
justinsalamon.com

Robust Sound Event Detection in Acoustic Sensor Networks

Justin Salamon

Senior Research Scientist
Music & Audio Research Lab / Center for Urban Science & Progress

New York University

Work by MARL, SONYC & BirdVox

 www.justinsalamon.com @justinsalamon justin.salamon@gmail.com

�1With support from:

justinsalamon.com �2

NYU Music and Audio Research Lab (MARL)

Juan Marta Mark Peter Jong Wook Justin Brian
Robert Dirk

Andrea Charlie
Andrew

Rachel

WillieFinn

Johanna

TomYu Ana Elisa Vincent JasonHo-Hsiang

justinsalamon.com

Acoustic Sensor Networks

�3

justinsalamon.com �4

justinsalamon.com �5

BirdVox team

Juan Pablo Bello
NYU

Andrew Farnsworth
Cornell

Steve Kelling
Cornell

Vincent Lostanlen
Cornell / NYU

Kendra Oudyk
McGill

Justin Salamon
NYU

Why should we care about noise?

�6

Why should we care about noise?

�6

311 noise complaints on the rise in
Washington Heights, Inwood
By Lisa L. Colangelo lisa.colangelo@amny.com January 30, 2018

New Yorkers are making a lot of noise about noise.

There were 1.6 million noise complaints made to 311 between 2010 and 2015, according to a new report released
Monday by State Comptroller Thomas DiNapoli.

“Noise in New York City is a significant quality of life and public health concern,” DiNapoli said. “The city has a model
noise code and should be commended for taking steps to better enforce local law, but there is more that city
agencies can do to control noise disruptions.”

The study showed residents of Community Board 12 in Manhattan, which includes Washington Heights and Inwood,
called 311 most often followed by Community Board 10 in Central Harlem and Community Boards 4 and 5 in
Chelsea and the Midtown Business District.

Washington Heights is among the city's noisiest neighborhoods, according to a recent study of 311 noise complaints. (Credit: Linda
Rosier)

NEWS

Ø Õ

ƚ Ɨ

­ ¬

Ą ą

NEWS POLITICS THINGS TO DO EAT & DRINK ENTERTAINMENT REAL ESTATE TRANSIT OPINION� ¬ ­

Construction noise complaints build up in the

city

ALBANY — Booming construction and lax efforts by city agencies to control it have led to soaring noise complaints in the �ve

boroughs, a new report Thursday revealed.

Construction noise complaints called into the 311 system jumped from 14,259 in 2010 to 37,806 in 2015, with the vast

majority involving work taking place late at night or early in the morning.

BY GLENN BLAIN

NEW YORK DAILY NEWS Thursday, August 31, 2017, 2:20 PM

Construction noise complaints called into the 311 system jumped from 14,259 in 2010 to 37,806 in 2015, with the vast
majority involving work taking place late at night or early in the morning. (HOWARD SIMMONS/NEW YORK DAILY NEWS)

Yikes! NYC's noisiest neighborhoods are no place for
exhausted parents
/ 7 0

By Danielle Valente
Posted: Wednesday January 31 2018, 12:31pm

NEWS CITY LIFE

ADD COMMENT0 LOVE ITq0 SAVE I,

Photograph: Shutterstock

 (/new-york-kids/sear

Our site uses cookies. By continuing to use this site you are agreeing to our cookie policy (/newyork/privacy-policy). B

https://nyti.ms/2vBlsjh

N.Y. / REGION

New York Becomes the City
That Never Shuts Up
By WINNIE HU JULY 19, 2017

Richard T. McIntosh has never heard such a racket outside his window.

Traffic roars through his neighborhood on the Upper East Side of Manhattan at
all hours. The whine of refrigerated grocery trucks by the curb makes things worse.
And construction of a new apartment tower across the street forces him to flee his
own home. There is the deafening rat-a-tat of jack hammers and the incessant
banging and high-pitched wail of construction equipment that echoes in his head.

“I’ve had two years of absolute violation of my right to peace and quiet,” said
Mr. McIntosh, a television producer who has lived on the Upper East Side for more
than five decades. “I think it’s against the Geneva Conventions to have this much
noise.”

New York City has never been kind to human ears, from its screeching subways
and honking taxis to wailing police sirens. But even at its loudest, there were always
relatively tranquil pockets like the Upper East Side that offered some relief from the
day-to-day cacophony of the big city. Those pockets are vanishing. As the city grows
more crowded, with a record 8.5 million residents and a forest of new buildings,
finding respite from loud cellphone chatter, rooftop parties, backhoes digging
foundations, or any other aural assault has become harder and harder.

In other words, New York is really living up to its reputation as the city that
never sleeps.

justinsalamon.com

Estimated 9 of 10 adults in NYC exposed to
HARMFUL levels of NOISE

Over 3.4 MILLION complaints since 2003
[based on 311 data]

25000
20000

5000
10000
15000

Complaints per month since 2010

SLEEP LOSS HEARING LOSS PRODUCTIVITY STRESS LEARNING
IMPAIRMENT

justinsalamon.com �8

HOW DOES THE CITY CURRENTLY TACKLE NOISE?

justinsalamon.com �8

HOW DOES THE CITY CURRENTLY TACKLE NOISE?

justinsalamon.com �9

HOW DOES THE CITY CURRENTLY TACKLE NOISE?

justinsalamon.com �10

SENSING

ANALYSIS

ANALYSIS

MITIGATION

ACTUATION

Empower CitizensEmpower Research

justinsalamon.com

 wp.nyu.edu/sonyc

�11

justinsalamon.com

 wp.nyu.edu/sonyc

�12

justinsalamon.com �13

justinsalamon.com �14

justinsalamon.com

Why do we care about classifying bird vocalizations?

�15

New biological insights

Conservation applications

justinsalamon.com

The migration monitoring puzzle

}Citizen Science (eBird) Radar

Audio!

No nocturnal
observations

No species
information

justinsalamon.com

Previously on SONYC…

�17

Previously on SONYC…

�17

64

43
103

(150 ms)

128

5
5

5
5

5
5

48 4824

4x2 max
ReLU

4x2 max
ReLU ReLU

ReLU softmax

+

+

justinsalamon.com

Previously on SONYC…

�17

Previously on SONYC…

�17

64

43
103

(150 ms)

128

5
5

5
5

5
5

48 4824

4x2 max
ReLU

4x2 max
ReLU ReLU

ReLU softmax

+

+

justinsalamon.com

2 Years Later…

�18

• BirdVox: over 6,000 hours of audio

• SONYC: over 26 years of audio

• New data, new challenges:

How do we label the data?
How can we best leverage the labeled data?

How can we leverage the unlabeled data?

How do we make our models robust to different
sensor locations?

justinsalamon.com

How do we label the data?

�19

justinsalamon.com

How do we label the data?

�19

Scaper: A Library for Soundscape Synthesis and Augmentation

J. Salamon, D. MacConnell, M. Cartwright, P. Li, and J. P. Bello.
IEEE Workshop on Applications of Sig. Proc. to Audio and Acoustics (WASPAA), New Paltz, NY, USA, Oct. 2017.

Seeing sound: Investigating the effects of visualizations and complexity on crowdsourced audio annotations

M. Cartwright, A. Seals, J. Salamon, A. Williams, S. Mikloska, D. MacConnell, E. Law, J. Bello, and O. Nov.
Proceedings of the ACM on Human-Computer Interaction, 1(2), 2017.

Investigating the Effect of Sound-Event Loudness on Crowdsourced Audio Annotations

M. Cartwright, J. Salamon, A. Seals, O. Nov, and J. P. Bello
In IEEE Int. Conference on Acoustics, Speech, and Signal Processing (ICASSP), Calgary, Canada, Apr. 2018.

justinsalamon.com �20

Sound Event Detection (SED)

SED

CLAPPING
LAUGHTER

SIREN
0 5 10 15 20 25 30

time

justinsalamon.com

• Strong labels:

• Label (sound source)

• Start time

• End time

�21

“Strong” sound event labels

CLAPPING
LAUGHTER

SIREN
0 5 10 15 20 25 30

time

justinsalamon.com

Crowdsourcing

�22

justinsalamon.com

The Audio Annotator

• github.com/CrowdCurio/audio-annotator

Configured with the spectrogram visualization:

�23

http://github.com/CrowdCurio/audio-annotator

justinsalamon.com

The Audio Annotator

Configured with the waveform visualization:

�24

justinsalamon.com

The Audio Annotator

Configured without a visualization:

�25

justinsalamon.com

Experiment

• 3 x 3 x 2 between-subjects factorial design:

�26

visualization max-polyphony gini-polyphony

NV

W

S

M0

M1

M2

G0

G1

• Soundscape examples: 
M0G0	 M0G1 M2G0	 M2G1

justinsalamon.com �27

• Open source python library for soundscape synthesis

• Returns audio + annotation in JAMS format

• github.com/justinsalamon/scaper (pip install scaper)

2017 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 15-18, 2017, New Paltz, NY

SOUNDBANK

FOREGROUND BACKGROUND

EVENT SPECIFICATION

label ∈ {car_horn, jackhammer, …}
source file ∈ {1.wav, 2.wav, …}
source time ∈ {0}
event time ∈ N(5, 2)
event duration ∈ U(0.5, 4.0)
SNR ∈ U(6, 30)
pitch shift ∈ U(-3, 3)
time stretch ∈ U(0.8, 1.2)

TRIM

NORMALIZE

TRANSFORM

COMBINE

SELECT PARAMETERS

SOUNDCSAPE

INSTANTIATION

& GENERATION

Soundscape 1 Annotation 1

Soundscape 2 Annotation 2

Soundscape N Annotation N

Figure 1: Block diagram of the Scaper synthesis pipeline.

variants of existing soundscapes. Finally, Scaper is implemented in
Python, which means it does not require any proprietary software
(such as, e.g., Matlab) and is easy to integrate with popular ma-
chine (and deep) learning Python libraries such as scikit-learn [15],
TensorFlow [16] and Keras [17], as well as popular audio analysis
Python libraries such as Essentia [18] and Librosa [19].

In the next section we provide an overview of Scaper, including
design choices and functionality. Next, we demonstrate the utility
of the library through a series of experiments: first, we use Scaper
to generate a large dataset of urban soundscapes and evaluate state-
of-the-art SED algorithms, including a breakdown by soundscape
characteristics. Next, we describe how Scaper was used to gener-
ate audio stimuli for a crowdsourcing experiment on the accuracy
of human sound event annotations as a function of sound visual-
ization and soundscape characteristics. The paper concludes with a
discussion of limitations and suggestions for new use cases.

2. SCAPER

SED is based on the notion that sounds in a soundscape can be
broadly grouped into two categories: foreground sound events
which are salient and recognizable, and background sounds, often
regarded as a single holistic sound which is more distant, ambigu-
ous, and texture-like [20, 21, 22]. Scaper was designed with the
same paradigm in mind: a soundscape is generated as the summa-
tion of foreground events and a background recording. It is up to
the user to curate a soundbank (collection) of their choice and or-
ganize the sounds into foreground and background folders, with a
sub-folder for each sound class (label). As such, Scaper is content-
agnostic and can be readily applied to a variety of audio domains
including urban and rural soundscapes, bioacoustic recordings, in-
door environments (e.g. smart homes) and surveillance recordings.
A block diagram of Scaper’s synthesis pipeline is given in Figure 1.

A key building block of Scaper is the event specification. An
event specification stores all properties of a sound event that Sca-
per can control, namely: the event label (class), source file (i.e. the
specific sound clip to be used), the event duration, the source time
(i.e. when the event starts in the source clip), the event time (when
the event should start in the generated soundscape), the SNR with
respect to the background recording, the event role (foreground or
background), pitch shift (in semitones, does not affect duration)
and time stretch (as a factor of the event duration, does not af-
fect pitch). Thus, a soundscape is defined by a set of event spec-
ifications, which are grouped into a foreground specification (for
all foreground events) and a background specification. To define
a soundscape, the user specifies a desired soundscape duration, a
reference loudness level for the background, and then adds event
specifications. For every property in an event specification the user
provides a distribution tuple, which defines a distribution to sample

the property value from. The distributions currently supported in-
clude const (specifying a constant value), choose (randomly select-
ing from a discrete list of values), uniform, normal and truncnormal
(sampling from a continuous distribution), and additional distribu-
tions can be easily added. As such, the user has control over how
detailed the specification is: from precisely defining every property
of every event using constants to a high-level probabilistic specifica-
tion that only specifies a distribution to sample from for every event
property. Given the foreground and background specifications, the
user can generate infinitely many soundscape instantiations2.

