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1. Further details on the model estimation 

For estimation of the model parameters we ran four MCMC chains in parallel, each with 

1000 sample iterations preceded by a warm up period of 1000 iterations (i.e. 2000 iterations 

in total, of which 50% were warm up). Although this number of iterations would seem small 

for a complex model estimated using a Gibbs sampler, the estimation in Stan is based on a 

Hamiltonian Monte Carlo (HMC) algorithm, not Gibbs sampling. The HMC results in much 

lower autocorrelation between subsequent MCMC draws compared with Gibbs sampling, 

and therefore is much more efficient in terms of the effective sample size per iteration. For 

example, for each of the models with an association structure based on the expected value, 

the effective sample size for the estimated association parameter was 4000. 

A potential limitation of the proposed approach is the additional computational complexity. 

Additional clustering factors mean that there are an increasing number of cluster-specific 

parameters (i.e. random effects) to be estimated and therefore computation time increases. 

In our application with 430 patients having a total of 1209 lesions, there were 430 patient-

specific parameters (intercept only) and 3627 lesion-specific parameters (intercept and two 

polynomial terms) to be estimated. Computation time for the models with an association 

structure based on the expected value ranged between 1.5 and 3 hours. The differences in 

computation time were partly related to the random nature of the different MCMC chains, 

and partly related to the type of summary function used in the association structure (i.e. the 

sum, average, maximum, or minimum of the level 2 clusters). The type of association 

structure is of course part of the model definition and therefore the choice of association 

structure will have an influence on the shape of the target posterior distribution, with some 

resulting posteriors easier for the MCMC sampler to explore (i.e. less extreme curvature in 
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the posterior). When the association structure was based on both the expected value and 

the slope, the computation times were slightly longer; ranging between 2 and 5.5 hours. 

These times are based on 1000 warm up iterations, followed by 1000 sample iterations, on a 

standard quad-core desktop with a 3.30GHz processor and 8GB RAM.  

2. Prior distributions used in our application 

Table S1 shows the prior distributions used in our application, including the values of any 

relevant hyperparameters. 

3. Sensitivity analysis using alternative priors for the baseline hazard parameters 

At the suggestion of a reviewer, we conducted a sensitivity analysis to assess whether the 

choice of prior distribution for the B-spline coefficients (i.e. the log baseline hazard 

parameters) affected the results. Table S2 shows the estimated parameters for the joint 

model under three possible prior distributions for the B-spline coefficients: 

1) Cauchy distribution with location 0 and scale 20 (this is the prior used for the main 

results presented in the manuscript) 

2) Normal distribution with location 0 and scale (i.e. standard deviation) 50 

3) Normal distribution with location 0 and scale (i.e. standard deviation) 200 

There is very little difference in the estimated parameters across the three models, 

suggesting that the choice of prior distribution for the B-spline coefficients has little 

influence on the results. 
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4. Example code for fitting the model 

The model in the paper can be easily estimated after downloading the rstanarm R package 

from the Comprehensive R Archive Network (CRAN). To download and install rstanarm, type 

the following into your R console: 

> install.packages("rstanarm") 

And then an example of the code used to fit the model presented in Table 2 of the main 

manuscript would be: 

> library(rstanarm) 

> mod <- stan_jm( 

    formulaLong = ldiam ~  

      egfrcat * poly(months, degree = 2) + 

      (poly(months, degree = 2) | lesion_id) +  

      (1 | patient_id),  

    dataLong = data$lesions, 

    formulaEvent = Surv(eventtime, status) ~ physical,  

    dataEvent = data$surv, 

    seed = 9837355, time_var = "months", id_var = "patient_id", 

    assoc = c("etavalue", "etaslope"), grp_assoc = "max") 

Where data$lesions is a data frame containing the outcome and covariate data for the 

longitudinal submodel, and data$surv is a data frame containing the outcome and covariate 

data for the event submodel. The IPASS data used in the application in the main manuscript 

is not publicly available. However, to demonstrate the structure of the longitudinal and 

event submodel data we show some simulated data here.  

