

Using High-Throughput Transcriptomics to Analyze Chemical Safety

Imran Shah National Center for Computational Toxicology NCCT

Workshop on "TempO-Seq data analysis" 4-5 October 2018, Leiden, the Netherlands

The views expressed in this presentation are those of the author[s] and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency.

Outline

- Why NCCT is using high-throughput transcriptomics
- Overall workflow and team
- Experimental analysis
- Computational analysis
 - Overview of different computational workflows / use-cases
 - NCCT HTTr workflow
 - Evaluate Data quality
 - Identify concentration-dependent effects of chemicals
 - Analyze putative molecular / pathway targets of chemicals

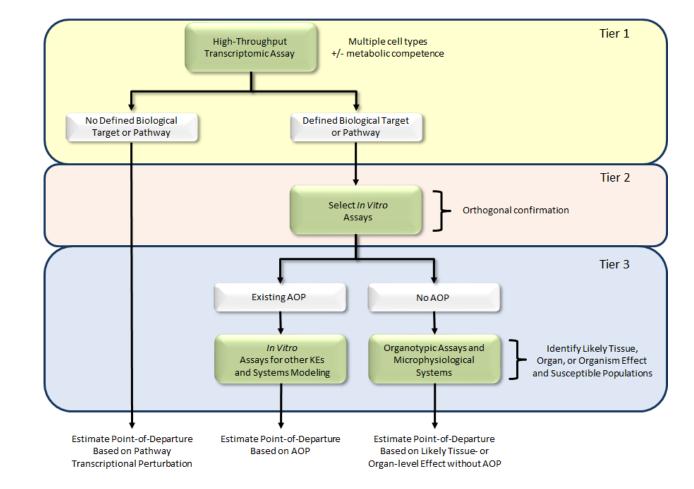
Objectives

A strategic vision and operational road map for computational toxicology at the U.S. Environmental Protection Agency [DRAFT]

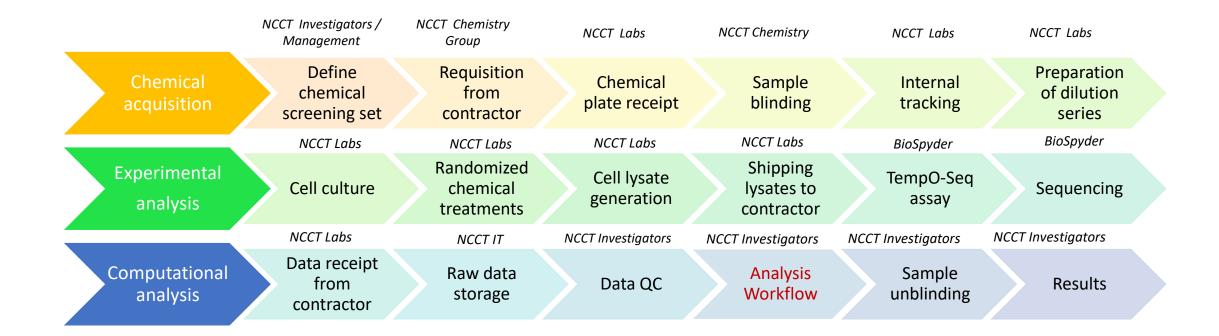
 A flexible, portable and cost efficient platform to comprehensively evaluate the potential biological pathways and processes impacted by chemical exposure

→ High-throughput transcriptomics (HTTr)

- Identify the concentration at which biological pathways/processes begin to be impacted
- Predict biological targets for chemicals with specific modes-of-action



HTTr Workflow



NCCT HTTr Project Team

National Center for Computational Toxicology

Experimental

Computational

Experimental Analysis

Two Main HTTr Experiments (so far)

- Cell type: MCF7
- 44 chemicals, 8 conc
- Time points: 6 , 12, 24 h
- Media: PRF- / PRF+ (DMEM +10% HI-FBS)
- Data: 6,804 samples x 21,111 transcripts

MCF7-WF-Pilot

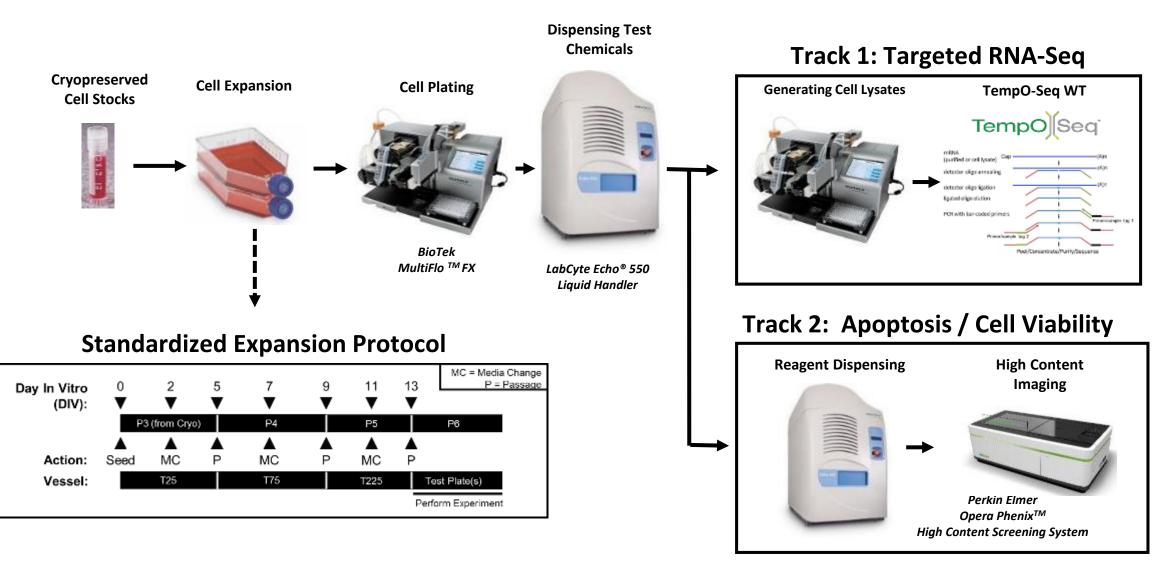
Pilot study to validate workflow and refine experimental design

HTTR-PhI

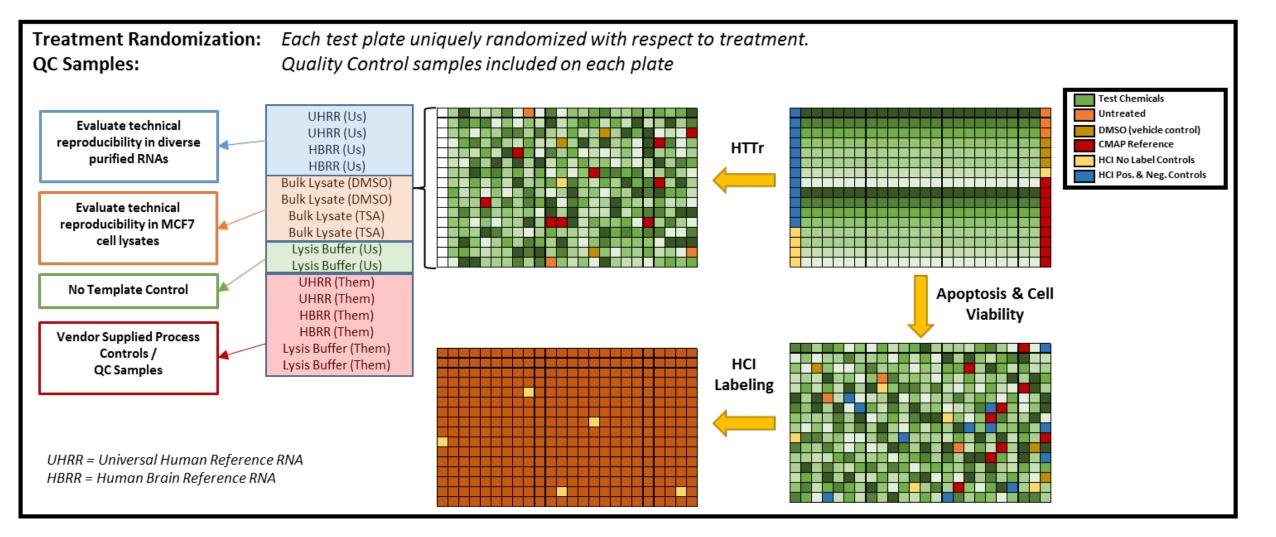
Large-scale screen

- Cell type: MCF7
- Compounds: 2,200
- Time Point: 6h
- Media: PRF+
- Concentration Response: 8
- HTTr ~53,000 x 21,111 transcripts