An instantiated specification (i.e. with concrete values that have
been sampled for all properties) is then used as a recipe for generat-
ing the soundscape audio, where all audio processing is performed
using pysox [23]. One aspect of the generation that requires spe-
cial care is the handling of SNR values. In particular, simple peak
normalization does not guarantee that two sounds normalized to the
same level will be perceived as equally loud. To circumvent this,
Scaper uses Loudness Units relative to Full Scale (LUFS) [24], a
standard measure of perceived loudness used in radio, television
and Internet broadcasting. Thus, if an event is specified to have an
SNR of 6, it means it will be 6 LUFS above the background level.
Finally, Scaper saves the soundscape annotation in two formats: the
first is a simple space-separated text file with three columns for the
onset, offset and label of every sound event. This format is useful
for quickly inspecting the events in a soundscape and can be directly
loaded into software such as Audacity to view the labels along with
the audio file. The second format is JAMS [14], originally designed
as a structured format for music annotations, which supports stor-
ing unlimited, structured, file metadata. Scaper exploits this to store
both the probabilistic and instantiated specifications of every sound
event. This means that (assuming one has access to the original
soundbank) Scaper can fully reconstruct the audio of a soundscape
from its JAMS annotation. Scaper is open-source (see footnote 1)
and we encourage contributions from the community to improve the
library and implement new features.

3. THE URBAN-SED DATASET

To illustrate the utility of Scaper, we used it to generate a large
dataset of 10,000 ten-second soundscapes for training and evaluat-
ing SED algorithms. We used the clips from the UrbanSound8K
dataset [25], approximately 1000 per each of ten urban sound
sources (each clip contains one of the ten sources), as the sound-
bank. UrbanSound8K is pre-sorted into 10 stratified folds, and so
we use folds 1–6 for generating 6000 training soundscapes, 7–8
for generating 2000 validation soundscapes and 9–10 for generat-
ing 2000 test soundscapes. Soundscapes were generated using the
following protocol: first, we add a background sound normalized
to -50 LUFS. We use the same background audio file for all sound-
scapes, a 10 second clip of Brownian noise, which resembles the
typical “hum” often heard in urban environments. By using a purely
synthesized background we are guaranteed that it does not contain
any spurious sound events that would not be included in the anno-
tation. Next, we choose how many events to include from a discrete
uniform distribution between 1–9. Every event is added with the
same high-level specification: the label is chosen randomly from all
10 available sound classes, and the source file is chosen randomly
from all clips matching the selected label. The source time is al-
ways 0, to ensure we do not miss the onset of an event. The start

2For an example see: https://git.io/v9GGn

Autio stimuli + labels:

http://github.com/justinsalamon/scaper

justinsalamon.com

Effect of Visualization on
Quality and Speed of Annotations

�28

NV = no-vis
W = waveform
S = spectrogram

Spectrogram → higher-quality and faster annotations

justinsalamon.com

Effect of Visualization on Task Learning

�29

Expect even higher quality annotations after
learning period

justinsalamon.com

Effect of sound event loudness & scene complexity

�30

�10 0 10

ESLR (dB)

0.5

0.6

0.7

0.8

0.9

1.0

P
re

ci
si

on

�10 0 10

ESLR (dB)

0.5

0.6

0.7

0.8

0.9

1.0

R
ec

al
l

Sound event SNR and overlap (polyphony) have direct
impact on label recall, precision remains stable

justinsalamon.com

16 annotators captured 90% of gain in annotation quality,
but 5 annotators is reasonable choice with respect to

cost/quality trade-off

Effect of Number of Annotators on
Aggregate Annotation Quality

�31

justinsalamon.com

Annotating strong labels is slow…

�32

justinsalamon.com

How can we best leverage the labeled data?

�33

(can we get away without strong labels?)

justinsalamon.com

How can we best leverage the labeled data?

�33

Adaptive pooling operators for weakly labeled sound event detection

B. Mcfee, J. Salamon, and J. P. Bello
IEEE/ACM Transactions on Audio, Speech and Language Processing, 26(11): 2180–2193, Nov. 2018.

(can we get away without strong labels?)

justinsalamon.com �34

Sound Event Detection (SED)

SED

CLAPPING
LAUGHTER

SIREN
0 5 10 15 20 25 30

time

justinsalamon.com

• Strong labels:

• Label (sound source)

• Start time

• End time

• Weak labels (tags, e.g. AudioSet labels):

• Label (sound source)

• No timing information

�35

Strong vs. weak labels

• Easier/faster/cheaper to
curate!

CLAPPING
LAUGHTER

SIREN
0 5 10 15 20 25 30

time

CLAPPING
LAUGHTER

SIREN

? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

✓
✓
✘

0 5 10 15 20 25 30
time

justinsalamon.com

• Given dataset of tracks with weak labels:

• Train a SED model that outputs strong labels:

Problem formulation

[CLAPPING, SIREN]

[CLAPPING, CAR HONK, SIREN, LAUGHTER]

[LAUGHTER]

SED

CLAPPING
LAUGHTER

CLAPPING SIREN

time
0 5 10 15 20 25 30

justinsalamon.com �37

Sound Event Detection: If we had strong labels

SED model

Input: time-varying audio features (mel spectrogram)

time
frequencyInput

Output 1: per-frame (strong) predictions

time
likelihood

0

1

clapping
laughter
sirenOutput

CLAPPING
LAUGHTER
SIREN

0 5 10 15 20 25 30

time

Reference
(strong labels)

justinsalamon.com �38

Sound Event Detection: If we had strong labels

SED model

Input: time-varying audio features (mel spectrogram)

time
frequency

Output 1: per-frame (strong) predictions

time
likelihood

0

1

clapping
laughter
siren

CLAPPING, LAUGHTER

Input

Output

Reference
(weak labels)

?

justinsalamon.com �39

Multiple Instance Learning for Sound Event Detection

SED model

Input: time-varying audio features (mel spectrogram)

time
frequency

instance

instance prediction
Temporal Pooling

bag output

clapping (p=0.9) laughter (p=0.7) siren (p=0.3)
Output 2: weak (tag) predictions for entire bag

?

Tags:
[clapping, laughter]

Output 1: per-instance (strong) predictions

time
likelihood

0

1

clapping
laughter
siren

Minimize
loss

(e.g. SGD)

justinsalamon.com �40

Training a MIL model for Sound Event Detection

P(clapping anywhere in track) = 0.9

clapping0.25 0.9 0.5
0.1

0.7 0.4

x = [0.25, 0.9, 0.5, 0.1, 0.7, 0.4]

f(x) ?

0

Output 1: per-frame (strong) predictions

time

likelihood
1

1 2 3 4 5 6

justinsalamon.com

P(
vo

ca
ls)

1 2 3 4 5 6 7 8 9 10

P(
vo

ca
ls)

1 2 3 4 5 6 7 8 9 10

�41

Temporal pooling

• Learning is well behaved

• Lose specificity

• Only good events present
most of the time

• Brittle

• Gradient descent ignores
most predictions

• Learning slow/sensitive to
initialization

justinsalamon.com

P(
vo

ca
ls)

1 2 3 4 5 6 7 8 9 10

P(
vo

ca
ls)

1 2 3 4 5 6 7 8 9 10

P(
vo

ca
ls)

1 2 3 4 5 6 7 8 9 10

�42

Temporal pooling

• Weighted average

• Positive predictions get
more weight

• Predicts like max, learns
like mean

[0.2, 0.9, 0.5, 0.3] [0.18, 0.37, 0.25, 0.20]

IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, IN PRESS, 2018 4

where Conv(S) denotes the convex hull of a set S:

Conv(S) =

(
X

x2S

µxx

�����
X

x2S

µx = 1 ^ 8xµx � 0

)
.

Any element of @max can be used in place of a gradient,
though most implementations select a single maximizer at
random; often, the maximizer is unique, so the distinction is
unimportant. A sub-gradient of max can be thus viewed as a
weighted average of all inputs, subject to the constraint that
non-maximizing inputs must have weight 0.

When applying the chain rule to @max, the sub-gradient
of the objective function with respect to non-maximizing
instances is 0, and those instances therefore do not contribute
when updating the parameters ✓. This is particularly problem-
atic early in training, where the instance-wise predictions are
essentially random. Parameter updates then depend entirely
upon single, randomly selected instances (as depicted in Fig-
ure 1, left). As a result, max-pooling for MIL can be sensitive
to initialization, generally unstable, and difficult to deploy.

C. Soft-max pooling

To ameliorate the issues highlighted above, we proposed in
previous work [52] to replace the max operator in eq. (2) by
the soft-max weighted average:

P̂s(Y |X) =
X

x2X

p̂(Y |x)

0

BB@
exp p̂(Y |x)X

z2X

exp p̂(Y | z)

1

CCA . (6)

This operator behaves similarly to the max operator, in that
P̂s is large if any of its inputs p̂(Y |x) are large, and small
if all of its inputs are small. However, it is continuously
differentiable, and assigns responsibility to each instance x
so that the entire bag contributes to the gradient calculation
and parameter updates. As illustrated in Figure 1 (right), each
instance x contributes in proportion to its label likelihood
p̂(Y |x), so that positive predictions have more influence and
negative predictions have less.

Because the inputs to the soft-max pooling operator are
probabilities p̂(Y |x) 2 [0, 1], the weights assigned by eq. (6)
are also bounded. In general, we have the following relation
between a soft-max’s input and output:

Proposition 1. Let a  b 2 R and z 2 [a, b]m ⇢ Rm
, and let

⇢(z)i := exp(zi)/
P

j exp(zj) denote the soft-max operator.

Then for any coordinate i, the corresponding soft-max output

⇢(z)i is bounded as

ea

ea +(m� 1) · eb  ⇢(z)i 
eb

eb +(m� 1) · ea .

Proof. First, observe that ⇢(z)i is proportional to exp zi and
inversely proportional to

P
j 6=i exp zj . A soft-max coordinate

⇢(z)i is therefore maximal when one coordinate zi = b is
maximal, and all remaining (m � 1) coordinates zj 6=i = a

Fig. 2. The soft-max weighted average (eq. (6)) produces instance weights
satisfying the bounds given in eq. (7) (shaded region). As the size m of the
bag grows, the bounds converge to 1/m (solid line).

are minimal. In this case, the soft-max output ⇢(z) for each
coordinate k is

⇢(z)k =
exp(zk)

eb +(m� 1) · ea .

Since all zk  b, this achieves the upper bound. A similar
argument proves the analogous lower bound.

Applying proposition 1, if a bag has |X| = m instances,
and each instance x 2 X has a likelihood 0  p̂(Y |x)  1,
then the weight for each instance is bounded as

1

1 + e ·(m� 1)
 exp p̂(Y |x)X

z2X

exp p̂(Y | z)
 e

e+m� 1
. (7)

Soft-max pooling therefore has limited capacity to concentrate
on a small portion of instances within a bag, since the weight
for any single instance is ⇥(1/m). As illustrated in Figure 2,
soft-max pooling behaves similarly to unweighted averaging
as the bag size grows.

D. Auto-pooling

The bounded range problem of soft-max pooling can be
addressed by introducing a scalar parameter ↵ 2 R:

P̂↵(Y |X) =
X

x2X

p̂(Y |x)

0

BB@
exp (↵ · p̂(Y |x))X

z2X

exp (↵ · p̂(Y | z))

1

CCA . (8)

Treating ↵ as a free parameter to be learned along-side the
model parameters ✓ allows eq. (8) to automatically adapt
to and interpolate between different pooling behaviors. For
example, when ↵ = 0, eq. (8) reduces to an unweighted mean
(Figure 1, center); when ↵ = 1, eq. (8) simplifies to soft-max
pooling eq. (6); and when ↵ ! 1, eq. (8) approaches the
max operator. We therefore refer to the operator in eq. (8) as
auto-pooling.

With auto-pooling, for ↵ � 0, the bounds from proposition 1
are [a, b] = [0,↵], and the instance weights are bounded by

1

1 + e↵ ·(m� 1)
 exp (↵ · p̂(Y |x))X

z2X

exp (↵ · p̂(Y | z))
 e↵

e↵ +m� 1
,

(9)
which approaches the open unit interval (0, 1) as ↵ ! 1.

0.2*0.18 + 0.9*0.37 + 0.5*0.25 + 0.3*0.20 = 0.55

justinsalamon.com

• Inputs to softmax are probabilities in [0, 1]

• Outputs are positive weights, sum to 1

• Bounded input ⇔ Bounded output

• Weights converge to uniform for large bags 

�43

Softmax: bounded input, bounded output

IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, IN PRESS, 2018 4

where Conv(S) denotes the convex hull of a set S:

Conv(S) =

(
X

x2S

µxx

�����
X

x2S

µx = 1 ^ 8xµx � 0

)
.

Any element of @max can be used in place of a gradient,
though most implementations select a single maximizer at
random; often, the maximizer is unique, so the distinction is
unimportant. A sub-gradient of max can be thus viewed as a
weighted average of all inputs, subject to the constraint that
non-maximizing inputs must have weight 0.

