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ABSTRACT

In this thesis, we develop a passivity-based adaptive control framework for con-
trolling nonlinear processes with uncertainty. The development of the method is
motivated by the question whether we can control reaction systems without the
knowledge of reaction kinetics.

The proposed adaptive control framework incorporates the measurements’
derivative information in order to estimate the uncertainty involved in output dy-
namics. The output dynamics is assumed to take a special control-affine structure,
and by using the output’s derivative information we can avoid using internal state
dynamics, which is not usually available. Passivity theory is applied for control
and estimation designs and overall closed-loop stability is achieved. By extending
the passivity-based control to systems with relative degree higher than one through
backstepping, we can obtain cascade feedback schemes with PID controllers that
overall control convergence is guaranteed.

The proposed framework allows us to control reaction systems without know-
ing the reaction kinetics, and estimate unmeasured compositions by utilizing the
available partially linear structure of internal dynamics. A reactor temperature
control problem that usually has high relative degree is used to illustrate the ap-
plication of passivity-based backstepping control, and results from industrial trials

are presented.
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1. INTRODUCTION

Efficient on-line control of chemical reactions is crucial for the safe and cost-
competitive operation of chemical production processes. Advanced model-based
control is an effective means of achieving improved process performance. How-
ever, due to the complexity and nonlinear behavior of chemical reactions, it is dif-
ficult to derive accurate kinetic reactor models needed in many control systems.
Moreover, the iterative process of creating high-quality kinetic models through ex-
periments, model construction, and validation is time-consuming.

The main objective of this thesis is to develop a framework for adaptive control
of chemical reactors, that does not require accurate reaction kinetics data. In this
way, the method developed allows us to circumvent the above-mentioned model-
ing challenge.

In this work, we address the chemical reactor control problem from a feedback
control perspective by deriving estimation and control schemes for two general
classes of systems. We show that the proposed passivity-based adaptive control
approach can be used for the control of control-affine nonlinear systems with un-
certainty; and if the system’s internal dynamics can be written in a partially linear
form, state estimation is possible. Although our main application is the control of
reaction systems, by considering general model formulations, the proposed frame-
work is applicable in more general settings. We present computational results and
preliminary results from industrial experiments of chemical reactions controlled
with the proposed approach.

The rest of this chapter is structured as follows. Section 1.1 introduces two

classes of systems that we consider throughout the thesis, and discusses how they
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can be used to represent the reactor control problem and derive control that does
not use the knowledge of reaction kinetics. In Section 1.2, we review existing liter-
ature on relevant topics related to this work. Section 1.3 gives an overview of the

remaining chapters of the thesis.

1.1. Motivation and Thesis Objective

In this thesis, we investigate the usage of outputs measurements and their deriva-
tive information for estimating the time-varying uncertainty in nonlinear control
systems. Passivity provides the theoretical framework for developing the parame-
ter estimation and output tracking schemes.

We consider nonlinear systems described by the following set of differential

equations:
Z—f = f(z) +g(x,u) (1.1a)
y=h(z) (1.1b)
Ya=1Y (1.1c)

where z € X ¢ R" represents the vector of states, u € R™ represents the vector of
control inputs, and y € R™ represents the vector of control outputs. Also, we can
measure the time derivative of y, denoted by y4 € R™. The vector functions f, g,h
are continuously differentiable (C') with proper dimensions.

System (1.1a) with output (1.1b) is passive, if there is a nonnegative storage

function W (z), s.t.

dW (x)

T
<u
dt Y

Clearly, passivity is a relationship of a system’s inputs and outputs. In our pro-
posed control and estimation methods, we design general passivation transforma-
tions on system (1.1), and the resulting passive transformed systems will facilitate

the control and estimation designs. The new idea we use is to include measured
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output derivatives (1.1c) in the passivity-based estimation scheme.
We assume the measurement vector y, so that the output differential equation

takes the following form:

dy _

i Lih+ Lgh =p(y) + DAp(z) + ¢(y)u. (1.1d)

Here, p € C! represents the known part of the production rate term, Ap € C* rep-
resents the uncertainty, and ¢(y)u is the supply rate term. D is the known uncer-
tainty involvement matrix. p and ¢ can also depend on other known disturbances,
parameters other than the measurements vector, and essentially, they can be deter-
mined accurately online. Under the circumstance that the production rate Ap(x)
is unknown, we want to determine the control input u that drives the output y to
track its setpoint y*.

Farschman et al. (1998) defines concept of inventory as additive nonnegative
extensive variables, such as energy and mass, so that the model used for inven-
tory controller design is inventory balance equations with rates of production and
supply (including both addition and depletion). Here, we apply the similar idea
to derive the uncertainty structure that we want to address. Here, the output y
is not limited to inventories, and can also be other measurable variables, such as
concentration or temperature, etc.

A special case of (1.1) is the following system with a partially linear structure:

dzx

= = Az + Bu+ Du(x,t) (1.2a)
y=Czx (1.2b)
yq = Cx, (1.2¢)

where the notation is the same as in the general nonlinear case. Here, 1 € R? rep-
resents an unknown function of the unmeasured states x, which is the uncertainty
in the model. A, B, C, D are known linear matrices of proper dimensions. We want

to design a control law for u to track a time-varying setpoint profile y* (), in the
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presence of unknown 1. We use the same idea from the previous nonlinear system

by assuming with measurement y we can write output differential equations as:

dy =CAzx+CDp+CBu (1.2d)
dt —_—
Ap(z) ¢

where the uncertainty is again the unknown production rate term Ap(x).

For both systems with similar output dynamics with uncertainty structure,
(1.1d) and (1.2d), if the bounds of uncertainty are known, we could use robust
control to ensure closed-loop stability (Wang & Ydstie, 2007). A less conservative
option is to implement adaptive control that estimates and uses the uncertainty to
determine the control input. In this thesis, the latter approach is examined.

The proposed adaptive control framework is developed to address the follow-

ing problems:

1. For both systems, (1.1) and (1.2), how to estimate the unknown part of pro-

duction rate Ap(z)?

2. For the partially linear system (1.2), can we estimate the unmeasured state x

and p in the higher order dynamics?
3. For both systems, how to control y to track y* with the estimates Ap ?

4. How to extend the passivity-based control framework for systems with rela-

tive degree greater than one?

To further motivate the formulation and problem statement in the context of

reactor control, we give a reactor temperature control example.

Motivating Example The model of a continuous stirred-tank reactor (CSTR) in-

volving n, reactions and n. species is:

E = - v C+ Vrczn + VT(C, Tr) (13)
y=T.(C) (1.4)
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ya=T:(C) (1.5)

where C' € R"¢ are the state variables, i.e. the concentrations of the involved species,
and measured output 7 is the reactor temperature, which is a function of the com-
position. Other known process variables and parameters are, F;, representing in-
let flow rate, V. representing reactor volume, Cj, representing inlet concentrations,
and v being the stoichiometric matrix. Based on energy and mole balance, we can

write the temperature differential equation as:

dTr _ an
dt — V,pC,

Qj AH,.r
an znTzn - pC, Tr - - . 1.6
(PinCy, pCyT}) VipCp  Cop (1.6)

The control problem we consider is to control reactor temperature, when the
concentration vector is not measured, and the reaction kinetics is not known. We
can put this temperature dynamics into developed formulation (1.1d) with uncer-

tainty, where

F.
e an inTin_ C, Tr 0
ap(0. 1) = A iy Tt (s =G
rP gen @
(1.7)

The control input is the heat transfer rate between reactor and the jacket, ;. The
unknown production term Ap is related to the reaction heat generation rate. It is
related to the unmeasured concentrations and unknown kinetics, which is essen-
tially the higher order dynamics (1.3). We proposed to compensate for them by

using temperature derivative measurements in the proposed estimation scheme.

1.2. Literature Review

In the following, we review existing contributions in the literature on related topics
corresponding to the questions being raised in last section.
Section 1.2.1 reviews works that consider the estimation of unknown inputs,

referring to the uncertainty in the output dynamics. Section 1.2.2 reviews the re-
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construction methods of measurement derivatives, and its usage in uncertainty
estimation. The literature reviewed in these two sections provide background of
our estimation scheme to answer Question 1.

Section 1.2.3 provides the background of our approach in response to Question
2, state estimation for the partially linear system (1.2). We review the unknown
input observer (UIO) and a special case thereof, the asymptotic observer (AS) tai-
lored for estimating unmeasured reaction compositions. Section 1.2.4 provides a
review of the concepts and applications of reaction variants and invariants, which
are the transformed states used for constructing asymptotic observers.

To provide background on techniques answering the rest two control related
questions, Section 1.2.5 reviews the topic of passivity-based adaptive control, and
our adaptive control is presented in Chapter 5; Section 1.2.6 reviews the topic of
control systems with high relative degree, and our passivity-based solution is given

in Chapter 6.

1.2.1. Estimation of Unknown Inputs

A process model usually comes with uncertainties, which can be collectively mod-
eled as an unknown vector in the model, and determined through estimation al-
gorithms using measured outputs. The unknown vector is referred as unknown
inputs in the literature, which includes unknown nonlinearities, parameters, faults
and external disturbances (Mhamdi & Marquardt, 2004). Unknown inputs recon-
struction methods are usually used to improve tracking control and monitoring
for systems with uncertainty. The problem is relevant when we estimate some
unknown part of the inputs. Examples include the estimation of exerted force in
machine tool applications (Corless & Tu, 1998), the magnitude of unknown maneu-
vers in tracking problems (Lee & Tahk, 1999), fault detection (Chen et al., 1996), and
reaction heat estimation (Schuler & Schmidt, 1992). For reactor modeling, mecha-
nisms of reactions, heat and mass transfers are hard to model accurately or some-
times remain unknown, the relevant rates without good quality model can be con-

sidered as unknown inputs.
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Existing methods to design the estimation schemes fall into three categories.
The first type is state observer based method, where the unknown inputs are pro-
posed with a certain dynamic model, and estimates are obtained through using
state observer techniques derived from Luenberger or Kalman filter. Schuler &
Schmidt (1992) applied Kalman filter technique to estimate the reaction heat and
other observable heat flows based on a reactor calorimetric model. Aguilar-Lépez
(2003) and Aguilar et al. (2002) used the high gain observer and the interval ob-
server respectively to estimate the reaction heat. The second type of method solves
an on-line optimization problem to minimize the residual errors of the measure-
ments, to which the moving horizon estimator belongs. The third type are dynam-
ics inversion based methods, of which underlying idea is analogy to synthesize
a model-based controller. The estimates are calculated using a process model in-
verse to force the estimated outputs converge to the measured values with a certain
stability (Tatiraju & Soroush, 1998). Tatiraju & Soroush (1998) designed an inver-
sion based estimator for reaction heat generation rate and heat transfer coefficient
and show that the proposed method can out perform state observer based method
when model mismatch and measurement noise exist through simulations. Mhamdi
& Marquardt (2004) and Zhao et al. (2016) used nonlinear system inversion method
and conditions to estimates reaction rates.

In Chapter 3, we propose the passivity-based input estimator that falls into the
third category. It is later applied for reaction rates and reaction rates using con-
servation balances, and the approach avoids the difficulty of modeling reaction

kinetics.

1.2.2. Approximated Measurement Derivatives for Parameter Estimation

Derivatives of process measurements provide useful information for process mon-
itoring and control (Preisig, 1988; Preisig & Rippin, 1993). Fundamentally, when
the analytical expression of the signal is not known, perfect estimation is not possi-
ble (Levant, 1998). Various of numerical differentiator are proposed to reconstruct

derivatives from noisy data.
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Levant (1998) developed the sliding mode differentiator using knowledge of
Lipschitz constant and maximum noise magnitude. Mboup et al. (2007) proposed
the algebraic time-derivative estimation method that calculates the derivative es-
timates as linear combinations of finite time-integrations of the signal. Reger &
Jouffroy (2009) derived the same result from the standard linear system recon-
structibility theory. The Savitzky-Golay filter (Baedecker, 1985) for time derivative
estimation assumes that the signal can be expressed as a polynomial. The deriva-
tives of the regressed polynomial are estimated derivatives. Co & Ydstie (1990)
applied modulating function and fast Fourier transformation method to estimate
derivatives. A well approximated derivatives will reduce transmitted noise to the
estimation without losing much on capturing the output true dynamics.

Including measurement derivatives in control and estimation algorithms is con-
troversial due to the existence of derivative reconstruction errors and exaggeration
of noise. However, as many numerical differentiator techniques have been devel-
oped, we propose to use derivative information in our method for both control and

estimation purpose.

1.2.3. Unknown Input Observer and Asymptotic Observer

Measuring the states of reactions, including compositions, temperature, pressure
etc., in a on-line fashion facilitates making timely control decisions and preventing
process disruptions, process shutdowns and even failures (Ali et al., 2015). How-
ever, since on-line measurement devises especially for measuring compositions are
expensive, the development of soft sensors and state observers for estimating un-
measured variables has been of major interest in the process industry. The classic
Luenberger observer (Luenberger, 1971) and Kalman filter (Welch & Bishop, 1995)
lay the conceptual and theoretical foundation for the later development of a variety
of state observers (Ali et al., 2015).

When the process model has uncertain or unknown dynamics, the extended
Kalman filter and Luenberger observer cannot be directly applied to estimate un-

measured states. To address this type of state estimation problem, the unknown
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input observers (UIO) were proposed (Wang et al., 1975; Hou & Muller, 1992; Park
& Stein, 1988a; Darouach et al., 1994).

The problem becomes relevant in the context of chemical reactor, when the reac-
tion kinetics for modeling reaction rates is an absent knowledge. For this situation,
Bastin & Dochain (1990) and Dochain et al. (1992, 2009) proposed the asymptotic
observer (OA) for unmeasured composition estimation, with the reaction rates con-
sidered as the unknown inputs. The developments of OA and UIO both involve
transforming the states of the system into two components, the invariants and vari-
ants. The invariants evolution is not affected by the unknown inputs, and the ef-
fects of the unknown inputs is only constrained in the variants subspace. Then, a
Luenburger observer is applied to invariants unknown-input-free dynamics, and
finally estimated invariants together with output measurements are used to com-
pute state estimates.

Though the most UIO considers only state estimation, unknown input recon-
struction are performed simultaneously in some UIO designs. Park & Stein (1988b)
inverted the state dynamics and use derivatives of output measurements to recon-
struct the unknown input vector. Corless & Tu (1998) put constraints on how fast

the varying inputs change to avoid using derivatives of output measurements.

1.2.4. Reaction Variants and Invariants

The first step in constructing a UIO or an AO is to express the reaction model with
transformed states, the variants and invariants. In the reaction context, concepts of
reaction variants and invariants were introduced by Asbjernsen and co-workers in
the early 1970s (Asbjernsen, 1972; Asbjornsen & Fjeld, 1970; Fjeld et al., 1974), and
nonunique transformation is found through reaction stoichiometry. The reaction
variants define state variables that are affected by the reactions, and the reaction
invariants define state variables that are not influenced by the advancement of the
reactions. It was shown that the dynamics of a reaction system with n, independent
reactions and 7. species can be decomposed into n, variants and n. —n, invariants.

The theory was proposed for the purpose of model reduction to ease the anal-
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ysis of nonlinear reaction system dynamics. Systematic studies on formulating lin-
ear and nonlinear mappings to obtain reaction variant and invariant form models
have been performed by Srinivasan et al. (1998) and Rodrigues et al. (2015).

The concept of reaction variants has been applied to control reaction systems.
It was shown that the unstable dynamics of the reaction system can be controlled
by controlling the dynamics of reaction variants (Hoang et al., 2014). Feedback
linearizability of the reduced reaction variants model was discussed in Srinivasan
et al. (1998), and the corresponding feedback linearization control approach was
proposed by Rodrigues et al. (2015) for reactor temperature control. Passivity-
based inventory control was applied by Hoang et al. (2014) for reduced reaction
variants control. However, previous control strategies are based on the assumption
that complete composition information is available through on-line measurements.

There are also works regarding the control of reaction systems with the inte-
gration of the estimates given by the AO. In Hoang et al. (2012) and Hoang et al.
(2013), the usage of observer estimates for feedback control is illustrated through
the passivity-based inventory control and nonlinear control, respectively; how-
ever, unlike the observer, the proposed control schemes in these papers require
the knowledge of reaction kinetics. In this thesis, we propose to integrate the AO

in control development that does not require the knowledge of reaction kinetics.

1.2.5. Passivity-based Adaptive Control

Passivity is an input-output property of process systems, and very useful in stabil-
ity analysis for interconnected systems (Bao & Lee, 2007). Farschman et al. (1998)
used macroscopic balance of inventories (for example total mass and energy) to
construct the passive input-output pairs, and proposed inventory control based
on the idea that passive system can be stabilized through a input strict passive
controller. To handle system uncertainties, sliding mode based robust inventory
control Wang & Ydstie (2007) was developed where high gain feedback was used
to achieved global stability. Li et al. (2010) proposed the adaptive inventory control

that was able to estimate constant uncertainty and achieved control stability at the

10
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same time. In this thesis, we propose the passivity-based adaptive control scheme

where time-varying uncertainty can be estimated as well.

1.2.6. Passivity-based Control of Systems with Relative Degree Higher Than One

Passivity-based control techniques are well developed for systems with relative
degree one. In practice, many control problems have high-relative degree, and it is
also worthwhile to generalize the theory to cover those types of systems.

The notion of relative degree will be given in Chapter 2, and here we give a
real example in chemical reactor control and current control practice. In most re-
actor temperature control configurations, the actual manipulated variable, such as
cooling water flow rate or steam flow rate, usually does not directly act on the re-
actor temperature. Its effect is transferred through intermediate cooling/heating
mechanisms. Proportional-integral-derivative (PID) controllers arranged in a cas-
cade fashion are usually adopted to control this type of systems, where the relative
degree is higher than one. The cascade control includes more state measurements
and captures disturbance upsets in the process more effectively (Seborg et al., 2010).
However, this traditional control method based on a linear control theory has no
guarantee of stability when nonlinear dynamics is involved and the process is not
operated at a steady state, as in the case of semi-batch or batch reactions.

The backstepping method is widely used to control nonlinear systems with
relative degree higher than one (Krstic et al., 1995). Application of backstepping
results in a control logic similar to a cascade structure, and it can be easily imple-
mented in standard process control systems, such as the Emerson DeltaV system
used in the industrial trials presented in the thesis. The method has been studied by
researchers in the chemical process control area to control continuous chemical re-
actors. Gopaluni et al. (2003) applied the backstepping method to control the com-
position of a CSTR. Nonlinear nonadaptive and adaptive backstepping controllers
were designed for cases with and without parameter uncertainty, respectively. A
robust adaptive backstepping controller was designed using Lyapunov stability

theory in this work. Similarly, Biswas & Samanta (2013) designed an adaptive back-

11
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stepping controller to control the monomer concentration and the temperature of
a polymerization CSTR. Both works show that the adaptive backstepping method
guarantees setpoint tracking in the presence of parameter uncertainty. Salehi &
Shahrokhi (2009) introduced the fuzzy estimator into the backstepping method
and used this approach for temperature control in a CSTR. Hua et al. (2009) dis-
cussed the development of backstepping for systems with time delay, and applied
the design to a two-stage reactor system.

