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High Throughput 
Toxicokinetics (HTTK)

 Most chemicals do not have TK data – Wetmore et al. 
(2012…) use in vitro methods adapted from pharma to 
fill gaps

 In order to address greater numbers of chemicals we 
collect in vitro, high throughput toxicokinetic (HTTK) data 
(Rotroff et al., 2010, Wetmore et al., 2012, 2015)

 HTTK methods have been used by the pharmaceutical 
industry to determine range of efficacious doses and to 
prospectively evaluate success of planned clinical trials 
(Jamei, et al., 2009; Wang, 2010)

 The primary goal of HTTK is to provide a human dose 
context for bioactive in vitro concentrations from HTS 
(i.e., in vitro-in vivo extrapolation, or IVIVE) (e.g., 
Wetmore et al., 2015)

 Secondary goal is to provide open source data and 
models for evaluation and use by the broader scientific 
community (Pearce et al, 2017a)
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• Most chemicals do 
not have TK data –
we use in vitro HTTK 
methods adapted 
from pharma to fill 
gaps

• In drug development, 
HTTK methods allow 
IVIVE to estimate 
therapeutic doses for 
clinical studies –
predicted 
concentrations are 
typically on the order 
of values measured 
in clinical trials 
(Wang, 2010)



Office of Research and Development4 of 30

-5
-4
-3
-2
-1
0
1
2
3

0 50 100 150

Ln
 C

on
c 

(u
M

)
Time (min)

  

  

Hepatic 
Clearance

Plasma Protein 
Binding

In Vitro –
In Vivo

Extrapolation

Plasma
Concentrations

Human 
Hepatocytes

(10 donor pool)

Human
Plasma

(6 donor pool)

• Most chemicals do 
not have TK data –
we use in vitro HTTK 
methods adapted 
from pharma to fill 
gaps

• In drug development, 
HTTK methods allow 
IVIVE to estimate 
therapeutic doses for 
clinical studies –
predicted 
concentrations are 
typically on the order 
of values measured 
in clinical trials 
(Wang, 2010)

High-Throughput Toxicokinetics (HTTK) for
In Vitro-In Vivo Extrapolation (IVIVE)

Cryopreserved 
hepatocyte 
suspension

Shibata et al. (2002)

Rapid Equilibrium 
Dialysis (RED) 
Waters et al. 

(2008)

Environmental chemicals:
Rotroff et al. (2010) 35 chemicals
Wetmore et al. (2012) +204 chemicals 
Wetmore et al. (2015) +163 chemicals
Wambaugh et al. (in prep.) + ~400 chemicals
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Open Source Tools and Data for HTTK

R package “httk”
• Open source, transparent, and peer-

reviewed tools and data for high 
throughput toxicokinetics (httk)

• Available publicly for free statistical 
software R

• Allows in vitro-in vivo extrapolation 
(IVIVE) and physiologically-based 
toxicokinetics (PBTK)

https://CRAN.R-project.org/package=httk

https://cran.r-project.org/package=httk
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A General Physiologically-based Toxicokinetic (PBTK) 
Model

• “httk” includes a generic PBTK model

• Some tissues (e.g. arterial blood) are simple compartments, while 
others (e.g. kidney) are compound compartments consisting of separate 
blood and tissue sections with constant partitioning (i.e., tissue specific 
partition coefficients)

• Exposures are absorbed from reservoirs (gut lumen)

• Some specific tissues (lung, kidney, gut, and liver) are modeled 
explicitly, others (e.g. fat, brain, bones) are lumped into the “Rest of 
Body” compartment.

• The only ways chemicals “leave” the body are through metabolism 
(change into a metabolite) in the liver or excretion by glomerular 
filtration into the proximal tubules of the kidney (which filter into the 
lumen of the kidney). 
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Media/Air 
Exchange

Plastic 
Binding

Chemical

Cell Binding

Media 
Lipid 
and 
Protein 
Binding

[Cfree,invitro]≈fup[Cnominal]

[Cnominal]

[Ccellular]=Kc[Cnominal]

Selecting the appropriate in vitro and in vivo concentrations for extrapolation
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Red Blood 
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Plasma Tissue
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[Cplasma]

=
[Cblood]/Rb:p

in vivo
(mg/kg bodyweight/day)

Renal Clearance
fup*QGFR*[Ckidney,plasma]

Restrictive Metabolic Clearance
𝑄𝑄𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∗ 𝑓𝑓𝑢𝑢𝑢𝑢 ∗ 𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑢𝑢𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑄𝑄𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑓𝑓𝑢𝑢𝑢𝑢 ∗ 𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑢𝑢𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

OR Non-Restrictive Metabolic Clearance
𝑄𝑄𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∗ 𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑢𝑢𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑄𝑄𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑢𝑢𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

Honda et al, in prep.