When applying the chain rule to @max, the sub-gradient
of the objective function with respect to non-maximizing
instances is 0, and those instances therefore do not contribute
when updating the parameters ✓. This is particularly problem-
atic early in training, where the instance-wise predictions are
essentially random. Parameter updates then depend entirely
upon single, randomly selected instances (as depicted in Fig-
ure 1, left). As a result, max-pooling for MIL can be sensitive
to initialization, generally unstable, and difficult to deploy.

C. Soft-max pooling

To ameliorate the issues highlighted above, we proposed in
previous work [52] to replace the max operator in eq. (2) by
the soft-max weighted average:

P̂s(Y |X) =
X

x2X

p̂(Y |x)

0

BB@
exp p̂(Y |x)X

z2X

exp p̂(Y | z)

1

CCA . (6)

This operator behaves similarly to the max operator, in that
P̂s is large if any of its inputs p̂(Y |x) are large, and small
if all of its inputs are small. However, it is continuously
differentiable, and assigns responsibility to each instance x
so that the entire bag contributes to the gradient calculation
and parameter updates. As illustrated in Figure 1 (right), each
instance x contributes in proportion to its label likelihood
p̂(Y |x), so that positive predictions have more influence and
negative predictions have less.

Because the inputs to the soft-max pooling operator are
probabilities p̂(Y |x) 2 [0, 1], the weights assigned by eq. (6)
are also bounded. In general, we have the following relation
between a soft-max’s input and output:

Proposition 1. Let a  b 2 R and z 2 [a, b]m ⇢ Rm
, and let

⇢(z)i := exp(zi)/
P

j exp(zj) denote the soft-max operator.

Then for any coordinate i, the corresponding soft-max output

⇢(z)i is bounded as

ea

ea +(m� 1) · eb  ⇢(z)i 
eb

eb +(m� 1) · ea .

Proof. First, observe that ⇢(z)i is proportional to exp zi and
inversely proportional to

P
j 6=i exp zj . A soft-max coordinate

⇢(z)i is therefore maximal when one coordinate zi = b is
maximal, and all remaining (m � 1) coordinates zj 6=i = a

Fig. 2. The soft-max weighted average (eq. (6)) produces instance weights
satisfying the bounds given in eq. (7) (shaded region). As the size m of the
bag grows, the bounds converge to 1/m (solid line).

are minimal. In this case, the soft-max output ⇢(z) for each
coordinate k is

⇢(z)k =
exp(zk)

eb +(m� 1) · ea .

Since all zk  b, this achieves the upper bound. A similar
argument proves the analogous lower bound.

Applying proposition 1, if a bag has |X| = m instances,
and each instance x 2 X has a likelihood 0  p̂(Y |x)  1,
then the weight for each instance is bounded as

1

1 + e ·(m� 1)
 exp p̂(Y |x)X

z2X

exp p̂(Y | z)
 e

e+m� 1
. (7)

Soft-max pooling therefore has limited capacity to concentrate
on a small portion of instances within a bag, since the weight
for any single instance is ⇥(1/m). As illustrated in Figure 2,
soft-max pooling behaves similarly to unweighted averaging
as the bag size grows.

D. Auto-pooling

The bounded range problem of soft-max pooling can be
addressed by introducing a scalar parameter ↵ 2 R:

P̂↵(Y |X) =
X

x2X

p̂(Y |x)

0

BB@
exp (↵ · p̂(Y |x))X

z2X

exp (↵ · p̂(Y | z))

1

CCA . (8)

Treating ↵ as a free parameter to be learned along-side the
model parameters ✓ allows eq. (8) to automatically adapt
to and interpolate between different pooling behaviors. For
example, when ↵ = 0, eq. (8) reduces to an unweighted mean
(Figure 1, center); when ↵ = 1, eq. (8) simplifies to soft-max
pooling eq. (6); and when ↵ ! 1, eq. (8) approaches the
max operator. We therefore refer to the operator in eq. (8) as
auto-pooling.

With auto-pooling, for ↵ � 0, the bounds from proposition 1
are [a, b] = [0,↵], and the instance weights are bounded by

1

1 + e↵ ·(m� 1)
 exp (↵ · p̂(Y |x))X

z2X

exp (↵ · p̂(Y | z))
 e↵

e↵ +m� 1
,

(9)
which approaches the open unit interval (0, 1) as ↵ ! 1.

IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, IN PRESS, 2018 4

where Conv(S) denotes the convex hull of a set S:

Conv(S) =

(
X

x2S

µxx

�����
X

x2S

µx = 1 ^ 8xµx � 0

)
.

Any element of @max can be used in place of a gradient,
though most implementations select a single maximizer at
random; often, the maximizer is unique, so the distinction is
unimportant. A sub-gradient of max can be thus viewed as a
weighted average of all inputs, subject to the constraint that
non-maximizing inputs must have weight 0.

When applying the chain rule to @max, the sub-gradient
of the objective function with respect to non-maximizing
instances is 0, and those instances therefore do not contribute
when updating the parameters ✓. This is particularly problem-
atic early in training, where the instance-wise predictions are
essentially random. Parameter updates then depend entirely
upon single, randomly selected instances (as depicted in Fig-
ure 1, left). As a result, max-pooling for MIL can be sensitive
to initialization, generally unstable, and difficult to deploy.

C. Soft-max pooling

To ameliorate the issues highlighted above, we proposed in
previous work [52] to replace the max operator in eq. (2) by
the soft-max weighted average:

P̂s(Y |X) =
X

x2X

p̂(Y |x)

0

BB@
exp p̂(Y |x)X

z2X

exp p̂(Y | z)

1

CCA . (6)

This operator behaves similarly to the max operator, in that
P̂s is large if any of its inputs p̂(Y |x) are large, and small
if all of its inputs are small. However, it is continuously
differentiable, and assigns responsibility to each instance x
so that the entire bag contributes to the gradient calculation
and parameter updates. As illustrated in Figure 1 (right), each
instance x contributes in proportion to its label likelihood
p̂(Y |x), so that positive predictions have more influence and
negative predictions have less.

Because the inputs to the soft-max pooling operator are
probabilities p̂(Y |x) 2 [0, 1], the weights assigned by eq. (6)
are also bounded. In general, we have the following relation
between a soft-max’s input and output:

Proposition 1. Let a  b 2 R and z 2 [a, b]m ⇢ Rm
, and let

⇢(z)i := exp(zi)/
P

j exp(zj) denote the soft-max operator.

Then for any coordinate i, the corresponding soft-max output

⇢(z)i is bounded as

ea

ea +(m� 1) · eb  ⇢(z)i 
eb

eb +(m� 1) · ea .

Proof. First, observe that ⇢(z)i is proportional to exp zi and
inversely proportional to

P
j 6=i exp zj . A soft-max coordinate

⇢(z)i is therefore maximal when one coordinate zi = b is
maximal, and all remaining (m � 1) coordinates zj 6=i = a

Fig. 2. The soft-max weighted average (eq. (6)) produces instance weights
satisfying the bounds given in eq. (7) (shaded region). As the size m of the
bag grows, the bounds converge to 1/m (solid line).

are minimal. In this case, the soft-max output ⇢(z) for each
coordinate k is

⇢(z)k =
exp(zk)

eb +(m� 1) · ea .

Since all zk  b, this achieves the upper bound. A similar
argument proves the analogous lower bound.

Applying proposition 1, if a bag has |X| = m instances,
and each instance x 2 X has a likelihood 0  p̂(Y |x)  1,
then the weight for each instance is bounded as

1

1 + e ·(m� 1)
 exp p̂(Y |x)X

z2X

exp p̂(Y | z)
 e

e+m� 1
. (7)

Soft-max pooling therefore has limited capacity to concentrate
on a small portion of instances within a bag, since the weight
for any single instance is ⇥(1/m). As illustrated in Figure 2,
soft-max pooling behaves similarly to unweighted averaging
as the bag size grows.

D. Auto-pooling

The bounded range problem of soft-max pooling can be
addressed by introducing a scalar parameter ↵ 2 R:

P̂↵(Y |X) =
X

x2X

p̂(Y |x)

0

BB@
exp (↵ · p̂(Y |x))X

z2X

exp (↵ · p̂(Y | z))

1

CCA . (8)

Treating ↵ as a free parameter to be learned along-side the
model parameters ✓ allows eq. (8) to automatically adapt
to and interpolate between different pooling behaviors. For
example, when ↵ = 0, eq. (8) reduces to an unweighted mean
(Figure 1, center); when ↵ = 1, eq. (8) simplifies to soft-max
pooling eq. (6); and when ↵ ! 1, eq. (8) approaches the
max operator. We therefore refer to the operator in eq. (8) as
auto-pooling.

With auto-pooling, for ↵ � 0, the bounds from proposition 1
are [a, b] = [0,↵], and the instance weights are bounded by

1

1 + e↵ ·(m� 1)
 exp (↵ · p̂(Y |x))X

z2X

exp (↵ · p̂(Y | z))
 e↵

e↵ +m� 1
,

(9)
which approaches the open unit interval (0, 1) as ↵ ! 1.

justinsalamon.com

• Idea: remove input bound!

• Introduce temperature parameter: α

• Learn α jointly with model:

�44

AutoPool

IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, IN PRESS, 2018 4

where Conv(S) denotes the convex hull of a set S:

Conv(S) =

(
X

x2S

µxx

�����
X

x2S

µx = 1 ^ 8xµx � 0

)
.

Any element of @max can be used in place of a gradient,
though most implementations select a single maximizer at
random; often, the maximizer is unique, so the distinction is
unimportant. A sub-gradient of max can be thus viewed as a
weighted average of all inputs, subject to the constraint that
non-maximizing inputs must have weight 0.

When applying the chain rule to @max, the sub-gradient
of the objective function with respect to non-maximizing
instances is 0, and those instances therefore do not contribute
when updating the parameters ✓. This is particularly problem-
atic early in training, where the instance-wise predictions are
essentially random. Parameter updates then depend entirely
upon single, randomly selected instances (as depicted in Fig-
ure 1, left). As a result, max-pooling for MIL can be sensitive
to initialization, generally unstable, and difficult to deploy.

C. Soft-max pooling

To ameliorate the issues highlighted above, we proposed in
previous work [52] to replace the max operator in eq. (2) by
the soft-max weighted average:

P̂s(Y |X) =
X

x2X

p̂(Y |x)

0

BB@
exp p̂(Y |x)X

z2X

exp p̂(Y | z)

1

CCA . (6)

This operator behaves similarly to the max operator, in that
P̂s is large if any of its inputs p̂(Y |x) are large, and small
if all of its inputs are small. However, it is continuously
differentiable, and assigns responsibility to each instance x
so that the entire bag contributes to the gradient calculation
and parameter updates. As illustrated in Figure 1 (right), each
instance x contributes in proportion to its label likelihood
p̂(Y |x), so that positive predictions have more influence and
negative predictions have less.

Because the inputs to the soft-max pooling operator are
probabilities p̂(Y |x) 2 [0, 1], the weights assigned by eq. (6)
are also bounded. In general, we have the following relation
between a soft-max’s input and output:

Proposition 1. Let a  b 2 R and z 2 [a, b]m ⇢ Rm
, and let

⇢(z)i := exp(zi)/
P

j exp(zj) denote the soft-max operator.

Then for any coordinate i, the corresponding soft-max output

⇢(z)i is bounded as

ea

ea +(m� 1) · eb  ⇢(z)i 
eb

eb +(m� 1) · ea .

Proof. First, observe that ⇢(z)i is proportional to exp zi and
inversely proportional to

P
j 6=i exp zj . A soft-max coordinate

⇢(z)i is therefore maximal when one coordinate zi = b is
maximal, and all remaining (m � 1) coordinates zj 6=i = a

Fig. 2. The soft-max weighted average (eq. (6)) produces instance weights
satisfying the bounds given in eq. (7) (shaded region). As the size m of the
bag grows, the bounds converge to 1/m (solid line).

are minimal. In this case, the soft-max output ⇢(z) for each
coordinate k is

⇢(z)k =
exp(zk)

eb +(m� 1) · ea .

Since all zk  b, this achieves the upper bound. A similar
argument proves the analogous lower bound.

Applying proposition 1, if a bag has |X| = m instances,
and each instance x 2 X has a likelihood 0  p̂(Y |x)  1,
then the weight for each instance is bounded as

1

1 + e ·(m� 1)
 exp p̂(Y |x)X

z2X

exp p̂(Y | z)
 e

e+m� 1
. (7)

Soft-max pooling therefore has limited capacity to concentrate
on a small portion of instances within a bag, since the weight
for any single instance is ⇥(1/m). As illustrated in Figure 2,
soft-max pooling behaves similarly to unweighted averaging
as the bag size grows.