The following shows the structure of the longitudinal data (i.e. data$lesions): 

> tbl_df(data$lesions) 

   patient_id lesion_id months ldiam egfrcat    physical   

   <fct>      <fct>      <dbl> <dbl> <fct>      <fct>      

 1 P00001     P00001_1     0      30 Positive   Restricted 

 2 P00001     P00001_2     0       9 Positive   Restricted 

 3 P00001     P00001_3     0      17 Positive   Restricted 

 4 P00001     P00001_1     1.3    33 Positive   Restricted 
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 5 P00001     P00001_2     1.3     8 Positive   Restricted 

 6 P00001     P00001_3     1.3    14 Positive   Restricted 

 7 P00001     P00001_1     3.6    39 Positive   Restricted 

 8 P00001     P00001_2     3.6     8 Positive   Restricted 

 9 P00001     P00001_3     3.6     6 Positive   Restricted 

10 P00002     P00002_1     0      42 Negative_A Normal     

11 P00002     P00002_2     0      40 Negative_A Normal     

12 P00002     P00002_1     2.2    43 Negative_A Normal     

13 P00002     P00002_2     2.6    32 Negative_A Normal     

14 P00002     P00002_1     4.5    41 Negative_A Normal     

15 P00002     P00002_2     4.3    16 Negative_A Normal     

These data are simulated to come from two patients, with the first patient having three 

lesions and the second patient having two lesions. Each lesion has a unique ID (the variable 

‘lesion_id’) and there is a separate row in the dataset for each time-specific lesion-specific 

biomarker measurement. We see that for the first patient the measurement times are 

common across lesions (𝑡 = 0, 1.3 and 3.6), whereas for the second patient the 

measurement times differ across lesions (𝑡 = 0, 2.2 and 2.5 for their first lesion, and 𝑡 = 0, 

2.6, and 4.3 for their second lesion). The factor variables ‘egfrcat’ and ‘physical’ are 

patient-specific and time-fixed so they are constant across rows within a patient. 

The following shows the structure of the event data (i.e. data$surv): 

> tbl_df(data$surv) 

  patient_id egfrcat    physical   eventtime status 

  <fct>      <fct>      <fct>          <dbl>  <dbl> 

1 P00001     Positive   Restricted       4.3      1 

2 P00002     Negative_A Normal           7.5      0 

We see the same two patients and a single row of data for each patient. The patient-specific 

time-fixed variables ‘egfrcat’ and ‘physical’ are shown again. The event time (in months) 

for each patient is shown in the variable ‘eventtime’ whilst the variable ‘status’ is the event 

indicator (taking the value 1 if the patient experienced the event or value 0 if they were 

censored). 
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5. Simulation study 

We performed a small simulation study to evaluate the performance of the rstanarm 

package with regard to estimating the proposed model. The objective of the simulation 

study was to assess whether rstanarm was able to recover the true value for each of the 

parameters used in the data generating model. The data generating model, the inferential 

quantities, and the results of the simulation study are described in the following sections.  

5.1 Data generating model 

We considered two data generating models (i.e. two scenarios). The two models differed 

only in the specification of the association structure. For both data generating models the 

longitudinal submodel was specified as 

𝑦𝑖𝑗(𝑡𝑖𝑗𝑘 ) = 𝜇𝑖𝑗(𝑡𝑖𝑗𝑘) + 𝜖𝑖𝑗 (𝑡𝑖𝑗𝑘 ) 

𝜇𝑖𝑗(𝑡𝑖𝑗𝑘) = 𝛽0 + 𝑏𝑖0 + 𝑢𝑖𝑗0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + (𝛽3 + 𝑢𝑖𝑗1)𝑡𝑖𝑗𝑘 + 𝛽4𝑡𝑖𝑗𝑘
2 + 𝛽5𝑡𝑖𝑗𝑘

3 

𝜖𝑖𝑗 (𝑡𝑖𝑗𝑘) ~ 𝑁(0,𝜎𝜖
2) 

𝑏𝑖0 ~ 𝑁(0,𝜎𝑏
2) 

(
𝑢𝑖𝑗0

𝑢𝑖𝑗1
) ~ 𝑁(0,𝚺𝐮) 

 

 