Lab Workflow



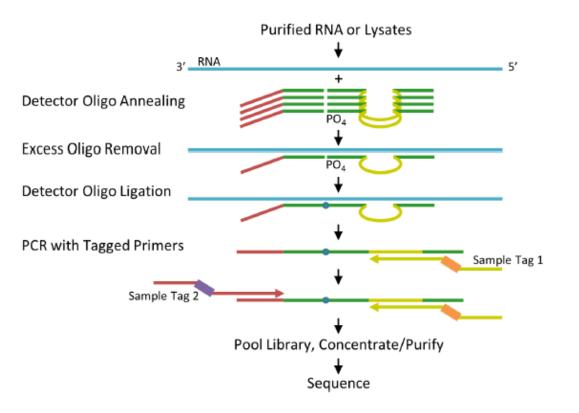
Quality Control Samples and Reference Standards for Performance-Based Validation



TempO-Seq for HTTr

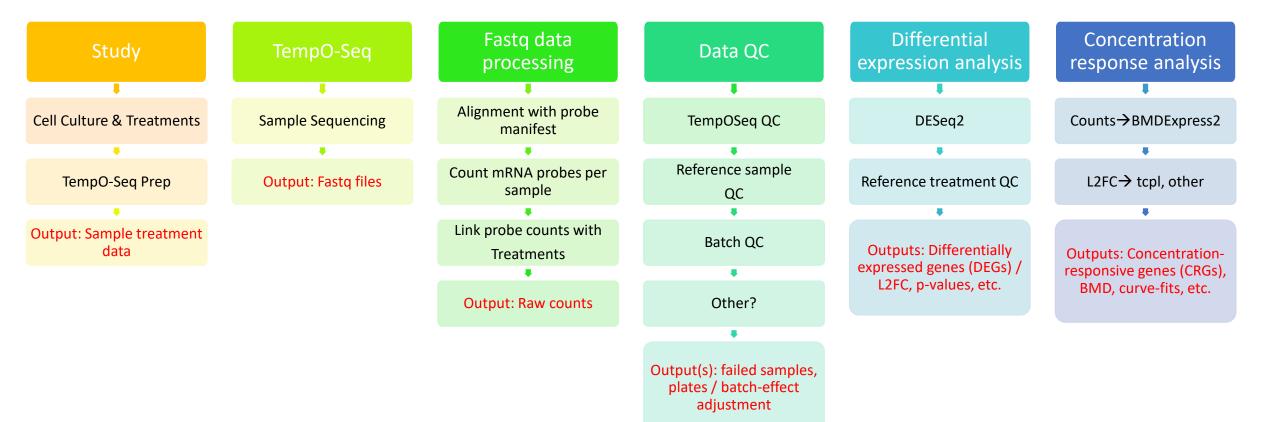
- The TempO-Seq human whole transcriptome assay measures the expression of ~21,100 transcripts.
- Requires only picogram amounts of total RNA per sample.
- Compatible with purified RNA samples or cell lysates.
- Transcripts in cell lysates generated in 384-well format barcoded to well position
- Scalable, targeted assay:
 - Measures transcripts of interest
 - Greater throughput and requires lower read depth than RNA-Seq
 - Ability to attenuate highly expressed genes

TempO-Seq Assay Illustration



Computational Analysis Overview

HTTr Computational Analysis Steps



Basic HTTr Analysis Workflow

- Use-case: identify the most sensitive pathway perturbations
- Study design: One cell type, multiple chemicals, multiple conc, single time point
- Approach:
 - TempO-Seq HTTr data generation
 - Process raw data to generate probe level counts
 - Conduct TempO-Seq QC (read depth, mapped fraction, etc.)
 - Filter probes by average/maximum/median count (to exclude very low level counts)
 - Normalise counts for each sample (e.g by read-depth scale to 3x10⁶)
 - Conc-response analysis using BMDExpress2 (choice of filters, fits, and thresholds output concresponsive probes and BMD values)
 - Pathway level aggregation by genes and BMD values (summarised as accumulation plots)

Intermediate HTTr Analysis Workflow

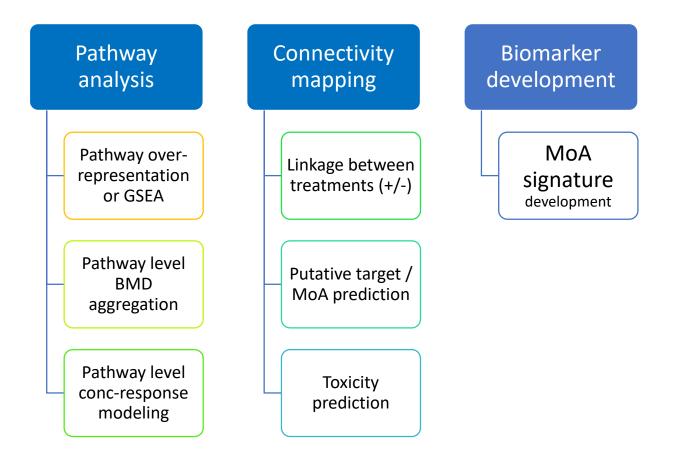
- Use-case: identify the most sensitive pathway perturbations
- Study design: One cell type, multiple chemicals, multiple conc, single time point
- Approach:
 - TempO-Seq HTTr data generation
 - Process raw data to generate probe level counts
 - Conduct TempO-Seq QC (read depth, mapped fraction, etc.)
 - Filter probes by average/maximum/median count (to exclude very low level counts)
 - Differential expression analysis using DESeq2 (produces L2FC, p-values, mean-counts, etc.)
 - Concentration response analysis using L2FC data and tcpl (ToxCast curve-fitting pipeline)
 - Pathway level aggregation of conc-responsive genes using BMD₁₀

Intermediate HTTr Analysis Workflow

- Use-case: identify the putative molecular targets of chemicals
- Study design: One cell type, multiple chemicals, multiple conc, single time point
- Approach:
 - TempO-Seq HTTr data generation
 - Process raw data to generate probe level counts
 - Conduct TempO-Seq QC (read depth, mapped fraction, etc.)
 - Filter probes by average/maximum/median count (to exclude very low level counts)
 - Differential expression analysis using DESeq2 (produces L2FC, p-values, mean-counts, etc.)
 - Generate DEG signatures for GSEA analysis with CMap reference database
 - Link CMap hits to putative targets

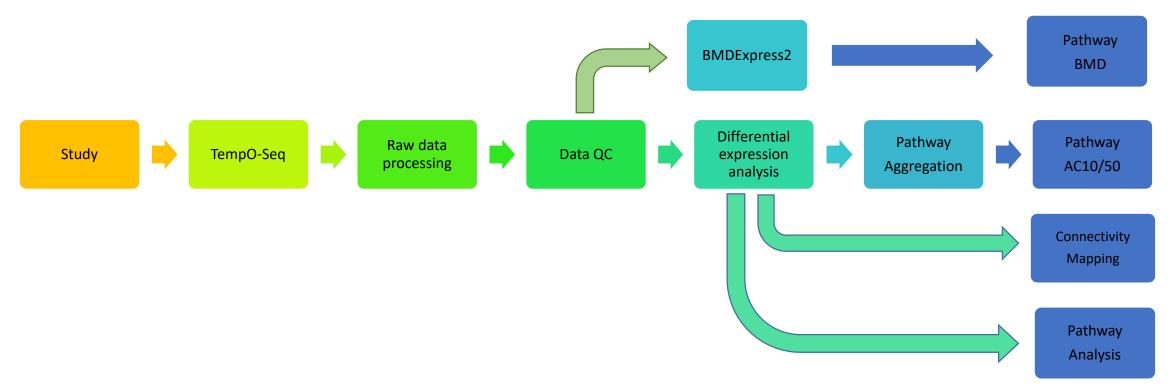
Interpretation – many options

Some interpretation options that can use either CRGs or DEGs



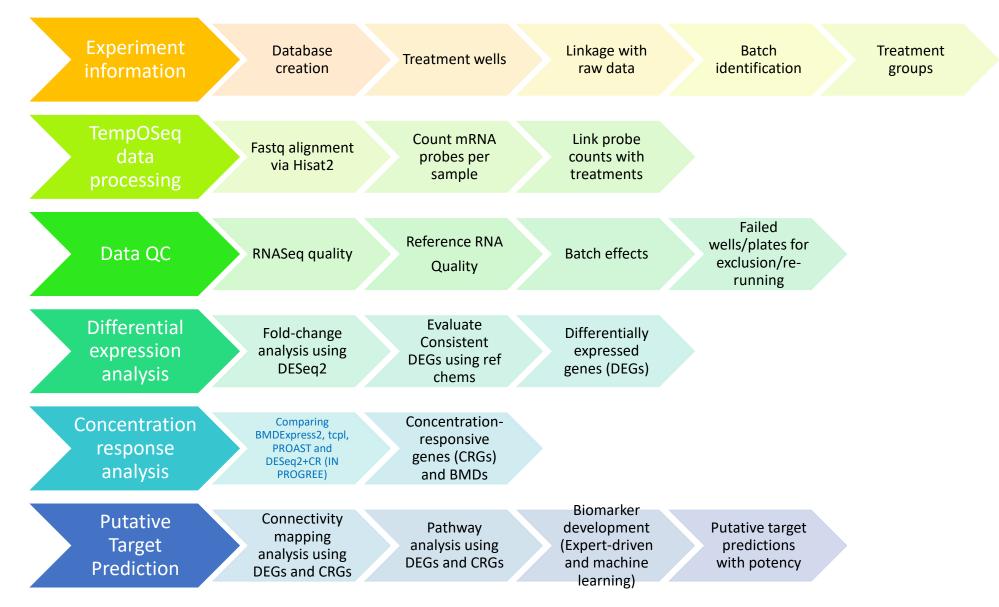
NCCT HTTr Analysis Workflow

NCCT HTTr Analysis Workflow



- Use-case: Evaluate chemical potency, putative targets and pathways using HTTr
- Study design: MCF7 cells, 2100 chemicals, 8 conc, 6 h time point
- Approach: "Exploratory"