D. Auto-pooling

The bounded range problem of soft-max pooling can be
addressed by introducing a scalar parameter ↵ 2 R:

P̂↵(Y |X) =
X

x2X

p̂(Y |x)

0

BB@
exp (↵ · p̂(Y |x))X

z2X

exp (↵ · p̂(Y | z))

1

CCA . (8)

Treating ↵ as a free parameter to be learned along-side the
model parameters ✓ allows eq. (8) to automatically adapt
to and interpolate between different pooling behaviors. For
example, when ↵ = 0, eq. (8) reduces to an unweighted mean
(Figure 1, center); when ↵ = 1, eq. (8) simplifies to soft-max
pooling eq. (6); and when ↵ ! 1, eq. (8) approaches the
max operator. We therefore refer to the operator in eq. (8) as
auto-pooling.

With auto-pooling, for ↵ � 0, the bounds from proposition 1
are [a, b] = [0,↵], and the instance weights are bounded by

1

1 + e↵ ·(m� 1)
 exp (↵ · p̂(Y |x))X

z2X

exp (↵ · p̂(Y | z))
 e↵

e↵ +m� 1
,

(9)
which approaches the open unit interval (0, 1) as ↵ ! 1.

justinsalamon.com

• α = 0 ⇒ mean pooling

• α = 1 ⇒ softmax pooling

• α → ∞ ⇒ max pooling

• α → -∞ ⇒ min pooling

• Multi-label? each class gets its own α

• Model adapts to temporal extent of each class

• AutoPool variants: Constrained AutoPool (CAP) & Regularized AutoPool (RAP)

�45

AutoPool

IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, IN PRESS, 2018 4

where Conv(S) denotes the convex hull of a set S:

Conv(S) =

(
X

x2S

µxx

�����
X

x2S

µx = 1 ^ 8xµx � 0

)
.

Any element of @max can be used in place of a gradient,
though most implementations select a single maximizer at
random; often, the maximizer is unique, so the distinction is
unimportant. A sub-gradient of max can be thus viewed as a
weighted average of all inputs, subject to the constraint that
non-maximizing inputs must have weight 0.

When applying the chain rule to @max, the sub-gradient
of the objective function with respect to non-maximizing
instances is 0, and those instances therefore do not contribute
when updating the parameters ✓. This is particularly problem-
atic early in training, where the instance-wise predictions are
essentially random. Parameter updates then depend entirely
upon single, randomly selected instances (as depicted in Fig-
ure 1, left). As a result, max-pooling for MIL can be sensitive
to initialization, generally unstable, and difficult to deploy.

C. Soft-max pooling

To ameliorate the issues highlighted above, we proposed in
previous work [52] to replace the max operator in eq. (2) by
the soft-max weighted average:

P̂s(Y |X) =
X

x2X

p̂(Y |x)

0

BB@
exp p̂(Y |x)X

z2X

exp p̂(Y | z)

1

CCA . (6)

This operator behaves similarly to the max operator, in that
P̂s is large if any of its inputs p̂(Y |x) are large, and small
if all of its inputs are small. However, it is continuously
differentiable, and assigns responsibility to each instance x
so that the entire bag contributes to the gradient calculation
and parameter updates. As illustrated in Figure 1 (right), each
instance x contributes in proportion to its label likelihood
p̂(Y |x), so that positive predictions have more influence and
negative predictions have less.

Because the inputs to the soft-max pooling operator are
probabilities p̂(Y |x) 2 [0, 1], the weights assigned by eq. (6)
are also bounded. In general, we have the following relation
between a soft-max’s input and output:

Proposition 1. Let a  b 2 R and z 2 [a, b]m ⇢ Rm
, and let

⇢(z)i := exp(zi)/
P

j exp(zj) denote the soft-max operator.

Then for any coordinate i, the corresponding soft-max output

⇢(z)i is bounded as

ea

ea +(m� 1) · eb  ⇢(z)i 
eb

eb +(m� 1) · ea .

Proof. First, observe that ⇢(z)i is proportional to exp zi and
inversely proportional to

P
j 6=i exp zj . A soft-max coordinate

⇢(z)i is therefore maximal when one coordinate zi = b is
maximal, and all remaining (m � 1) coordinates zj 6=i = a

Fig. 2. The soft-max weighted average (eq. (6)) produces instance weights
satisfying the bounds given in eq. (7) (shaded region). As the size m of the
bag grows, the bounds converge to 1/m (solid line).

are minimal. In this case, the soft-max output ⇢(z) for each
coordinate k is

⇢(z)k =
exp(zk)

eb +(m� 1) · ea .

Since all zk  b, this achieves the upper bound. A similar
argument proves the analogous lower bound.

Applying proposition 1, if a bag has |X| = m instances,
and each instance x 2 X has a likelihood 0  p̂(Y |x)  1,
then the weight for each instance is bounded as

1

1 + e ·(m� 1)
 exp p̂(Y |x)X

z2X

exp p̂(Y | z)
 e

e+m� 1
. (7)

Soft-max pooling therefore has limited capacity to concentrate
on a small portion of instances within a bag, since the weight
for any single instance is ⇥(1/m). As illustrated in Figure 2,
soft-max pooling behaves similarly to unweighted averaging
as the bag size grows.

D. Auto-pooling

The bounded range problem of soft-max pooling can be
addressed by introducing a scalar parameter ↵ 2 R:

P̂↵(Y |X) =
X

x2X

p̂(Y |x)

0

BB@
exp (↵ · p̂(Y |x))X

z2X

exp (↵ · p̂(Y | z))

1

CCA . (8)

Treating ↵ as a free parameter to be learned along-side the
model parameters ✓ allows eq. (8) to automatically adapt
to and interpolate between different pooling behaviors. For
example, when ↵ = 0, eq. (8) reduces to an unweighted mean
(Figure 1, center); when ↵ = 1, eq. (8) simplifies to soft-max
pooling eq. (6); and when ↵ ! 1, eq. (8) approaches the
max operator. We therefore refer to the operator in eq. (8) as
auto-pooling.

With auto-pooling, for ↵ � 0, the bounds from proposition 1
are [a, b] = [0,↵], and the instance weights are bounded by

1

1 + e↵ ·(m� 1)
 exp (↵ · p̂(Y |x))X

z2X

exp (↵ · p̂(Y | z))
 e↵

e↵ +m� 1
,

(9)
which approaches the open unit interval (0, 1) as ↵ ! 1.

justinsalamon.com

• Keep most of the model architecture fixed:

• Deep convolutional neural network (CNN)

• Based on audio subnetwork of Look, Listen and Learn (L3) architecture
[Arandjelovic & Zisserman’17]

• Output frame rate: ~3 frames/sec

�46

Experimental design

Ba
tch

 n
or

m
ali

za
tio

n

Co
nv

: 1
6

(3
, 3

)

Co
nv

: 1
6

(3
, 3

)

Po
ol:

 (
2,

2)

Ti
m

e
Di

str
ibu

te
d

De
ns

e:
 n

_c
las

se
s

Te
m

po
ra

l P
oo

lin
g

Input: log-mel spectrogram Output 1:
strong labels

Output 2:
tags (weak)

Co
nv

: 3
2

(3
, 3

)

Co
nv

: 3
2

(3
, 3

)

Po
ol:

 (
2,

2)

Co
nv

: 6
4

(3
, 3

)

Co
nv

: 6
4

(3
, 3

)

Po
ol:

 (
2,

2)

Co
nv

: 1
28

 (3
, 3

)

Co
nv

: 1
28

 (3
, 3

)

Po
ol:

 (
2,

2)

Co
nv

: 2
56

 (8
, 1

)

clapping (0.9)

laughter (0.7)
siren (0.3)

justinsalamon.com

• Compare pooling layers:

• Max, mean, softmax, AutoPool, CAP, RAP (λ = 10-2, 10-3, 10-4)

• Compare against strong training

• Evaluate strong prediction (instance-level) accuracy: F1, P, R (0 = worst, 1 = best)

• sed_eval [Mesaros et al.’16]

�47

Experimental design

Ba
tch

 n
or

m
ali

za
tio

n

Co
nv

: 1
6

(3
, 3

)

Co
nv

: 1
6

(3
, 3

)

Po
ol:

 (
2,

2)

Ti
m

e
Di

str
ibu

te
d

De
ns

e:
 n

_c
las

se
s

Te
m

po
ra

l P
oo

lin
g

Input: log-mel spectrogram Output 1:
strong labels

Output 2:
tags (weak)

Co
nv

: 3
2

(3
, 3

)

Co
nv

: 3
2

(3
, 3

)

Po
ol:

 (
2,

2)

Co
nv

: 6
4

(3
, 3

)

Co
nv

: 6
4

(3
, 3

)

Po
ol:

 (
2,

2)

Co
nv

: 1
28

 (3
, 3

)

Co
nv

: 1
28

 (3
, 3

)

Po
ol:

 (
2,

2)

Co
nv

: 2
56

 (8
, 1

)

clapping (0.9)

laughter (0.7)
siren (0.3)

justinsalamon.com

• URBAN-SED [Salamon et al.’17]

• 10,000 soundscapes synthesized with

• 10 sound classes, mostly short events (~3 s)

• DCASE 2017 (Task 4) [Mesaros et al.’17]

• ~50k subset of AudioSet [Gemmeke et al.’17]

• 17 event classes, varying event durations (0-10 s)

• MedleyDB [Bittner et al.’15]

• 122 songs —> 531 with remixing

• 8 instrument classes, mostly long events (> 10s)

Experimental design: Datasets

justinsalamon.com

Results: URBAN-SED

IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, IN PRESS, 2018 9

TABLE I
CLASS-AGGREGATED RESULTS ON URBAN-SED.

Static Dynamic
Model F1 P R F1 P R E#

Max 0.742 0.774 0.717 0.463 0.774 0.330 0.695
Mean 0.543 0.726 0.436 0.408 0.280 0.751 2.10
Soft-max 0.630 0.772 0.537 0.492 0.397 0.646 1.22

RAP 10�2 0.544 0.719 0.449 0.419 0.296 0.717 1.88
RAP 10�3 0.746 0.790 0.711 0.529 0.584 0.484 0.731
RAP 10�4 0.754 0.754 0.756 0.526 0.650 0.442 0.681
CAP 0.754 0.781 0.732 0.533 0.622 0.466 0.696
Auto 0.757 0.784 0.739 0.504 0.738 0.382 0.665

Strong 0.762 0.708 0.822 0.551 0.693 0.458 0.642

appears to over-fit the weak annotations, and a similar trend
can be observed for the max-pooling model. Conversely,
RAP with � = 10�2 appears to be over-regularized, and
behaves similarly to mean-pooling on both static and dynamic
prediction tasks.

Figure 7 shows the F1 scores independently for each class.
While there is some variation across classes, RAP (�  10�3)
and CAP consistently achieve high scores, and closely track
the strong model. Mean and RAP (� = 10�2) tend to do
poorly on event classes which are transient or highly localized
in time (gun shot, car horn). This is in accordance with
Figure 1: mean-pooling predictions of sparse event categories
assigns equal responsibility to each frame in the input, which
will be erroneous for any frames that do not cover the event in
question. The fact that RAP � = 10�2 exhibits this behavior
indicates that the regularization term is too strong, and the
model reverts to mean pooling.

Figure 8 illustrates the ↵ vectors learned by each auto-
pooling model. In particular, the CAP model learns to max-
imize all ↵ to the upper bound, indicating that max-like
behavior is preferred for all classes. This is likely an artifact
of how the dataset was constructed: events are artificially
clipped to at most 3 seconds, which results in implicitly
sparse class activations for each bag (Figure 3). Note, however,
that although the auto-pool models learn to produce max-like
behavior, they consistently outperform the max-pool model on
this dataset. This finding is consistent with the motivations for
soft-max pooling given in Section III: max-pooling produces
extremely sparse gradients during training, which impedes the
model’s ability to learn stable representations. By contrast,
initializing the auto-pool model with ↵ = 1 (softmax-like
behavior) produces dense gradients early in training, which
become sparser as the model converges toward max-like
behavior.

Figure 9 illustrates the predictions made by the RAP model
with � = 10�3 on a validation clip. While the model does
show some confusion (engine idling and air conditioner, or
drilling and jackhammer), the temporal localization is gener-
ally good.

B. DCASE 2017 results

Table II presents the class-aggregated results on the
DCASE 2017 data. Note that because the DCASE training

TABLE II
AGGREGATE RESULTS ON DCASE 2017.

Static Dynamic
Model F1 P R F1 P R E#

Max 0.257 0.650 0.267 0.252 0.679 0.155 0.874
Mean 0.397 0.712 0.384 0.426 0.309 0.685 1.57
Soft-max 0.389 0.683 0.381 0.466 0.391 0.576 1.04

RAP 10�2 0.355 0.696 0.359 0.436 0.325 0.663 1.43
RAP 10�3 0.357 0.669 0.357 0.410 0.308 0.613 1.44
RAP 10�4 0.372 0.694 0.374 0.445 0.340 0.642 1.32
CAP 0.426 0.700 0.414 0.427 0.360 0.524 1.12
Auto 0.454 0.664 0.453 0.425 0.401 0.451 0.968

data only has clip-level annotations, we cannot compare to
a baseline model trained on strong annotations. As before
on URBAN-SED, the auto-pool method achieves the highest
static F1 score. Soft-max pooling achieves the highest dynamic
F1 score (0.466), but both the mean and auto-pool methods
are comparable, all landing in the range of 0.41–0.45.