The connection between passivity and backstepping control was first shown
in Kokotovi¢ et al. (1992), where the backstepping was used to remove the limita-
tion of passivity for systems of relative degree higher than one. In the thesis, we
propose a model-based cascade control scheme through backstepping method, and
used passivity-based control incorporating PID for control error feedback to design

control law at individual level.

1.3. Thesis Outline

The remainder of the thesis is organized as follows,and in according to the ques-

tions we posed in the in beginning of this chapter:

¢ In Chapter 2, we review stability, passivity and passivity-based control to

introduce the theoretical foundations for this work.

¢ In Chapter 3, we present our answer to Question 1. We address the estima-
tion of the uncertainty ;(z,t) in both the partially linear system case and the
unknown production term p(z) in the nonlinear system case, (1.1). In the
given reactor control problem, we estimate reaction rates and transport rates

if multi-phase reaction is involved and heat transfer is considered.

¢ In Chapter 4, we present our answer to Question 2. We address the estimation
of unmeasured states x without knowing p(x,t) for the partially linear sys-
tem (1.2). In the given reactor system, the compositions are the unmeasured

states. We present the derivations of the UIO and AQ, the existence condi-

12
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tions, discuss their connections and issues regarding estimation convergence,

and apply the AO to both homogeneous and heterogeneous reactions.

In Chapter 5, we present our answer to Question 3. We integrate the ob-
servers and use estimates with feedback control to adaptively control y, for
the systems of interest, and to derive conditions under which zero dynamics
are stable. In the given reactor control problem, we use proposed adaptive

control to stabilize a semi-batch reactor.

In Chapter 6, we present our answer to Question 4. We extend the passivity-
based control to control nonlinear systems with relative degree higher than
one. The proposed approach is applied to the on-line temperature control for

a jacked polymerization reactor, and industrial trial result is presented.

In Chapter 7, we provide a summary of the thesis and recommendations for

future work.

13



2. STABILITY, PASSIVITY AND ZERO DYNAMICS

In this chapter, we review the fundamental concepts of stability and passivity, and
show how we can infer overall stability of interconnected systems from passivity of
individual systems. This idea is useful in controller design since a feedback control

loop can be viewed as a connected system of a process and a controller.

2.1. Stability

A well-controlled process should be stable in a sense that it can withstand small
perturbations and converge to the desired operating point. Achieving good stabil-
ity should also be kept in mind when we design and integrate estimation schemes
with controllers to design adaptive controllers.

In the following, we present the definitions of uniform stability, uniformly

asymptotic stability, and uniformly exponential stability.
Definition 2.1. Consider the following system:

dx

with its equilibrium point at the origin, i.e. f(0) = 0. The origin is said to be

e uniformly stable, if for any ¢ > 0, there is a d(¢) > 0 such that ||z(0)|| <
d(e) implies ||z(t)|| <€, YVt > 0.

¢ uniformly asymptotically stable, if there is a positive constant §, such that

|lz(0)]| < 0 implies ||z(t)|| - 0 as t - oo.

14



2. STABILITY, PASSIVITY AND ZERO DYNAMICS

¢ uniformly exponentially stable, if there are positive constants d, k, A, such that

()1l < Kl|z(0)le™>®), v[lz(0)]| < 0.

Such stabilities hold globally if the corresponding inequalities are satisfied for
any initial condition z(0) € X.

The most obvious way to determine stability is from the analytical solution of
(2.1). However, it can can be a difficult task if the model is of high order, and can
even be impossible if there is uncertainty in the differential equations. Lyapunov
stability theory provides a tool to determine the stability without obtaining an an-
alytical solution.

A Lyapunov function V() is a continuously differentiable, positive definite
scalar function of the state vector . One can think of it as a generalized energy
function, for which the energy is greater than zero anywhere in the X domain other
than at the equilibrium point, where the energy is zero. The stability, asymptotic
stability, and exponential stability conditions of the equilibrium point can be de-
rived based on V() and its time derivative, V(x), using the following Lyapunov

theorem.

Theorem 2.2. Consider system (2.1), and let V(z) : X - R* be a continuously

differentiable, positive definite function.
e if V(x) is negative semidefinite, the origin is stable.
e if V(x) is negative definite, the origin is asymptotically stable..
e if V(z) < -kV(z),k > 0, the origin is exponentially stable.

To put stability in to the context of control, we consider the system:

L= f@)+ gl (2.22)
y =h(x) (2.2b)

where = € X ¢ R" is the state vector; u € U ¢ R™ is the control input vector; y € R™

is the output vector; and f and h are C I yrector functions.
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The objective of process control is to control and stabilize the process at a de-
sired operating state. This desired operating state can be denoted as the set point
of the output y*. We design control input so that y* is a asymptotically or even ex-
ponentially stable equilibrium for the closed-loop system. For example, if we can
measure the state and design an appropriate state feedback control law to calculate

the control input u = a(z), then the closed-loop system:

X~ j@)+ g(@al) 23)

Yy= h(x)v (24)

should be asymptotically stable at y*. With a change of coordinates, y* being a
stable equilibrium point indicates that the control error e = y* -y is stable at the

origin, e = 0.

2.2. Passivity and Passivity-based Control

Definition 2.3. A system is passive if there exists a continuously differentiable,

positive semi-definite function, W (z) (called storage function), such that

de—Ex) < u(t)Ty(t), vt > 0. (2.5)

Moreover, the system is said to be input strictly passive if

dW (x)

o <u(®)Ty(t) —ulp(u), ulo(u) >0, Yu %0, (2.6)

where ¢ is a function of u, that ensures u” ¢(u) positive definite.

Passivity is a little different from Lyapunov stability, since it is an input-output
property. Passive systems are very useful when we study the overall stability of in-
terconnected systems. In this work, we are interested in using passivity of systems
to help us approach closed-loop stability either from a parameter estimation or a
control point of view.

A control loop is essentially a negative feedback connection of a controller and

16



2. STABILITY, PASSIVITY AND ZERO DYNAMICS

a process or a transformation of the process if some model-based inversion is in-
volved. Passivity arises if we choose a right pair of input and output. Passivity
thereof depends on the choice of the input and output, and a system may be pas-
sive for some combinations of inputs and outputs and not passive for the other
choices.

For control purposes, in the following theorem, we define a pair of synthetic
inputs and outputs that can be generally applied to system (2.2), and transform the

system into a passive one.

Theorem 2.4. Consider system (2.2) with output equation:

y = h(x), (2.7)

and a control setpoint y*. We define a pair of synthetic inputs u. and outputs e:

dy”
dt

- Lih(x) - Lygh(x)u, e=y" -y, (2.8)

Ue =
where rank(Lgyh(z)) = m, indicating that the system (2.2) has relative degree
one.L¢h(z) and Lyh(z) are Lie derivatives, defined as:

Lih(@)= 90 7(@),  Loh(a)= 3 o(x) 9)

Then, transformed system,

de

de . 2.10
o U (2.10)

is passive with the storage function W = 1e”e.

Proof. The passivity is shown by taking the time derivative of W. We find
— =€ U, (2.11)

and the passivity result follows according to Definition 2.3. O
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Figure 2.1: Schematic of passive transformation

Figure 2.1 shows the passive transformation graphically. In order to utilize the
passivation transformation in Theorem 2.4 for controlling y to y*, we need to be
able to determine u uniquely from u., which can be ensured by the rank condition
rank(Lgh(x)) = m. It also means the original system with input u and output y has

relative degree one. The definition of relative degree is shown in the following.

Definition 2.5. (Relative degree) The relative degree r of a SISO system output y

to the manipulated input u is the smallest integer for which:
LoLi 'h(x) # 0. (2.12)

Therefore, the transformation in Theorem 2.4 is for controlling relative-degree-
one systems. The transformation and consequent passivity-based control for high-
relative-degree SISO systems will be addressed in Chapter 6 using backstepping
which is a generalization of cascade control.

With the transformation presented above, we can take a look at how we can

control a passive system.

Theorem 2.6. The passive system (2.10) can be asymptotically stabilized at origin

e = 0 with negative proportional feedback control action:

ue = —Kee, K.>0. (2.13)

Proof. Consider the Lyapunov function V = W = %eTe. For u. = —K_e, the time
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0 —€ Cl-e) Uc Passive e

system

Figure 2.2: Feedback connection of the passive system and a controller

derivative of the Lyapunov function is:

- ~Kqele. (2.14)

The Lyapunov function strictly decreases, until the control error reaches the origin,

and V = 0. Therefore, the origin e = 0 is asymptotically stable. O

Theorem 2.7. Consider the negative feedback connection of the passive system and

a controller C(-) shown in Figure 2.2.
¢ If the controller is input strictly passive, then the closed-loop is L stable;

¢ If the storage functions of the passive and the input strictly passive controller
are positive definite functions of error vector e, then the closed-loop is asymp-

totically stable.

Proof. First, we prove the first statement. Define 1, and W> as the storage func-
tions of the input strictly passive controller and the passive system, respectively.

The time derivatives of the two subsystems’ storage functions satisfy:
W1 < —eTuc - q/eTe, W2 < uCTe, (2.15)
where v > 0. Then, the sum of two time derivatives is:

W1 + Wg < —fyeTe. (2.16)
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Define
W=W;+ WQ, (217)
and we can write,
t o 1 1
~[eech-g—-(W(to)—W(t))g—W(tO). (2.18)
to Y v

Hence, e € Ly, and the feedback connection is stable.

In the second statement, since W becomes positive definite function of e, and
W(e) <-ve'e<0, whene#0, and W(0) =0, (2.19)

the closed-loop is asymptotically stable. O
Theorem 2.8. The PID control

)

2.20
it (220)

1 t
u =k, [e(t) + — f e(t)dr +71p
T1 J0

where k. > 0,77 >0 and 7p > 0, is input strictly passive with input e € R and output

u € R. The dissipation rate is given by 3¢ = k..

Proof. Define the variable s as : s = fot e(7)dr, and the storage function Wp;p =

2k—T6132 + ]“6%62. Differentiate the storage function Wp;p to obtain:

WPID = —CSS + chDee
TI

C .
= —se+k.Tpeé
TI

ke
=el[kee + —s+ k.mpé] - k.e?
TI

= eu — k€2 (2.21)

Since —k.e? is negative definite, the PID controller is input strictly passive as de-

picted in Definition 2.3. O
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In Chapter 3, similar transformations will be performed to derive a passivity-
based input observer to estimate unknown inputs to the system. From the param-
eter estimation perspective, we consider the difference between the estimated state
and the true state, or the estimated output and the measured output, as the syn-
thetic output. The estimated state or estimated output is obtained from integrating
system dynamics using the estimated parameter. The synthetic input is the deriva-

tive of this synthetic output.

2.3. Zero Dynamics Stability with Passivity-based Control

Passivity-based control addresses the control problem from an input and output
perspective. It can ensure the stabilization and tracking of the output, but not nec-
essary of the internal states. We illustrate this point through comparing the con-
trol of a single-input and single-output (SISO) linear system with a classic state-
teedback pole placement method and the passivity-based control method.

Consider the linear system example motivated (Hou & Muller, 1992):

-1 1 0 1
z=|-1 0 O |z+[0]|u (2.22)
0o -1 -1 0
——— ——
A B
y=Cx. (2.23)

The pair (A, B) is controllable, indicating that the control input vector u can control
the system from any initial state to any final state. We are interested in controlling
the output y at a reference value y*. We will analyze three control cases with three
different output C' matrices. By changing the output matrix, we have different zero

dynamics. We show that

¢ the zero dynamics stability cannot be ensured by the passivity-based control
if the system has nonnegative zeros; but with classic state-feedback control,

the zero dynamics can be guaranteed to be stable as long as the system is
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controllable;

¢ tracking a non-constant reference cannot be ensured by the classic state-
feedback control if the system has zeros at the origin; but tracking can be
achieved with passivity-based control, as long as rank(CB) = dim(y) =
dim(u).

For all three cases, with state-feedback control we place the state dynamics
closed-loop poles at [-1 -2 -0.5], and with passivity-based control the eigenvalue

of control error dynamics is placed at -1, with scalar gain K. = 1.

¢ Case 1. The output is:
y=[1 1 1] (2.24)

The open-loop transfer function is:
2

. 2.25
$3+2s2+2s+1 ( )

G(s) =

The system is controllable and observable, but the zero dynamics has eigen-
values at the origin, reflected by the zeros of the system’s transfer function at

the origin.

The zero at origin leads to the failure of tracking non-zero reference using
state-feedback control. Standard state-feedback with pole placement gives
the control law: u = py* — kx, where k € R is the feedback gain vector chosen
to place the closed-loop poles at [-1 -2 -0.5]; p is the feedforward gain to adjust
output steady state at the reference. But in this case, since there are two zeros
at the origin, the output steady state is fixed at zero. As shown in Figure 2.3a,

the output is stabilized at zero instead of the set point y* = 2.

With passivity-based proportional control, the set point y* = 2 is tracked, as
shown in Figure 2.3b. But the internal states grow unboundedly, and if we

were to simulate it longer, they will not stabilize at any values.
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2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18

(a) State-feedback Control (b) Passivity-based Control

Figure 2.3: Case 1 control results

¢ Case 2. The output is

y=[1 1 o]x (2.26)

The open-loop transfer function is:

$2-1

G(s) = .
()= F o rass1

(2.27)

The system is unobservable, due to common zero and pole at -1. Also, the

system has one unstable zero at 1.

The state-feedback control can ensure the stability of the zero dynamics and
the tracking as shown in Figure 2.4a, while the passivity-based control can

only ensure the tracking, and the zero dynamics again are not stabilized.

Case 3. The output is
y= [1 0.5 2] x. (2.28)

The open-loop transfer function is:

s2+0.55+1.5
s3+2s2+2s+1°

G(s) = (2.29)
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(a) State-feedback Control

Figure 2.4:

(a) State-feedback Control

Figure 2.5:

syma ‘

(b) Passivity-based Control

Case 2 control results

[

(b) Passivity-based Control

Case 3 control result

With this output, the system is observable and has stable zeros.

The state-feedback control and passivity-based control results are shown in

the Figures 2.5a and 2.5b, respectively. Both tracking and zero dynamics sta-

bilization are achieved for this case.

The zero dynamics stability analysis shows that passivity-based control focuses

on output stabilization and tracking instead of internal states” stability. In the con-

text of controlling a reaction process, we will show later in Chapter 4 that if the

number of outputs is at least as large as the number of reactions, the zero dynamics

are stable.
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2.4. Summary

The fundamental tools of stability and passivity are reviewed. We have given a
flavor of passivity-based control through presenting a general transformation that
makes a system passive, and then arrived at closed-loop stability by stabilizing
it with a proportional and PID control action. We also show that passivity-based
control can ensure output tracking but not necessarily zero dynamics stability, de-
pending on whether the system has negative zeros. This idea will be used later
in designing the passivity-based input estimator and the adaptive control scheme
in Chapters 3 and 5, respectively. It will be further extended and combined with

backstepping to control systems with high relative degree in Chapter 6.
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In this chapter, we propose the passivity-based input estimator (PBIE) that uses
output measurements and time derivatives to estimate the uncertainty in the pro-
cess model. In Section 3.1, we introduce the problem in chemical reaction con-
trol that motivates the development of the method and the utilization of the time
derivatives of measurements. In Section 3.2, we develop the theory of the pro-
posed PBIE for partially linear systems, and show simulation results of numerical
examples; the extension of the estimation method to a class of nonlinear systems
is shown in Section 3.3, followed by an application to on-line estimation of the re-
action heat generation rate and heat transfer rate in a jacketed chemical reactor.

Section 3.5 completes the chapter with a summary and concluding remarks.

3.1. Problem Statement and Motivation

As been proposed in the beginning of the thesis, we generally consider the system

with chosen output y could be described as:

dx

L f@)+alew) 612)

v = h(z) (3.1b)
Yd = y (3.1C)
% — Lh+ Lyh = p(y) + DAp(x) + 6(y)u. (3.1d)

where y € R™ refers to measured states and z € R” refers to unmeasured states. We

are interested in estimating Ap(z) : R™*" — R?, which is a vector of C"! functions.
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In a chemical reaction system context, ¢(y)u represents the supply function,
assumed to be known or measured and does not have recursive dependency on
the higher order dynamics represented by (3.1a). p(y, z) represents the production
function that couples the dynamics of the measured states z with unmeasured x.
The knowledge of this time-varying term p(y, x) is useful to compensate in feed-
back control, indicate of reaction stage, and provide history of reaction evolution.
This term could be composed of a known part p(y) and an unknown part DxAp(x)
that needs to be estimated on-line. To further explain the problem, we use the fol-

lowing chemical semi-batch reaction example.

Semi-batch reactor example Assume that we have a semi-batch reaction system

with only one reaction A + B - C. The dynamics of the reaction can be modeled

as:
dCy F;
— = Cain—T, 3.2
at v AT (3.2)
dCB an
— = Cgin-—r, 3.3
at v BmT (3.3)
dCe
o _ 3.4
at (34)
r= koe%cACB, (3.5)
dT, F; AH,r UA(T,-Tj)
L= mC 'mTlm - pC Tr - - J 5 3.6
it~ VpC, (pinCy, pCypT:) Cop VoG, (3.6)
dv
_:Fin_Fou- 3.7
dt t 3.7)
We can measure the concentration of A, Cy, i.e.
y=Ca, (3.8)

and want to estimate the reaction rate r. Follow similar notation as for reaction
model in Section 1.1.
The conventional way of estimation solves the algebraic-differential equations,

(3.2) - (3.7), and uses a regression method, for example a Kalman filter, to match the
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model to the measurements. Another way is to just use the differential equation of

measured Cy, (3.2). By comparing (3.2) and (3.1d), we assume to know the inlet

Fin

flow information ¢ = %

Ap(CA, CB,TT, V) =T.

Ca in. The task is to estimate the reaction production term

Obviously, following the conventional approach increases the number of states
or requires more measurements. Thus, we ask the question: can we just use (3.2)
and measured C4 to achieve the estimation of r(¢)? If this were possible, we would

benefit in two respects:
1. it saves the work of modeling the rest of the system;
2. it frees the estimation task from knowing the reaction kinetics.

The solution seems obvious at the first glance. One might think that we could
compute or measure %, and then calculate reaction rate r algebraically from (3.2).

The obstacles preventing us from doing so are the following:

1. without having the analytical expression of C' 4, exact differentiation to obtain

dCa - . .
=5 is not possible;

2. if the measurement of C'y4 is corrupted with noise, differentiation will further

exaggerate the noise in the derivatives.

The two obstacles lead us to ask for a better solution that can dampen the noise
translated into the estimates of r(¢).

Above all, considering only (3.2), and assuming F,,C 4 ;, is known, we can mea-

sure:
y=Ca, (3.9)
dC 4
- A 10
Ya=— (3.10)

but the derivative measurement could be corrupted with some noise. Therefore,
the objective is to design an estimator for the time-varying production term p(x) =

r(t) with attenuation of noise in the derivative measurements.
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3.2. Passivity-based Input Estimator for Partially Linear Systems

3.2.1. Ideal Case

We start with a scalar first order nonlinear system:

2(t) = az(t) +bu(z,t), a<O0, (3.11a)
yi(t) = (1), (3.11b)
ya(t) = 2(t). (3.11¢)

The system has two outputs. i.e. the measured output and its time derivative. The
task is to estimate the time-varying parameter j:(z,t). Motivated by solving the es-
timation problem as a control problem, we manipulate the estimated input x(z,t)
so that the estimation error of the state from the estimator model (3.12) asymptoti-
cally declines to zero. Using Lyapunov function, V(%) = %(z - 2)?, we use passivity
transformation and Theorem 2.6 from Chapter 2 to derive the following passivity-

based input estimator to solve the problem:

2(t) = a2(t) + bia(t), (3.12)
) = 3 (b ((0) = 20)) + 1a(0) ~ a2(1)), k>0, (6.13)

where £ is the proportional gain. From here, we drop the dependence of time in

the notations for convenience.