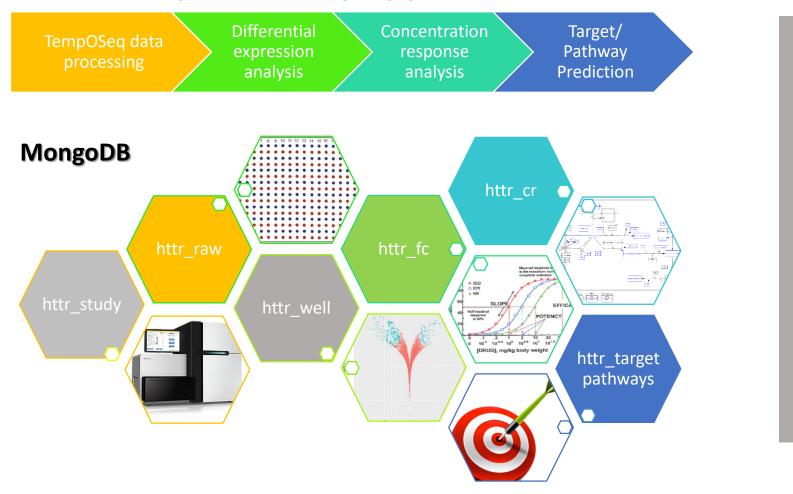
Analysis Pipeline (June 2018)



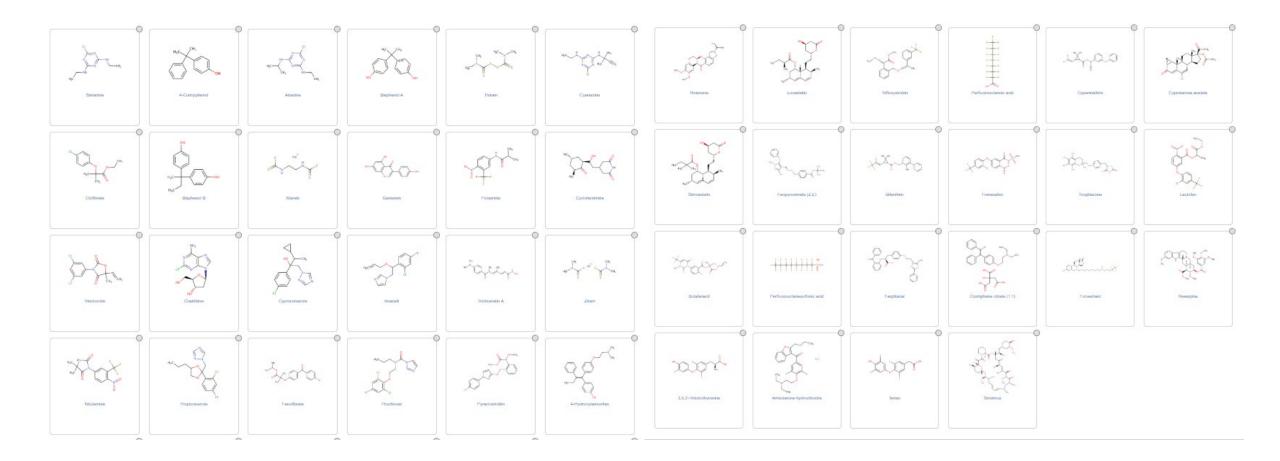
HTTr Analysis, Storage and Dissemination (Internal EPA)

REST API

Python & R analysis pipeline



MCF7 Pilot Study Chemicals

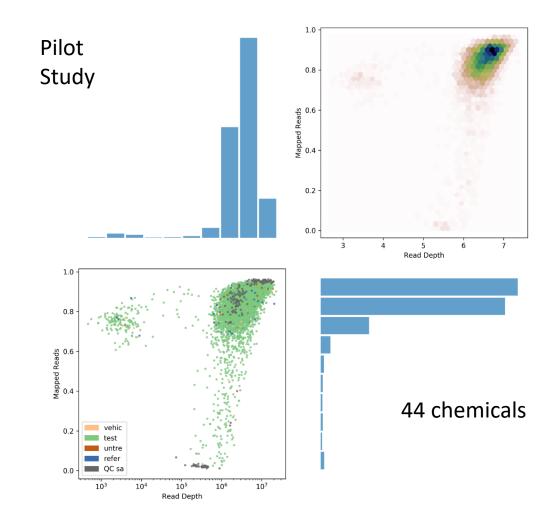


Data Quality

TempO-Seq Quality

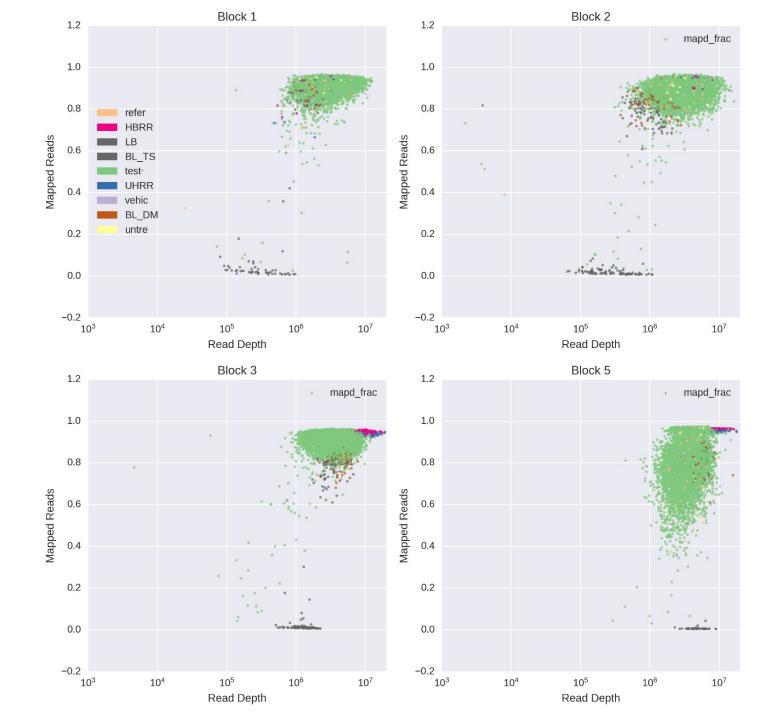
Quality metrics:

- Read depth: number of mRNAs sequenced
 - Ideal value = 3x10⁶
- Mapped reads: fraction of sequenced mRNAs that map to a specific probe/gene
 - Ideal value = 100%