Notably, the max-pooling model substantially under-
performs the competing methods on both static and dynamic
prediction tasks. This holds uniformly across all per-class
evaluations, as illustrated in Figure 10. With the exception
of unconstrained auto-pool, the remaining models generally
perform comparably across all classes.

Figure 11 shows the learned ↵ vectors for each auto-
pool model. Unlike the URBAN-SED results in Figure 8,
auto-pool models do not uniformly approach max-pooling
on the DCASE data. Instead, there is significant diversity
among the different classes, with some tending toward max-
pooling behavior (large ↵ for screaming or air horn/truck

horn, skateboard) and others tending toward mean-pooling
behavior (small ↵ for bus or car passing by, truck). Referring
to Figure 4, the classes for which auto-pool (and CAP) learn
large ↵ tend to have short event durations. By contrast, the
classes which result in small ↵ values tend to span the majority
of the clip, and have high concentration on full duration (1.0).
In these classes, the bag- and instance-labels are equivalent,
so it is expected that mean-pooling (small ↵) out-performs
max-pooling.

C. MedleyDB results

Table III lists the class-aggregated scores over the Med-
leyDB dataset. Following Demšar [74], the distributions of
scores over all splits are compared using a Friedman test [75]
with Bonferroni-Holm correction (↵ = 0.05) [76], and meth-
ods indistinguishable from the best (average) are indicated in
bold. The strong model is omitted from statistical comparison,
as we are primarily concerned with differentiating among MIL
algorithms. From this analysis, we observe little differentiation
between the various methods. Mean-pooling and RAP (� �
10�3) are significantly worse than auto-pool (best) for static
F1 score, though still comparable to the strong model. For
dynamic prediction, only the max- and auto-pooling methods
are significantly worse than RAP � = 10�3, which closely
matches the strong model.

An examination of the per-class results presented in Fig-
ure 12 reveals that this trend is consistent across classes. The

Strong (time-varying)

IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, IN PRESS, 2018 9

TABLE I
CLASS-AGGREGATED RESULTS ON URBAN-SED.

Static Dynamic
Model F1 P R F1 P R E#

Max 0.742 0.774 0.717 0.463 0.774 0.330 0.695
Mean 0.543 0.726 0.436 0.408 0.280 0.751 2.10
Soft-max 0.630 0.772 0.537 0.492 0.397 0.646 1.22

RAP 10�2 0.544 0.719 0.449 0.419 0.296 0.717 1.88
RAP 10�3 0.746 0.790 0.711 0.529 0.584 0.484 0.731
RAP 10�4 0.754 0.754 0.756 0.526 0.650 0.442 0.681
CAP 0.754 0.781 0.732 0.533 0.622 0.466 0.696
Auto 0.757 0.784 0.739 0.504 0.738 0.382 0.665

Strong 0.762 0.708 0.822 0.551 0.693 0.458 0.642

appears to over-fit the weak annotations, and a similar trend
can be observed for the max-pooling model. Conversely,
RAP with � = 10�2 appears to be over-regularized, and
behaves similarly to mean-pooling on both static and dynamic
prediction tasks.

Figure 7 shows the F1 scores independently for each class.
While there is some variation across classes, RAP (�  10�3)
and CAP consistently achieve high scores, and closely track
the strong model. Mean and RAP (� = 10�2) tend to do
poorly on event classes which are transient or highly localized
in time (gun shot, car horn). This is in accordance with
Figure 1: mean-pooling predictions of sparse event categories
assigns equal responsibility to each frame in the input, which
will be erroneous for any frames that do not cover the event in
question. The fact that RAP � = 10�2 exhibits this behavior
indicates that the regularization term is too strong, and the
model reverts to mean pooling.

Figure 8 illustrates the ↵ vectors learned by each auto-
pooling model. In particular, the CAP model learns to max-
imize all ↵ to the upper bound, indicating that max-like
behavior is preferred for all classes. This is likely an artifact
of how the dataset was constructed: events are artificially
clipped to at most 3 seconds, which results in implicitly
sparse class activations for each bag (Figure 3). Note, however,
that although the auto-pool models learn to produce max-like
behavior, they consistently outperform the max-pool model on
this dataset. This finding is consistent with the motivations for
soft-max pooling given in Section III: max-pooling produces
extremely sparse gradients during training, which impedes the
model’s ability to learn stable representations. By contrast,
initializing the auto-pool model with ↵ = 1 (softmax-like
behavior) produces dense gradients early in training, which
become sparser as the model converges toward max-like
behavior.

Figure 9 illustrates the predictions made by the RAP model
with � = 10�3 on a validation clip. While the model does
show some confusion (engine idling and air conditioner, or
drilling and jackhammer), the temporal localization is gener-
ally good.

B. DCASE 2017 results

Table II presents the class-aggregated results on the
DCASE 2017 data. Note that because the DCASE training

TABLE II
AGGREGATE RESULTS ON DCASE 2017.

Static Dynamic
Model F1 P R F1 P R E#

Max 0.257 0.650 0.267 0.252 0.679 0.155 0.874
Mean 0.397 0.712 0.384 0.426 0.309 0.685 1.57
Soft-max 0.389 0.683 0.381 0.466 0.391 0.576 1.04

RAP 10�2 0.355 0.696 0.359 0.436 0.325 0.663 1.43
RAP 10�3 0.357 0.669 0.357 0.410 0.308 0.613 1.44
RAP 10�4 0.372 0.694 0.374 0.445 0.340 0.642 1.32
CAP 0.426 0.700 0.414 0.427 0.360 0.524 1.12
Auto 0.454 0.664 0.453 0.425 0.401 0.451 0.968

data only has clip-level annotations, we cannot compare to
a baseline model trained on strong annotations. As before
on URBAN-SED, the auto-pool method achieves the highest
static F1 score. Soft-max pooling achieves the highest dynamic
F1 score (0.466), but both the mean and auto-pool methods
are comparable, all landing in the range of 0.41–0.45.

Notably, the max-pooling model substantially under-
performs the competing methods on both static and dynamic
prediction tasks. This holds uniformly across all per-class
evaluations, as illustrated in Figure 10. With the exception
of unconstrained auto-pool, the remaining models generally
perform comparably across all classes.

Figure 11 shows the learned ↵ vectors for each auto-
pool model. Unlike the URBAN-SED results in Figure 8,
auto-pool models do not uniformly approach max-pooling
on the DCASE data. Instead, there is significant diversity
among the different classes, with some tending toward max-
pooling behavior (large ↵ for screaming or air horn/truck

horn, skateboard) and others tending toward mean-pooling
behavior (small ↵ for bus or car passing by, truck). Referring
to Figure 4, the classes for which auto-pool (and CAP) learn
large ↵ tend to have short event durations. By contrast, the
classes which result in small ↵ values tend to span the majority
of the clip, and have high concentration on full duration (1.0).
In these classes, the bag- and instance-labels are equivalent,
so it is expected that mean-pooling (small ↵) out-performs
max-pooling.

C. MedleyDB results

Table III lists the class-aggregated scores over the Med-
leyDB dataset. Following Demšar [74], the distributions of
scores over all splits are compared using a Friedman test [75]
with Bonferroni-Holm correction (↵ = 0.05) [76], and meth-
ods indistinguishable from the best (average) are indicated in
bold. The strong model is omitted from statistical comparison,
as we are primarily concerned with differentiating among MIL
algorithms. From this analysis, we observe little differentiation
between the various methods. Mean-pooling and RAP (� �
10�3) are significantly worse than auto-pool (best) for static
F1 score, though still comparable to the strong model. For
dynamic prediction, only the max- and auto-pooling methods
are significantly worse than RAP � = 10�3, which closely
matches the strong model.

An examination of the per-class results presented in Fig-
ure 12 reveals that this trend is consistent across classes. The

justinsalamon.com

Results: DCASE 2017

�50

IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, IN PRESS, 2018 11

Fig. 10. DCASE 2017 results: per-class dynamic F1 scores for each model under comparison.

Fig. 11. DCASE 2017 results: learned ↵ parameters for each event class, for
auto-pool, constrained auto-pool (CAP), and regularized auto-pool (RAP).

achieves the highest scores for static prediction. If the prac-
titioner’s goal is to classify weakly labeled excerpts without
requiring more precise prediction, then auto-pool appears to be
the method of choice. However, auto-pool does exhibit a ten-
dency to “over-fit” to weak annotation, in that its performance
for dynamic prediction is generally lower than the proposed
alternatives, and that it favors precision over recall.

Second, the behavior of fixed pooling operators (min, max,

soft-max) depends on the characteristics of the dataset and
the relative duration of events in each class. Mean-pooling
performs well when events are long relative to the bag because
the bag-level labels can reasonably be propagated to all in-
stances. Max-pooling can perform well when events are short
within the bag, but it can also be unstable and difficult to train.
While auto-pooling often converges to max-like behavior, it
consistently outperforms the standard max-pool model, which
indicates that the improved gradient flow due to the soft-max
operator is indeed beneficial for learning good representations.

Third, as a general observation, max-pooling models tend to
favor precision over recall in dynamic evaluation. This is likely
due to the fact that to optimize the objective during training,
max-pooling needs only to model a single instance within
a bag. This obviously suffices for static evaluation, but for
dynamic evaluation, max-pooling models have no incentive
to model the entire duration of the source event, leading to a
reduction of recall. Similarly, the more max-like the pooling
operator becomes, e.g., RAP with small � or unconstrained
auto-pool, the more emphasis the resulting model tends to
place on precision rather than recall. For similar reasons,
strongly trained models can under-perform MIL models in
static evaluation, as illustrated in table III. MIL models can
attend to specific portions of non-stationary signals (e.g., a
vocal attack) to detect their presence, while strongly trained
models attempt to solve the more difficult task of modeling
the entire duration of the event.

Although not empirically studied in this work, the choice of
initialization for ↵ could also influence the resulting model.
Following the motivation given in Section III, we generally
recommend to initialize ↵ with small values (either 0 or 1) to
ensure sufficient gradient propagation early in training.

In all datasets, the regularized auto-pool models are among

IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, IN PRESS, 2018 7

Fig. 4. Event durations for each class in DCASE 2017. Each point corresponds
to a test clip, and the mean event durations are indicated by vertical bars.
DCASE events typically cover at least 40% (4 s) of the clip, and the high
concentrations at 10.0 indicate that events often span the entire clip.

While it was initially developed to facilitate pitch tracking
evaluation, it includes time-varying instrument activation la-
bels for each track.

Because each track in MedleyDB is provided in the form
of isolated instrument recordings (stems), it is possible to gen-
erate different mixtures of the stem recordings for any given
track. This motivates a form of data augmentation: if a track
has n instruments, we generate n alternate mixes, where mix
i has the ith instrument removed; the remaining n� 1 stems
are linearly mixed to best approximate the full mix, using
the mixing coefficients provided by the MedleyDB python
package.5 By training on this expanded set of leave-one-

out mixes, we separate each instrument from its surrounding
context, which helps to eliminate confounding factors when
estimating the presence of each instrument. The expanded
MedleyDB set contains 531 tracks, totaling 33.1 hours of
audio.

Because of the skewed distribution of instruments in Med-
leyDB, we reduced the vocabulary of interest to the 8 most
common sources: acoustic guitar, clean electric guitar, dis-

torted electric guitar, drum set, electric bass, female singer,

male singer, piano. Unlike URBAN-SED and DCASE, there
is not a pre-defined evaluation split of MedleyDB. We instead
repeated the experiment over 10 random, artist-conditional
80–20 train-test splits; validation sets were randomly split
80–20 from the training splits (without artist conditioning).
Having multiple train-test splits allows us to perform statistical
analyses which are not possible with the URBAN-SED and
DCASE datasets. We therefore do not make claims as to which
methods perform “best” on URBAN-SED and DCASE.

Figure 5 illustrates the distribution of instrument activation

5https://github.com/marl/medleydb

Fig. 5. Event durations for each class in MedleyDB (logarithmically scaled).
Each point corresponds to the total duration of an instrument over a track,
with the mean durations indicated by vertical bars. The black line marks the
10 second point used to generate training patches.

durations over the dataset. Most instruments are active for
substantially longer than the 10 s observation window used
in our experiments, indicating that labels should be expected
to be constant (entirely on or entirely off) over the duration
of a training example.