Theorem 3.1. Given system (3.11a), with unknown time-varying parameter y(t),
state and time derivative measurements (3.11b), (3.11c), the passivity-based esti-

mator, (3.12) and (3.13), provides asymptotic estimates of unknown parameter.

Proof. Express the true value of the parameter as:

(3.14)
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and substract it from (3.13) to obatin:

=i =- (z-2). (3.15)

The application of Lyapunov function V' (Z) = 3(z - 2)? = 22 guarantees z - 2 con-

1
2

verges to zero since the closed-loop dyanmics of Z is:

dz
— = -kZ. 3.16
o = k% (3.16)

It is then obvious that ;- i converges to zero, too.

3.2.2. Nonideal Case

In practice, it may not be possible to obtain accurate measurements of the deriva-
tives. To study the effect of error in differentiation, we rewrite the model in the

following manner:

2(t) =az +bu(z,t), a<0, (3.17a)
y1 = 2(t), (3.17b)
y2 = £(t) +0(2). (3.17¢)

In this case, we do not measure the exact derivative, thus the second output ys is
composed of the true time derivative of the state plus a noise term, 6(¢). The noise
term could result from the use of a numerical differentiator, such as the deadbeat
method of Reger & Jouffroy (2009). The following result derives the frequency

response of the estimated error with respect to the noise term.

Theorem 3.2. Given system (3.17a), with time-varying parameter u(t), we as-
sume that the state is perfectly measured, (3.17b), but derivative measurement
is corrupted with noise, (3.17c). Assume that we can model the noise as 6(t) =

do + As sin(wst + ¢s ). The estimator (3.12) - (3.13) provides parameter estimates with
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bounded error fi(t) as t - +oo:

fi(t — +00)
a 5 (\/(a2 + wg)kQ + a%ug + wgl sin(wgt + gbg)A (318)
= — —+ . .
bk " b(k? + w2) b

Proof. First we differentiate [ and Z, combining the results with equations (3.12)

and (3.13), then we can obtain following relationships:

Z=-ki-9, (3.19a)

. 1.

ﬂz (a+bk)k:2+a-£k5_g57 (319]9)
1

i = —“Zkz—ga‘ (3.19¢)

The solution to (3.19a) and (3.19b) are:

t
HORT ]0 M5(r)dr, (3.20)
t
i) = Foktz, 4 #akt [ ekstyar - %5(75). (321)

The noise §(t) in the derivative is modeled as:
5(t) = 6o + Ag sin(wst + ¢s), (3.22)
which can be plugged in the solutions, and for Z(t) we have:

t
(t)=e Mz —e M /0 e85 (T)dr
" (20 | wocos(¢s) — ksin(¢s) 1)

k2 + w? k
, As (ksin(wst + ¢5) - ws cos(wst + ¢5))  do
k2 +w? k
okt [0 98 cos(¢s) — ksin(ds) 1
k2 + w? k
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\/ k2 + w2 sin(wst + @)
+ As > > +@,

3.23
k2 + wg k (3:23)

where
o5 = ps + arctan(—%). (3.24)

In (3.23), except for the exponential decaying term, the magnitude of the periodic
signal amplitude and modeled average are both dampened by the estimator gain

k. For fi, we have:

o a+k . . wscos(gs)—ksin(ps) 1
Alt) = = e (z‘” K2+ 0?2 k
a+k 1 )
+ bk 50 - E (50 + A5 sm(w5t + (;55))
Lot k As (ksin(wgt + ¢s) — wg cos(wst + Pg))
b k2 +w?
a+k _i . wscos(ps)—ksin(gs) 1
" ¢ (_z‘” K2+ w2 k)7
(a? + w?)k? + a2w? + wisin(wst + @)
5o+ Ve - > A, (3.25)
bk b(k? +w3)
where
@5 = ¢s + arctan (—(L/{:)Zw(;) . (3.26)
ak — ws

Similar situation with (3.25), the not exponential decaying terms can be dampened

by large estimator gain. O

Discussion Above derivation results show the tendency of magnitude |/io| to

change along the noise parameter, and it is summarized as follows:

[fioo] = %«w, as A = 0 or ws = 0;

. As
|floo| = |7|, as ws — oo.
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The dampening effect of estimator in the estimates of the derivative noise can be
shown in a Bode diagram. We first derive the transfer function relations between
Z(t) vs. 6(t) and ji(t) vs. 0(t). From (3.19a) and (3.19b), the transfer functions of
these two pairs of outputs and inputs are:

. _E(s) 1
S 6(s)  s+k

(3.27)

_f(s) _ s(s—a)
Ga(s) = 6(s)  bs(s+k) (3.28)

Assume a = -1,b = 1. The Bode diagrams of G (s) and G»(s) are shown in Figures
3.1 and 3.2, respectively. Responses of high gain estimator, £ = 10, and low gain
estimator , k = 2, are compared. The error bound can be reduced by increasing the
estimator gain £ while the noise frequency is small. As shown in both magnitude
diagrams of G1(s) and Gz(s), the noise ¢ is much more dampened in Z and i by
the high gain estimator than low gain estimator while the noise frequency is small.
As the frequency increases, the differences between using high gain and low gain
grows smaller. However, from Figure 3.2, we can see the estimator is not able to

dampen the noise in /i when noise frequency is very high.

3.2.3. Simulation Results

A simple scalar linear system with one varying parameter is used to test the devel-

oped passivity-based estimator:

2(t) = —2(t) + pu(t), (3.29a)
1u(t) = 0.1sin(0.5t), (3.29b)
yi(t) = 2(t), (3.29¢)
ya(t) = 2a(t), (3.29d)

where %, is an estimate of the derivative of z.
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Figure 3.3: Estimator performance in ideal case (z and Z)

Ideal case (¢; = 2) Both the state and derivative are measured continuously and
accurately, more specifically z4 = 2. (3.12) and (3.13) are used to estimate the param-
eter 1(t). The results of the estimation are shown in Figures 3.3 and 3.4. We also
compare the passivity-based input estimator (PBIE) result with inversion-based es-
timator (IBE) (Tatiraju & Soroush, 1998) result. The IBE also treats the time-varying
parameter estimation problem, but does not use information of derivative of mea-
surement in the estimation equation (3.13). Figure (3.3a) shows that the estimator
starts with the same wrong initial condition, which also results in the deviation
of the estimated parameter, /i from the true value, Figure (3.4a). Because of the
asymptotic stability of PBIE , the estimation errors converge asymptotically to zero
in Figures (3.3b) and (3.4b). In comparison, the IBE is shown to be marginal stable,

due to fail to capture the dynamic change of the measurement.

Nonideal case (¢; = 2 + 0): using a deadbeat differentiator together with passivi-
ty-based estimator Again, we consider the example system: (3.29a) - (3.29d). The
difference from the ideal case is that the second output y»(t) is calculated by using

deadbeat differentiator,

2a(t) = 2(1) + 6(b), (3.30)

35



3. PASSIVITY-BASED INPUT ESTIMATOR

0.1%
—
——u hf: I:I?éfé § —e—, hat PBIO error
= =mu nha b
= =u hat IBE error
0 005 8
.8
= ©
E
g7 0
@
-0.05
0 10 20 30 40 )
Time Time
(a) Profiles of pxand i (k = 2) (b) Profiles of ji (k = 2)

Figure 3.4: Estimator performance in ideal case(x and ji)

where §(t) is the differentiation error.

Any type of differentiator would produce error in the reconstructed deriva-
tives. Here, we choose the deadbeat differentiation technique proposed by Reger
& Jouffroy (2009) as an example. The work re-derives the derivative estimation
scheme in Mboup et al. (2007) based on the reconstructibility Gramian. Deadbeat
differentiation treats the signal as a polynomial signal of time within the differen-
tiation moving horizon 7. Here we use 7' = 0.1, and assume that the signal z(?)
is a degree-one polynomial. First order derivative can be reconstructed using the

following formula from the paper:

. 6 t 12 t
2alt) = 75 ft A ft L (T=0z(r)r, (3.31)

The assumption of a degree of 1 polynomial signal is required to derive the weight-
ing factors of the integration terms. Other types of numerical differentiators are
reviewed in Appendix E.

The proposed passivity-based estimator (3.12) - (3.13) with proportional gain
k = 10 is used. The simulation results are shown in Figure 3.6. The estimator
starts with a wrong initial condition with an error of 0.1 as shown in Figure (3.5a),

then converge close to the true profile. The same performance can be found for
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Figure 3.5: Estimator performance in nonideal case (z and )

the parameter estimate in Figure (3.5b). The estimation error of p is very small,
but still exists in Figure (3.6b). However, we can see that the magnitude of the p
error is very much dampened by the estimator, compared with the magnitude of
the differentiator estimated derivative error. Also, in this figure, we can observe
the magnitudes of noise reduction with different k. As shown in the theory, with

higher k, the bounds of estimation error are smaller.

3.3. Passivity-based Input Estimator for Nonlinear Systems

The estimator can be used for th following class of nonlinear system:

% = () + DAP( ) + 92w, ), (3.32a)
L= jm) +gw) (3.32b)
— (3.32¢)
Yo = 2, (3.32d)

when z € R?, are measured outputs or states, of which the dynamics can be written
as a sum of the unknown parts Ap(z,~y) and the known parts: p(z,7v1) + ¢(z, u,71).

The derivatives of z are also accurately measured. x € R™ are unmeasured internal
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Figure 3.6: Estimator performance in nonideal case (¢ and )

states. All the nonlinear functions involved are vectors of C* functions with appro-
priate dimensions. v represents the vector of parameters, and ~; is the sub-vector
that includes all the known parameters. In this case, the passivity-based estimator

is:

% = p(zm) + DAR() + 6(,) (3.33a)
Ap(t) = D7 (y2 + K (y1 - 2) - d(2,u) = 5(2,71)) - (3.33b)

K e diag(k1, ko, ks, ..., k) is positive definite.

Theorem 3.3. Consider the class of nonlinear system (3.32), where we can both
measure outputs and their derivatives. The passivity-based input estimator shown

in (3.33) provides asymptotic estimates Ap — Ap.

Proof. Express Ap through inverting (3.32a), and then subtract it by the estimation

law (3.33b). After re-organizing, we can write the input estimation error as:
Ap-Ap =D (p(2) - p(2) + ¢(2,u) = 6(2,u) - Kp(z - 2)). (3.34)

Same as in the linear case where z — Z converges to zero asymptotically, therefore

Ap — Ap converges to zero asymptotically as well. O
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3.4. Application to Estimation of Reaction Calorimetric Variables

The main application of the proposed passivity-based input estimator is the esti-
mation of reaction calorimetric variables, which are reaction heat generation rate
and reactor-jacket heat transfer rate. Only credible energy balance and easily avail-
able measurements, such as temperature, reaction weight, flows, are used, and ki-
netic information is not needed. On-line knowledge of these two thermal variables
can be utilized to monitor the evolution of production, residual level of reactants,
and control reactor temperature. Successful applications of calorimetric variable
estimation schemes for process control (Tatiraju & Soroush, 1998) and composition
monitoring and reaction runaway prevention (Schuler & Schmidt, 1992) have been
reported in the literature. In DOW Chemical, a dynamics-inversion based scheme
is implemented for estimating standing monomer level and temperature control
purposes, and in test trails, the composition evolution calculated based on calori-
metric estimation agrees with Raman spectrometer measurement. The derivatives
are calculated using Euler method based on filtered temperature measurements.

In this section, we show the application result of passivity-based input estima-
tor based on energy balances and temperature measurements; we also compare the
result with other similar estimation schemes that only use present data for estima-
tion.

The estimator is constructed based on the temperature differential equations of

the reactor and jacket:

dT; F; AH,r UA(T,-T;)

e 1nC mT’m - pC, Tr - - J ) 3.35
it~ VpC, (pinCyp, pCpT}) Cop VoG, ( )
aT; _F, UA(T, - T)

I AT~ T ’ 3.36
at v, (T3, i)+ VipwComm ( )

where Q, = -AH,r and Q; = UA(T, -T};) are unknown inputs to be estimated. The

reactor temperature 7, and jacket temperature 7; are measured, and their deriva-
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tives are reconstructed. Define

L __1 Fin . . S
Ap= QT’ : D= Cpp VpCp ’ (b: Vi pCp (Panp,me pCpTr)

1 F;
Qj 0 voucw v (Tjin = Tj)

I

(3.37)

we can put the model in the form of (3.32), and follow (3.33) to obtain the corre-
sponding PBIE.

A jacketed exothermic reaction 24 — B — C is modeled in Matlab. The tem-
peratures and numerical derivatives provided by the ODE solver are given to the
passivity-based estimator to obtain estimates, Qr and Qj. We also compare the re-
sults from PBIE and IBE, as the latter estimator does not use the derivatives. We
use the same, correct initialization for the estimator states TT and Tj, and the same
gains K = diag([0.5, 0.5]). Errors of temperatures estimates and Q, and Q; are
zeros form beginning as shown in Figures 3.7 and 3.8, and it is because that correct
initial values of the estimator states, Tr and Tj, are given. In comparison, the IBE
estimates error exists while temperatures are not at steady states, and gradually

converge towards zero while the the temperature profiles approach steady states.

3.5. Conclusions

In this chapter, we developed a passivity-based input estimator for estimating
time-varying uncertainties in partially linear system and nonlinear systems. The
estimator is derived from a Lyapunov stability perspective, and requires the use of
a measured or estimated output derivative. In the ideal case, the derivative is per-
fectly measured, and the estimator estimates have asymptotic convergence to the
true values. In the nonideal case, the derivative is not perfectly measured. Instead
it is obtained through a differentiation technique, such as a deadbeat differentia-
tor. We showed that the proposed estimator could dampen the magnitude of the
derivative error in the parameter estimates by using large estimator gains. Illus-

trative examples are simulated to show the proposed estimator performance for
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ideal and nonideal cases. Potential applications include production estimation in
chemical reaction systems for process control and monitor, as shown in the reaction
calorimetric variables estimation example. Inclusion of the proposed estimator in
a model-based control scheme can reduce control model size and save modeling

cost.
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4. STATE ESTIMATION WITH PROCESS

UNCERTAINTY

In this chapter, we consider the state estimation of a special class of nonlinear sys-
tems with partially linear structures with respect to the states and uncertainty pa-
rameters. We first show how to construct the unknown input observer (UIO) in
Section 4.1. Section 4.2 presents the concepts of reaction variants and invariants
in reaction systems. In Section 4.3, we use them to construct the asymptotic ob-
server (AO) for estimating unmeasured compositions without the knowledge of
reaction kinetics. Section 4.4 compares the UIO and AO, and discusses some of the
observers’ convergence issues. We apply the proposed observers to numerical ex-
amples and two reaction examples for which the results are shown in Section 4.4.

Finally, we close this chapter with some concluding remarks in Section 4.6.

4.1. Unknown Input State Observer (UIO)

We consider a partially linear system of the following form:

Z—? = Az + Bu+ Du(x,t) (4.1a)
y=Cuz, (4.1b)

where z € R, u € RP, 4 € RY, and y € R™. Here, i is a unknown function vector,
referred to as unknown inputs. In this system, all the nonlinearity and uncertainty
are incorporated in the vector p. We are interested in estimating the states from the

measurements y and the deterministic linear information, matrices A, B, C, D, and
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known inputs u. We also assume that rank(C'D) = ¢, which indicates that we have

at least the same number of output measurements as the unknown inputs, m > q.

The first step of constructing the state observer aims to decouple the unknown

inputs p from part of the system dynamics.

First, find the nonsingular transformation matrix 7" € R"*",

T:[N D], with N e null(D).

Therefore,
T = b*
p+ )
where

DLD = Oan, and DD = I(n—q)xn'
Pre-multiply (4.1a) by 7!, and define z = 7'z, then we obtain:

0
dz =T Az +T'Bu+ 78
dt I

Above equation is equivalent to

_ _ 0
dz =Az+ Bu+ L

dt I
where A=T"'AT, B=T"'B.

Then we can partition the new state vector z as

(4.2)

(4.3)

(4.5)

(4.6)

(4.7)

where 2y e R"" % and zy € RY. 25 is called the invariants, as it does not explicitly de-
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pend on the unknown input vector p. zy is called the variants, since each element
of zy varies only with one unknown input in the vector, p.

The matrices A and B are partitioned correspondingly:

_ Aq A _ |B
A:( H 12), B=|"|. (4.8)

AQl A22 B2

The dynamics of invariants and variants are now given by:

d _ _ _
% = AHZ[ + Algzv + Blu, (49)

d _ _ _
% = A212] + AQQZV + BQU + W. (410)

To decouple z; from zy,, we utilize the output equation (4.1b). With the state trans-

formation, the output equation is written as:

y=CTz. (4.11)
We now find a nonsingular matrix,

U = [CD Q] . with Q enull(CD) c R™ (™9 7 e R™™, (4.12)

The inverse can be partitioned as,

-1 Uy xm (m—q)xm
U= , where Uy e R¥"™ and Uy € R4 (4.13)
Us

and the submatrices satisfy the following conditions:

UiCD = Iyxq, U2CD =0(p-q)xq- (4.14)
Pre-multiply the output equation with the matrix U to obtain:

Uyy=UCNz + zy, (4.15a)
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Ugy = UQCNZ]. (4.15b)

Based on (4.15a), we can express zy in terms of measured outputs y and invari-

ants z; in (4.9) and obtain:

dzr

E = 12112’[ + Blu + Fhy, (416a)
yr = Ch2r, (4.16b)

where
Ay = Ay — ApUICN, Ey = AUy, yp = Usy, C1 = UsCN. (4.17)

Then, an exponential state observer like Luenburger observer can be designed for
(4.16a)-(4.16b) if the pair (A;, C}) is observable. The observer equation, referred as
the closed-loop UIO is:

dz

d—tf = (A1 - LCy) 2 + Byu+ (LU + Ey)y, (4.18a)

2{/ = U1y - Ulc'NZA:[ (4.18b)
Zr

=T (4.18¢)
Zv

where L is the observer gain matrix.

However, when the number of measurements equals the number of unknown
inputs, we lose the extra degree of freedom to assign the observer estimation con-
vergence rate through output y; feedback. When m = ¢, y; € R™ 7 is an empty
vector. Under this situation, we can still construct an open-loop UIO if eigenval-
ues of A; only have negative real parts. We can formulate the open-loop unknown

input state observer as:

% = A1z + Biu+ Eyy, Re(eig(A)) <0 (4.19)
sy = Uy - UiCNZ; (4.19b)
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2 :T( %f ) (4.19¢)

The open-loop UIO is asymptotically stable, and the existence of asymptotic stabil-

ity entirely depends on the original system (4.1) matrices and cannot be imposed
or improved through output feedback.