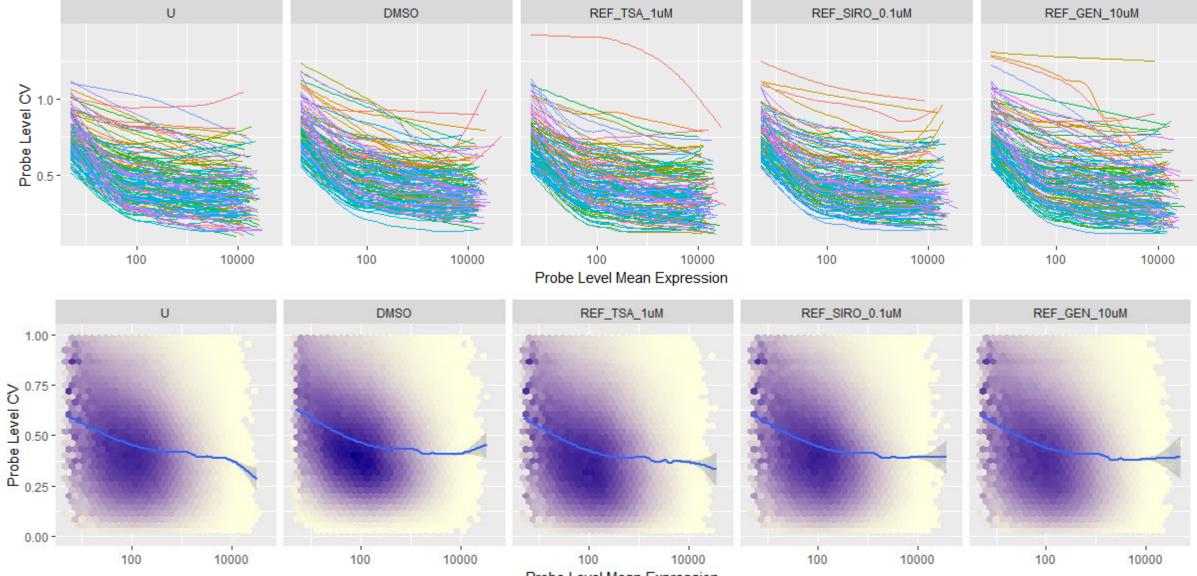


TempO-Seq quality

	Mapped %		Read depth	
block_id	mean	std	mean	std
1	0.908	0.077	3.33E+06	1.60E+06
2	0.892	0.078	3.53E+06	1.64E+06
3	0.909	0.076	3.72E+06	1.56E+06
5	0.797	0.124	3.77E+06	1.64E+06

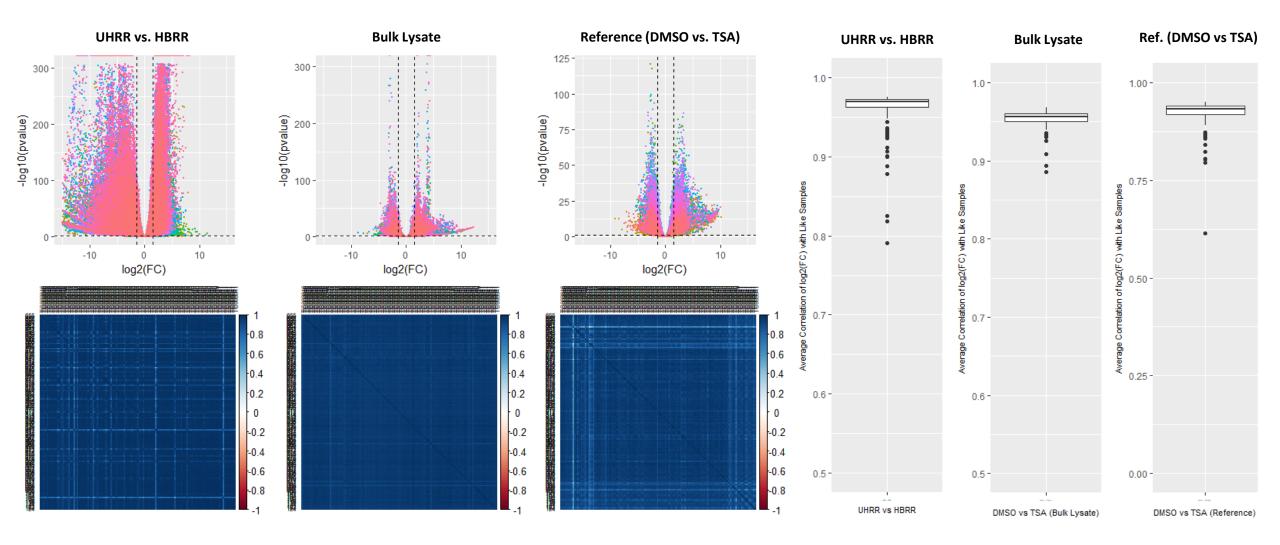


Coefficient of Variation Vs. Transcript Abundance



Probe Level Mean Expression

Reproducibility of Log₂(FC) Estimates

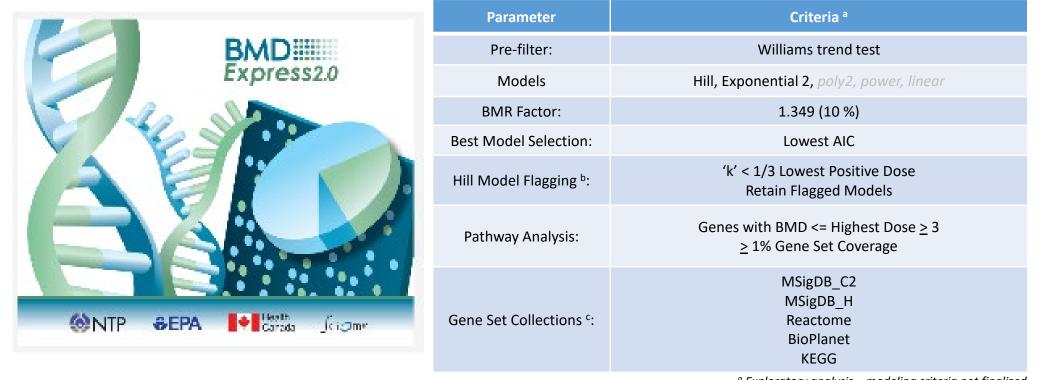


• High correlation of log2 FC estimates across plates and screening blocks.