B. Model architecture

The model used in this work is divided into two main
components: a dynamic predictor that generates predictions
at a fine temporal resolution (i.e., frame/instance-level pre-
dictions), and a pooling layer which aggregates the instance-
level predictions into a single static (bag-level) prediction. Our
goal is to compare and contrast the different pooling functions
proposed in Section III. As such, in this work we adopt a single
model architecture for the dynamic predictor, and keep it fixed
throughout the study. A block diagram depicting the complete
architecture including the dynamic predictor followed by the
temporal pooling layer is provided in Figure 6.

For the dynamic predictor, we use an architecture inspired
by the audio subnetwork of the L3-Net architecture proposed
by Arandjelovic and Zisserman [66], which was shown to
learn highly discriminative deep audio embeddings from a
self-supervised audio-visual correspondence task. In this work
the input dimensions are ordered as (feature, time); details
about the input are provided in Section IV-C. The model
begins with four convolutional blocks, each block consisting
of two convolutional layers followed by strided (2, 2) max-
pooling, where the number of convolutional filters is doubled
for each subsequent block (16, 32, 64, 128) and all filters
are of dimensionality (3, 3). This is followed by a single
convolutional layer with 256 full-height (8, 1) filters, followed
by a single dense layer applied independently to each time-
step, and with as many outputs (units) as there are classes in
the dataset being used. Batch normalization [67] is applied
to the output of every convolutional layer as well as to the
input to the network. We apply dimensionality-maintaining
padding (“same padding”) to the input to all convolutional

justinsalamon.com �51

Results: MedleyDB

IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, IN PRESS, 2018 10

Fig. 7. URBAN-SED results: per-class dynamic F1 scores for each model under comparison.

Fig. 8. URBAN-SED results: learned ↵ parameters for each event class, for
auto-pool, constrained auto-pool (CAP), and regularized auto-pool (RAP).

TABLE III
AGGREGATE RESULTS ON MEDLEYDB OVER 10 RANDOMIZED TRIALS.
RESULTS WHICH ARE STATISTICALLY INDISTINGUISHABLE FROM THE

BEST (AVERAGE) PER METRIC (UNDERLINED) ARE INDICATED IN BOLD.

Static Dynamic
Model F1 P R F1 P R E#

Max 0.650 0.605 0.829 0.437 0.875 0.292 0.719
Mean 0.550 0.409 0.988 0.655 0.594 0.733 0.608

Soft-max 0.577 0.444 0.974 0.662 0.668 0.658 0.524

RAP 10�2 0.553 0.413 0.989 0.659 0.604 0.727 0.593

RAP 10�3 0.563 0.425 0.984 0.673 0.638 0.714 0.545

RAP 10�4
0.623 0.497 0.957 0.622 0.757 0.530 0.540

CAP 0.625 0.512 0.937 0.609 0.787 0.498 0.551

Auto 0.653 0.567 0.888 0.528 0.841 0.386 0.636

Strong 0.575 0.437 0.982 0.675 0.640 0.716 0.540

Fig. 9. Dynamic predictions made by the RAP model
�
� = 10�3

�
on a

validation clip from URBAN-SED. Top: the input mel spectrogram; middle:
the (dynamic) reference annotations; bottom: the predicted label likelihoods.

low performance of max-pooling exhibited on the DCASE
dataset persists on MedleyDB. Similarly, the auto-pool model
tends to do worse than the regularized variants across all
classes. This is most likely due to the characteristics of the
training data: instruments within a randomly selected excerpt
tend to be either entirely active or inactive, so mean-pooling is
a good approximation to strong training. This phenomenon is
illustrated in Figure 5, which shows the distribution of labeled
segment durations for each instrument. Aside from vocalists,
the average durations are well in excess of the 10 second mark
(gray), which indicates that uniformly sampled patches are
unlikely to catch instrument state transitions.

VI. CONCLUSION

To summarize the experimental results presented above, we
observe the following trends across all datasets. First, the
unconstrained, unregularized auto-pool method consistently

Strong (time-varying)

Instance-level prediction (frames)

IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, IN PRESS, 2018 10

Fig. 7. URBAN-SED results: per-class dynamic F1 scores for each model under comparison.

Fig. 8. URBAN-SED results: learned ↵ parameters for each event class, for
auto-pool, constrained auto-pool (CAP), and regularized auto-pool (RAP).

TABLE III
AGGREGATE RESULTS ON MEDLEYDB OVER 10 RANDOMIZED TRIALS.
RESULTS WHICH ARE STATISTICALLY INDISTINGUISHABLE FROM THE

BEST (AVERAGE) PER METRIC (UNDERLINED) ARE INDICATED IN BOLD.

Static Dynamic
Model F1 P R F1 P R E#

Max 0.650 0.605 0.829 0.437 0.875 0.292 0.719
Mean 0.550 0.409 0.988 0.655 0.594 0.733 0.608

Soft-max 0.577 0.444 0.974 0.662 0.668 0.658 0.524

RAP 10�2 0.553 0.413 0.989 0.659 0.604 0.727 0.593

RAP 10�3 0.563 0.425 0.984 0.673 0.638 0.714 0.545

RAP 10�4
0.623 0.497 0.957 0.622 0.757 0.530 0.540

CAP 0.625 0.512 0.937 0.609 0.787 0.498 0.551

Auto 0.653 0.567 0.888 0.528 0.841 0.386 0.636

Strong 0.575 0.437 0.982 0.675 0.640 0.716 0.540

Fig. 9. Dynamic predictions made by the RAP model
�
� = 10�3

�
on a

validation clip from URBAN-SED. Top: the input mel spectrogram; middle:
the (dynamic) reference annotations; bottom: the predicted label likelihoods.

low performance of max-pooling exhibited on the DCASE
dataset persists on MedleyDB. Similarly, the auto-pool model
tends to do worse than the regularized variants across all
classes. This is most likely due to the characteristics of the
training data: instruments within a randomly selected excerpt
tend to be either entirely active or inactive, so mean-pooling is
a good approximation to strong training. This phenomenon is
illustrated in Figure 5, which shows the distribution of labeled
segment durations for each instrument. Aside from vocalists,
the average durations are well in excess of the 10 second mark
(gray), which indicates that uniformly sampled patches are
unlikely to catch instrument state transitions.

VI. CONCLUSION

To summarize the experimental results presented above, we
observe the following trends across all datasets. First, the
unconstrained, unregularized auto-pool method consistently

justinsalamon.com

Results: example

IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, IN PRESS, 2018 10

Fig. 7. URBAN-SED results: per-class dynamic F1 scores for each model under comparison.

Fig. 8. URBAN-SED results: learned ↵ parameters for each event class, for
auto-pool, constrained auto-pool (CAP), and regularized auto-pool (RAP).

TABLE III
AGGREGATE RESULTS ON MEDLEYDB OVER 10 RANDOMIZED TRIALS.
RESULTS WHICH ARE STATISTICALLY INDISTINGUISHABLE FROM THE

BEST (AVERAGE) PER METRIC (UNDERLINED) ARE INDICATED IN BOLD.

Static Dynamic
Model F1 P R F1 P R E#

Max 0.650 0.605 0.829 0.437 0.875 0.292 0.719
Mean 0.550 0.409 0.988 0.655 0.594 0.733 0.608

Soft-max 0.577 0.444 0.974 0.662 0.668 0.658 0.524

RAP 10�2 0.553 0.413 0.989 0.659 0.604 0.727 0.593

RAP 10�3 0.563 0.425 0.984 0.673 0.638 0.714 0.545

RAP 10�4
0.623 0.497 0.957 0.622 0.757 0.530 0.540

CAP 0.625 0.512 0.937 0.609 0.787 0.498 0.551

Auto 0.653 0.567 0.888 0.528 0.841 0.386 0.636

Strong 0.575 0.437 0.982 0.675 0.640 0.716 0.540

Fig. 9. Dynamic predictions made by the RAP model
�
� = 10�3

�
on a

validation clip from URBAN-SED. Top: the input mel spectrogram; middle:
the (dynamic) reference annotations; bottom: the predicted label likelihoods.

low performance of max-pooling exhibited on the DCASE
dataset persists on MedleyDB. Similarly, the auto-pool model
tends to do worse than the regularized variants across all
classes. This is most likely due to the characteristics of the
training data: instruments within a randomly selected excerpt
tend to be either entirely active or inactive, so mean-pooling is
a good approximation to strong training. This phenomenon is
illustrated in Figure 5, which shows the distribution of labeled
segment durations for each instrument. Aside from vocalists,
the average durations are well in excess of the 10 second mark
(gray), which indicates that uniformly sampled patches are
unlikely to catch instrument state transitions.

VI. CONCLUSION

To summarize the experimental results presented above, we
observe the following trends across all datasets. First, the
unconstrained, unregularized auto-pool method consistently

Input

Reference

Model
estimate

justinsalamon.com

How can we leverage the unlabeled data?

�53

justinsalamon.com

How can we leverage the unlabeled data?

�53

TBD

J. Cramer, H-H. Wang, J. Salamon, J. P. Bello
Coming soon… 2019.

justinsalamon.com

• The idea:

�54

Deep audio embeddings

 Large dataset of labeled audio

+
Update model parameters

Deep embedding model

Evaluate

Prediction on surrogate task

Deep embedding model Audio embedding
= feature

Small dataset of
labeled audio Small model

Prediction
on target task

+ Evaluate

Update model parameters

Embedding

Step 1: train embedding model on surrogate task

Step 2: use embedding to train “downstream” model on target task

justinsalamon.com

• SoundNet [Aytar et al.’16]

• Visual network pre-trained on large image datasets

• Audio network trained to mimic output of visual network for Flickr videos

�55

Deep audio embeddings

Input
conv1

conv2

conv3

conv4
conv5

conv6
conv7

conv8

Visual6Recognition6Networks
Unlabeled6
Video

SoundNet Architecture

KL

pool1

pool2

pool5

Raw6
Waveform

RGB6Frames

Object6Distribution

Scene6Distribution

KL

Places6CNN

ImageNet CNN

Deep61D6Convolutional6Network

Figure 1: SoundNet: We propose a deep convolutional architecture for natural sound recognition.
We train the network by transferring discriminative knowledge from visual recognition networks into
sound networks. Our approach capitalizes on the synchronization of vision and sound in video.

The primary contribution of this paper is the development of a large-scale and semantically rich
representation for natural sound. We believe large-scale models of natural sounds can have a large
impact in many real-world applications, such as robotics and cross-modal understanding. The
remainder of this paper describes our method and experiments in detail. We first review related work.
In section 2, we describe our unlabeled video dataset and in section 3 we present our network and
training procedure. Finally in section 4 we conclude with experiments on standard benchmarks and
show several visualizations of the learned representation. Code, data, and models will be released.

1.1 Related Work

Sound Recognition: Although large-scale audio understanding has been extensively studied in the
context of music [5, 37] and speech recognition [10], we focus on understanding natural, in-the-wild
sounds. Acoustic scene classification, classifying sound excerpts into existing acoustic scene/object
categories, is predominantly based on applying a variety of general classifiers (SVMs, GMMs, etc.)
to the manually crafted sound features (MFCC, spectrograms, etc.) [4, 29, 21, 30, 34, 32]. Even
though there are unsupervised [20] and supervised [27, 23, 6, 12] deep learning methods applied to
sound classification, the models are limited by the amount of available labeled natural sound data.
We distinguish ourselves from the existing literature by training a deep fully convolutional network
on a large scale dataset (2M videos). This allows us to train much deeper networks. Another key
advantage of our approach is that we supervise our sound recognition network through semantically
rich visual discriminative models [33, 17] which proved their robustness on a variety of large scale
object/scene categorization challenges[31, 42]. [26] also investigates the relation between vision and
sound modalities, but focuses on producing sound from image sequences. Concurrent work [11] also
explores video as a form of weak labeling for audio event classification.

Transfer Learning: Transfer learning is widely studied within computer vision such as transferring
knowledge for object detection [1, 2] and segmentation [18], however transferring from vision to
other modalities are only possible recently with the emergence of high performance visual models
[33, 17]. Our method builds upon teacher-student models [3, 9] and dark knowledge transfer [13].
In [3, 13] the basic idea is to compress (i.e. transfer) discriminative knowledge from a well-trained
complex model to a simpler model without loosing considerable accuracy. In [3] and [13] both the
teacher and the student are in the same modality, whereas in our approach the teacher operates on
vision to train the student model in sound. [9] also transfer visual supervision into depth models.

Cross-Modal Learning and Unlabeled Video: Our approach is broadly inspired by efforts to
model cross-modal relations [24, 14, 7, 26] and works that leverage large amounts of unlabeled video
[25, 41, 8, 40, 39]. In this work, we leverage the natural synchronization between vision and sound
to learn a deep representation of natural sounds without ground truth sound labels.