The open-loop UIO applied to reaction systems with uncertain kinetics becomes
the so-called asymptotic observer. The stability of the asymptotic observer depends
on the hydrodynamics of the reactor, and exists in semi-batch reactors or CSTRs,

where persistent excitation conditions are fulfilled (Moreno & Dochain, 2008).

4.2. Reaction Variants, Invariants

We start from the dynamic model of a well-mixed homogeneous liquid phase
CSTR, with n, independent reactions and n. species. The state of the reactor can be
described using the state vector, x = (C1,Cy, ..., Cy,, Uy, V;.). The dynamic model of

the CSTR can be written as follows:

dC Fy,
&g, - , 42
T (Cin-C)+vr (4.20)
d;f = Fln - Frout + d)v (421)
dUr Frout dV}
- H.+Q:+W,-P%r, 422
o v +Qj+ o (4.22)

We make the following assumptions, which are realistic for homogeneous lig-
uid phase reactors (Dochain et al., 2009): (1) the liquid mixture is ideal and incom-
pressible; (2) the CSTR is operated at constant pressure; (3) the volume change due
to mixing and reaction is negligible. As a result, the energy balance and volume

balance can be written as follows:

dH'r Frout
i = Hin - V; Hr + Qj + Ws, (423)
dv,
_:-Fin_Frou' 4.24
— t (424)
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Asbjernsen (1972) shows that there exists non-unique nonsingular linear trans-
formation matrices 7! € R™*"™ to transform the composition states C into reaction

variants zy € R™ and reaction invariants zy € R ™":

z
o= 7" | (4.25)
2y
The matrix 7! can be found as:
1
71 = | Ynemnne , (4.26)
+
Vnrxng NexXTe

st vV = Lnn,y V7V =052, )xn, 4.27)

Note that 77! is not unique, so that the choice of invariants and variants may vary
with measurement availability and control strategies. Through the transformation,

the mole balance part of the reaction dynamics (4.20) is expressed in terms of z;

and zy:
dzy  Fi
4z _ o= 2), 428
GV (21, — 21) (4.28)
Fin
—d;;/ = v (2vin —2v) +T. (4.29)

One can make the following observations: (1) the effects of n, reactions are
decoupled such that one reaction variant zy;, i = 1,2,...n,, is only influenced by
the corresponding ith reaction; (2) the reaction invariants z; are not affected by the
reaction rates. The asymptotic stability of the reaction invariants follows from the

solution of (4.28) given by:

Fin
21(t)=(21(t0) = 2r.imn)e” V* '+ 2Lin, (4.30)

where z;(tp) is the initial condition vector of the reaction invariants. The reaction
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invariants will converge to 27 ;, as long as 1?}:’ > 0, which is fulfilled in CSTRs and
semi-batch reactors, but not in batch reactors. It can also be noticed that the implicit
reaction-dependent states, internal energy U, and enthalpy H,, can also be utilized

similarly as the invariants later in estimation.

Illustrative example Consider a CSTR reaction system characterized by the fol-
lowing reaction network with n, = 2 reactions and n. = 3 species: 24 - B — C. The
stoichiometric matrix v, the linear transformation 7', and two variants, i.e. zy 1, 2v2,

and one invariant z;, are as follows:

92 0 . -2 00
-1 Vox3
v=|1 -1|, T = R = 0 01 ,
VX
0 1 e [% 11
2vi -1 0 0]|Ca
stlzya|l =10 0 1[|Cgp]- (4.31)
Z7 % 1 1 CC

The dynamics of the reaction variants and the invariants are described by (4.29)

and (4.28).

Reaction variants option for control Reaction variants fully characterize the re-
action contribution, and by controlling a set of linearly independent reaction vari-
ants, the remaining dynamics of reaction invariants are asymptotically stable zero
dynamics. The choice of the reaction variants is not unique, and can be instructed
by compositions that need to be controlled. For example, if we want to control
compositions Cp and C¢ in a semi-batch reactor or CSTR of 24 — B — C, the def-
inition of variants given in (4.31) is not well-suited for the control of variants since

uncontrolled species A is involved. However, if we change the first row of 1" into
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[0 1 1], we can clearly define setpoints of variants as:

C*
oo !
2 = o, (4.32)
00 1
Co

where €' does not need to be specified.

4.3. Asymptotic Observer (AO)

We assume that the temperature measurements for the reactor and the jacket and
composition measurements for n, — 1 species are available on-line. The asymptotic
observer proposed in this section estimates the compositions for n. —n, + 1 species,
without using the reaction kinetics. The estimated values of the reaction invari-
ants #; and total enthalpy H are obtained through solving the following kinetics-

independent observer model:

dzr _ F Fin
L e T i - 4.
ar v LTy (4.332)
dH Fout
O = Hy - T2 Q4 W, (433b)
Then, the estimates of the unmeasured compositions C'y € R"™"*! are calculated
as follows:
. z viC
Sy=r =] L (4.34)
H| [rFCrV,
Vl
where T = ; e R(re-nrtD)x(ne=nr+l) (4.35)
hy

C; € R™ 1 is the vector of measured compositions; v; and v are the submatrices of
the reaction invariants transformation matrix v* in (4.26), and they are constituted
by the corresponding columns of measured and unmeasured species, respectively;

h € R"< is the molar enthalpy vector, and h; € R~ h; e R* ™+l are the vectors of
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the molar enthalpies of the measured and unmeasured species, respectively. The

molar enthalpy of each species is temperature dependent, and can be calculated as:

h(T)=h7nef + CP(T - TTef), (436)

where h(T') is the molar enthalpy at the temperature T; h,. is the molar enthalpy at
the reference temperature 7., and cp € R" is the heat capacity vector, assumed to
be constant within the considered temperature range. The asymptotic convergence
property of the observer estimates can be shown by analyzing the dynamics of the
estimation errors of the unmeasured compositions as follows.

The observer estimate errors are defined as:

€ZI=ZT7[—7:“7«7[ eH:H—H.

Based on (4.23), (4.28), and (4.33), the derivatives of e,, and ey can be easily ob-

tained as:
deZI Fm
_ = _eZ]
dt \%4
FOU
_d;f - -2ty (4.37)

The estimation errors of the invariants exponentially converge to zero with conver-

Fin F,

, and =4, respectively. It indicates that for semi-batch reactors,

gence rates of
where Fy,,; = 0, the enthalpy cannot be used as an invariant for estimation, thus
another composition measurement is required. As e; and eg converge to zero, the

measured compositions converge to the true values as well.

4.3.1. Measurement Availability Condition

At least n, independent state variables including reactor temperature need to be
measured for the observer to give composition estimates for all the unmeasured
species. It can be explained as the evolution of the composition states C' is con-

strained in n, independent directions caused by n, independent reactions. Addi-
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tionally, the matrix I" should be full rank to obtain the unique solution for C 7, this

full rank condition places a restriction on the choice of measured species.

4.4. Relation Between UIO and AO

The asymptotic observer, (4.33)-(4.34), designed for CSTRs and semi-batch reactors
is a special case of the open-loop UIO, (4.19), where asymptotic convergence of state
estimation is guaranteed but not assignable. The existence conditions of UIO with

assignable exponential convergence property and AO are summarized as follows.
Theorem 4.1. For a system given by (4.1a) - (4.1b) with uncertainty,

1. when m > ¢, the UIO observer (4.18a) - (4.18c) with assignable exponential
convergence can be designed based on its invariants subsystems iff (/11, (:’1)

is observable;

2. when m > ¢, the UIO observer (4.18a) - (4.18c) with fixed asymptotic con-
vergence can be designed based on its invariants subsystems iff (A;,C}) is

detectable;

3. whenm = g, the AO (alternatively open UIO) (4.19a) - (4.19¢) exists iff Ay only

has eigenvalues with negative real parts.

Theorem 4.2. (Hou & Muller, 1992) Consider system (4.1a) - (4.1b) with uncer-
tainty, and measurement condition: m > ¢, then for its invariants model (4.16a) -

(4.16b), the following statements are equivalent:
1. (A1, C}) is detectable (observable);

2.

8[—/11
rank| =n-q,VseC,Re(s) >0 (Vs eC); (4.38)

Cq
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sI-A D
rank =n+q,VseC,Re(s) >0 (VseC). (4.39)
C 0

Proof. The equivalence of statement 1 and 2 is given by the Popov-Belevitch-
Hautus test of observability (Ghosh & Rosenthal, 1995). The proof of equivalence
of statement 2 and 3 can be found in Hou & Muller (1992). O

Remark Consider a single-tank, homogeneous CSTR or semi-batch reactor, its

model is (4.20). Put it into the general form, so that:

F,

A = diag(- VZ,"

) eR™Me D=y, (4.40)

Choose output matrix C' € R™"", m > n,, and rank(C'D) = n,. We can see that by

-sI-A D
, rank =m+n,; < Ne + Ny
C 0

F‘n
Ve

setting s =

It indicates that only when m = n,, observability condition is satisfied. Then, ac-
tually there is no necessity to use an observer, when all the compositions are mea-

sured.

4.5. Examples

In this section, we give two numerical examples and two reaction examples. The
first numerical example is eligible for using UIO with assignable estimation con-
vergence rate; the second numerical example is qualified for being applied with
open-loop UIO. The third example is a single-tank homogeneous reaction where
AOQ is applied to estimate unmeasured compositions without using the knowledge
of reaction kinetics, and the fourth example is a more complex heterogeneous reac-

tion example, for which open-loop UIO is applied.
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Example 1 from Hou & Muller (1992)

-1 1 0 -1
z=|-1 0 O |z+|0|n (4.41a)
0 -1 -1 0
1 00
Y= x (4.41b)
0 0 1
Choose
00
1
N=|0o 1|, Q= , (4.42)
1
1 0

to obtain transformation matrices:

00 -1
-1 1
7=lo 1 ol U- (4.43)
0 1
10 0
The invariants dynamics is:
-1 -1 0 0
ir= + y (4.44)
0 0 -1 0
;,_/ —_—
Al Ey
yr=11 0] 21 (4.45)
—
Eq

Since the pair (fll, C‘l) is observable, we can use observer gain L to set the conver-

gence rate, i.e. the closed-loop poles. Figure 4.1 shows the observer results with

54



4. STATE ESTIMATION WITH PROCESS UNCERTAINTY

4 Time 6 10

----- estiamted with cl poles [-4;-2]

—true
« estiamted with cl poles [-2;-1]

Figure 4.1: Example 1 UIO estimation results with different closed-loop poles

different gain vectors:

setting the closed-loop poles at [-2, —1] and [-4,

has faster convergence.

Example 2 from Hou & Muller (1992) System:

(1 -1 0 1
=10 -1 1 |xz+|0]|p
0 0 -1 0
101
y = x
00 1
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—2], respectively. The latter one

(4.47)

(4.48)
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State transformation : z = T~ 'z, where

0 01
-1 o 2
T7°=10 1 0|, =z= , zreR zy eR. (4.49)
zv
100
Invariants dynamics are:
Z'[ = [112:[, (450)
yr = Ci4r (4.51)
where
- -1 0 ~
Ay = , Cr1= [1 0] : (4.52)
1 -1
The UIO is:
ir=(A - LC))% + L'y (4.53)
where
0 4
L= (4.54)
0 Iy

L = [I; I5]" is the observer gain vector. The pair (fh, C’l) is only detectable, not
observable. Using Theorem 4.2 (3) and setting s = -1 to test the observability of the
original system, we reach the same conclusion. Therefore the convergence rate of

UIO Eq. (4.53) is not entirely assignable.

Example 3: single-tank homogeneous CSTR Reaction: A + B - C. The reactor

model is:

LCal 1=d 0 0f|Ca| |Fn 0 0 [[Caun
Cel=10 -d ol|lCl+|0 Fn o0

d
ddC_tc 0 0 -d||Co 0 0 FunllCcin
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-1
Fin
where v=|-1|, and d-= v (4.56)
1

We only have n, = 1 reaction, therefore we only need to measure reaction temper-
ature, for estimating C A, C B, C’C. The states of the OA are the total enthalpy and

two reaction invariants:

Ca
1 0 1
zr=v|Cg|, wherev' = ) (4.57)
o 01 1
C

The composition estimations are shown and compared with true composition pro-
files in Figures 4.2 (a)-(c). The measured temperature is shown in Figure 4.2 (d). The
invariants estimated and true profiles are shown in Figure 4.3 (a)-(c). The observer
starts with wrong initial conditions of unmeasured compositions and converges to
the true value asymptotically. The shift of steady-states are caused by the change
of Fiy, and C4 i, as shown in 4.3 (d).

Example 4: heterogeneous reaction system The asymptotic observer is applied
to a simulated heterogeneous reaction system. The heterogeneous reaction exam-
ple is from Bhatt et al. (2010), which is an isothermal, gas-liquid system involv-
ing the chlorination of butanoic acid. The mechanisms of mass transfer between
phases and two reactions are assumed to be unknown. The sketch of the reac-
tor is shown in Figure 4.4. In the liquid phase, one main reaction produces a-
monochlorobutanoic acid (MBA) and hydrochloric acid (HCl), and one side reac-

tion produces side product a-dichlorobutanoic acid (DBA) and HCl.

Ri:BA+Cly— MBA+ HCI (4.58)

Ry:BA+2Cly » DBA+2HCI (4.59)

57



4. STATE ESTIMATION WITH PROCESS UNCERTAINTY
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Figure 4.2: (a)-(c) Comparison plots of estimated reaction compositions with true
values, and (d) plot of measured temperature
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Figure 4.3: Estimated two invariants and enthalpy compared with true values, and
two disturbances: Fj,, and C'4 i,
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Cl, and HCI can be found in both gas and liquid phases. The reactant Cl, is fed
through an gas inlet, and the reactant BA is fed through the liquid phase. The reac-
tor starts with gas phase with air and liquid phase with ethanol. Mole balances of 9
components need to be modeled to fully describe the reactor. The following equa-

tions includes 7 of them, excluding the nonreactive components: air and ethanol.

. T e o -
ne, (9) m—;g nei, (9)
. —Fou
nuci(9) m—gtg nuci(9)
fict (1) it nei, (1)
npa |= npBA
NMBA NATBA
nHCI nHCL
| 7pBa | | — 2t || nppa |
A
) ] .
0 10 0 0
0 0 0O -1 0 O0]r .
CCla,gl
0 0 1 0 -1 -2 29
Fi, Cuci
2 0 Telo 0 -1 -2 91 (4.60)
. Finy 1V
0 0 0 1 0
wBA T2V
0 0 0 1 1 21" -
0 0 0o 0 0 1]
B D

n(g) represents the gas phase component’s mole numbers, and n(l) and n present
liquid phase component’s model numbers; F,,; 4 is the fixed gas phase outlet mass
flow rate. F,,;; represents liquid outlet mass flow rates used to control liquid
phased volume at 5.8230 m®. m, and m, are the total gas mass and liquid mass
in the reactor; F;, 4, Fj;, represent the inlet mass flow rates of Cly gas into the gas
phase and BA into the liquid phase, and Fj, 4 is the manipulated variables to con-
trol pressure at P = 10 bar; ¢y, and (gci, g represent the mass transfer rates of

Cl; and HCL; r; and ry are the reaction rates; V; is the liquid phase volume.
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C|2 Gas
Womet
o t
1 | HCl

R1:BA + Cl, - MAB + HCL
R2:BA + 2Cl, - DBA + 2HCI

Liquid
Outlet

Figure 4.4: Schematic of the example heterogeneous reactor

The unknown input vector is:

CCla,gl

. CHCLg ' (4.61)
Vi

T2V

Its involvement matrix D is composed of first two columns describing whether
and which direction the components is transferred between two phases, and the
remaining columns represent the involvement of components in the reactions. To
estimate four unknown rates, we need at least four good measurements, in a sense

that the evolution of the four rates can be observed from the measurements, i.e.
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Figure 4.5: Measured compositions

rank(D) = rank(CD) = 4. Therefore, we choose the measurements as follows:

nClz(g)
- 1l nEci(9)
1 000 O0O0O
nei, (1)
00010 O0TO0
Yy= npBA (4.62)
00 0O0OT1TO0TO0
NMBA
000 O0O0T171
- _| nHCI
c
| "DBA ]

Figure 4.5 shows the profiles of four measured compositions that are used in the
observer to estimate the unmeasured species. The observer starts with the right
initial condition in this example, thus it is able to estimate the true profile perfectly.
If there is an error in the initial condition, the convergence rate fixed by the dilution
rates, averagely FQT’;” = 0.1573s7! and % = 0.0167s7!, would be very slow. The
control inputs were determined by a PID controller.

Dochain (2000) applied the AO to tubular reactors, and was able to improve it to
an closed-loop UIO, of which the convergence rate can be arbitrarily assigned. The
interconnected nature of each volume element in a tubular reactor, compared with

CSTR considered as an independent single volume element, renders the system

observable, and hence its states reconstructible through an exponential observer.
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Figure 4.6: Comparison between estimated and true profiles of the unmeasured
compositions

The interested readers are referred to that work.

4.6. Conclusions

In this chapter, we presented the unknown input observer in open-loop form and
closed-loop form, and the asymptotic observer designed for chemical reaction sys-
tems. The connection between OA and UIO is shown. We consider the OA as an
open-loop UIO, which is tailored to estimate unmeasured compositions without
the knowledge of reaction kinetics. The stoichiometry in mole balances is used for
constructing reaction variants and invariants, and the energy balance can be used
as an extra dynamic constraint in the OA. The estimation convergence type is based
on the observability of the invariants model and whether it is open-loop or closed-
loop. Two numerical examples and two reaction examples are shown to illustrate

the convergence issues of UIO and the application of AO.
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In this chapter, we integrate the parameter estimation, state estimation and
passivity-based control methods developed so far in the thesis, to construct the
overall adaptive control framework. The adaptive control schemes presented in
this chapter are constructed and adjusted with the objective of ensuring closed-
loop stability.

In Section 5.1, we give the motivation of different adaptive control designs from
the perspective of passivity. Passivity may not be conserved when uncertainty
estimation error exists, which puts closed-loop stability under overall passivity-
based adaptive control into question. To resolve this, we propose two types of
adaptive controllers.

The first type of adaptive controller presented in Section 5.2 draws informa-
tion from the passivity-based input estimator (PBIE) to restore the passivity of the
control subsystem. The exponential stability for the closed-loop is proved.

In Section 5.3, the second type of adaptive controller does not attempt to con-
serve the passivity of the control subsystem, but imposes a convergence property
on the uncertainty estimates. With this estimation quality assumption, we can
show that overall closed-loop is asymptotically stable. In Section 5.3.3, we consider
systems with partially linear structure in the internal dynamics, and show that we
can use state estimates from the unknown-input observer (UIO) in the adaptive
controller and achieve asymptotic stability. Section 5.3.5 gives the analysis on zero-
dynamics stability of the partially linear systems with uncertainty under output
feedback control.

In Section 5.4, the proposed adaptive control approach is applied to control
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simulated homogeneous and heterogeneous reaction systems. We complete this

chapter with conclusions in Section 5.5.