High-Throughput Toxicokinetics (HTTK) for
In Vitro-In Vivo Extrapolation (IVIVE)
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Optimizing HTTK-based IVIVE

Honda et al, in prep.
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Chemicals Monitored by CDC NHANES

High Throughput Screening + HTTK can estimate doses 
needed to cause bioactivity  (Wetmore, et al., 2012, 2015)

Ring et al. (2017)

Exposure 
intake rates  
can be 
Inferred 
from 
biomarkers
(Wambaugh 
et al., 2014)
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National Health and Nutrition Examination Survey (NHANES) is an ongoing 
survey that covers ~10,000 people every two years

Most NHANES chemicals do not have traditional PK models (Strope et al., 2018)
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Why Build Another Generic 
PBTK Tool?

SimCYP ADMET Predictor / GastroPlus MEGen IndusChemFate httk
Maker SimCYP Consortium / Certara Simulations Plus UK Health and Safety 

Laboratory
Cefic LRI US EPA

Availability License, but inexpensive for research License, but inexpensive for research Free:
http://xnet.hsl.gov.uk/megen

Free:
http://cefic-lri.org/lri_toolbox/induschemfate/

Free:
https://CRAN.R-project.org/package=httk

Open Source No No Yes No Yes
Default PBPK Structure Yes Yes No Yes Yes
Expandable PBPK Structure No No Yes No No
Population Variability Yes No No No Yes
Batch Mode Yes Yes No No Yes
Graphical User Interface Yes Yes Yes Excel No
Physiological Data Yes Yes Yes Yes Yes
Chemical-Specific Data 
Library

Many Clinical Drugs No No 15 Environmental
Compounds

543 Pharmaceutical and 
ToxCast Compounds

Ionizable Compounds Yes Yes Potentially No Yes
Export Function No No Matlab and AcslX No SBML and Jarnac
R Integration No No No No Yes
Easy Reverse Dosimetry Yes Yes No No Yes
Future Proof XML No No Yes No No

We want to do a statistical analysis (using R) for as many 
chemicals as possible
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Doing Statistical Analysis 
with HTTK

 If we are to use HTTK, we need confidence in predictive ability

 In drug development, HTTK methods estimate therapeutic doses for clinical 
studies – predicted concentrations are typically on the order of values measured in 
clinical trials (Wang, 2010)

– For most compounds in the environment there will be no clinical trials 

 Uncertainty must be well characterized
– We compare to in vivo data to get empirical estimates of HTTK uncertainty
– ORD has both compiled existing (literature) TK data (Wambaugh et al., 2015) and 

conducted new experiments in rats on chemicals with HTTK in vitro data 
(Wambaugh et al., submitted)

– Any approximations, omissions, or mistakes should work to increase the 
estimated uncertainty when evaluated systematically across chemicals
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Building Confidence in TK 
Models

• In order to evaluate a chemical-specific TK model for “chemical 
x” you can compare the predictions to in vivo measured data
• Can estimate bias
• Can estimate uncertainty
• Can consider using model to extrapolate to other situations 

(dose, route, physiology) where you don’t have data

• However, we do not typically have TK data
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Building Confidence in TK 
Models

• In order to evaluate a chemical-specific TK model for “chemical 
x” you can compare the predictions to in vivo measured data
• Can estimate bias
• Can estimate uncertainty
• Can consider using model to extrapolate to other situations 

(dose, route, physiology) where you don’t have data

• However, we do not typically have TK data

• We can parameterize a generic TK model, and evaluate that 
model for as many chemicals as we do have data
• We do expect larger uncertainty, but also greater 

confidence in model implementation 
• Estimate bias and uncertainty, and try to correlate with 

chemical-specific properties
• Can again consider using model to extrapolate to other 

situations (chemicals without in vivo data)
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Building Confidence in TK 
Models