2

justinsalamon.com

• VGGish [Hershey et al.’17]

• Single audio network trained to predict labels on YouTube-8M dataset

�56

Deep audio embeddings

Singing Voice Detection

using VGGish Embeddings

Shayenne Moura

Computer Music Research Group, Universidade de São Paulo

shayenne.moura@usp.br

1. The problem

Classify polyphonic audio segments as singing/non-singing

3. Dataset

•61 songs containing singing voice from MedleyDB

•Train/validation/test: 38/10/13 songs

(15221, 6147, and 3874 segments)

•Artist conditional split

4. Method

Comparing VGGish embeddings with MFCC features

•Dataset: MedleyDB multitrack

•Target Sources: female singer, male singer, vocalists, and choir

•Features: VGGish and MFCC

•Classifiers: SVM and Random Forest

•Evaluation: quantitative and qualitative

Mean
Std
Median
Max
Delta (Mean/Std)
Delta 2 (Mean/Std)

13-d
vectors

Mel Frequency Cepstral
Coefficients

0.96s0.48s

6. Conclusions

VGGish features increase classification accuracy by 8 points

compared to MFCC

Future directions:

•Evaluate effect of augmenting the training data when using

VGGish features

•Combine VGGish features with other features

•Evaluate using cross validation

2. VGGish

•128-dimensional audio features extracted at 1Hz

•VGG-inspired acoustic model in Hershey et. al. (2017)

•Trained on a preliminary version of YouTube-8M

Lo
g M

el
Spe

ctr
og

ram
96 x 64

48 x 32 x 128

12 x 8 x 512
24 x 16 x 256

6 x 4 x 512
1 x 1 x 4096 1 x 1 x 128

convolution + ReLU

fully connected + ReLU

max pooling

embedding

96 x 64 X 64

5. Results

Validation: hyper parameters tunning

Test: classification accuracy

Best SVM: C-value = 0.1

Best Random Forest: 500 estimators (MFCC) and 100 estimators (VGGish)

MFCC: classification using best SVM

VGGish: classification using best SVM

Blue: original singing voice segments

Orange: classified singing voice segments

The author acknowledges the support of CNPq and a WiMIR

travel grant.

justinsalamon.com

• Look, Listen, and Learn (L3) [Arandjelovic & Zisserman’17]

• Train model on the task of Audio-Visual Correspondence (AVC)

• No labels required!

�57

Deep audio embeddings

2

in time. The L3 architecture as shown in Figure 1 has three
distinct parts: the vision and the audio subnetworks which
extract visual and audio features respectively, and the fusion
layers which use both modalities to predict correspondence.

Fig. 1. High-level architecture of L3

The audio and vision subnetworks use four blocks of
convolutional and max-pooling layers, the outputs of which
are flattened, concatenated, and given to the fully-connected
fusion layers to produce the correspondence probability. The
audio embedding is obtained from the final output layer of the
audio subnetwork before the non-linearity and adding a max-
pooling layer, the output of which is flattened. The authors [7]
use a pool-size leading to an embedding of size 6144.

While the embedding holds a lot of promise for downstream
tasks, there are design choices unexplained by the authors that
may impact the efficacy and computational cost of the embed-
ding. To better understand the behavior of the embedding, we
explore four design choices that we believe to be impactful:

A. Input representation

The authors use a linear-frequency magnitiude (dB) spec-
trogram as the input to the audio subnetwork. However, it is
common to use Mel-frequency magnitude (dB) spectrograms
instead, which are believed to more efficiently capture rele-
vant perceptual information with less frequency bands [31].
Additionally, because the partials in harmonic content are
logarithmically spaced, convolutional filters should be able to
generalize better in the Mel-frequency space.

B. Training data domain and match to downstream tasks

The authors of L3 [7] use content which they expect to have
high degree of AVC. Originally they used the Flickr dataset
[6], and subsequently a subset of the AudioSet dataset [8].
The labels provided by AudioSet help to understand the types
of content in the videos and how they affect the behavior of
the embedding models. The authors use a subset of videos
with mostly musical instruments while the downstream tasks
contain mainly environmental sound. We examine whether
matching the audio domain used to train the embedding with
the domain of the downstream task improves performance. We
expect that matching the domains will have a positive effect.

C. Amount of training data

The authors train their models with 60M samples, but do
not discuss how the amount of training data used affects
the efficacy of the embeddings. Since training these models

can take significant time and computational resources, it is
beneficial to quantify the trade-off between the amount of
data used to train the embedding and its performance on the
downstream classification tasks.

D. Effect of data augmentation on embedding space

Data augmentation is a common technique for improv-
ing generalization of models, shown to be helpful in audio
classification [4]. However, the authors do not use it when
training their downstream audio classifiers. Since the embed-
ding is trained using a significant amount of audio data, we
are interested to know if the variability introduced by data
augmentation has already been captured by the embedding,
expecting that data augmentation will have a small effect on
downstream classification when using these embeddings.

III. EXPERIMENTAL DESIGN

We employ a 2-stage experimental design, first training a
deep audio embedding, and then evaluating the audio embed-
ding as a feature extractor in a downstream classification task.

A. Deep audio embedding model

We use AudioSet to train the L3 audio embedding models.
For each 10 s video in AudioSet, we download 30-fps h.264-
encoded videos and 48 kHz FLAC audio files. We were able
to acquire about 2M videos AudioSet. We release the code we
developed to download the videos online1.

We train the models using two subsets of AudioSet [10],
music and environmental. The music subset replicates that
used in [8] which includes musical instruments and tools, cho-
sen for its expected high AVC. The environmental subset in-
cludes categories such as human sounds, some animal sounds,
and other sounds found in natural acoustic environments.
We filter the videos using AudioSet labels, obtaining 296K
and 195K videos for the music and environmental subsets
respectively, using 80% for training, 10% for validation, and
10% for testing. We sample videos using the pescador
[32] framework. For each video, we follow the sampling and
augmentation scheme in [7], sampling 224x224 image patches
and 1 s audio clips. We generate 60M training examples, 10M
validation examples, and 10M testing examples.

We train the models for 300 epochs, with 4,096 batches of
size 64 per epoch, corresponding to the model seeing 78.6M
training examples. The Adam optimizer is used to minimize
binary cross-entropy loss with L2 regularization, with an initial
learning rate 10�5, �1 = 0.9, and �2 = 0.999. To compute
the Mel-spectrograms, we use kapre [33], which implements
the operation as a TensorFlow [34] layer, taking advantage of
GPU. We use HTK Mel-spectrograms [35], with 128 or 256
Mel bands. We choose the model parameters from the epoch
with the highest validation accuracy. Each model took about
10 days to train using four GPUs.

To evaluate whether the model has been sufficiently trained,
we look at the binary classification accuracy on the AVC task.

1https://github.com/marl/audiosetdl

2

in time. The L3 architecture as shown in Figure 1 has three
distinct parts: the vision and the audio subnetworks which
extract visual and audio features respectively, and the fusion
layers which use both modalities to predict correspondence.

Fig. 1. High-level architecture of L3

The audio and vision subnetworks use four blocks of
convolutional and max-pooling layers, the outputs of which
are flattened, concatenated, and given to the fully-connected
fusion layers to produce the correspondence probability. The
audio embedding is obtained from the final output layer of the
audio subnetwork before the non-linearity and adding a max-
pooling layer, the output of which is flattened. The authors [7]
use a pool-size leading to an embedding of size 6144.

While the embedding holds a lot of promise for downstream
tasks, there are design choices unexplained by the authors that
may impact the efficacy and computational cost of the embed-
ding. To better understand the behavior of the embedding, we
explore four design choices that we believe to be impactful:

A. Input representation

The authors use a linear-frequency magnitiude (dB) spec-
trogram as the input to the audio subnetwork. However, it is
common to use Mel-frequency magnitude (dB) spectrograms
instead, which are believed to more efficiently capture rele-
vant perceptual information with less frequency bands [31].
Additionally, because the partials in harmonic content are
logarithmically spaced, convolutional filters should be able to
generalize better in the Mel-frequency space.

B. Training data domain and match to downstream tasks

The authors of L3 [7] use content which they expect to have
high degree of AVC. Originally they used the Flickr dataset
[6], and subsequently a subset of the AudioSet dataset [8].
The labels provided by AudioSet help to understand the types
of content in the videos and how they affect the behavior of
the embedding models. The authors use a subset of videos
with mostly musical instruments while the downstream tasks
contain mainly environmental sound. We examine whether
matching the audio domain used to train the embedding with
the domain of the downstream task improves performance. We
expect that matching the domains will have a positive effect.

C. Amount of training data

The authors train their models with 60M samples, but do
not discuss how the amount of training data used affects
the efficacy of the embeddings. Since training these models

can take significant time and computational resources, it is
beneficial to quantify the trade-off between the amount of
data used to train the embedding and its performance on the
downstream classification tasks.

D. Effect of data augmentation on embedding space

Data augmentation is a common technique for improv-
ing generalization of models, shown to be helpful in audio
classification [4]. However, the authors do not use it when
training their downstream audio classifiers. Since the embed-
ding is trained using a significant amount of audio data, we
are interested to know if the variability introduced by data
augmentation has already been captured by the embedding,
expecting that data augmentation will have a small effect on
downstream classification when using these embeddings.

III. EXPERIMENTAL DESIGN

We employ a 2-stage experimental design, first training a
deep audio embedding, and then evaluating the audio embed-
ding as a feature extractor in a downstream classification task.

A. Deep audio embedding model

We use AudioSet to train the L3 audio embedding models.
For each 10 s video in AudioSet, we download 30-fps h.264-
encoded videos and 48 kHz FLAC audio files. We were able
to acquire about 2M videos AudioSet. We release the code we
developed to download the videos online1.

We train the models using two subsets of AudioSet [10],
music and environmental. The music subset replicates that
used in [8] which includes musical instruments and tools, cho-
sen for its expected high AVC. The environmental subset in-
cludes categories such as human sounds, some animal sounds,
and other sounds found in natural acoustic environments.
We filter the videos using AudioSet labels, obtaining 296K
and 195K videos for the music and environmental subsets
respectively, using 80% for training, 10% for validation, and
10% for testing. We sample videos using the pescador
[32] framework. For each video, we follow the sampling and
augmentation scheme in [7], sampling 224x224 image patches
and 1 s audio clips. We generate 60M training examples, 10M
validation examples, and 10M testing examples.

We train the models for 300 epochs, with 4,096 batches of
size 64 per epoch, corresponding to the model seeing 78.6M
training examples. The Adam optimizer is used to minimize
binary cross-entropy loss with L2 regularization, with an initial
learning rate 10�5, �1 = 0.9, and �2 = 0.999. To compute
the Mel-spectrograms, we use kapre [33], which implements
the operation as a TensorFlow [34] layer, taking advantage of
GPU. We use HTK Mel-spectrograms [35], with 128 or 256
Mel bands. We choose the model parameters from the epoch
with the highest validation accuracy. Each model took about
10 days to train using four GPUs.

To evaluate whether the model has been sufficiently trained,
we look at the binary classification accuracy on the AVC task.

1https://github.com/marl/audiosetdl

justinsalamon.com

• Look, Listen, and Learn (L3) [Arandjelovic & Zisserman’17]

• Train model on the task of Audio-Visual Correspondence (AVC)

• No labels required!

�58

Deep audio embeddings

Embedding

2

in time. The L3 architecture as shown in Figure 1 has three
distinct parts: the vision and the audio subnetworks which
extract visual and audio features respectively, and the fusion
layers which use both modalities to predict correspondence.

Fig. 1. High-level architecture of L3

The audio and vision subnetworks use four blocks of
convolutional and max-pooling layers, the outputs of which
are flattened, concatenated, and given to the fully-connected
fusion layers to produce the correspondence probability. The
audio embedding is obtained from the final output layer of the
audio subnetwork before the non-linearity and adding a max-
pooling layer, the output of which is flattened. The authors [7]
use a pool-size leading to an embedding of size 6144.

While the embedding holds a lot of promise for downstream
tasks, there are design choices unexplained by the authors that
may impact the efficacy and computational cost of the embed-
ding. To better understand the behavior of the embedding, we
explore four design choices that we believe to be impactful:

A. Input representation

The authors use a linear-frequency magnitiude (dB) spec-
trogram as the input to the audio subnetwork. However, it is
common to use Mel-frequency magnitude (dB) spectrograms
instead, which are believed to more efficiently capture rele-
vant perceptual information with less frequency bands [31].
Additionally, because the partials in harmonic content are
logarithmically spaced, convolutional filters should be able to
generalize better in the Mel-frequency space.

B. Training data domain and match to downstream tasks

The authors of L3 [7] use content which they expect to have
high degree of AVC. Originally they used the Flickr dataset
[6], and subsequently a subset of the AudioSet dataset [8].
The labels provided by AudioSet help to understand the types
of content in the videos and how they affect the behavior of
the embedding models. The authors use a subset of videos
with mostly musical instruments while the downstream tasks
contain mainly environmental sound. We examine whether
matching the audio domain used to train the embedding with
the domain of the downstream task improves performance. We
expect that matching the domains will have a positive effect.