Concentration-Response Analysis

BMDExpress2

Benchmark Dose Modeling

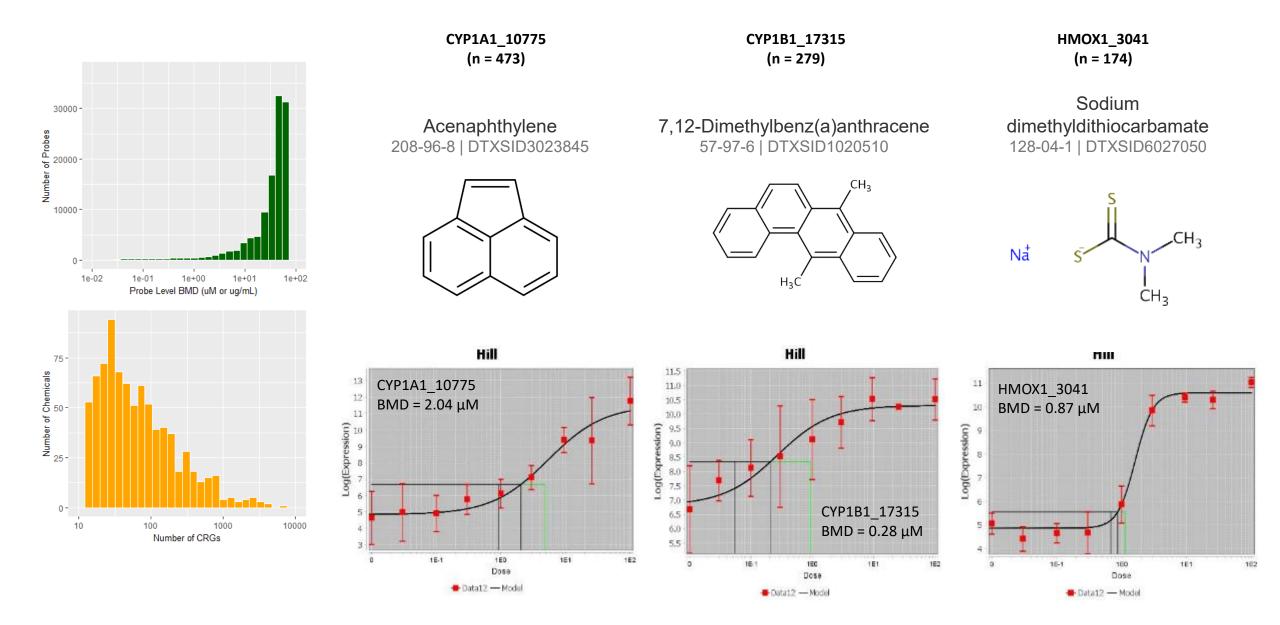


^a Exploratory analysis – modeling criteria not finalized

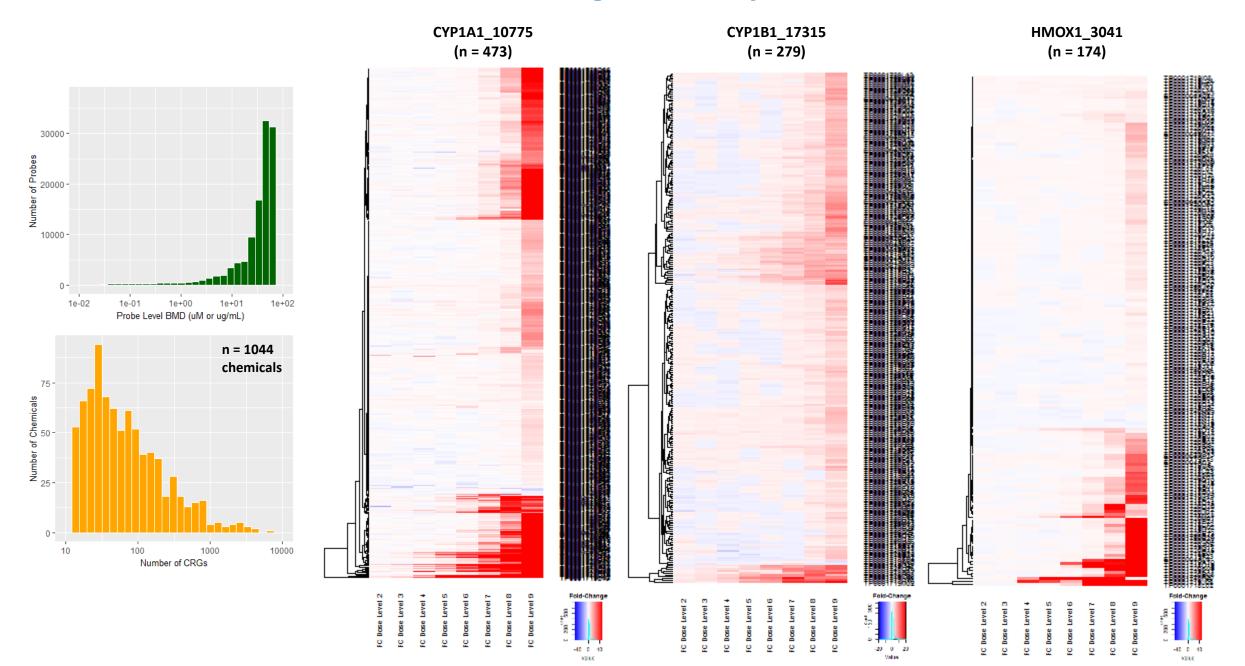
^c Gene Set Collections:

- MSigDB_C2: Curated gene sets from online pathway databases, publications and knowledge of domain experts (n = 4738).
- MSigDB_H: Coherently expressed signatures derived by aggregating many MSigDB gene sets to represent well-defined biological states or processes (n = 50).
- **Reactome:** Open-source, curated and peer reviewed pathway database with hierarchical pathway relationships in specific domains of biology. (n = 1764). Some pathways included in MSigDB_C2.
- **BioPlanet** (n = 1700): Curated pathway set developed by National Toxicology Program.

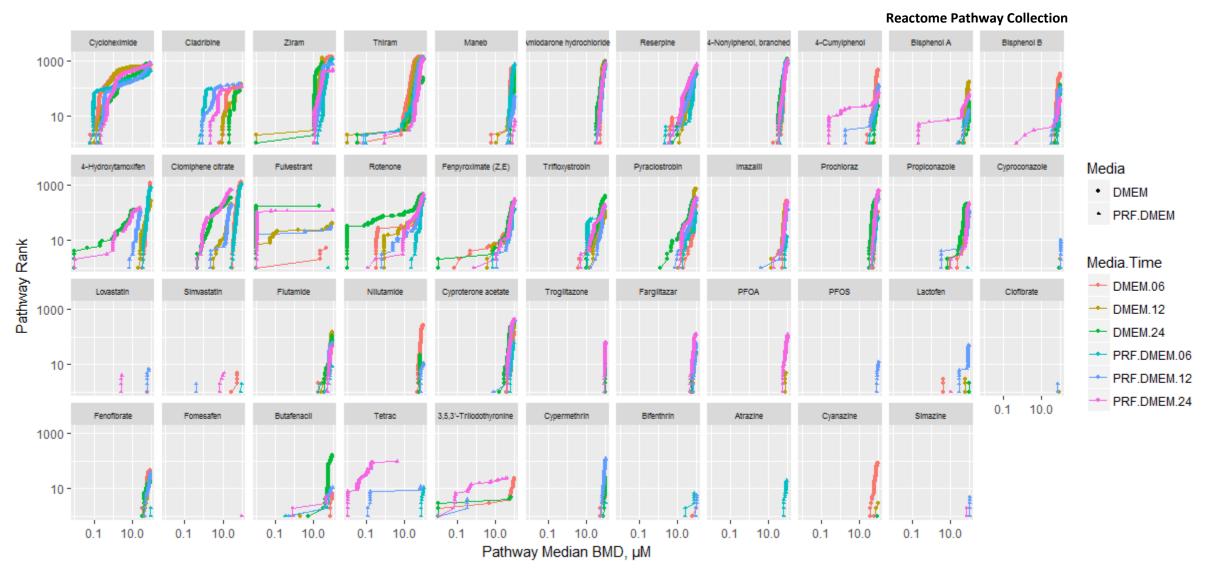
Benchmark Dose Modeling Summary & Inducible Genes



Benchmark Dose Modeling Summary & Inducible Genes



Gene Set Accumulation Plots (1) IOg 10 X-axis scaling



- Identification of the most sensitive gene set / pathway (or lower %ile of affected pathways) is a common way to identify bioactivity thresholds in transcriptomics data.
 - Some chemicals affect many pathways across a broad concentration range (i.e. cycloheximide, ziram).

٠

• Other affect a comparatively smaller number of pathways within a narrow concentration range (i.e. flutamide, prochloraz).

No affected pathways identified for Vinclozolin

Concentration-Response Analysis

of Pathways

Concentration Response Modeling

ToxCast Pipeline (tcpl):

- Originally developed for CR modeling of highthroughput targeted screening assays.
- Fits 3 Models:
 - Constant
 - Hill
 - Gain-Loss
- Winning model = Lowest AIC
- "Hits" are defined as curves where:
 - The Hill or Gain-Loss wins
 - Response surpasses an efficacy threshold
- Modified to handle both upwards and downwards trending concentration-response curves.

Applications in HTTr:

- Gene level concentration-response modeling of DESeq2 FC estimates.
- Pathway level concentration-response modeling

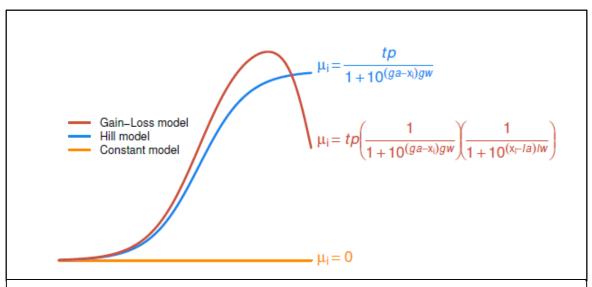
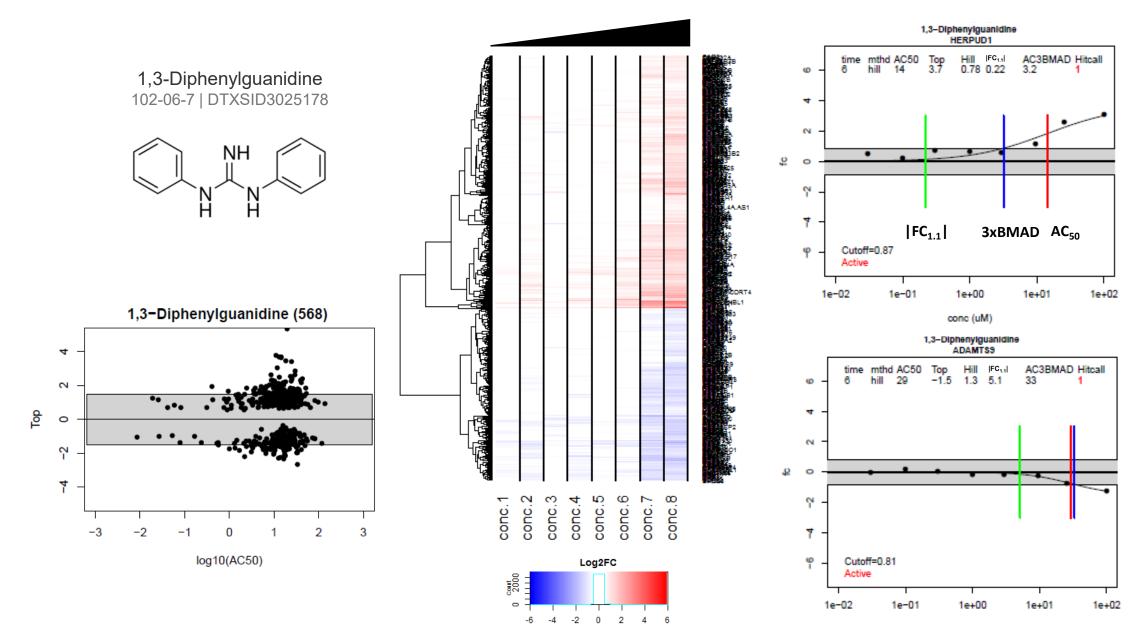