(1) 

where 𝑦𝑖𝑗(𝑡𝑖𝑗𝑘) denotes the longitudinal biomarker measurement at the 𝑘𝑡ℎ  (𝑘 = 1, … , 𝐾𝑖𝑗) 

time point 𝑡𝑖𝑗𝑘  for the 𝑗𝑡ℎ  (𝑗 = 1, … , 𝐽𝑖) cluster within the 𝑖𝑡ℎ  (𝑖 = 1, … , 𝑁) individual, 

𝑥1𝑖  ~ Bernoulli(0.5) is an individual-level time-invariant binary covariate, 𝑥2𝑖  ~ 𝑁(0,1) is an 

individual-level time-invariant continuous covariate, 𝑏𝑖0 denotes an individual-specific 
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parameter (i.e. random intercept) for individual 𝑖 assumed to be drawn from a normal 

distribution with variance 𝜎𝑏
2, 𝑢𝑖𝑗0 and 𝑢𝑖𝑗1 are cluster-specific parameters for cluster 𝑗 

assumed to be drawn from a multivariate normal distribution with variance-covariance 

matrix 𝚺𝐮 , 𝛽0 through 𝛽5 are population-level parameters, and 𝜖𝑖𝑗 (𝑡𝑖𝑗𝑘 ) denotes the 

residual error term.  

For the first data generating model (Model A) the event submodel was specified as 

 

ℎ𝑖(𝑡) = 𝛿 𝑡𝛿−1 exp (𝛾0 + 𝛾1  𝑥1𝑖 + 𝛾2  𝑥2𝑖 + 𝛼 (𝐴) ∑ 𝜇𝑖𝑗(𝑡) 

𝐽𝑖

𝑗=1

) 

(2) 

and for the second data generating model (Model B) the event submodel was specified as  

 ℎ𝑖(𝑡) = 𝛿 𝑡𝛿−1 exp(𝛾0 + 𝛾1  𝑥1𝑖 + 𝛾2  𝑥2𝑖 + 𝛼(𝐵)  max(𝜇𝑖𝑗(𝑡);   𝑗 = 1, … , 𝐽𝑖)) (3) 

where 𝛿 is the shape parameter for the Weibull baseline hazard, 𝛾0  is an intercept (i.e. log 

scale parameter for the Weibull baseline hazard), 𝛾1  and 𝛾2  are regression coefficients (i.e. 

log hazard ratios), and 𝛼 (𝐴) and  𝛼(𝐵)  are the association parameters in Models A and B, 

respectively. Therefore, the association structure in Model A is based on the summation of 

the cluster-specific expected values, whilst Model B is based on the maximum of the cluster-

specific expected values (these association structures are discussed in greater detail  in the 

main manuscript). 

The true parameter values used in the simulation study are shown in Tables S3 and S4 (for 

data generating Models A and B, respectively). 
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5.2 Simulation scheme 

We generated 𝐷 = 220 datasets. For each dataset, we generated 𝑁 = 250 individuals. For 

each individual, we generated 𝐽𝑖  lower-level clusters where 𝐽𝑖  was calculated as the integer 

component of a uniform random variable on the range 1 to 7. For each lower-level cluster, 

we generated 10 longitudinal measurements.  

We simulated longitudinal measurements according to the longitudinal submodel defined in 

equation (1). The first longitudinal measurement was generated at baseline (i.e. time 0) with 

all remaining longitudinal measurements generated at times drawn from a uniform 

distribution on the range 0 to 20. We then generated an event time under the event 

submodel defined in equation (2) using the adapted cumulative hazard inversion method 

described by Crowther and Lambert [1] as implemented in the simsurv R package [2]. Any 

longitudinal measurement generated at a measurement time that occurred after the 

individual’s event time was discarded. 

5.3 Inferential quantities 

We used the simjm R package to simulate the data [3]. An analysis model – intended to 

coincide with the data generating model – was fit to each simulated dataset using the 

rstanarm package [4,5]. We obtained a single chain of 2000 MCMC iterations, which 

included a warm-up phase of 1000 iterations that were not used for inference. Convergence 

for each simulated dataset was addressed by ensuring that each parameter had an 

estimated R-hat statistic less than 1.1 [6]. 
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The ability to recover the true parameter values was assessed using the following approach. 