• In order to evaluate a chemical-specific TK model for “chemical 
x” you can compare the predictions to in vivo measured data
• Can estimate bias
• Can estimate uncertainty
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• However, we do not typically have TK data

• We can parameterize a generic TK model, and evaluate that 
model for as many chemicals as we do have data
• We do expect larger uncertainty, but also greater 

confidence in model implementation 
• Estimate bias and uncertainty, and try to correlate with 

chemical-specific properties
• Can again consider using model to extrapolate to other 

situations (chemicals without in vivo data)

Predicted Concentrations

O
bs

er
ve

d 
Co

nc
en

tr
at

io
ns

x
x

x
x

x

x

x

y

y

y y

y
y

y

z

z z
z

Generic
Model

Predicted Concentrations

O
bs

er
ve

d 
Co

nc
en

tr
at

io
ns

x
x

x
x

x

x

x

Chemical 
Specific Model



Office of Research and Development16 of 30

 EPA is developing a public database of 
concentration vs. time data for building, 
calibrating, and evaluating TK models

 Curation and development ongoing, but 
to date includes:
• 198 analytes (EPA, National 

Toxicology Program, literature)
• Routes: Intravenous, dermal, oral, 

sub-cutaneous, and inhalation 
exposure

In Vivo TK Database

16

Sayre et al., in preparation

 Database will be made available through web interface and through the “httk” R package

 Standardized, open source curve fitting software invivoPKfit used to calibrate models to 
all data:

https://github.com/USEPA/CompTox-ExpoCast-invivoPKfit

https://github.com/USEPA/CompTox-ExpoCast-invivoPKfit
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Building Confidence in HTTK

“…the steady-state, peak, 
and time-integrated 
plasma concentrations of 
non-pharmaceuticals 
were predicted with 
reasonable accuracy… 
HTTK and IVIVE methods 
are adequately robust to 
be applied to high 
throughput in 
vitro toxicity screening 
data of environmentally-
relevant chemicals for 
prioritizing based on 
human health risks.”
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Evaluating HTTK

100% Bioavailability Assumed
We evaluate HTTK by comparing 
predictions with observations for as 
many chemicals as possible

Wambaugh et al. (2018)
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Evaluating HTTK

19

In Vivo Measured Bioavailability Used100% Bioavailability Assumed

Wambaugh et al. (2018)

Impact of Oral Bioavailability Data
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20

Figure from Greg Honda

Schematic of absorption and 
first pass metabolism in vivo

Liver

Agut

Aabs = CabsQliv

Abio = CbioQliv

Clearance

intestinal
epithelium

AApical

ABasolateral

Caco-2 cells

Schematic of 
Caco-2 assay

Greg Honda (NCCT) made a 
SOT2018 presentation on 

using Caco2 in vitro data to 
predict absorption for ~300 

ToxCast chemicals

PAB = 𝟏𝟏
𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂∗𝑪𝑪𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝒂𝒂𝑨𝑨

𝒅𝒅𝑨𝑨𝑩𝑩𝒂𝒂𝑩𝑩𝑩𝑩𝑨𝑨𝒂𝒂𝑩𝑩𝒂𝒂𝒂𝒂𝒂𝒂𝑨𝑨
𝒅𝒅𝑩𝑩

Fabs = Aabs /Agut ≈ func. (PAB)

FFP ≈
𝑸𝑸𝑨𝑨𝑨𝑨𝒍𝒍

𝑸𝑸𝑨𝑨𝑨𝑨𝒍𝒍+𝒇𝒇𝒖𝒖𝑨𝑨𝑪𝑪𝑨𝑨/𝑹𝑹𝒃𝒃𝒃𝒃𝑨𝑨

Fbio = FabsFFP

Characterizing Bioavailability In Vitro
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PAB = 𝟏𝟏
𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂∗𝑪𝑪𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝒂𝒂𝑨𝑨