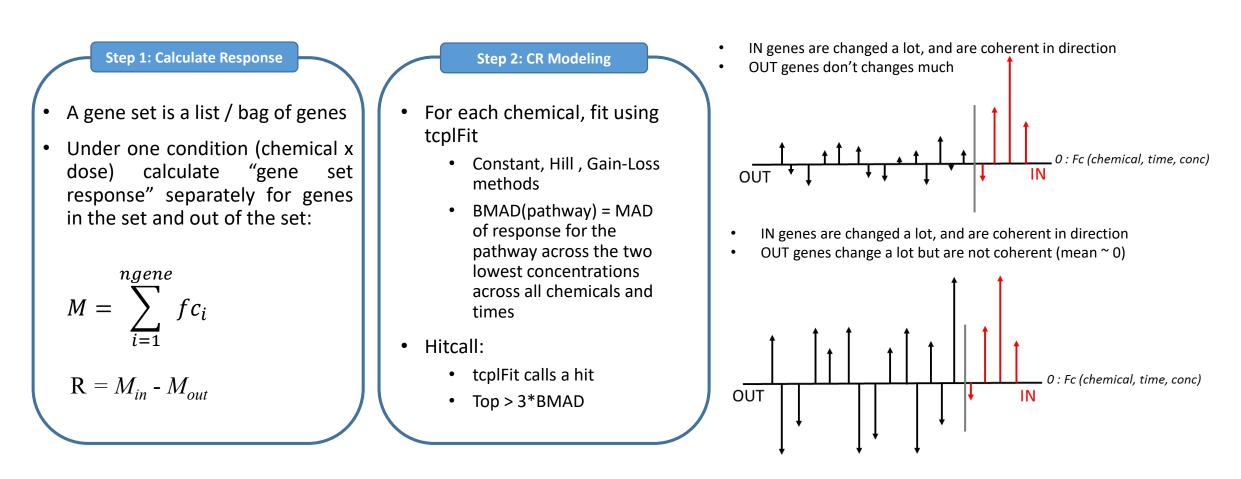
Fig. 1. The three models utilized by the tcpl package. The constant model and its associated formula for μ_i is shown in orange, the Hill model and its associated formula for μ_i is shown in blue, and the gain-loss model and its associated formula for μ_i is shown in blue.

Filer et al. (2017)

Gene Level CR Modeling Example



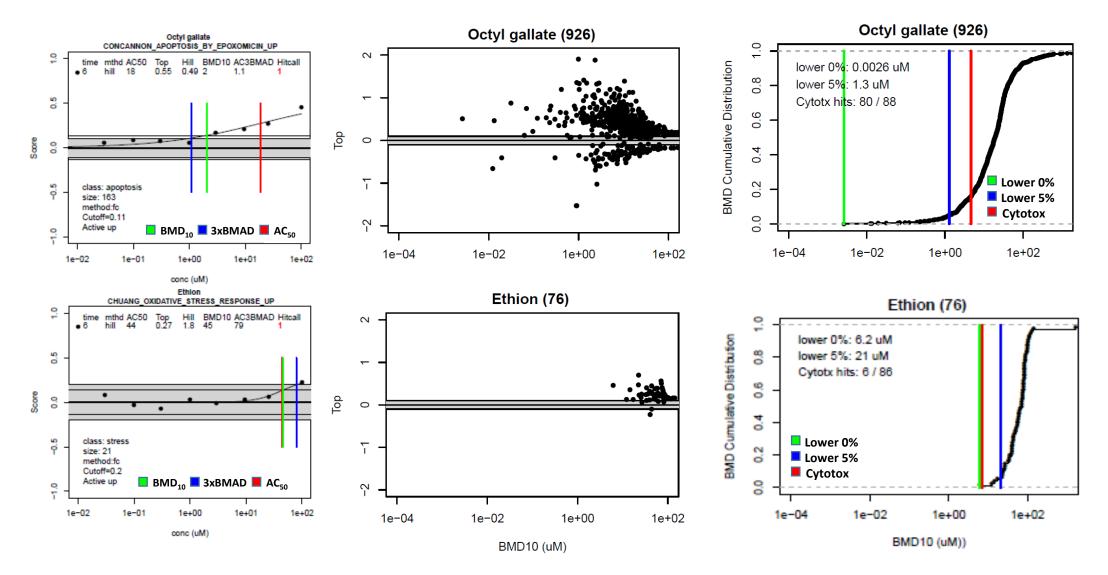
Gene Set Level Concentration Response Modeling



Gene Set Collections:

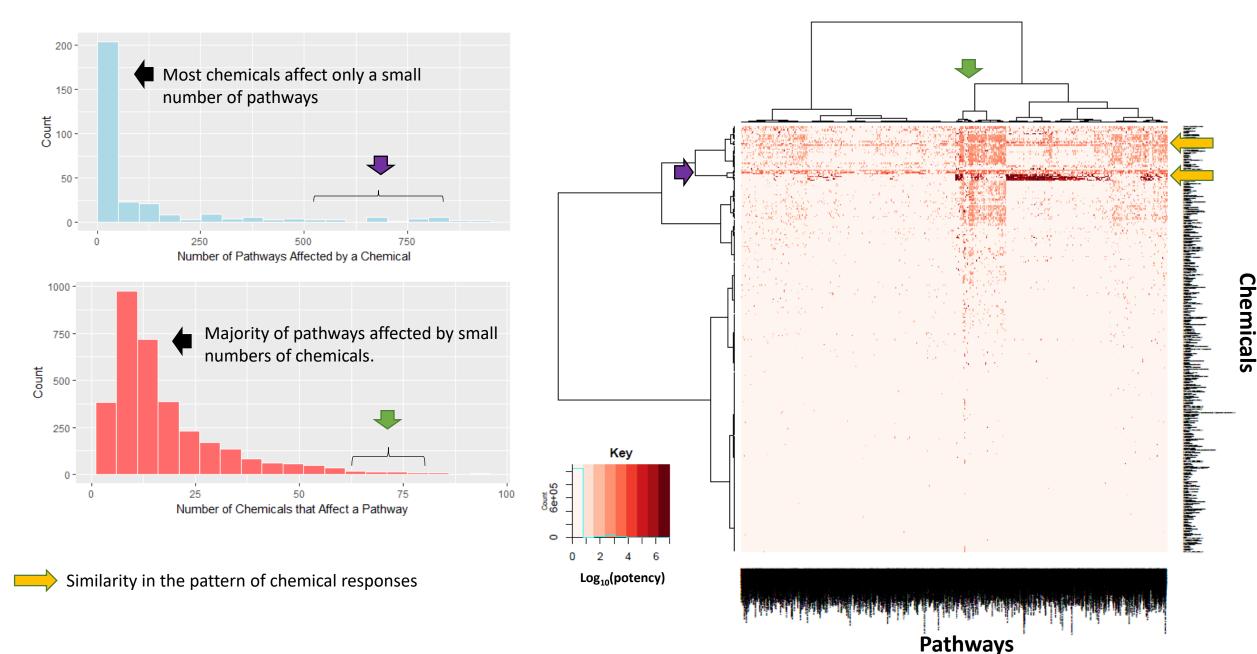
- MSigDB_C2: Curated gene sets from online pathway databases, publications and knowledge of domain experts (n = 4738).
- **BioPlanet:** Curated pathway set developed by National Toxicology Program (n = 1700).

Gene Set Level CR Modeling Examples



- **Top Row:** Chemical produced effects on biological pathways at concentrations <u>below</u> cytotoxicity.
- Bottom Row: Chemical produced effects on biological pathways at or <u>above</u> the cytotoxicity threshold.

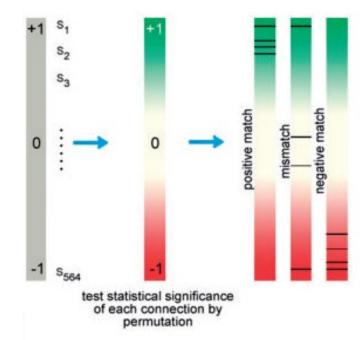
Gene Set Level CR Summary

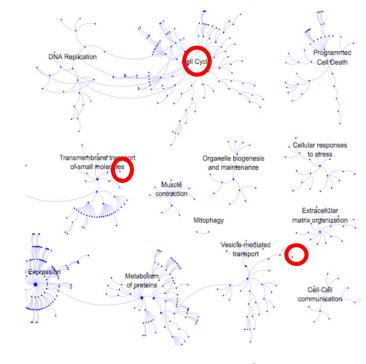


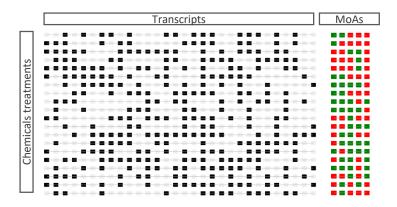
Putative Target Prediction

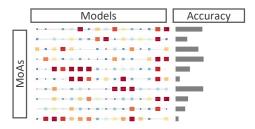
Putative Molecular Target Prediction

Connectivity mapping analysis using DEGs and CRGs Pathway / Network analysis using DEGs and CRGs Machine learning to build Target-specific models