For the model that was fit to the 𝑑𝑡ℎ  (𝑑 = 1,… , 𝐷) simulated dataset the following 

estimates were calculated: 

 The mean of the posterior distribution for parameter 𝑘, denoted 𝜃𝑘

(𝑑)
 

 The bias for parameter 𝑘, defined as �̂�𝑘

(𝑑)
= 𝜃𝑘

(𝑑)
− 𝜃𝑘  where 𝜃𝑘  denotes the true value 

of parameter 𝑘 that was used to simulate the data 

 The relative bias for parameter 𝑘, defined as �̂�𝑘

(𝑑)
= 100 × 𝜃𝑘

−1 (𝜃𝑘

(𝑑)
− 𝜃𝑘) where 𝜃𝑘  

denotes the true value of parameter 𝑘 that was used to simulate the data 

 The standard deviation of the posterior distribution (i.e. estimated standard error) for 

parameter 𝑘, denoted 𝑆𝑘

(𝑑)
 

For inference in the simulation study, the following quantities and plots were then 

calculated using the estimates obtained across the 𝐷 datasets:  

 The mean bias for parameter 𝑘, defined as �̅�𝑘 =
1

𝐷
∑ �̂�𝑘

(𝑑)𝐷
d=1  (“mean bias”) 

 The mean relative bias for parameter 𝑘, defined as �̅�𝑘 =
1

𝐷
∑ �̂�𝑘

(𝑑)𝐷
d=1  (“mean relative 

bias”) 

 The mean standard deviation of the posterior distribution for parameter 𝑘, defined as 

𝑆̅
𝑘 =

1

𝐷
∑ 𝑆𝑘

(𝑑)𝐷
d=1  (“mean estimated standard error”) 

 The standard error of the posterior mean for parameter 𝑘, defined as the standard 

deviation of the estimates {𝜃𝑘

(𝑑)
; 𝑑 = 1, … , 𝐷}  (“empirical standard error”). 
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 Density plots of the posterior mean estimates {𝜃𝑘

(𝑑)
; 𝑑 = 1, … , 𝐷} for parameter 𝑘; 

these were overlaid with a dashed line showing the true parameter value 𝜃𝑘  that was 

used to simulate the data (“empirical sampling distribution of the posterior mean”).  

5.4 Results 

Tables S3 and S4 show the estimated mean bias, mean relative bias, mean estimated 

standard error, and empirical standard error for each of the parameters  under Models A and 

B, respectively. Figures S1 and S2 show density plots of the posterior mean estimates for 

each parameter (i.e. the empirical distribution of 𝜃𝑘) under Models A and B, respectively. 

Overall, the results from the simulation study suggest that rstanarm was able to recover the 

true parameter values used in the data generating model. The true values for the 

parameters (the dashed lines in Figures S1 and S2) are located close to the centre of the 

sampling distribution for the posterior mean. Moreover, Tables S3 and S4 demonstrate that 

the mean estimated standard error (i.e. the mean standard deviation for the posterior 

distribution) was close to the empirical standard error for all parameters under both 

scenarios.  
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Table S1. Prior distributions used in the non-small cell lung cancer (NSCLC) application presented in the main manuscript. 

Parameter Description of parameter Prior distribution 

Longitudinal submodel   

    𝛽0  Population-level intercept Normal(0,   179) 

    𝛽1  Population-level linear effect for time (“time”) Normal(0, 3475) 

    𝛽2  Population-level quadratic effect for time (“time2”) Normal(0, 3480) 

    𝛽31  Population-level group effects, group 2 Normal(0 45) 

    𝛽32  Population-level group effects, group 3 Normal(0, 45) 

    𝛽41   Population-level group*time interaction effects, group 2 Normal(0, 1059) 

    𝛽42   Population-level group*time interaction effects, group 3 Normal(0, 11187) 

    𝛽51  Population-level group*time2 interaction effects, group 2 Normal(0, 10812) 

    𝛽52  Population-level group*time2 interaction effects, group 3 Normal(0, 11440) 

   

Event submodel   

    𝛾1𝑔 Population-level physical activity group effects Normal(0, 2.50) 

    𝛼1

(1)
 Association parameter for the sum of the lesion-specific expected values Normal(0, 0.05) 