5.1. Motivation of Adaptive Controller Designs

The designs of passivity-based control scheme from Chapter 2 and estimation
from Chapter 3 are centered around passivity and related stability theorems. Dur-
ing both developments, we obtain passive systems through transformation using
derivatives and output dynamics information, and then stabilize the passive sys-
tems through proportional feedback. In this chapter, when we combine the two
and form one adaptive control scheme, we wonder that if the passivity of two sub-
systems, one for control and one for estimation, can be maintained. We also need
to investigate how the overall closed-loop stability can be shown with or without
the passivity property for the control subsystem, and in the later case, the loss of
passivity is caused by the uncertainty estimation error.

In Chapter 2, Theorem 2.4, we showed a general transformation to passivate

the output dynamics:

dy

e p(y) + DAp(z) + ¢(y)u, (5.1)

for control purpose, the mapping from transformed input u. to output e,, shown

as follows:

dy*
dt

Ue =

- L¢h(z) - Lygh(z)u, e=y" -y, (5.2)

is passive. However, due to the existence of uncertainty Ap, the passive relation-
ship is broken if we use an estimate Ap in the transformation, and Ap # Ap. Figure
5.1 illustrates the integration of PBC and PBIE, and shows that the calculation of
u in PBC uses the estimate from PBIE, and results in a non-passive control sys-
tem. The consequence for lack of passivity is that we may not be able to ensure

closed-loop stability through a proportional control feedback.
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Passive Estimation Subsystem

Figure 5.1: Integration of nonpassive control subsystem and passive estimation
subsystem

In the rest of chapter, mainly two ways are proposed to resolve the stability
issue. The first one is to compensate the estimation error and recover the passive
property of the control subsystem in Figure 5.1. The second one is to impose an
assumption on the uncertainty estimation quality, i.e. the estimate converges expo-

nentially.

5.2. Design and Integration of Passive Systems

5.2.1. Adaptive Control Development

Let us revisit the nonlinear system introduced at the beginning of the thesis. The

internal state space model of the system is:

Z—f = f(z) +g(x,u) (5.3a)
y=h(z) (5.3b)
Ya=1Y (5.3¢)
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Figure 5.2: Integration of passive control subsystem and passive estimation sub-
system

where z e X ¢ R", u € R™, and y €e R™. f, g, h are all sufficiently vector functions
with appropriate dimensions. Assume that measurement vector y is chosen such

that the derivative of y with respect to time takes the following form:

W - Lyh+ Lyh = py) + DA() + (v 54
where the matrix D, and ¢(y) are nonsingular. Ap : X — R? is a uncertain Lipschitz
continuous function vector.

To estimate the uncertainty, PBIE is used, and the estimation error is compen-
sated in the control passivation transformation for preserving the passivity. As
shown in Figure 5.2, the block calculating the true control input u now is adjusted
to takes compensation term into account, represented by Ap. Further details of

adaptive control laws and derivations are shown in the following theorem and

proof.

Theorem 5.1. Consider system (5.3) and its output dynamics (5.4) with Lipschitz

continuous uncertainty Ap(z). The closed-loop dynamics under the following
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adaptive controller , for y at setpoint y*, is globally exponentially stable.

dy o
=7 =D(3) + DAP+ o), (5.50)
Ap=D"" 5+ Keij-p(§) - ¢(9)u) , (5.5b)
w* = ¢(9) 7 (5" + Keey + Kej - p(§) - DAP), (5.5¢)

= DB7' (0" + Kepey + ¢(9) ey - Agu), (5.5d)
le_iz = Afu + Byu, (5.5¢e)

where eig(Ay)> 0, and Ay and By are nonsingular; the gain matrices K., K. and

Ky are diagonal positive definite matrices. The error vectors are:

U=y-9, ey=u"-u, e;=y" -y (5.6)

The exponential stability is defined in a sense that § — y, and y - y* exponentially.

Proof. We prove the theorem using control Lyapunov function: V = e e, + tele, +

1

QQTQ. Its time derivative is:

Ve éy+enéu+i . (5.7)

The last quadratic term is the Lyapunov function of PBIE, and through update law

(5.5b) for estimate Ap, we have:

V=e ey +enén— Ky, (5.8)

The next step is to show that control equations (5.5¢) and (5.5d) will render

€y

V <—a|le]?, where,a>0,e=]e, (5.9)
y

For convenience, we will use the following simplified notations:
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A

ﬁ:f)(y)a ﬁ:f)(g)a ﬁ:ﬁ_p
0=0(y), 6=9(9), =09
and for the uncertainty to be estimated: Ap = Ap + Ap.

We first rewrite down the time derivative of control error of output:

éy =y -p—-DAp-¢u (5.10)

=" —p- D (Ap+ Ap) - du. (5.11)

According to (3.34), the estimation error Ap through PBIE is:

Ap =D (-p - du - K.j)). (5.12)
Therefore,
éy=0" ~P-DAp+p+du+ Kej—du=9"—p— DAP—du+ K.j (5.13)

To make the first term in (5.8) negative definite, we set é, = -K.e,, and we could
solve for u. While this value is actually used as a setpoint for u, i.e. u*, as we
augmented the original system with (5.5e), and u does not reach the computed
value instantaneously. Therefore, u* = u - e,, where e, is the error between v* and

Uu.

u* = ¢ (" + Keey + Koy — p— DAP), (5.14)
with which é, = -Ke, + qgeu. Then, the time derivative of V is:

V=-Keley,+el (¢ ey+é)— Ky (5.15)
Set

(Z)Tey +éy = —Kerey (5.16)
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and plug in

éu = " — Agu— By, (5.17)
then solve for u to get:

= B;l(u* + Kopey + <;3Tey - Asu) (5.18)

Above all with the control equations, the time derivative of the Lyapunov function

is:

V=-Kee,e,— Kepelew— K" (5.19)

1
= —||KZe|* < —Knminlle|*, (5.20)

where Ky is the smallest gain parameter of controller and estimator. It shows the

errors will exponentially decay to zero. O

The adaptive controller includes a pseudo first order dynamics for u, (5.5e).
This augmented dynamics is to ensure the solution existence of Ap and u. Since we
derive the control and estimation both in dynamics-inversion fashion, then without

the augmentation, the system of equations:

DAp+¢(§)u =y + Key - p(9) (5.21)

DAp+¢(§)u =y + Keey + Kej = p(3), (5.22)

were to be solved for Ap and u. The solution either does not exist or is not unique.
The right hand sides of the above equations are in general feedback and feedfoward
terms for estimation and control, respectively.

While, after the augmentation, we actually solve (5.22) for a pseudo setpoint u*.
Then the true u is calculated through integrating (5.5e), with input % determined
by (5.5d), which allows u to converge to u*.

To address this type of cascaded tracking problem, we use backstepping. This
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technique is useful when the output and input cannot be related through first order
differential equations. As in this case, the input @ and the output y are related
through second order differential equations. The backstepping control will be the
topic of Chapter 6, where a passivity-based design is proposed and examined. A
fuller derivation and detailed explanation of backstepping controller is deferred till
then.

For the partially linear case, we can apply Theorem 5.1 straightforwardly. Con-

sider the following scalar system:

Z_f — aa(t) + bu(t) + du(z,1), b0, (5.23a)
— (5.230)

where the state x and its time derivative & are measured; a, b, and d are constants.
We want to control x at a constant or time-varying set point =, by manipulating

u(t) under the existence of uncertainty y(z,t), which is Lipschitz continuous.

Theorem 5.2. Consider the scalar system (5.23) with Lipschitz continuous un-
known time-varying input x(¢), measured state z(¢), and measured time derivative

#(t). The adaptive controller:

dz

== ai(t) + bu(t) + i), (5.24a)
A(t) = é (i + kot — a - bu) (5.24b)
% =aju+bsu, ay<0,by#0, (5.24¢)
u* = % (" +kerey —ax —di+ (a+ke)T), (5.24d)
U= % (u* + kepey + bey — afu) , (5.24e)

where z = x - 2, e, = u* —u, e, = ¥ — x, can exponentially stabilize x at the desired

70



5. ADAPTIVE CONTROL

setpoint z*, if the following conditions of gains are satisfied:

ke>0,kc1>0,keo>0. (5.25)

Proof. The exponential stability can be shown by the composite Lyapunov function

isV = %efj + 1e2 + 3%, With the adaptive controller, the time derivative of the
Lyapunov function is % = —kc1€% — keoe3 - k.i%. The derivation of the controller

and proof is the same as the nonlinear case after replacing the nonlinear dynamics
to the linear ones. O
5.2.2. Numerical Example

In this section, we test the designed adaptive controller (5.5) with a nonlinear con-

trol example adapted from Wang & Ydstie (2007). The example is a scalar system:

Z—f = —x+22%+ (2 + Du+Ap, where Ap=sin(5t), x(tg)=0.5, (5.26)
y =1z, (5.27)
ya = &. (5.28)

We want to control state x to track a sinusoidal setpoint profile: z* = sin(0.5¢) with-
out knowing Ap. The adaptive controller parameters are: K. = 10, K. =1, K.y = 5.

The augmented filter for v is:

du

—=ua (5.29)

We simulated the system with the specified controller in Matlab. In terms of the es-
timator performance, the PBIE starts with a wrong initial condition Z(¢y) = 0.7, but
converges quickly to the true profile shown in Figure 5.3 (a), so does the estimated
uncertainty in Figure 5.3 (b). Figure 5.3 (a) also shows that the true state under
control tracks the time-varying setpoint profile after initial convergence. The con-
trol Lyapunov function exponentially decays towards zero during the simulation

as shown in Figure 5.4.
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Figure 5.3: Control and estimation results of nonlinear example.
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Figure 5.4: Control Lyapunov function profile.
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PBC

Ap is from an arbitrary estimator
and has exponential convergence.

Figure 5.5: Integration of non-passive control subsystem and an exponential con-
verging estimator

5.3. Adaptive Control via Estimators

5.3.1. Adaptive Control Development

In this section, we examine the output tracking problem again for nonlinear system
(5.3) with uncertain output dynamics (5.4). We use an estimate of the uncertainty,
Ap, in the control calculation, and don’t compensate for the lack of passivity re-
sulted from estimation error.

The estimate can be from an arbitrary estimator, but we assume it to exponen-
tially converge to the true value. With this assumption, we are able to show the
closed-loop dynamics being asymptotically stable, and imply that the passivity-
based controller can be used together with other qualified estimators. We give this

result in the following theorem, and the schematic is shown in Figure 5.5.

Theorem 5.3. Consider single-input-single-output nonlinear system (5.3) with un-
certain output dynamics (5.4). Ap € R is the estimate given by an estimation

scheme, and the error Ap = Ap — Ap satisfies:

AB(t) = AAP(tg)e (%) where k. > 0. (5.30)
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The adaptive controller for y at y* is designed as:

1
u' = ——(§" +kerey - p(y) - DAP), (5.31a)
¢(y)( ey = P(y)
u= bl (U* + kc,2eu + d)(y)ey - af’LL) ) (5.31b)
!
‘flit‘ — agu+ by, (531c)

where ay < 0 and by # 0; the error vectors are:
en=u"—u, e, =y" —uy. (5.32)

The closed-loop dynamics is asymptotically stable if the following conditions of

gains are satisfied:
k1 > 0, ko >0 and ke * min{kcyl, kqg}. (533)

Proposition 5.4. Choice of estimator gain k. and controller gains k. 1, k.2 can be

advised by the following inequality relation:

1
l~1:027max(d)\)2
3
—2kek?

z <1. (5.34)
2k?

c,min c,min

This inequality ensures the attenuation of the upset from initial state estimation

error (o).

Compare control laws, (5.5¢), (5.31a), the former exactly accounts for the es-
timation error through the terms based on ¢, which comes from using PBIE. In
the following we show the proof of Theorem 5.3 and Proposition 5.4, where the
estimation mismatch is not compensated in the control laws but assumed to be

exponentially convergent .
Proof. Plug in the assumed estimation error:
AP(t) = AAP(to)e F(t10)  where k. > 0. (5.35)
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and the control laws (5.31a), (5.31b) into (5.4), (5.31c) to obtain the closed-loop con-

trol control error dynamics as:

éy = —ke1€y — dAAD + p(y)ea (5.36)
= —keey + p(y)ey — (dN) Ap(to)e ™! (5.37)
€y = _kc,Qeu - Cb(y)ey- (538)

d is the scalar version of D. We define the following new notation for the later use

in the proof, K. is the positive control gain matrix:

K.= ’ 5 kc,min = min{kc,lv kc,Q}’ kqmaa} = max{kc,lv kc,Z}‘ (539)

The control-Lyapunov function is V, = {2 + £e2, and its time derivative is:

VC = eyly + €yly
= —kcvlez - kcgei - (d)\)Aﬁ(to)efkﬁtey
1
= —[[KZell® = (dN) Ap(to)e e,
1 _1 1
<—[[KZell? + [dA|AP(to) e ™" x || Ke 2 || x |2 el

1 1 _1
=1 el (1 el = JaAe ™ A to) < 1)

1 _1
< 12 el (v Feamillel - 1aNe™ < Ap(t0)] < 1 )

Therefore, when

AN 1
> e () < = ), 5.40)
we have
. e
V.<0, whene=|"|=0. (5.41)
€y
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Bat,)

Figure 5.6: Representation of B,(;,) and B,(;,)

It indicates that if we choose K. large enough so that the error trajectory starts

outside the ball B, ), i-e. (5.40) holds at ¢ = to, ||e|| will decrease until
le(Dll = a(t), t=t. (5.42)

Next step is to examine what happens if the error trajectory enters the ball
B a(tl ) .

First, we show that B, ) is a positive invariant set, indicated by a(t1) > a(t2),
if t3 > t1, since a(t) is an exponentially decreasing function of ¢. It ensures that at
the boundary of Ba(tl), w < 0,Vt > ty. So, once the trajectory enters the
ball of B, 4,), it will not exit in any future time.

Then, we examine that if the error trajectory moves towards the origin after

entering the ball B, ;. 3t > t1, s.t. [le(t)]| < a(t), then V. becomes:

. 1 _1
Ve < =2keminVe + |2 el| |d/\|€_ket|A13(t0)| x ||K | (5.43)
1 _1
< =2k min Ve + || K2 || % |lel| x |dAle ™! [ Ap(to )| x ||Ke 2| (5.44)
|dA]?

1 _1
< =2k minVe + [ K2 | e Ap(to) P x |IK. 2 (5.45)

\ kc,min
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Integrate both sides of (5.45) and obtain:

1 d\
Vo< Valto)ehomn 10 4 x AL a2 P [ erthomn) 2y

\V I{"C min

(5.46)
1
By setting constant v = ||K2 || x | x ||K. ?||?, we arrive at:
Ve < Vi(tg)e 2Remn(t=10) 4 o IAG(10)]2 f ke min (t-7) =2k i (5.47)
- c,min(t_to) 2 —2ket _ _2kc,min(t_t0)_2ket0
< Ve(to)e™® * g APt (7 - )
(5.48)
Substitute V,(¢) = 1|le(¢)||? into the above inequality, and solve for [|e(t)||
||e(t)|| < ||e(t0)|| ke,min (t=t0) | i |A]5(t0)|2 (e—let _ e_ch,’nLi’n(t_tO)_2ket0)
kc,min - ke
(5.49)
If k¢ pmin > ke, we have
_ (- y . _
le(tI* < lle(to)|[*e™Hemn (710 4 - |A(t0) P! (5.50)

If k¢ min < ke, we have

||€(t)||2 < ||6(t0)||2e_2kc,min(t_t0) + |Aﬁ(t0)|2€_2kc,mint+2(kc,min_ke)tO

ke - kc,min
(5.51)

In both cases, ||e(t)||?, and therefore ||e(t)||, is exponentially stable.

Furthermore, we can analyze the impact of k. i, on the control error conver-
gence rate to origin. From first terms in both (5.50) and (5.51), we can see that the
convergence of the initial control error is faster with larger gain k. ,,in. To analyze

the influence of k. i, On the estimation error, we first reorganize term 7 - Z by

c,min e

1
= 5 IKE ) = \/emaz- Then,

1
plugging in the expression of v, and using || K 2 |?
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we have

1
k:gmwm(aD\)2

3
- 2kek?

c,min

T Ap(t)? = —
kc,min - ke 2]475

c,min

Ap(to)*. (5.52)

When choosing estimator and controller gains, the inequality relation

1

k& maz (dX)?

maa( )§ <1, (5.53)
Ok k2

c,min

2]{:g

c,min

should be kept in order to reduce the upset from the estimation error. But it is not

necessary to ensure the closed-loop stability. O

5.3.2.  Numerical Example

Numerical simulation of the proposed adaptive control on an example scalar sys-

tem is performed in Matlab. The actual system is:

d
d—f = 10z +u + 5sin(10t) sin(t), z(to) =0, (5.54)

where the last term is the uncertain parameter to be estimated. Here we still use
PBIE as an example of exponential converging estimator. The adaptive control
(56.31¢), (5.31a), (5.31b) is used to control the system sequentially at constant set-
points z* =5, and x* = 2. We choose the estimator gain as k. = 5, and control gains
as k.1 = 10 and k.2 = 20, respectively. The estimator starts with a wrong initial
condition of Z(tg) = 1. To deal with the noncontinuous step change of the setpoint,

we use a first order filter:

1 5, forte[0,2)
z*, 7=01, 23(t=0)=52"= (5.55)

2, forte[2,5).

Figure 5.7 shows the results of state tracking and estimations of parameter. The

estimate of 1 exponentially converges to its true value, and tracks the dynamics of
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the parameter. There is a slight control overshoot before the state is stabilized at
the first setpoint, since the estimated parameter has relatively large difference from
the true value as shown in Figure 5.8. The overshoot is not observed when the state
settles at the second setpoint, since the difference at this point of time is very small.
The profiles of MV and pseudo-MV % are also shown in Figure 5.7. To further in-
vestigate the effect of the estimator gain on the control performance, another simu-
lation is performed with a larger estimator gain k. = 8 and the same set of controller
gains. Control results are compared in terms of control errors and Lyapunov func-
tion V. evolution in Figure 5.8. We achieve faster parameter convergence through
higher estimator gain, and reduced overshoot as shown in Figure 5.8 (a). Figure
5.9 shows the convergence of the ||e||, the bump around ¢ = 0.5 corresponds to the
bump of the Lyapunov profile. The first intersection point of ||e(¢1)|| and «(t1) de-
termines the positive invariant set, ball B, , ), after which |le(#)[| < a(t) before the
second intersection. But, once |le(t)|| > a(t), ||le(t)|| starts to decrease again. The

upper bound profile is only active when UB < «a(t) and ||e(t)|| < a(t).

5.3.3. Adaptive Control for Partially Linear Systems with State Estimation

Consider the partially linear state space model:

‘fl—j — Az(t) + Bu(t) + Du(x, 1), (5.56a)
y=Ca, (5.56b)
ya =1, (5.560)

where z € R", u € RP, € RY, and y € R™. p(t) is a vector of unknown continuous

functions. The output vector y can be partitioned as:
Ye . .
Y= , dim(y.) = p,dim(y,) = m - p. (5.57)
Yo

Y. represents the control output, and y, represents the remaining measured out-

puts. The control problem is to achieve output tracking for y.. Recall from the
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Figure 5.7: Adaptive control result for scalar system.
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Figure 5.8: Adaptive control comparison with different estimator gains.
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Figure 5.9: Control error norm profile and comparison with other relevant bounds.

beginning of the thesis where we proposed to write the time derivative of y. as :

We _ o Aw+ C.Dp+ CuB u, (5.58)
d —_— ——
Ap(z) ¢

where C. is the corresponding submatrix of C. We can treat the sum of first two
terms as one uncertainty vector to be estimated, and used in adaptive control for
ye. The solution following that line of thinking is very similar to the one shown in
Theorem 5.3

Sometimes, it is of interest to know the unknown inputs 1 and unmeasured
states = separately. The UIO and PBIE can be used for those two purposes, respec-
tively. Again, the following measurement conditions need to be met for state and

parameter estimation.

