλi,2s,1

Vλi,2s,2

...

Vλi,2s,minj r∗(λi,j)



ηi.2 = 0,

and 


Vλi,arg maxj r
∗(λi,j)

s,minj r∗(λi,j)+1

...

Vλi,arg maxj r
∗(λi,j)

s,maxj r∗(λi,j)



ηi. arg maxj r

∗(λi,j) = 0.

Moreover, for z + 1 ≤ i ≤ q1, 


Vλi,1s,1

Vλi,1s,2

...

Vλi,1s,r∗(λi,1)



ηi.1 = 0, (D.5)
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and for q1 + 1 ≤ i ≤ z 


Vλi,2s,1

Vλi,1s,2

...

Vλi,2s,r∗(λi,2)



ηi.2 = 0, (D.6)

For 1 ≤ i ≤ z, this can be rewritten as

Vλi,1s ηi,1 + Vλi,1s ηi,2 = 0.

From (D.5) and (D.6), we can see that C(1)A(1)kx1
0 6= 0 for some time in 0 ≤ k ≤ τ , while

(D.4) holds only if there exists 1 ≤ i ≤ z such that

Vλi,1s ηi,1 + Vλi,1s ηi,2 = 0, Vλi,1s ηi,1 6= 0.

If the condition does not hold, since τ + 1 ≥ 2n, one can detect an attack at time k = 2n − 1 (or

given 2n measurements). The result immediately follows.