    𝛼1

(2)
 Association parameter for the average of the lesion-specific expected values Normal(0, 0.14) 

    𝛼1

(3)
 Association parameter for the maximum of the lesion-specific expected values Normal(0, 0.12) 

    𝛼1

(4)
 Association parameter for the minimum of the lesion-specific expected values Normal(0, 0.14) 
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    𝛼2

(1)
 Association parameter for the sum of the lesion-specific slopes Normal(0, 0.41) 

    𝛼2

(2)
 Association parameter for the average of the lesion-specific slopes Normal(0, 1.75) 

    𝛼2

(3)
 Association parameter for the maximum of the lesion-specific slopes Normal(0, 1.76) 

    𝛼2

(4)
 Association parameter for the minimum of the lesion-specific slopes Normal(0, 1.67) 

    𝜔1 , … . ,𝜔6  Coefficients for the B-spline basis terms in the log baseline hazard Cauchy(0, 20) 

   

Random effects termsa   

    𝜎𝜖   SD of residual error Half-Cauchy(0, 90) 

    𝜎𝑏 , 𝜎𝑢1 , 𝜎𝑢2 , 𝜎𝑢3, Standard deviations for the lesion-specific and patient-specific parameters Half-Cauchy(0, 10) 

    R𝑢 Correlation matrix for the lesion-specific parameters LKJ (regularization = 1)b 

a The variance-covariance matrix for the lesion-specific parameters, Σ𝑢 is decomposed into a correlation matrix R𝑢 and a vector of standard deviations 𝜎𝑢 =

(𝜎𝑢1, 𝜎𝑢2, 𝜎𝑢3). Since there is only one patient-specific parameter there is no correlation matrix R𝑏, rather the variance-covariance matrix for the patient-

specific parameters Σ𝑏 is simply Σ𝑏 = 𝜎𝑏
2 where 𝜎𝑏 is the standard deviation of the patient-specific intercept. 

b With a regularization parameter equal to 1, the LKJ correlation matrix prior distribution corresponds to a joint uniform prior over all possible correlation 

matrices. The technical details of the distribution are described in ‘Lewandowski et al. Generating random correlation matrices based on vines and 

extended onion method. Journal of Multivariate Analysis. 2009; 100: 1989–2001’.  
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Table S2. Fixed effect parameter estimates (posterior means and 95% credible interval limits) from the joint model under three possible prior 

distributions for the B-spline coefficients (i.e. the log baseline hazard parameters). The estimates for the event submodel are on the log hazard 

scale. 

 Prior distribution for the B-spline coefficients 

Parameter Cauchy (0, 20) Normal (0, 50) Normal (0, 200) 

Longitudinal submodel    

   Intercept 22.98 (21.33 to 24.73) 23.03 (21.35 to 24.72) 22.94 (21.21 to 24.64) 

   Group (ref: EGFR+)    

       EGFR-, carboplatin plus paclitaxel 4.03 (0.82 to 7.06) 3.93 (0.81 to 6.97) 4.00 (0.96 to 7.16) 

       EGFR-, gefitinib 16.92 (13.22 to 20.38) 16.94 (13.39 to 20.48) 16.95 (13.39 to 20.65) 

   Time effects    

       Linear term (orthogonalised) -0.07 (-73.26 to 76.72) 0.66 (-70.61 to 77.72) -4.81 (-79.78 to 73.27) 

       Quadratic term (orthogonalised) 450.31 (391.57 to 512.48) 449.89 (391.12 to 511.41) 446.49 (385.13 to 510.54) 

   Group * Linear interaction    

      EGFR-, carboplatin plus paclitaxel * Linear 315.21 (195.05 to 438.40) 313.88 (194.48 to 431.53) 313.24 (195.95 to 434.32) 

      EGFR-, gefitinib * Linear 389.96 (127.54 to 660.39) 391.70 (129.33 to 655.02) 390.24 (127.06 to 660.47) 

   Group * Quadratic interaction    

      EGFR-, carboplatin plus paclitaxel * Quadratic 23.74 (-74.32 to 123.44) 23.65 (-76.39 to 124.86) 23.56 (-77.07 to 122.15) 
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      EGFR-, gefitinib * Quadratic -524.81 (-696.96 to -351.09) -522.12 (-689.88 to -356.56) -523.40 (-695.13 to -356.48) 