1. rank(CD) = ¢, which indicates that at least more than the number of un-
known inputs of measurements are available, and the rank condition makes

sure that the uncertainties can be observed by the outputs;

2. the existence conditions of the asymptotically stable UIO need to be met, and

they are defined in Theorems 4.1 and 4.2.

Theorem 5.5. Consider system (5.56), (5.57), satisfying above measurements con-

ditions. The adaptive controller for controlling y. to y.; is composed of three parts:
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a UIO, a PBIE and a cascaded PBC:

- (A - LCy)2r + Biu+ (LU + En)y,

ZA’V71 = U1y - UlcN?:‘]

UIO
2y
T =T
Zv1
dZv,2 A.. 2 Ao 2 R 0
ai = A212’[ + AQQZVQ + Bgu + U
PBIE
i =2y + Ke(Zvi - 2v2) — Ao121 — AaaZya — Bou

ut = (CCB)_I(yé + Kc(yé - yc) -C.Az ~ CcDﬂ)

PBC le—z; :Afu+Bfﬂ

u :Blil(u*+ch(u*—u)+CCB(y;—yc)—Afu),

(5.59)

(5.60)

(5.61)

where eig(Af) < 0, and both A; and By are nonsingular. Zy,; represents the esti-

mated variants from the UIO, and Zy 5 represent the estimated variants from PBIE.

The difference between these two estimates are used for feedback in the PBIE. The

partially linear system under the above controller is exponentially stable.

Proof. The proof is straightforward using Theorem 5.3, since the estimates of states

from UIO and p from PBIE converge exponentially.

5.3.4. Numerical Example

In this section, we apply the adaptive controller to an SISO example:

(11 0 1 -1
z=|-1 0 0 |z+]|-05[u+] 0 |p
0 -1 -1 2 0
Yo 1 00
y: = l’.
Ye 001
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Figure 5.10: Control and estimation result

Measurement conditions are met for the existence of UIO and PBIE. With the ex-
tra measured output y,, we can design closed-loop UIO with assignable conver-
gence rate. The relevant design parameters chosen are: K. = 1 for the PBIE,
L = [1.5000,-1.0000] for the UIO, and K. = 1, K s = 1 for the PBC. The proposed
adaptive controller with above specifications stabilizes y, at the set point y: = 2 as
shown in Figure 5.10 (c). The estimation errors of 23 and /t monotonically decrease
as shown in Figures 5.10 (b) and (d). Before the estimates converge, the control

output slowly oscillates around the set point.

5.3.5. Stability of Zero Dynamics

In this section, we present our stability analysis of zero dynamics obtained us-
ing passivity-based control. In Chapter 2, we conducted the analysis for a time-

invariant deterministic SISO linear system. Now we are interested in exploring the
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same issue when a time-varying parameter . € R is involved. In this case, there are
two input-output relationships that are relevant to the stability of zero dynamics.
One is from the output y to the control input u, represented by the transfer function
G, and the other one is from the output y to p, represented by the transfer func-
tion G,. Through simulation analysis, we make the observation that the locations

of zeros of G, and the boundedness of i determines the stability of zero dynamics.

¢ If G, has nonnegative zero, the zero dynamics is unstable.

* If G, only has negative zero, the zero dynamics is bounded-input bounded-

output stable with respect of .

We use the following example to illustrate the above conclusions.

-1 1 0 1 -1
t=|-1 0 0 |z+|-05|u+|0]|p p=sin(t) (5.64)
0 -1 -1 2 0
———— —— —
A B D
y=Cx. (5.65)

The C matrix is varied, so that zeros of G, and G, have different types of locations.
The time-varying parameter is a bounded signal: x = sin(¢). The control objective

is to regulate y at y* = 2. The passivity-based control law is:
w=(CB) [y +k(y* —y)-CAz - CDpu], k=1. (5.66)

* Casel: C'=[1,1,1]. G, has zeros: [0,0], and G, has zeros: [-0.2-0.75i, —0.2+
0.75i]. The control input has cyclic profile to compensate for the sinusoidal
parameter in control law (5.66). The states profiles also have trends similar to

1 as shown in Figure 5.11, but it does not go unbounded.

e Case2: C'=[1.1,0.8]. G, has zeros: [0.447 - 0.447], one of which is not stable.
G, has stable zeros: [-0.119 - 0.65¢ —0.119 + 0.657]. The internal states are
BIBO as shown in Figure 5.12.
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Figure 5.11: Case 1, C' = [1,1,1]. G}, has zeros: [0 0], and G, has zeros: [-0.2 -

0.75i — 0.2+ 0.75i]
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Figure 5.12: Case 2, G, has zeros: [0.447-0.447], and G, has zeros: [-0.119-0.657 —

0.119 + 0.65i]
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Figure 5.13: Case 3, G, has zeros: [-1 —1], and G,, has zeros: [-1 —0.6667]

e Case3: C' =1

,—1,0]. G, has stable zeros: [-1 —1], and G, has stable zeros

[-1 —0.6667]. The internal states are BIBO as shown in Figure 5.13

* Case 4: C' = [1,0,0]. G, has zeros: [0 - 1], and G, has one stable and one

unstable zeros: [-1, 0.5]. The zero dynamics are no longer stable as shown

in Figure 5.14.

5.4. Adaptive Control of Reaction Systems

In this section, we applied the proposed control method to one homogeneous and

one heterogeneous reaction example. We show that, the relevant unknown inputs,

i.e. the reaction rates and transfer rates. Asymptotic control convergence are ob-

tained in both examples.
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Figure 5.14: Case 4, G, has zeros: [0 - 1], and G,, has zeros: [-1 0.5]
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5.4.1. Homogeneous Reaction Example

We illustrate the performance of the proposed control using the reaction example:

2A - B — C. The reaction rates in the simulation follow the mass-action principle:

N 2
rL = k‘l (VA) (567)
N,
=k 2, (5.68)

with the Arrhenius law:

kl = k(),le_ﬁ (569)
Ea,Z
ky = kooe” RT . (5.70)

Concentrations of A and B are measured, and need to be controlled through the

respective inlet concentrations.

C Cain
y=| "M, u=| (5.71)
Cg CB,in

The chosen output dynamics is:

-2 1 0 r
dy = _Ey + Eu + r, where, 1= ! (5.72)
a Vo Vo 1o -1 1 T

We can find a construction of reaction variants that only involves these two species’

concentrations:
-05 0 C -05 0 7
2y = o e «| AL (5.73)
-0.5 -1 Cp -0.5 -1 Cg

We can equally control C4 and Cp through controlling zy at zy,, through the syn-

thetic MV, i.e. 2y ;,,. Then 2y ;, is recovered to the true MVs by inversing the trans-

89



5. ADAPTIVE CONTROL

formation:

-1
~05 0
u= X 2V in.- (5.74)
-05 -1

The adaptive controller for reaction variants is:

L (o= 2v) (5.75)
F = d;—;/ + Ke(zy —2v) - ;(Zv,m - 2v) (5.75b)
2Vin = (z{} +Ko(zy —2y) -7+ gzv) % (5.75¢)
TV~ Apzvin + By (5.75d)
8= B} (850 + Kep (an = 2vin) + (53 = 20) = Agavinl (5.75¢)

10
The passivity-based input estimator gain matrix is K = , and the cascade

01
1 0
controller gains are: K, = ,and K.y = . The augmented second order
01 01
-1
filter has linear dynamics with matrices: Ay = ,and By = . The
0 -1 01

control result is shown in Figures and 5.15 and 5.16.

In this reaction control example, the variants and their setpoints can be con-
structed fully from measured species, so the state estimation step can be avoided.
By controlling two reaction variants, therefore two reactions, we can ensure the
stability of the zero dynamics. It is because of the asymptotic stability of the reac-
tion invariants, indicating concentration C¢ will be asymptotically stable as well.
Above stability can be shown through the profiles of the invariant and its conver-

gence to zy i, in Figure 5.17.
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Figure 5.15: Control performance of species and profiles their compositions in in-
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Figure 5.17: Profiles of Cc¢, zr and 21 ;,

5.4.2. Heterogeneous Reaction Example

In this section, we give a heterogeneous reaction control example, which was first
introduced in Chapter 4. Based on the full state space model of the reactor (4.60),

and ouptut matrix C:

1000000
0001000 1000000

C = . C.= , (5.76)
00007100 0001000
00000T10

we can derive the output dynamics as:

o (g) | | e ne, (9)
npA | %ﬁ” nBA
NMBA _noz—q;t’l NMBA
| 7ol || 7;;—1;“ | nHCL |
CA
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Figure 5.18: Profiles of rates in the heterogeneous reactor
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Same as the homogeneous case, the output dynamics does not involve other un-
measured compositions, therefore estimating unmeasured compositions are not re-
quired to estimate the rates vector is not necessary. This results from matrix A being
diagonal matrix in the reaction cases. Figure 5.18 shows the profiles of the rates and
the estimates from PBIE, and the profiles of control inputs and outputs are shown

in Figure 5.18.

5.5. Conclusions

In this chapter, we present the overall passivity-based control framework for non-
linear systems with uncertainty. The idea is based on transforming the state space
model description of a process into its output dynamics including an uncertainty;,

and we use passivity-based techniques introduced in previous chapters to achieve
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Figure 5.19: Profiles of control outputs (a, b) and control inputs (c, d)

output tracking and relevant uncertainty estimation. The transformation could be
applied to reactor systems, and a range of process models derived from balance
equations with appropriate measurements.

Two types of adaptive controllers are presented in this chapter from the per-
spective of passivity. The problem is that the passivity of a subsystem obtained
through passivation transformation doesn’t hold when uncertainty estimation er-
ror exists. Theorem 5.1 presents the first type of adaptive controller design that
compensates for the estimation error and therefore the lack of passivity based on
PBIE output feedback. The passivity of the control subsystem is restored, and the
exponential stability of overall closed-loop is shown. Another type of adaptive
controller presented in Theorem 5.3 shows that with exponentially converging es-
timates given by an arbitrary estimation method, asymptotic control convergence
is obtained without extra passivity compensation. This results also implies that
we are able to asymptotically control systems with special partially linear structure
using state estimates from UIO, as concluded in Theorem 5.5. Also, the analysis of

zero dynamics stability under output feedback control is performed, and it shows

95



5. ADAPTIVE CONTROL

that it is determined by the zeros of transfer functions relating the control input
and control output.

From the application perspective, we apply the adaptive control with PBIE
and UIO on two reaction examples, without using reaction or inter-phase trans-

fer mechanismes.
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In this chapter, we develop passivity-based control for systems with relative de-
gree higher than one through backsteeping. Section 6.1 motivates the theory with
a practical reactor temperature control problem. In Section 6.2, we present the pro-
posed control scheme and relevant passivity and stability theorems. Application
of the method on temperature control of a simulated semi-batch reactor is pre-
sented in Section 6.3. Section 6.4 shows two applications to control polymerization
reactions; in the first one, passivity-based control is used to operate a simulated
recipe-based polymerization reactor with several phases where each phase has dif-
ferent control objective and input; in the second application, we show the result
of an industrial trial using the proposed control scheme. We complete the chapter

with conclusions in Section 6.5.

6.1. Problem Statement

Figure 6.1 shows the schematic of a chemical reactor with a typical jacket cooling
scheme for temperature regulation of three types of reactors: batch reactors, semi-
batch reactors and CSTRs. The batch reactors are fed initially and emptied when
reactions are complete. In semi-batch reactors, some reactants are fed while reac-
tions proceed. In CSTRs, the reactants are added and products exit continuously
so that reactions can reach a steady state. The methodology of the temperature
control design developed in this chapter can be applied to all three types of reac-
tors, while here, we use semi-batch reactor for illustration to show the strength of
model-based feedback control for systems at transient state.

We model the semi-batch energy balances in the form of differential equations
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of temperatures as follows:

dT, F; AH,r UA(T,-Tj)

L= mC znTzn -pC Tr - - J 5 6.1
it VoG, (pinCy, pCpT}) Cop VoG, (6.1a)
dT; F; UA(T, - T

o B gy UAG ST (6.1b)
a V; ’ VipwCpw

dT%in  Few Fre
TV e i) g T i), (6:1)

where T, represents Reactor temperature; Tew represents the cooling water temper-
ature; Tj, represents the reactor inlet temperature; T} represents the jacket temper-
ature; T} ;,, represents the jacket inlet temperature; 7., represents the jacket recycle
stream temperature; F;, represents reactor inlet flow rate; Fj represents the jacket
flow rate; Fi,, represents the cooling water flow rate; F,.., represents the jacket re-
cycle flow rate; p represents average density of the reaction content; p,, represents
density of the water; p;,, represents the density of the reactor inlet; C), ,, represents
the heat capacity of water; C), represents the average heat capacity of the reactor
content; Cp,m represents heat content of the reactor inlet; V represents reactor con-
tent volume; A H, represents the molar reaction heat; r represents the reaction rate;
U represents jacket-reactor heat transfer coefficient; V., represents the control vol-
ume.

The assumptions are: (1) the liquid phase is homogeneous and well mixed; (2)
the liquid mixture is ideal, incompressible; (3) the reactor is operated at constant
pressure; (4) the average density and heat capacity are constant; (5) the reaction is
assumed to be exothermic (A H, < 0) and the reactor is equipped with only cooling
capability; (6) the reaction rate is known or estimated using estimators, e.g. the
PBIE.

The last differential equation models the energy balance of the mixing process
of the cooling water and the jacket recycle flow. It is assumed that there is a fixed
control volume, V., after the jacket recycle stream and cold water stream meet, and
that they are well mixed.

The control objective is to control the reactor temperature to a constant setpoint
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Figure 6.1: Schematic of a jacketed chemical reactor

Reactor
Outlet

or track a step change of the setpoint. The manipulated variable is the cooling
water flow rate Fi,,. This makes the relative degree of the system (6.1a) — (6.1c)

equal to three.

6.2. Control Method Development

6.2.1. Passivity-based Backstepping Control

In Chapter 2, we introduced the passivity-based control theorems 2.4 and 2.6 to de-
sign controllers for control-affine relative-degree-one nonlinear systems. We briefly
review the control development here as the foundation of the solution to high-
relative degree systems.

Use following scalar system for illustration:

= f(z)+g(x)m, y=ux. (6.2)

We want to control y to its setpoint y*. The passive system is obtained by trans-

forming the original dynamic equation of z into its control error form:

é=y" = [f(z)+g(x)m]. (6.3)

The synthetic input is chosen to be u = y* — [ f(z) + g(x)m] and control error e

is the synthetic output. The mapping from u to e is passive. Then, the passive
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Figure 6.2: Feedback connection of a passive integrator system and an ISP con-
troller

system is stabilized by an input strictly passive (ISP) controller. The block diagram
in Figure 6.2 is an illustration of this idea.

Then, if we have the following high order system, how should we adapt the
above control scheme? Here we have a third-order system with relative degree

three, in the special strict-feedback form:

&1 = fi(z1) + g1(x1) 22 (6.4a)
%9 = fo(x1,22) + go(x1,x2) 23 (6.4b)
&3 = f3(@1, 22, 3) + g3(w1, w2, 23) M, (6.4¢)

Y= (6.4d)

Strict-feedback form means that the nonlinearities f; and g; in the corresponding

i; depend only on z1,....x; (i = 1,2,3) (Khalil, 1996). Also, we assume that

gi(xl,...,:ni)i(),izl,Q,?;, (65)

over the domain of interest. We can measure all the states, and want to stabilize
x1 at setpoint x] through control input m. For the temperature control problem
(6.1a) — (6.1¢), y is the output to be controlled, and it represents 7;. in our case.
and z3 are the intermediate states that directly or indirectly affect the dynamics of
y. They represent T; and 7} ;,. We assume that all the three states are measured.
This assumption is reasonable in industrial practice. m is the manipulated variable,
and here it represents the cooling water flow rate F,,,. The system has a relative

degree of three. The control scheme is developed in the characteristic steps of back-
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stepping for the general state space model, (6.4a)—(6.4d), with relative degree three.
The derivation of control is provided in Section 6.2.2.

The passivity-based backstepping control laws are:

Ci(e1) + @7 - f1

2 = (6.6a)
91
2 - Ca(e2) +e1g1 + @5 — ]027 (6.6b)
92
i Cs(e3) + eago + 43 —f37 (6.6¢)
93
and the closed-loop error dynamics are given by the following equations:
é1 = —01 (61) + g1¢e9, (67a)
€9 = —02(62) —g1e1 + gaes, (67b)
és = —Cs(e3) — gae2. (6.7¢)

C1(e1), Co(ez) and Cs(e3) are the ISP controllers used for the feedback control
of z1, o and x3, respectively. The stability and passivity properties for general

systems of relative degree of n are stated in the following theorems.

Theorem 6.1. Consider the strict-feedback, cascaded system,

o1 = fi(z1) + g1(z1) w2, (6.8a)
@i = [i(T15 s Tic1, i) + Gi(T15 ey Tim1, T3 Ti, (6.8b)
En = fr(T1, ey Tno1,@n) + gn(T1, ooy Tno1, Tp )M, (6.8¢)

— (6.8)

fi: X = R, and g¢; : X - R are sufficiently smooth functions. ¢;(z1,...,x;) # 0,7 =

101



6. PASSIVITY-BASED BACKSTEPPING CONTROL

1,..,n. If we choose a synthetic pair of input u and output control error vector e as:

Uy é1—gie2 €1
u=\|u; | =€ —gi€is1 +gi—1€i-1|> ©=]e; |- (6.9)
| Un | | én + In-1€n-1 B | €n

The mapping u — e is passive.

Proof. The passivity between the input and output pair can be shown using the
storage function W = %eTe. Here we give the proof of the third order system case.

Differentiating the storage function W,
W = €1é1 + €2é2 + 63é3, (610)

and replacing the derivatives of errors with the function of defined inputs, we ob-

tain:
W:(ilél + €2é2 + €3é3
=e1(u1 + g1ez) + ea(uz + gaez — gier) + e3(uz — gaez)
=Uuie1 + ugze2 + Uu3zes
—ule (6.11)
The output e is passive w.r.t. the input u. O

Theorem 6.2. Consider the system described by (6.8a)-(6.8d) and the controller
described by

Ci(er) +21 - f1
g1

(6.12a)

*
.T2:

oo Ci-1(ei-1) + €i-2gi-2 + ¥4 — fin1 (6.12b)

i
gi-1
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Figure 6.3: Feedback connection of a passive system of backstepping control error
and an ISP controller

m = Cn(en) +€en-19n-1*t x; - fn
9n

(6.12¢)

If the feedback controls C'(e) are ISP controllers, then the interconnected feedback

system is globally, asymptotically stable.