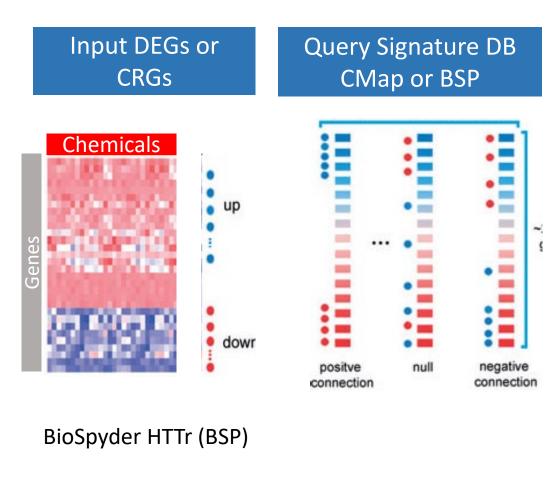




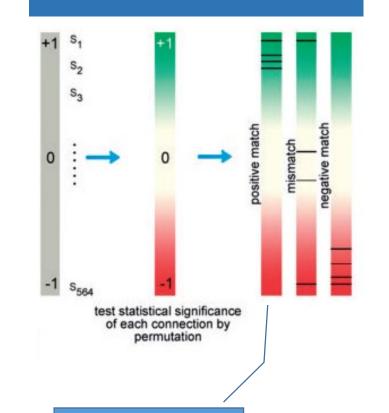


reactome.org

Connectivity Mapping



Find best positive matches



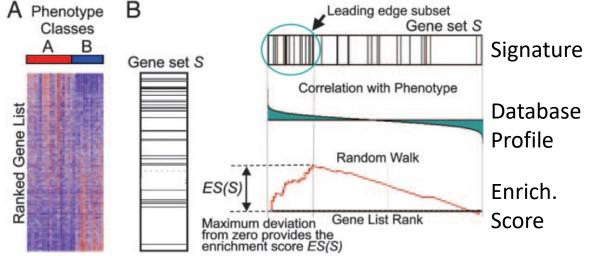
Issues

- Translating DEG/CRG to signature
- Many measures of similarity
- Only as good as reference chemical MoA annotation
- Highly sensitive but not very specific
- Chemicals that cause global perturbations "hit" all classes – how do we distinguish signal from noise ?

Lamb *et al* (2006) Musa *el al* (2017) Infer Tox/MoA by best match

"Connectivity" Scoring

- Connectivity mapping is a similarity metric ' based on transcriptional descriptors
- Gene Set Enrichment Analysis (GSEA): Calculate score of signature with highly up or down regulated genes in reference profiles using KS statistics
- Many alternatives
 - ssCMap: subspace connectivity mapping based on DEGs
 - ProbCMap: probabilistic scoring based on latent factors
 - XCos: Cosine similarity based on overlapping genes
- We used GSEA in this analysis



Subramanian et al. 2005

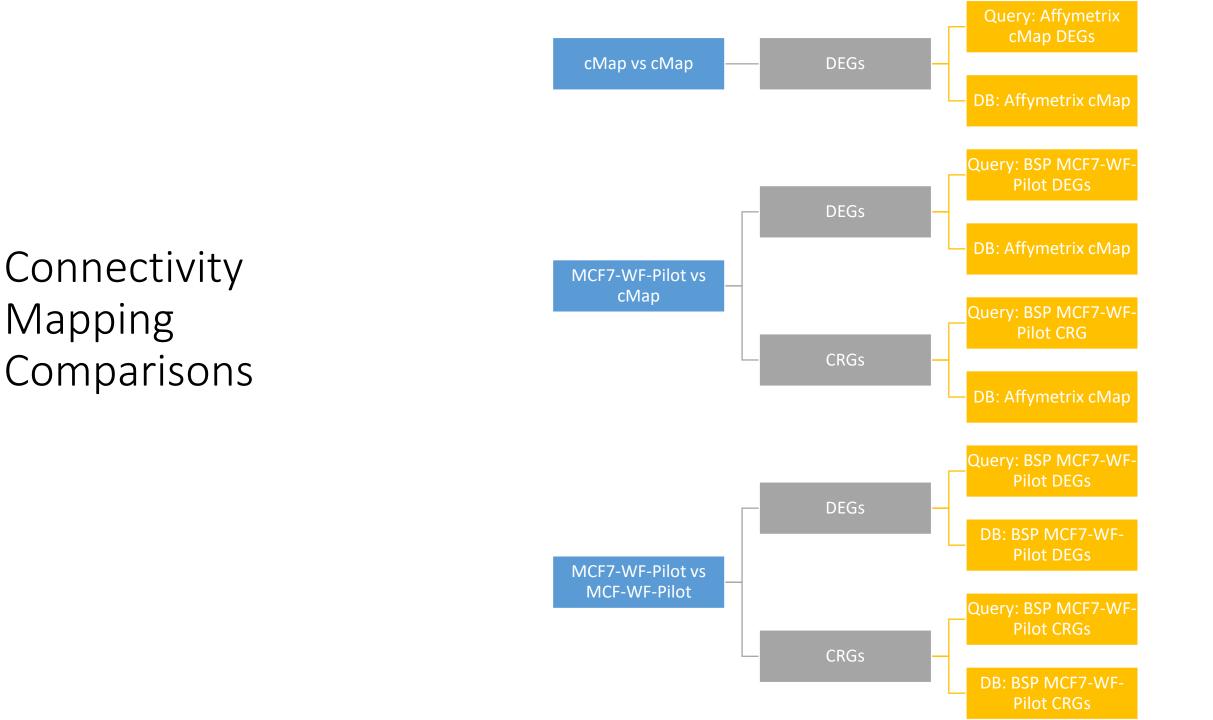
Reference Database and Signatures

CMap Build 02

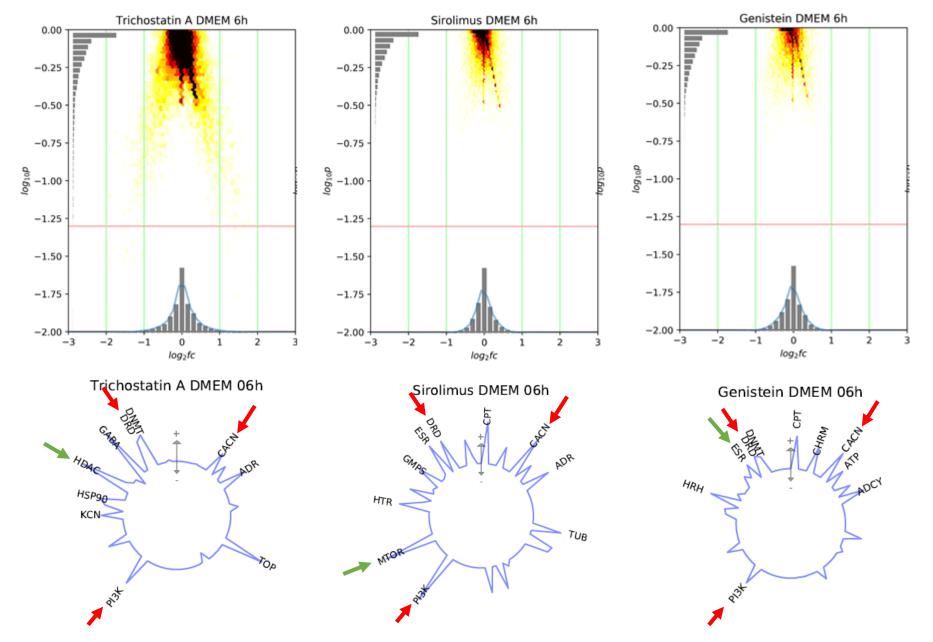
- CMap DB
 - Use CMap v2 database: Affymetrix data on 1176 chemicals, 5 cell lines
 - RMA Normalize CEL files
 - L2FC using treatment vs. matched DMSO
- Signatures (DEG)
 - Translate FC profiles in up/down profiles (signatures)
 - Convert L2FC data to Z-scores
 - DEG: For z0=1,2,3 create discrete Z where value = 1 if Z>z0 and -1 where Z<z0