    

Event submodel    

   Intercept (adjusts for centering of predictors) -1.22 (-1.77 to -0.67) -1.21 (-1.74 to -0.69) -1.21 (-1.74 to -0.64) 

   Physical functioning (ref: in bed >50% of the time)    

       Normal activity -0.46 (-0.93 to 0.02) -0.47 (-0.91 to 0.01) -0.47 (-0.94 to 0.01) 

       Restricted activity -0.43 (-0.87 to 0.01) -0.44 (-0.85 to 0.00) -0.44 (-0.86 to -0.00) 

   Association parameters    

       Value (diameter of largest lesion) 0.011 (0.004 to 0.017) 0.011 (0.004 to 0.017) 0.011 (0.004 to 0.017) 

       Slope (rate of change in fastest growing lesion) 0.447 (0.352 to 0.559) 0.449 (0.354 to 0.565) 0.448 (0.353 to 0.559) 

   Log baseline hazard parameters    

         B-spline coefficient 1 -5.22 (-6.82 to -3.88) -5.25 (-6.79 to -3.92) -5.21 (-6.75 to -3.90) 

         B-spline coefficient 2 -0.28 (-0.99 to 0.42) -0.27 (-0.97 to 0.42) -0.28 (-0.96 to 0.40) 

         B-spline coefficient 3 -1.28 (-1.85 to -0.76) -1.29 (-1.86 to -0.76) -1.28 (-1.83 to -0.74) 

         B-spline coefficient 4 -0.61 (-1.88 to 0.62) -0.60 (-1.94 to 0.63) -0.58 (-1.91 to 0.65) 

         B-spline coefficient 5 -2.25 (-4.07 to -0.50) -2.31 (-4.15 to -0.54) -2.32 (-4.25 to -0.54) 

         B-spline coefficient 6 0.88 (-1.35 to 2.69) 0.90 (-1.25 to 2.67) 0.91 (-1.32 to 2.71) 

Abbreviations. ref: reference category; EGFR: epidermal growth factor receptor (mutation status). 
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Table S3. Simulation study results for Model A (i.e. association structure based on the summation of the cluster-specific expected values); 

estimated mean bias, mean relative bias, mean estimated standard error, and empirical standard error for each of the parameters. 

Parameter  True value �̅�𝑘   �̅�𝑘  𝑆̅
𝑘  𝑠𝑑(𝜃𝑘)  

Longitudinal submodel      

    𝛽0  Population-level intercept 10 0.0044 0.0441 0.0701 0.0781 

    𝛽1  Population-level coefficient for binary covariate -1 0.0018 -0.1819 0.0981 0.1084 

    𝛽2  Population-level coefficient for continuous covariate 1 0.0016 0.1559 0.0497 0.0529 

    𝛽3  Population-level linear effect for time -0.25 -0.0001 0.0417 0.0139 0.0136 

    𝛽4  Population-level quadratic effect for time 0.03 <0.0001 0.0523 0.0020 0.0018 

    𝛽5  Population-level cubic effect for time -0.0015 <0.0001 0.0733 0.0001 0.0001 

    𝜎𝜖  Standard deviation of the residual errors 0.5 0.0001 0.0248 0.0080 0.0081 

       

Event submodel      

    𝛾0   Intercept (i.e. log scale parameter for Weibull baseline hazard) -5 -0.1121 2.2419 0.3451 0.3340 

    𝛾1   Coefficient (log hazard ratio) for binary covariate -0.5 0.0028 -0.5655 0.1533 0.1738 

    𝛾2   Coefficient (log hazard ratio) for continuous covariate 0.5 0.0013 0.2652 0.0838 0.0854 
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    𝛼 (𝐴)  Association parameter 0.1 0.0024 2.4182 0.0071 0.0070 

    𝛿  Shape parameter for Weibull baseline hazard 1.1 0.0335 3.0444 0.0691 0.0667 

       

Random effects terms      

    𝜎𝑏
2  Variance for individual-level random intercept term 0.25 -0.0003 -0.1156 0.0554 0.0562 