Proof. The proof of relative degree three case is given along with the control

derivation in Section 6.2.2 by showing that the control Lyapunov function V3 =

%e% + %e% + %eg + Vo1 + Voo + Vi3 is positive definite and the time derivative V3 is
negative definite. It can be easily generalized for general case. O

The passive input-output mapping in Farschman et al. (1998) is actually linear,
however in the case of relative degree greater than 2, the mapping is not linear

anymore.
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6.2.2. Passivity-based Backstepping Control for a System with Relative Degree
Three

Here we give the derivation of the passivity-based backstepping control method

with ISP controllers for a system described by (6.4a)—(6.4c).
Step 1: Define the control error states as
el =x] — X1, €2 = Ty — T2,€3 = Ty — I3, (6.13)

where 2] is the setpoint, and z3, 23 are the virtual controls. The derivative of first

control error can be written as:

é1 =127 - (f1+g1x2). (6.14)
Substitute x5 = x5 — ez into the above equation and rearrange it to get:

é1 =127 - (f1 + g123) + g1€2. (6.15)

The first control law for z; is derived using the Lyapunov function V; = %e% + Ve,
where V.1 > 0 is the storage function of the first ISP controller. The derivative of

Ve1 fulfills the ISP condition:
Vi <erCi(er) —miet, 1 >0, (6.16)

where 71 is the dissipation rate for the ISP controller.

Set

&y = (f1+ g1z3) = -Ci(e1) (6.17)

to obtain the following control law:

Ci(e1) + @71 - f1
91 ’

(6.18)

*
Ty =
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where C(e1) is an ISP feedback controller. With the control law (6.18), the deriva-

tive of V; becomes:

Vi =-Ci(e1)er + grerea + Vo1 < greres — yie; (6.19)
and the closed-loop dynamics becomes:

é1=-Cy(e1) +giea. (6.20)

Choose the Lh.s. of (6.17) as first synthetic input 1, and combine with (6.15) to

rewrite it as
uy = é1 —gi1€a. (6.21)

Choose the first synthetic output as y; = e;.

If this were a first order system, e, = 0, the input and output pair:
uy = €1,Y1 = €1, (6.22)

is passive. Also the closed-loop system is globally asymptotically stable, since V; <

-7y1€? is negative definite.
Step 2: The derivative of the second error variable is:

. % .
€2 =Ty — T2

=15 — (f2 + g273) + goes (6.23)
The augmented Lyapunov function is chosen as

1
Vo=V; + 563 +Veo, (6.24)
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where V.. 5 is the storage function of the second feedback ISP controller. Taking the

derivative of V5, we have

Vo < greres — el + ez [&5 — (fo + g225) + gaes]
+eaCa(e2) — yae3
= 62[9161 + {L‘; - (fg + gg$§) + 9263] + 6202(62)

— 1€t - 72€3. (6.25)
Set
€191 + .CC§ - (fg + ggx:’;) = —02(62) (626)

to obtain the second control law for the second virtual control variable x3:

Co(e2) +e1g1 + a5 — fo

x3 = (6.27)
g2
Thus the derivative of V5 becomes:
Va < goeses — yie — 726%. (6.28)

The second pair of synthetic input and output are chosen similarly to the first pair.

Set the Lh.s. of (6.26) as the second input us, and combine (6.23) to rewrite it as:

ug = é3 — go€3 + gi€1. (6.29)
The second output is ys = es.
Step 3: The derivative of the third control error is:

é3 = % — @3

=3 — (f3 + gam). (6.30)
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To design the control law, choose the augmented control Lyapunov function V3 =
Vo + %e% + V.3, and similar to the previous two steps, V. 3 is the storage function of

the third ISP controller. Differentiate V3 and combine (6.28) to get:
V3 < goeses — yre] — 265 + €363 + Vc3 (6.31)

Replace é3 with (6.30), and apply the input strictly passive inequality condition on

Ve 3. We then obtain:

Vs < gaeses — 1€t —v2e5 + e[z — (f3 + g3m)] + e3Cs(e3) — 73e3
=e3[goes + a5 — (f3 + g3m)] + esCs(e3) — el - 12e3 — 73€3. (6.32)
Set goeg + :pg - (f3 +g3m) = —Cs(e3) to solve for the third control law:

C + + I3 —
_— 3(e3) + €ago + 43 f3.
g3

(6.33)

Finally, we have V3 < —vie? — y2¢2 — 73¢2 being negative definite, and the origin of

the following closed-loop system of control errors,

é1=-Cy(e1) + giez (6.34a)
é2 = —Ca(e2) — gie1 + gze3 (6.34b)
é3 = —C3(e3) — g2e2, (6.34¢)

is globally asymptotically stable.

6.3. Passivity-based Backstepping Control of Reactor Temperature

In this section, we demonstrate the effectiveness of the backstepping control

method for temperature control in a semi-batch reactor case. First we write the
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temperature differential equations in the general model form, (6.4a)—(6.4c), with

f1(Ty) —%‘gp (pinChp,inTin — pCpT;) - ACZ;T - Ié—fg;
fo(T,T) | = —%TJ TG L+ T ’
F5(T0, Ty, Tin) T2 (Trey = Thn)
a(T;) e
9(T;, 1) | = %
93(T. Ty, Tyin) | | T

Insert the corresponding terms into the control equations, (6.6a)—(6.6c), to ob-

tain the following control laws:

TF =T, 4 [Ci(er) + 1] V;Z” - E”‘Z”fp’m (Ton=T)) - %, (6.352)
-V UA(T,-T;) 1 AV
T = (Cofen) + 5 ) - EETT) Ly S0 (6:35)
Fo = —chjTj [Cs(es) + T5,] - -2 (TTw __%) + %Tcwef G (6.359)
where (@), is the rate of heat generated from reactions. Here, T} and 717, are the

first and second virtual control variables, serving as the setpoints of 7; and Tj ;y,.
Control laws (6.35a)—(6.35¢c) show that backstepping is similar to cascade with addi-
tional elements introduced to compensate for nonlinearities. The parameters used
in the simulation are shown in Table 6.1. The model of the semi-batch reactor can
be found in Appendix D.

In the following, we show results from two case studies. (1) Control with per-
fect information of parameters and proportional control. (2) Control with param-
eter mismatch, where the heat generation from the reaction (Q, = AH,rV) is not
known accurately. We compare the control performances of using proportional
backstepping control and proportional-integral backstepping control in the second

case.
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Table 6.1: Parameters of the semi-batch simulation

Average heat capacity of the reaction content (Cp) 0.239 J/(g - K)

Heat capacity of water (C), ) 4.184 J/(g- K)
Average density of the reaction content (p) 1000 g/L
Density of reactor inlet stream (p.,) 1000 g/L
Density of water (pin) 1000 g/L
Heat transfer coefficientx area (U A) 5x10* J/s-K
Reactor volume at t =0 10L
Reactor cooling jacket volume (V) 45 L
Control volume (V,,) 40 L
Flow rate through cooling jacket (F7) 300 L/min
Temperature of cooling water (1¢,,) 320K

A saturation condition is placed on the manipulated variable such that 0 < F,,, <
300(L/min). The upper limit is the fixed flow rate of the jacket inlet, F;. The sim-
ulated time is 100 min, and there is an increase of the inlet flow F;,, at ¢ = 50 min,
as shown in Figure 6.4. The increase of inlet flow rate causes the increase in the

amount of the heat generated from the reaction, @,.

Case study without parameter uncertainty

The control performance of the first case is shown in Figure 6.5. The primary con-
trol objective 7). is well controlled at the setpoint 370 K without oscillation. Two
slave control objectives T and 7} ;,, also track the calculated setpoints very well.
For T}, the calculated setpoint is high when the reactor temperature is below
the setpoint. An exothermic reaction is simulated and the reactor jacket is only
equipped with cooling ability. Thus, when the reactor temperature is below the
setpoint, the cooling water flow is saturated at zero. The proportional gains used

in the simulation are: k.1 = 1,kc2 = 2,kc3 = 5.

Case study with parameter uncertainty

The heat generated by the reaction is the unknown parameter. It is assumed to be a
constant in the controllers for the simulations in this section. Because of the param-

eter mismatch, we use proportional-integral (PI) feedback in the backstepping, and
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compare the result obtained using proportional-only backstepping control. The

control parameters are as follows:

P only feedback: k.1 =1,kc2 =2, ke3 = 5;

PI feedback: ke1=1,711=1,kco=2k.3=5.

The integral action is only used for the control of 7;.,, not for the slave control ob-
jectives, T;,T; ;. It is because the uncertain parameter @), only exists in the dy-
namics of 7T,.. Figure 6.6 compares the control performances from two different
feedback schemes. Comparisons of relevant metrics regarding the top level control
are shown in the Table 6.2. With P feedback, the temperature is controlled with an
offset due to the uncertainty mismatch, causing a very long settling time of more
than 100. With PI feedback, the reactor temperature is stabilized at the setpoint
without an offset, and its settling time is 34.6. PI feedback causes integral wind-up
at the initial stage, which is reflected by the overshoot of 7}, with a peak value of
404.2 K, the incompetent tracking of the slave control objectives, and initial F,,
saturation shown in Figure 6.7.P feedback allows slave control objectives T}, T} i,
have better tracking w.r.t. their setpoints, but the slave setpoints are not sufficient
to drive 7, to the required setpoint. Figure 6.7 also shows the true evolution of
@, from implementing two feedback schemes and the mismatched (@), estimation
used in the control calculations.

Table 6.2: Control performance comparison when parameter uncertainty exists

Metrics P-only passivity-based backstepping PI passivity-based backstepping

Rise time 4.8 4.1
Settling time > 100 34.6
Peak time 20.5 17.2
Peak 388 K 404.2 K

111



6. PASSIVITY-BASED BACKSTEPPING CONTROL
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Figure 6.6: Profiles of temperatures and their setpoints with P only or PI feedback
backstepping control, when @), is inaccurately known.
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Figure 6.7: Profiles of F, and @, with with P only or PI feedback backstepping
control, when @), is inaccurately known.
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Table 6.3: CV and MV for 5 process phases

Phase Ccv MV
Filling \% F;
Heating up T, F., and Fj,,
Monomer feeding and reaction 7). Fi,, and Fp,,
Cooling down T, F., and Fy,,
Draining %4 Fout

6.4. Recipe-based Control of Semi-batch Polymerization

In this section, we illustrate the application of the proposed scheme to a semi-batch
polymerization reactor. The kinetic information is not used in the control design.
The polymerization process response on the MV is simulated using the reaction
model developed by Crowley & Choi (1997), and detailed in Appendix D of this

paper. The semi-batch polymerization process recipe is composed of five phases:
1. fill reactor with monomer solution and initiator;
2. heat the reactor up to the desired operation temperature;

3. finish feeding the rest of the monomer, and wait until polymerization com-

pletes;
4. cool the reactor;
5. drain the reactor.

For different phases, the control objectives are different. The pair of the control
variable and manipulate variable is summarized in Table 6.3.

For the heating, reaction and cooling phases, the polymerization reactor tem-
perature regulation mechanism is shown in Figure 6.8, where the jacket inlet flow

becomes a tempered water flow by mixing hot and cold water streams.

6.4.1. Simulation Example and Result

The semi-batch methyl methacrylate (MMA) polymerization process proceeding

with the above recipe and control is simulated. Process variables profiles are shown
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Backstepping Backstepping Backstepping
Tertiary Controller  |[* — = Secondary Controller [ = = = — = = —| Primary Controller

——————

Purge

Cold Supply

Figure 6.8: Polymerization semi-batch reactor and control setup

in Figure 6.9. Since the reaction phase takes much longer than the other phases, the
profiles of the third phase are plotted with time scale in minutes, while the rest of
the variables are plotted with time scale in seconds.

Figure 6.9((a)) shows the reactor holdup profile, which is the CV during the
filling and draining phases. The holdup control problem has only relative degree

of one, and the controller is a simple proportional feedback controller:

F=k(V*-V), k>0.

The profiles of the MV, inlet or outlet flow rates of the reactor are shown in Fig-
ure 6.9((d)), along with constant profiles for the other three phases. Figure 6.9((b))
shows the profile of reactor temperature, which is the CV of the heating, reaction
and cooling phases. The temperature for those phases are well controlled, with-
out using any modeling information of the complex polymerization in the control
laws. They are coupled in one term, heat generation rate by the reaction, @,. Fig-
ure 6.9((c)) shows the monomer number of moles profile, and it can be observed in
the reaction phase plot that after stopping the monomer solution feed, the process
waits until the monomer are mostly consumed before transiting to the next cooling

phase. It indicates that some on-line monitoring of residue monomer is required to
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determine the timing of the transition.

6.4.2. Industrial Application Example and Implementation Result

Some industrial trials have been carried out to test the proposed control logic. The
implemented control has two backstepping controllers cascaded at the top two lev-
els. The primary controller equation remains the same as (6.35a). The secondary

controller for T

in 1S implemented with a simplified version of (6.35b):

. Vi UAT,-T) 1
T in= [Ca(e2) +T; 12 - M

—+ T (6.36)
Fi puCpuw Fj 7

elUAﬁ

It omits term VoC, T,

designed to compensate for the tracking error of 7. How-
ever, with a fair assumption of the boundedness property of the process dynamics,
asymptotic stability can still be maintained for the closed-loop by using high gains.
The tertiary controller is a PID controller manipulating the flows of cold and hot
supplies, and it is sufficient since flow control loop is much faster than previous
two temperature control loops.

Figure 6.10 shows the profiles of CV, reactor temperature, MV, jacket inlet tem-
perature, and disturbance variable (DV), monomer feed pump speed. We consider
T; in as MV here, since its setpoint is determined by the secondary passivity-based
controller and is executed through the bottom PID controller. The setpoint of the
reactor temperature is 8°C. During the period of 1500s—2200s, the process data was
lost, which is represented by the flat line of temperature at the setpoint. With the
available data, we can see that after the initial transition stabilizing period, the reac-
tor temperatures is controlled quite close to the setpoint. The benefit of including
the feedforward terms in the control logic can be clearly observed from the MV
profile, as it responds quickly to several step changes of monomer flow rate, the
disturbance here.

The values of reactor-jacket heat transfer coefficient, reaction system heat capac-
ity and reaction heat used in control calculations are shown in Table 6.4. During the

trial, C;, and U values ramp over the feed. Reaction heat is estimated by inverting
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Figure 6.10: Profiles of industrial trial process variables

Parameters Minimum Maximum Description
C, (BTU/Ib-degF) 0.5 1 heta capacity
M, (Ib) 5 44 mass of reaction system
U (BTU/ft*min-degF) 0.1 30 heat transfer coefficient
A (ft?) 0.1 5 heat transfer area
M; (Ib) 20 20 mass of jacket content
pr (Ib/gal) 8.1 8.5 reaction systems density

Table 6.4: Process parameter ranges

the reactor energy balance with online temperature measurements. Related discus-
sion of this estimation has been provided in Chapter 3. As we show in simulation
results, integral action should help reducing control errors caused by estimation
inaccuracy in those situations. Bounds of process parameters are listed in Table

6.4.

6.5. Conclusions

In this chapter, we proposed to use of the classic backstepping method for the semi-
batch reactor energy control problem, while introducing ISP feedback controller in
the control design. The passivity-based control idea, being widely used for relative
degree one system, is extended to higher relative degree systems through backstep-

ping. The stability of the closed-loop system and the passivity of the synthetic input
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and output are shown. The proposed control method can be easily implemented
in practice since it maintains PID as the feedback component and systematically
provides explicit formula for including model-based feedfoward terms. The in-
clusion of PID, as the ISP component, is a practical way to ease requirement of
accurate kinetic knowledge for computing reaction heat generation. The proposed
control scheme also has the potential to outperform the traditional PID-only cas-
cade control in disturbance rejection and maintaining stability. It also provides
improvement for base level control by considering process models, and can be im-
plemented in distributed control systems. Industrial trials are conducted and show

satisfactory control performance.
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7. CONCLUSIONS AND FUTURE WORK

7.1. Conclusions

In this thesis, we developed an adaptive control framework for controlling non-
linear processes with uncertainty, and applied it to control reaction systems with-
out the knowledge of reaction kinetics. The framework incorporates the measure-
ments’ derivative information in order to estimate the uncertainty involved in out-
put dynamics. By using the derivative information, the control and estimation
schemes do not require the modeling of the internal dynamics and states. The
proposed framework allows us to control reaction systems without knowing the
reaction kinetics, and estimate unmeasured compositions by utilizing the available
partially linear structure of internal dynamics.

We started by defining the output dynamics involving uncertainty in the fol-

lowing form:

W py) + D) + () 7.)

The uncertainties, usually related to production, are all lumped into one term,

Ap(z). The structure applies to reaction systems and many other processes that
can be modeled based on balance equations.

We designed the passivity-based input estimator (PBIE) that produces stable

estimates of the uncertainty Ap(z) and attenuates the noise from the derivatives

of the measurements. The estimation scheme can, for example, be used to esti-

mate the reaction rate and rates of heat transfer and generation in a reactor without

using the reaction kinetics or transfer mechanism information. We show the neces-
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sity of including the derivatives through stability analysis and simulation compar-
ison between PBIE and other inversion-based estimation schemes that do not use
derivative information.

We integrated the estimator with passivity-based inventory control and showed
that output tracking with asymptotic stability can be achieved. The integration of
the estimation scheme enables output tracking without modeling the internal dy-
namics, thereby saving computational and modeling cost. Moreover, we showed
that if we explore the known linear structure in a reactor model, we are able to
estimate the unmeasured compositions by using the asymptotic observer. We gen-
eralized this idea and developed an adaptive control approach with state estima-
tion for nonlinear systems with a similar structure. The adaptive control scheme
is tested on an example reaction system with composition control and several nu-
merical nonlinear systems.

Another contribution from the thesis is to extend passivity-based control to
high-relative degree nonlinear systems. We use backstepping to define transfor-
mations that render a high-relative degree system passive, and stabilize with input
strictly passive controllers. Systems with uncertainty can be controlled by using a
PI controller as the ISP component. Finally, the resulting scheme was successfully
tested in an industrial example to control the temperature of a semi-batch polymer-
ization reaction.

The thesis work has led to the following peer-reviewed publications:

1. Zhao, Z. and Ydstie, B.E. (2018). Passivity-based backstepping control of a

semi-batch reactor. Submitted for publication.

2. Zhao, Z. and Ydtsie, B.E. (2018). Passivity-based input observer. Accepted
for the 10th IFAC Symposium on Advanced Control of Chemical Processes.

3. Zhao, Z., Capparella, T., Ferrio, J., Wassick, J. M., and Ydstie, B. E.
(2017). Passivity-based back-stepping control of a semi-batch reactor. IFAC-
PapersOnlLine, 50 (1), pp. 13741-13746.

4. Zhao, Z., Wassick, J.M., Ferrio, J., and Ydstie, B.E. (2016). Reaction vari-
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ants and invariants based observer and controller design for CSTRs. IFAC-

PapersOnLine, 49(7), pp.1091-1096.
Two additional publications are under preparation:

1. Passivity-based unknown input observer
This publication will present a method that integrates the UIO from Chapter 3
and the PBIE from Chapter 4 to propose an observer that estimates the states
and unknown inputs simultaneously. Unlike with other input observers, we
propose to use the derivative information resulted from the passivity theo-

rem.

2. Adaptive inventory control for nonlinear systems with uncertainty

The content of this publication will be mainly Chapter 5.