C. Amount of training data

The authors train their models with 60M samples, but do
not discuss how the amount of training data used affects
the efficacy of the embeddings. Since training these models

can take significant time and computational resources, it is
beneficial to quantify the trade-off between the amount of
data used to train the embedding and its performance on the
downstream classification tasks.

D. Effect of data augmentation on embedding space

Data augmentation is a common technique for improv-
ing generalization of models, shown to be helpful in audio
classification [4]. However, the authors do not use it when
training their downstream audio classifiers. Since the embed-
ding is trained using a significant amount of audio data, we
are interested to know if the variability introduced by data
augmentation has already been captured by the embedding,
expecting that data augmentation will have a small effect on
downstream classification when using these embeddings.

III. EXPERIMENTAL DESIGN

We employ a 2-stage experimental design, first training a
deep audio embedding, and then evaluating the audio embed-
ding as a feature extractor in a downstream classification task.

A. Deep audio embedding model

We use AudioSet to train the L3 audio embedding models.
For each 10 s video in AudioSet, we download 30-fps h.264-
encoded videos and 48 kHz FLAC audio files. We were able
to acquire about 2M videos AudioSet. We release the code we
developed to download the videos online1.

We train the models using two subsets of AudioSet [10],
music and environmental. The music subset replicates that
used in [8] which includes musical instruments and tools, cho-
sen for its expected high AVC. The environmental subset in-
cludes categories such as human sounds, some animal sounds,
and other sounds found in natural acoustic environments.
We filter the videos using AudioSet labels, obtaining 296K
and 195K videos for the music and environmental subsets
respectively, using 80% for training, 10% for validation, and
10% for testing. We sample videos using the pescador
[32] framework. For each video, we follow the sampling and
augmentation scheme in [7], sampling 224x224 image patches
and 1 s audio clips. We generate 60M training examples, 10M
validation examples, and 10M testing examples.

We train the models for 300 epochs, with 4,096 batches of
size 64 per epoch, corresponding to the model seeing 78.6M
training examples. The Adam optimizer is used to minimize
binary cross-entropy loss with L2 regularization, with an initial
learning rate 10�5, �1 = 0.9, and �2 = 0.999. To compute
the Mel-spectrograms, we use kapre [33], which implements
the operation as a TensorFlow [34] layer, taking advantage of
GPU. We use HTK Mel-spectrograms [35], with 128 or 256
Mel bands. We choose the model parameters from the epoch
with the highest validation accuracy. Each model took about
10 days to train using four GPUs.

To evaluate whether the model has been sufficiently trained,
we look at the binary classification accuracy on the AVC task.

1https://github.com/marl/audiosetdl

justinsalamon.com

• Questions:

• Does an audio-informed input representation give a better embedding?

• Is it important to use matched audio domains between embedding and target?

• How much training data is enough training data for the embedding?

• Does data augmentation still improve performance on target?

• How does the resulting embedding compare to state-of-the-art embeddings?

• SoundNet [Aytar et al.’16]

• VGGish [Hershey et al.’17]

�59

Can we train our own (maybe better) L3 embedding?

Linear

Mel

justinsalamon.com

• Step 1: train several variants of L3 embedding

• Vary input representation, training data (content & amount)

• Step 2: evaluate embeddings on target task:

• Multi-class sound classification using 2-layer MLP

• Datasets:

• UrbanSound8K (8732 clips, 10 classes) [Salamon et. al’14]

• ESC-50 (2000 clips, 40 classes) [Piczak’15]

• DCASE 2013 (200 clips, 10 classes) [Stowell et al.’15]

• Compare to SoundNet and VGGish

�60

Experimental design (abridged)

justinsalamon.com �61

L3: input representation

justinsalamon.com �62

L3: matched vs mismatched training content

justinsalamon.com �63

L3: embedding training data vs target performance

4

TABLE I
AVC ACCURACY OF M128 L3 MODELS ON A HELD-OUT TEST SET.

Training Subset Music Test Acc. Env. Test Acc
Music 77.67% 64.96%
Env. 64.27% 77.78%

Fig. 4. Classification accuracy using L3 embedding, using models trained on
increasing amounts of data

of the embedding, independently of the downstream domain.
In this case we expect videos of musical instruments to
have a greater degree of AVC than environmental videos on
average, which might be a more important factor influencing
the efficacy of the resulting embedding.

C. Amount of training data

The results for UrbanSound8K and ESC-50 are shown
in the top and bottom plots of Figure 4. For the former,
improvements in accuracy exhibit diminishing returns after
26M samples (at around 77%) while for the latter we see
diminishing returns after 40M samples (at around 79%). For
a constrained scenario, the results suggest that at least 40M
samples should be used to train the L3 embedding.

D. Effect of data augmentation on embedding space

The model trained without data augmentation performs
significantly better by 8.77 percentage points, while in [4]
it is shown that data augmentation had a positive net effect.
A possible explanation for the results observed here is that
since the embedding is already trained on a large quantity of
data, the benefits of increasing the variance of the training data
for the downstream task via augmentation are lost, while the
negative impacts are maintained.

E. Embedding type

Finally, we compare the best L3 embedding (M128 trained
on Mus) with SoundNet and VGGish, shown in Figure 5. We
see that L3 performs best on all three datasets. This behavior
is statistically significant with respect to UrbanSound8K and

Fig. 5. Classification accuracy using different audio embeddings

ESC-50; L3 outperforms VGGish on the two datasets by 5.19
and 5.94 points respectively and outperforms SoundNet on the
two datasets by 11.04 and 32.89 points respectively. Further-
more, compared to VGGish, L3 has an order of magnitude
less parameters (4.7M vs 62M) and is trained on significantly
less data (296K vs 70M videos). Both advantages are crucial
for scenarios with constrained resources.

V. CONCLUSION

In this paper we elucidate the relative importance/impact of
different design and training choices on the efficacy of deep
audio embeddings, in particular L3. Our key findings are:

• Using sufficient training data has the largest impact on
the efficacy of the embedding for downstream tasks. For
L3, using less than 40M training samples results in a
sub-par embedding, after which we see improvements
with diminishing returns. Since L3 does not require any
labeled data, all that is needed is a large video dataset.

• Domain-informed design choices still matter. Using an
input representation better suited for convnets (Mel spec-
trograms) outperforms a vanilla audio representation.

• Matching the audio content domain between the embed-
ding and downstream task is not necessarily helpful. Our
results suggest it might be more important to use content
that is best suited to the embedding training paradigm.

• Augmenting the downstream training data is not helpful,
and even detrimental, when using these embeddings.

• L3 consistently outperforms VGGish and SoundNet on
environmental sound classification. In particular, the
model has 10x less parameters compared to VGGish and
can be trained using 100x less data while not requiring
labels, making it attractive for general purposes and rele-
vant to deployment scenarios with constrained resources.

• Pre-trained versions of all the L3 variants studied in
this work are made freely available online 2 for the
community to experiment with.

ACKNOWLEDGMENT

The authors would like to thank Relja Arandjelović for his
clarification of L3 implementation details, as well as Brian
McFee and Mark Cartwright for their valuable feedback. This
work was partially supported by NSF award no. 1544753.

2Replace this with link when available

justinsalamon.com

• Mel-based L3 vs SoundNet and VGGish:

�64

Results

justinsalamon.com �65

Try these embeddings out… soon!

github.com/marl/openl3

http://github.com/marl/openl3

justinsalamon.com

How do we make our models robust to different
sensor locations?

�66

justinsalamon.com

How do we make our models robust to different
sensor locations?

�66

…and to changing conditions in each location?

justinsalamon.com

How do we make our models robust to different
sensor locations?

�66

…and to changing conditions in each location?
Per-Channel Energy Normalization: Why and how

V. Lostanlen, J. Salamon, M. Cartwright, B. McFee, A. Farnsworth, S. Kelling, and J. P. Bello.
IEEE Signal Processing Letters, in press, 2018.

Robust Sound Event Detection in Bioacoustic Sensor Networks

V. Lostanlen, J. Salamon, A. Farnsworth, S. Kelling, and J. P. Bello.
Coming soon… 2019

justinsalamon.com

Challenge #1: non-stationary noise

Insects
(4-5 kHz)

Insects
(2-3 kHz)

SparrowsWarblersThrushes

2 4 8
Freq. (kHz)

40

45

50

55

60

65

Loudness (dB)

70

justinsalamon.com

SparrowsWarblersThrushes

2 4 8
Freq. (kHz)

Loudness (dB)

40

45

50

55

60

65

70

Challenge #1: non-stationary noise

justinsalamon.com

Insects
(4 kHz)

SparrowsWarblersThrushes

2 4 8
Freq. (kHz)

Loudness (dB)

40

45

50

55

60

65

70

Challenge #1: non-stationary noise

justinsalamon.com

SparrowsWarblersThrushes

2 4 8
Freq. (kHz)

Loudness (dB)

40

45

50

55

60

65

70

Challenge #1: non-stationary noise

justinsalamon.com

Vehicle
(3 kHz)

SparrowsWarblersThrushes

2 4 8
Freq. (kHz)

Loudness (dB)

40

45

50

55

60

65

70

Challenge #1: non-stationary noise

justinsalamon.com

Challenge #2: nonuniform noise

5

1

4
2

3

justinsalamon.com �73

Input representation: log-mel spectrogram?

justinsalamon.com

• Y. Wang, P. Getreuer, T. Hughes, R. F. Lyon, and R. A. Saurous. Trainable
frontend for robust and far-field keyword spotting. In IEEE ICASSP,
pp. 5670–5674, New Orleans, LA, USA, Mar. 2017.

�74

Per-Channel Energy Normalization (PCEN)

PCEN(t, f) = E(t, f)

(ε + (E
time
* ϕ)(t, f))

α + δ

r

− δr

Adaptive gain control

Dynamic range compression

justinsalamon.com

• V. Lostanlen, J. Salamon, M. Cartwright, B. McFee, A. Farnsworth, S. Kelling,
and J. P. Bello. Per-Channel Energy Normalization: Why and how. IEEE
Signal Processing Letters, in press, 2018.

�75

Per-Channel Energy Normalization (PCEN)

with Justin Salamon, Mark Cartwright, Brian McFee, Andrew Farnsworth, Steve Kelling,
and Juan Pablo Bello

Per-channel energy normalization

PCEN(t, f) = E(t, f)

(ε + (E
time
* ϕ)(t, f))

α + δ

r

− δr

indoor outdoor

ε
α
δ
r

10−6 10−6

0.98 0.80
10 2

0.5 0.25

justinsalamon.com �76

Per-Channel Energy Normalization (PCEN)

justinsalamon.com �77

Context-Adaptive Neural Networks

32

48 48

3264

26

128

104

5

5

24

64

1

24
48

48

6
Dropout and
weight decay

Adam
optimizer

6

Representation
of background

(???)

justinsalamon.com �78

Background (auxiliary) Features

energy quantiles

mel frequency

Summarize background at scale T = 30 minutes:
energy quantiles (median, quartiles, centiles, etc.)

Auxiliary features describe noise only, not the class of interest.

justinsalamon.com �79

Context-Adaptive Neural Networks

y(t) = σ(∑
k

⟨wk |xk(t)⟩ + b)static sigmoid layer:

y(t) = σ(∑
k

⟨wk(t) |xk(t)⟩ + b)dynamic filter network:

y(t) = σ(∑
k

⟨wk |xk(t)⟩ + b(t))adaptive threshold:

y(t) = σ(∑
k

αk(t)⟨wk |xk(t)⟩ + b)mixture of experts:

justinsalamon.com �80

Context-Adaptive Neural Networks

• Results (AUPRC):

• Spectral flux: 15%

• CNN: 56%

• CNN + aug: 62%

• CNN + PCEN + aug: 66%

• CNN + PCEN + CA + aug: 72%

justinsalamon.com

Robust Sound Event Detection in Acoustic Sensor Networks

�81

• How do we label the data?

• Crowdsourcing: github.com/CrowdCurio/audio-annotator

• Synthesis: github.com/justinsalamon/scaper

• How can we best leverage the labeled data?

• Multiple instance learning + AutoPool: github.com/marl/autopool

• How can we leverage the unlabeled data?

• Deep audio embeddings: github.com/marl/openl3

• How do we make our models robust to different & changing sensor locations?

• PCEN: github.com/librosa/librosa

• Context-adaptive networks: github.com/BirdVox/bv_context_adaptation Thanks!

http://github.com/CrowdCurio/audio-annotator
http://github.com/justinsalamon/scaper
http://github.com/marl/autopool
http://github.com/marl/openl3
http://github.com/librosa/librosa
http://github.com/BirdVox/bv_context_adaptation