MCF7-WF-Pilot BSP

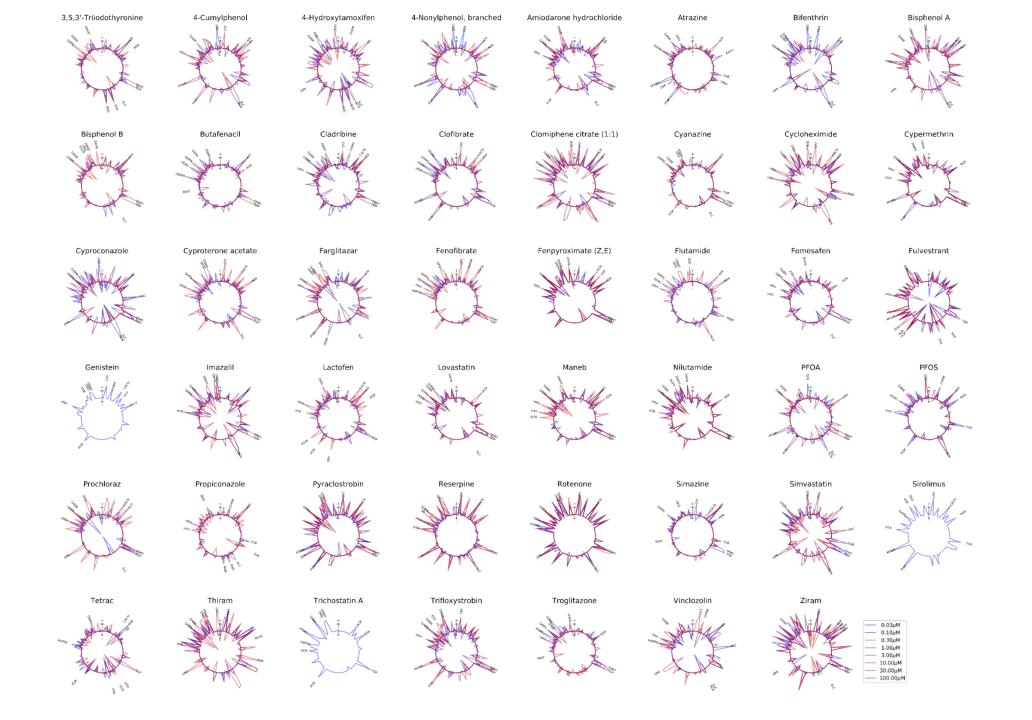
- BSP DB
 - Use 44 chemicals x 8 conc x 3 times x 2 media combinations
 - Exclude probes with ave count<5
 - L2FC using DESeq2 (by chemical x 8 conc, time, media vs matched DMSO
- Signatures (DEG & CRG)
 - Convert L2FC data to Z-scores
 - |L2FC|>=0.6 & p<0.05 for at least one conc
 - DEG: For z0=1,2,3 create discrete Z where value = 1 if Z>z0 and -1 where Z<z0
 - CRG: Calc 1-way ANOVA on L2FC p<0.05



Connectivity Mapping (MCF7-Pilot vs CMap)



- Differential gene expression observed with reference chemicals.
- Putative targets identified using Connectivity Mapping
- Large degree of promiscuity of predicted targets observed.
- Currently evaluating additional methods for MIE prediction
- Putative target
 Promiscuous Target Mapping



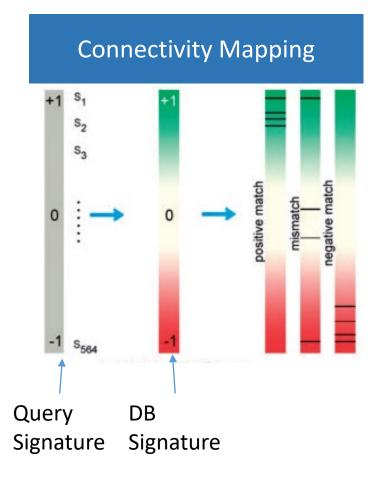
Quantifying Performance

Conduct Leave-one-out (LOO) evaluation of hits:

- 1. Annotate CMap chemicals with classes
 - Classes: 143 (Putative targets)
 - Chemicals: 614
- 2. Search "hits" by connectivity with score= ϑ
 - If ϑ> ϑ₀

 if query.target== hit.target:
 pred=TP
 elif query.target!= hit.target:
 pred=FP
 - If hit ϑ< ϑ₀

 if query.target== hit.target:
 pred=FN
 elif query.target!= hit.target:
 pred=TN
- 3. Measure sensitivity, specificity, BA



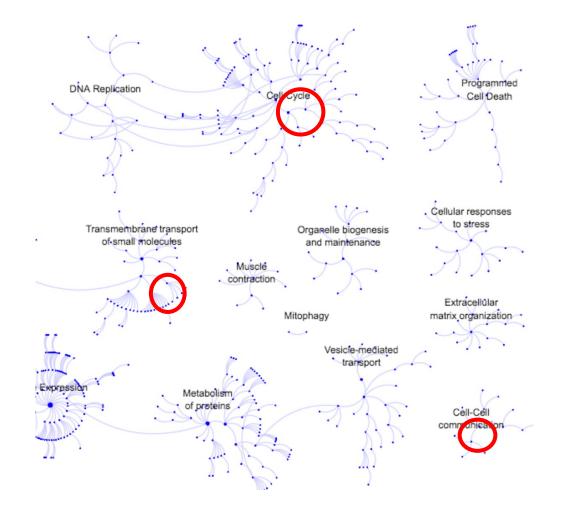
cMap 2.0 vs cMap 2.0

МоА	pos	neg	pos_annot	BA	Sn	Sp	th0
GABAT	2	117	2	0.85	1.00	0.71	0.19
HDAC	3	144	6	0.84	1.00	0.69	0.16
RAR	2	63	2	0.83	1.00	0.66	0.13
TUB	5	172	5	0.83	1.00	0.65	0.14
FKBP	2	41	2	0.82	1.00	0.63	0.33
HPRT	2	77	2	0.81	1.00	0.63	0.09
OPR	5	157	6	0.81	1.00	0.63	0.23
DNMT	2	32	2	0.81	1.00	0.63	0.28
DDC	2	84	2	0.81	1.00	0.62	0.17
TPO	2	78	3	0.81	1.00	0.62	0.04
DAT	2	73	3	0.81	1.00	0.62	0.03
PLG	2	71	3	0.81	1.00	0.62	0.13
DHFR	3	97	3	0.81	1.00	0.62	0.20
PTGER	4	113	4	0.81	1.00	0.62	0.07
NFKB	2	104	2	0.81	1.00	0.62	0.03
TR	2	82	2	0.81	1.00	0.62	0.14
ADORA	5	165	5	0.81	1.00	0.62	0.10
CHRN	4	139	6	0.81	1.00	0.62	0.06
TYMS	3	101	3	0.81	1.00	0.61	0.10
SRD	2	88	2	0.81	1.00	0.61	0.09

Pathway Analysis

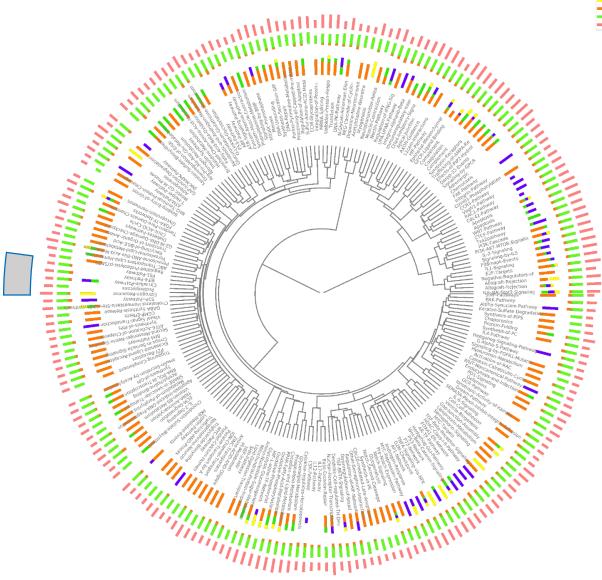
Predicting Tox/MoA via Networks & Pathways

- Transcriptional perturbations of key pathways/interactions predicts Tox/MoA
- Pathway analysis
 - Select DEGs or CRGs to identify enriched pathways
 - Link enriched pathways to Tox/MoA
- Network analysis
 - Select DEGs or CRG to identify critical interactions
 - Link interactions to upstream or downstream targets
- Issues
 - Choice of pathway database
 - Scoring pathway/interaction enrichment
 - How do we objectively evaluate predictive accuracy
 - Effectively using signaling and geneticregulatory network information
 - Linking pathways/interactions → MoA?



"Super-Pathways"

- Cluster Hallmark and canonical pathways (Reactome, KEGG, PID and BioCarta) from MSigDB V6 using genes
- Use hierarchical agglomerative clustering to organize superpathways by similarity
- Each clade in the dendrogram shows groups of functionally related pathways
- Concentric rings show information about the source of information, HTTr coverage, and # of genes in each superpathway



Pathway Analysis

- The HTTr profiles for chemical treatments were searched against 224 super-pathways.
- Pathways were scored using different metrics that used the entire HTTr profile (e.g. enrichment scores), and just DEGs.
- The significance of scores was estimated by simulation.