7.2. Future work

In practice, measurements are always corrupted with noise, which can be ampli-
fied if the numerical differentiator is not chosen carefully. Therefore, numerical
derivatives are frequently avoided in parameter/input estimators. During the de-
velopment of the PBIE, we showed that derivative noise was effectively attenuated.
However, we also found that the attenuation is counteracted when noise is present
in primary measurements. It is because the noise involved in primary measure-
ments is amplified by the proportional feedback correction mechanism. To ensure
that both noises are dampened in the estimates, integral action based on sliding
mode (Levant, 1998; Wang & Ydstie, 2007) could be used. It is also possible to con-
sider other feedback actions as long as passivity and stability are maintained. As
discussed in Chapter 3, under the situation of no noise in the primary measure-
ments, the estimation performance and also convergence analysis favor the usage
of derivatives. It is also of interest to derive and compare the conditions of sta-
bilities for methods with and without using derivatives when the assumption of
absent noise is relaxed. Comparisons of implementation feasibility and estimator

parameter tuning difficulty are also worthwhile.
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Control and estimation with constraints is another aspect to consider for future
improvement. Inclusion of physical constraints on the estimates may help to reject
unmodeled disturbance and avoid aggressive estimation during the transition pe-
riod. From the control perspective, control input constraint is inevitable in reality,
but it may cause the breakdown of closed-loop stability. Farschman et al. (1998)
give the sufficient condition of adaptive inventory control stability with control
input constraints. It is of interest to look at how the proposed adaptive inven-
tory control with PBIE fits into that result. The result could also be extended to
draw conditions to ensure passivity-based backstepping control stability for high-
relative degree control problems when input constraints exist. Model predictive
control is also one way to deal with control constraints, and it could resolve the
cumbersome cascaded structure in the case of high-relative degree problems.

One advantage of the passivity-based adaptive inventory control is its high im-
plementability in current DCS platforms. It can be programmed in form of PID
controllers for linear processes and PID with feedforward terms in the nonlinear
case. It also provides insights into controller parameter tuning based on process
dynamics. The feedforward term estimation scheme could also be programmed us-
ing common blocks like PID and filters. It has been proved through the successful
implementation at Dow for polymerization reactor control and estimation. There-
fore, we look forward to future opportunities to test the proposed control scheme
in more real-world processes and use the practical insights to further improve the

method.
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A. PASSIVITY-BASED INPUT ESTIMATOR EVALUA-

TION FOR THE CASE WITH NOISES IN BOTH PRI-

MARY MEASUREMENTS AND DERIVATIVES

This section presents the analysis of using PBIE on primary measurements with
noise. The system is:

d—i =az+bu (A.la)
y1:z+(51
y2:2"+52

(A.1b)

(A.1c)

The input observer is composed of differential equations that imitate the system

using incomplete information, and the parameter update law:
Z=az+bj (A.2a)
1
= (y2+k(y1-2)-a2) k>0 (A.2D)

First we derive the differential equations for estimation errors, Z and /i. Substi-
tute 1 in (A.2a) with (A.2b) and get:

2:2+5Q+k(z—2)+k(51

(A.3)
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NOISES IN BOTH PRIMARY MEASUREMENTS AND DERIVATIVES

Subtract above equation from system state equation (A.1a) to get:
Z=—kz-kd -0, (A4)

Follow similar steps for i and obtain:

a+k k. 1.
Z— =01 - =6 A5
T b51 02 (A.5)

jie-

The relationship between estimation erros and the measurement noises are:

Z(s) _ —ﬁ —ﬁ y 51(s) (A6)
N(S) _k(s—a) __S-a 5 (S) ’
H B(stk)  b(s+k) 2

The amplitude ratio matrix from the frequency response of this 2 by 2, error to

noise system is as follows.

k 1
AR = \/k2+w% \/k2+w§ ' (A7)
k [a?+w? 1 [a?+wd

b k2+w? b k2 +w?

From the elements in the first row of AR matrix, the attenuation of both noises,
61 and 4, in state estimate is achieved if k% > 1 - w?. However, the attention of
both noises in parameter estimate cannot be achieved simutaneously. It can be
shown by the exclusive ranges of k: k? < a® and k% > a?, which are the solutions of
attentuation conditions AR(2,1) <|%| and AR(2,2) < |3|, respectively.

Then, we want to investigate if we can make a trade-off between attenuation
two noises through choosing k. With the chosen k, the observer can overall dampen

the effect of two noises in parameter estimate. Again, model the noises as sinu-

soidal waves:

51 = 31 + A1 sin(wlt + ¢1),

0o = 32 + Ag SiD(OJQt + (;52)
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NOISES IN BOTH PRIMARY MEASUREMENTS AND DERIVATIVES

Solve different equation (A.5) for i and get:

. k+a- k+a= a=  a-= A2k%(a? + wi)
,LL:—( b (51+ bk 52_0611 —a12)e +561+E52+\l mSlﬂ(Wlt-F@l)
Aj(a? +w3)
bz(k‘z 2) sin(wat + 62). (A.8)
The coefficients are:
= Jl/_)l(lll;(;:f))(wl cos ¢ — ksin ¢q) (A9)
a9 = %(wg cos ¢2 — k sin ¢2) (A.10)
The phase shifts are:
tan 6, - (ak —w})sin gy — (a + k)wy cos ¢ (A1)
(a+ k)w; sin gy — (w} — ak) cos ¢
(ak — w3) sin¢g — (a + k)ws cos ¢2
tan6 A12
anvz= (a+ k)ws sin ¢pg — (w3 — ak) cos ¢2 ( )
If we relate the two noises through a differentiator, i.e.:
51 = 31 + A1 sin(wlt + gbl),
52 = dd—il = w1A1 COS(wlt + qbl) = wlAl sin(wlt + gf)l + 7'['/2) (A13)
Then for do, we can write:
w2 = W1 A2 = wlAl (bg = (bl + 71'/2 (A.14)

With above relations, sustained oscillatory terms in (A.8) become:

. A2k2(a? + wi) A2w?(a? + wi)
Ht—sto00 = \l m sm(w1t + 01) + b2(kj2—+%) Sln(u]ﬂf + 92)

= 51 sin(wlt + 91) + ﬂz sin(wlt + 02)

= (81 cos by + B2 cosBy) sin(wit) + (B sin by + B2 sinhy) cos(wit)
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NOISES IN BOTH PRIMARY MEASUREMENTS AND DERIVATIVES

= \/(5% + 522) + 231 B2(sin 0 sin O3 + cos By cos B2) sin(wit + 03).  (A.15)

Reorganize the trigonometric functions in the second parenthesis:

o 0 tan 67 tan 62 N 1 1

S 3 S 302 = g

Y1 Sz T COs01 CoS U2 (1+tan6?)(1+tan63) V1+tan26;  /1+tan26,
(A.16)

~ tanf; tanfy + 1
V(1 +tan6?)(1 +tan62)

(A.17)

The phase shifts become:

tan #; remains the same as (A.11),

g (ak— w) cos g1 + (a + k)w sin ¢ (A.18)
an = : '
2 (a+ k)wy cospy — (w% - ak)sin ¢y

The numerator in (A.17), tan 6, tan 63 + 1 = 0 Thus, the sustained error in y is:

fits+oo = \/ B3 + B3 sin(w1t + 03) (A.19)

A2 2
_\ /—1(C‘b2+ “1) Gineort + 05) (A20)

From this analysis, we found that the observer gain actually doesn’t have any im-

pact on the sustained error magnitude. It is the same as using direct inversion.
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Figure A2: a=-1,0=2,w1=5,4,=3,k=0.5
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B. DERIVATION OF PID CONTROLLER FROM THE
PERSPECTIVE OF PASSIVITY-BASED ADAPTIVE

CONTROL

In this section, we derive the PID formulation using measured deriavtive and dyan-

mics inversion. We consider the system:

2 ez +bu (B.1)
dt

Y1 =y (B.2)
Y2 =Tf (B.3)

x s is filtered measurement of z, and i is the filtered derivative. Set * -4 = —k(z* -

xs), and substitute & with & ~ axy + bu, to get
1 s % *
u:g(m +ker—axy), wherees=2a"—xy. (B.4)

Substitute axy = 7 — buy into above equation to get:

1
u:E(ﬂ'S*-i-kef—jZf-i-bUf), (B5)
where uy is the filtered input, and can be expressed as uy = —~. Then above
control law becomes further as:
bu—bu]czs'c*—:'chrkef (B6)
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PASSIVITY-BASED ADAPTIVE CONTROL

b(1- Ju=¢ér+kes (B.7)

Ts+1

Solve for u and get:

1 1
1 k 11 k1

_ T i - i B.9
bef+bef+b7'sef+b7'sef (B.9)

Organize above control law and it becomes:

1 1 1
u:(%-i‘g)ef'i‘%gef‘i‘géf (B]-O)

The closed-loop function function from e; to x is:

er(s) _ Ts(s—a)
x(s) s$2+(thk+1)s+1

(B.11)

Tuning parameters 7 and k are chosen so that the closed-loop transfer function is
stable, and there is no unstable zero-pole cancellation.

If the process that we are interested in controlling has uncertainty 1(t) as:

Z—f =az + bu+du(t). (B.12)

With the same PID controller, we have two transfer functions constituting the

closed-loop dynamics:

er(s) Ts(s—a) ey —drs
z(s) 2+ (tk+1Ds+1" pu(s) 2+ (tk+1)s+1

(B.13)
The PID controller devised above is simulated to control the scalar example from
Chapter 5:

Z—f =10z +u +dyp, where p=5sin(10t)sin(t), x(to) = 2. (B.14)

Setk =10, 7 = 55, and plug in b = 1 in adaptive PID controller (B.10). Set the setpoint
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—— Adaptive control
—— Adaptive PID
6 - — Set point B

—— Adaptive control
—— Adaptive PID

Figure B.1: Control results using adaptive control and adaptive PID

x* =5, and implement the control in Matlab simulation. Figure B.1 compares the
simulated control results from the adaptive PID control and the adaptive controller
designed in Section 5.3.2. The adaptive controller gives the exponentially stable
control convergence. The adaptive PID is able to attenuate the influence of the

cyclic unknown input y, of which profile is shown in Figure B.1 (c).
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C. BUMPLESS TRANSFER FROM PID CONTROL TO

PASSIVITY-BASED ADVANCED CONTROL

C.1. Process Description and PID Control

In this section, we discuss the design of bumpless transfer for switching from basic
PID control to passivity-based advanced control scheme. Numerical example and
simulation result is given for illustration. The process is G(s) composed of a first

order linear part with a time delay, and a nonlinear part:

1
5s+1

y(t) = e f(u)+d, (C.1a)

where y is the measured output, u is the control input and d is the disturbance. The

nonlinear term f(u) is a function of constrained input u,
fu) =u(t)?,0.01 < u(t) < 2. (C.1b)

A constant disturbance of 1 is added on the output. The block diagram from input
u to measured output y is shown in the Fig. C.1.

The PI controller is conservatively tuned assuming « = umqz = 2 using
Internal Modeling Control (IMC) method. The PI controller is PI(e(t)) =
% (e(t) + % Ote(T)dT) to reach a closed-loop with a time constant, 7. = 2. The
closed-loop block diagram is in Fig. C.2, and the control result is shown in Fig. C.3.
A setpoint change is made at t = 80, and output is controlled to the new setpoint

also.
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Figure C.4: Block diagram of closed-loop system with advanced control

C.2. Advanced Control and Bumpless Transfer

C.2.1. Control and Transfer Algorithms

Advanced control To form advanced control, the nonlinear part f(-) needs to be

linearized using function ¢(-), which is defined through the condition:

9()o F() =1, (€2)
For the example process Egs. (C.1a, C.1b), we have:

g(2) = f1(2) = 2"% = PID(e)"/2. (C.3)

The block diagram of the closed-loop system with advanced control is shown in

Fig. C 4.

Bumpless transfer from PI control mode to advanced control mode In real im-
plementation, transfer from PID control mode to advanced control mode may have
an undesired effect on the control performance, due to sudden change of the con-
troller output. In the following part, we show how the bumpless transfer is de-
signed. A filter function 7'(-) is incorporated into the closed-loop for gain adjust-

ment. The condition of the filter is that:

1. at the time of switch ¢ = ty, we still want to maintain u(tg) = PID(e(tp)),
ie. g(T(2(to))) = z(to); together with Eq. (C.2), we have the definition of

function 7T'(-) at the time of switch:

t=t0,T(-)=9"'() = (") (C4)
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Figure C.5: Block diagram of closed-loop system with bumpless transfer from PID
to advanced control

2. after the switch, the filter maintains as a constant gain adjustment:

t> 10, T(-) =T (2(to)) (C.5)

The block diagram of the closed-loop with the bumpless transfer scheme is shown

in Fig .C.5.

C.2.2. Simulation Results

The simulation is performed in Simulink as shown in Fig. C.6. During the simula-
tion, following changes are made to show the performance of transferring between

control schemes, and setpoint tracking:

1. control scheme is changed from PID control to adavanced control at time

to = 40,’
2. setpoint of y is 3 when ¢ < 80, and is changed to 2 when ¢ > 80.
Simulations with or without bumpless transfer are performed:

1. Without bumpless transfer
In this simulation the input u(t) = z(t)"/2. At time of the switch ¢, = 40,
the control input changes from PID(e(t — tg)) to PID(e(tg))"/?, as can be
observed in Fig. C.7. The sudden change of the input degrades the track-
ing performance of the measured output, which deviates from the stabilized
value at the set point y* = 2. y came back around ¢ = 60 with a overshot, and

finally stabilize again at the set point around ¢ = 76.
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Figure C.7: Results of simulation without bumpless transfer (output profile on the
left, input profile on the right)

2. With bumpless transfer
In this simulation the input u(t) = 2(to)/? x z(t)'/?. With the adjustment, the
control input still remains PID(e(ty)) when the switch happens.So it doesn’t

degrade control performance as shown in Fig. C.8.

C.3. Another Design of Compensation Block for Bumpless Transfer

The MV determined by advanced control is:

1
u(t) = 5 PID(e), (C.6a)
- ﬁpll)(e) (C.6b)
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Figure C.8: Results of simulation with bumpless transfer (output profile on the
left,input profile on the right)

_ PID(6)1/3 (C.60)

where ﬁ in Eq. C.6a is the nonlinear gain. The simulation is performed in
Simulink as shown in Fig. C.9. During the simulation, following changes are made
to show the performance of transferring between control schemes, and setpoint

tracking:

1. control scheme is changed from PID control to adavanced control at time

t() = 40,‘
2. setpoint of y is 3 when ¢ < 80, and is changed to 2 when ¢ > 80.
Simulations with two transfer strategies are performed:

1. Without bumpless transfer
In this simulation the nonlinear control gain is just ﬁ As shown in Fig.
C.10, the stabilized output y dropped from the set point after the control
switch. Eventually, the output converges back to the setpoint, and the set-

point change is tracked. A similar profile of the input is shown in Fig. C.10.

2. With bumpless transfer

In this simulation is nonlinear control gain is normalized w.r.t. ﬁ, i.e.

11/7(({/?). With the adjusted nonlinear gain, the switch doesn’t degrade control

performace as shown in Fig. C.11.
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D.1. Semi-batch Reaction Model

We simulate an A — B reaction, and model the species’ concentrations and volume

as follows:

d —Ea
% = Fz‘nCA,in - k‘geR%" Cy (D.la)

d i,
gtB - ke T O (D.1b)

av
dt

= Fin, (ch)

where C4 represents concentration of reactant A, Cp represents concentration of
product B, ky pre-exponential factor, E, represents activation energy, R gas con-
stant.

Together with the differential equations of the temperatures, (6.1a) — (6.1c), they
constitute the model of the semi-batch reactor. The reaction kinetic parameters are

listed in Table D.1.

Parameters Values
ko (min~1) 7.2x10%0
AH, (J/mol) -5 x 10
La (K) 8750

Table D.1: Simulated reaction kinetic parameters
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D.2. MMA Polymerization Model

The MMA free-radical polymerization mechanism is as follows:
Initiation:

I, 24, or+

r+mLop;
Propagation
* kp *
Pr+M 5 Py
Chain transfer

Km
P+ +M % D;+ P}

* ka *
P'+S—D;+8S
Termination

Pr+P; 5 D+ D,

I, represents initiator; I* represents the free radical; M represents the

monomer; P represents the living polymer chain with length i; D; represents the

dead polymer chain with length i.

The kinetic model is composed of balance equations of initiator, monomer, and

solvent:
dcy,
= -k, C
dt a1z
dC 1=Nmaz
— = "2kaCr, = (ky + kym)Cn ), Cpr
i=1
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Parameters Relation equations
Initiation rate constant (s™1) kg =1.90x 10 7exp 3%%7
Propagation rate constant (s™!) ky, = 7.00 x 106exp( 6 )
Transfer to monomer rate constant (Sxmol) k frm = 2.90 x 10 exp(- 1?57)
Transfer to solvent rate constant (Sxm?l) ks =1.02 x 10%zp(- 15702)

Disproportionation rate constant (s™')  k; = g; x 1.77 x 10%exp(~ 5800)

Table D.2: MMA polymerization kinetic parameter calculation equations

dC 1=Nmaz
ds ~kCs Yy, Cpr (D.4)
t i=1

The sum concentration of living monomer is modeled using relation: y.'=/™* C pr =
(%)2. The reaction kinetic constants relations with reaction condition are tab-
ulated in Table D.2. Gel effect is also considered, which is reflected in the dispro-
portionation rate constant calculation equation. More details regarding the MMA

polymerization model can be found in Crowley & Choi (1997).
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E. NUMERICAL DIFFERENTIATION

This section gives a review of several numerical differentiators, that uses different
approaches to estimate derivatives of signals measured with or without noise. The
Savitzky-Golay filter and deadbeat differentiator assume the signal as a polynomial
of time; the sliding mode differentiator assumes the measured signal as a control
setpoint, and the derivatives are the control input that drives the estimated state to

the setpoint. The formula of the methods are listed below.

¢ Savitzky-Golay filter (Baedecker, 1985) calculation of jth order time deriva-
tive is usually in a discrete convolution form. For a case, that the original
signal is assumed to be a n-th degree polynomial, and we have 2m evenly

spaced measurements, then the derivatives of a middle point indexed 0 is

estimated through:
9(0) = 3 hlyi. (E1)

h; are convolution weightings derived from solving a least squares polyno-

mial regression problem, and usually can be found in a lookup table.

¢ Assume the signal is a N-th degree polynomial function of time:

N
y(t) = Zo%t (E.2)

Deadbeat differentiator (Reger & Jouffroy, 2009) for the jth order time deriva-
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tive is:
. T
g9 = fo G(T,8)y(t - 8)ds, j=0,1,...N, (E.3)
where the convolution kernel:
(N+j+1)! & (-DFWN+E+1)! 5,
Gi(T,0) = — — E4
i(1:9) T+ (N = ) (G +k+ 1) (N - k)!(k!)Q(T) ’ E4)
T is the length of an arbitrary constant time window.
¢ Sliding mode differentiator (Levant, 1998) formulation is:
j=u (E.5)
N 1., N
u=wuy —j - y|2sign(j - y) (E.6)
(E.7)

Uy = _aSign(g - y)7

where u is the estimated first order derivative, ¢ is the estimated signal, y is

the measured signal. o, A > 0 are design parameters.
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