𝒅𝒅𝑨𝑨𝑩𝑩𝒂𝒂𝑩𝑩𝑩𝑩𝑨𝑨𝒂𝒂𝑩𝑩𝒂𝒂𝒂𝒂𝒂𝒂𝑨𝑨
𝒅𝒅𝑩𝑩

Fabs = Aabs /Agut ≈ Darwich (PAB)

FFP ≈
𝑸𝑸𝑨𝑨𝑨𝑨𝒍𝒍

𝑸𝑸𝑨𝑨𝑨𝑨𝒍𝒍+𝒇𝒇𝒖𝒖𝑨𝑨𝑪𝑪𝑨𝑨/𝑹𝑹𝒃𝒃𝒃𝒃𝑨𝑨

Fbio = FabsFFP

Darwich et al. 2010

Figure from Greg Honda

Characterizing Bioavailability In Vitro
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Characterizing Bioavailability In Vitro

22

PAB = 𝟏𝟏
𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂∗𝑪𝑪𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝒂𝒂𝑨𝑨

𝒅𝒅𝑨𝑨𝑩𝑩𝒂𝒂𝑩𝑩𝑩𝑩𝑨𝑨𝒂𝒂𝑩𝑩𝒂𝒂𝒂𝒂𝒂𝒂𝑨𝑨
𝒅𝒅𝑩𝑩

Fabs = Aabs /Agut ≈ UsaSin (PAB)

FFP ≈
𝑸𝑸𝑨𝑨𝑨𝑨𝒍𝒍

𝑸𝑸𝑨𝑨𝑨𝑨𝒍𝒍+𝒇𝒇𝒖𝒖𝑨𝑨𝑪𝑪𝑨𝑨/𝑹𝑹𝒃𝒃𝒃𝒃𝑨𝑨

Fbio = FabsFFP

Usansky and Sinko 2005

Figure from Greg Honda
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Predicting Fbio for Toxicokinetics

• Cmax predicted using a 1 
compartment model 
(Wambaugh et al. 2018)

• Minimal difference when 
using estimated Fbio in 
prediction of toxicokinetics
observed for this limited set 
of chemicals

Figure from Greg Honda
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Standard httk 1.8 PBTK Model

Dermal Exposure Route
EPA, Unilever, INERIS

New HT-PBTK Models

• We are working to augment the basic HT-PBPTK model with 
new PBTK models

• Each model will be released publicly upon peer-reviewed 
publication

• Pre-publication models can be shared under a MTA

• We assume there will be coding errors and over-
simplifications, so each publication involves curation of 
evaluation data from the scientific literature and through 
statistical analysis

• Cvt database (Sayre et al.) is critical to these efforts
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New HT-PBTK Models
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New HT-PBTK Models
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In Silico HTTK Predictions

Dose range for all 3925 
Tox21 compounds 

eliciting a ‘possible’-to-
‘likely’ human in vivo
interaction alongside 

estimated daily exposure

56 compounds with 
potential in vivo 

biological interaction 
at or above estimated 

environmental 
exposures

Figure from Sipes et al., (2017)

• Tox21 has screened >8000 chemicals – Sipes et al. (2017) wanted to compare in vitro active concentrations with 
HTTK predicted maximum plasma concentrations with high throughput exposure predictions from Wambaugh et 
al. (2014)

• “httk” package only has ~500 chemicals
• Used Simulations Plus ADMet Predictor to predict for entire library (supplemental table) and used 

add_chemtable() function to add into “httk” package
• Predictions available in httk v1.8
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• We would like to know more about the risk 
posed by thousands of chemicals in the 
environment – which ones should we start 
with?

• In addition to toxicity, we need information 
on Toxicokinetics:
– HTTK New approach methodologies 

(NAMs) are being evaluated through 1) 
uncertainty analysis and 2) comparison 
between in vitro predictions and in vivo 
measurements of both plasma 
concentrations and doses associated 
with the onset of effects

– Modeling various exposure routes (e.g., 
inhalation of gasses and aerosols) allows 
extrapolation to important scenarios

Conclusions

The views expressed in this presentation are those of the author and 
do not necessarily reflect the views or policies of the U.S. EPA

Potential Exposure 
Rate

mg/kg BW/day

Potential hazard from 
in vitro

converted to dose by  
HTTK

Lower
Risk

Medium Risk Higher
Risk
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