    𝚺u[1,1]  Variance for cluster-level random intercept term 1 0.0069 0.6872 0.0654 0.0669 

    𝚺u[1,2]  Covariance for cluster-level random intercept and slope terms -0.014 <0.0001 0.0105 0.0058 0.0058 

    𝚺u[2,2]  Variance for cluster-level random (linear) slope term 0.0049 <0.0001 0.9981 0.0006 0.0006 

Abbreviations. �̅�𝑘: mean bias for parameter 𝑘; �̅�𝑘: mean relative bias (%) for parameter 𝑘; 𝑆̅
𝑘: mean estimated standard error for parameter 𝑘; 𝑠𝑑(�̂�𝑘): 

empirical standard error of the posterior mean for parameter 𝑘; n/a: not applicable. 
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Table S4. Simulation study results for Model B (i.e. association structure based on the maximum of the cluster-specific expected values); 

estimated mean bias, mean relative bias, mean estimated standard error, and empirical standard error for each of the parameters. 

Parameter  True value �̅�𝑘   �̅�𝑘  𝑆̅
𝑘  𝑠𝑑(𝜃𝑘)  

Longitudinal submodel      

    𝛽0  Population-level intercept 10 0.0035 0.0348 0.0711 0.0704 

    𝛽1  Population-level coefficient for binary covariate -1 -0.0069 0.6862 0.0987 0.0996 

    𝛽2  Population-level coefficient for continuous covariate 1 -0.0009 -0.0853 0.0500 0.0502 

    𝛽3  Population-level linear effect for time -0.25 -0.0002 0.0696 0.0117 0.0115 

    𝛽4  Population-level quadratic effect for time 0.03 -0.0001 -0.1720 0.0017 0.0016 

    𝛽5  Population-level cubic effect for time -0.0015 <0.0001 -0.0667 0.0001 0.0001 

    𝜎𝜖  Standard deviation of the residual errors 0.5 0.0012 0.2414 0.0069 0.0063 

       

Event submodel      

    𝛾0   Intercept (i.e. log scale parameter for Weibull baseline hazard) -5 -0.1026 2.0520 0.7795 0.7900 

    𝛾1   Coefficient (log hazard ratio) for binary covariate -0.5 -0.0006 0.1135 0.1598 0.1700 

    𝛾2   Coefficient (log hazard ratio) for continuous covariate 0.5 0.0118 2.3506 0.1039 0.1016 
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    𝛼 (𝐵)  Association parameter 0.3 0.0075 2.4930 0.0691 0.0695 

    𝛿  Shape parameter for Weibull baseline hazard 1.1 0.0314 2.8577 0.0705 0.0730 

       

Random effects terms      

    𝜎𝑏
2  Variance for individual-level random intercept term 0.25 0.0042 1.6858 0.0548 0.0548 

    𝚺u[1,1]  Variance for cluster-level random intercept term 1 0.0070 0.7046 0.0638 0.0640 

    𝚺u[1,2]  Covariance for cluster-level random intercept and slope terms -0.014 <0.0001 0.0489 0.0050 0.0051 

    𝚺u[2,2]  Variance for cluster-level random (linear) slope term 0.0049 <0.0001 0.3286 0.0005 0.0005 

Abbreviations. �̅�𝑘: mean bias for parameter 𝑘; �̅�𝑘: mean relative bias (%) for parameter 𝑘; 𝑆̅
𝑘: mean estimated standard error for parameter 𝑘; 𝑠𝑑(�̂�𝑘): 

empirical standard error of the posterior mean for parameter 𝑘; n/a: not applicable. 
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Figure S1. Simulation study results for Model A (i.e. association structure based on the summation of the cluster-specific expected values); 

kernel density plots showing the distribution (across the 280 simulated datasets) of the estimated posterior mean for each parameter. The 

dashed line shows the true parameter value used in the data generating model. 
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 Figure S2. Simulation study results for Model B (i.e. association structure based on the maximum of the cluster-specific expected values); 

kernel density plots showing the distribution (across the 280 simulated datasets) of the estimated posterior mean for each pa rameter. The 

dashed line shows the true parameter value used in the data generating model. 

 


