

Verifying the System State for the Absence of Malware
on Commodity Platforms

Submitted in partial fulfillment of the requirements for

the degree of

Doctor of Philosophy

 in

Electrical and Computer Engineering

Yanlin Li

B.S., Electrical and Information Engineering, Tianjin University, China
M.S., Electrical and Information Engineering, Tianjin University, China

M.S., Electrical and Computer Engineering, Carnegie Mellon University

Carnegie Mellon University
Pittsburgh, PA

August, 2015

	

	

	

	

	

	

	

Copyright © 2015 Yanlin Li
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Thesis Committee:

Prof. Adrian Perrig, Chair (Carnegie Mellon University)

 Prof. Virgil Gligor (Carnegie Mellon University)

 Prof. Greg Ganger (Carnegie Mellon University)

 Dr. Jesse Walker (Intel)

 Dr. Jonathan McCune (Google)

This research was supported in part by CyLab at Carnegie Mellon under grants DAAD19-

02-1-0389, MURI W 911 NF 0710287, W911NF-09-1-0273 from the Army Research

Office, grant NGIT2009100109 from the Northrop Grumman Information Technology

Inc. Cyber Security Consortium, grant N66001-13-2-4040 from the Defense Advanced

Research Projects Agency (DARPA), and grant from the General Motors (GM)

Corporation and by a gift from Lockheed Martin Corporation.

The views and conclusions contained here are those of the authors and should not be

interpreted as necessarily representing the official policies or endorsements, either express

or implied, of ARO, DARPA, GM, Northrop Grumman, CMU, LMC, or the U.S.

Government or any of its agencies.

Dedicated to my beloved parents and wife

Abstract

Several techniques exist to verify the integrity of the software image to guarantee

the absence of malware on commodity computers or embedded platforms based

on a hardware- or software-based root of trust. However, as modern embedded

platforms have become increasingly complex, existing software-based attestation

techniques for embedded platforms no longer cover the new hardware features.

In addition, malware can infect peripherals’ firmware in a commodity computer.

Such malware, once inside a peripheral, may also compromise other peripherals’

firmware or the host operating system. Unfortunately, none of the existing tech-

niques provides a mechanism for verifying the integrity of peripherals’ firmware to

guarantee the absence of malware.

In the first two parts of this thesis, we investigate the feasibility of addressing

the following two challenges: (1) establishing a software-only root of trust on an

embedded platform to verify the system state of the embedded platform, and (2)

verifying the integrity of peripherals’ firmware on commodity computers. For the

first challenge, we identify three new classes of attacks against existing software-

based attestation mechanisms and propose countermeasures to detect these attacks.

For the second challenge, we propose a software-based scheme enabling a piece

of trusted code running on the main CPU, bootstrapped through a hardware- or

software-based root of trust, to verify the integrity of peripherals’ firmware.

The software stack on commodity computers contains an increasingly large

number of vulnerabilities. Verifying the integrity of the entire software image on

commodity computers in a hostile world is impractical for protecting security-

sensitive operations. To protect security-sensitive operations, e.g., paying bills,

v

shopping online, accessing medical records, establishing an isolated execution en-

vironment on commodity computers for security-sensitive operations with integrity

measurement is a desirable functionality. The software-based mechanism for pe-

ripheral firmware integrity verification can be integrated with the isolated execu-

tion environment to guarantee the absence of malware in peripherals, providing an

isolated malware-free operation environment with trusted peripherals for security-

sensitive operations.

However, one-way protected malware-free operation environment is insuffi-

cient in some practical scenarios, e.g., Cloudlets, in which two-way protection is

required. In the third part of this thesis, we propose MiniBox, the first two-way

sandbox for x86 native code that not only protects a benign OS from a misbehav-

ing program, but also protects a running program from a malicious OS. To achieve

two-way protection, MiniBox verifies the system state including the integrity of

peripherals’ firmware to prevent malware from spreading to either side.

vi

Acknowledgements

Foremost, I would like to express my deepest appreciation and thanks to my aca-

demic advisor, Professor Adrian Perrig, for his invaluable guidance, inspiration,

and encouragement. Adrian has been a tremendous mentor for me. His advice and

patience trained me to grow as a research scientist and his enthusiasm in research

always motivates me to improve and aim high. I also would like to express my

sincere gratitude to Dr. Virgil Gligor and Dr. Jonathan McCune, who also advised

me during my Ph.D. study, for their invaluable guidance and encouragement. My

sincere thanks also go to my other committee members Dr. Greg Ganger and Dr.

Jesse Walker for their abundant encouragement and insightful comments on this

thesis.

I am also very grateful to many collaborators: Brandon Baker, Dr. Rekha Bach-

wani, Dr. David Brumely, Dr. Bradley Chen, Dr. Haibo Chen, Dr. Yueqiang Cheng,

Dr. Anupam Datta, Will Drewry, Dr. Jie Liu, Dr. Petros Maniatis, Dr. James New-

some, Dr. Bodhi Priyantha, Dr. Bryan Parno, Dr. Dina Papagiannaki, Dr. Ning

Qu, Dr. Anmol Sheth, Dr. Amit Vasudevan, Dr. Maverick Woo, Ted Wobber, Dr.

Yinglian Xie, Dr. Fang Yu, Dr. Xin Zhang, and Dr. Zongwei Zhou. I cannot be

thankful enough to them for their invaluable feedback and fruitful collaborations.

I also thank colleagues at Carnegie Mellon University, who made my Ph.D.

journey so colorful: Dr. Lujo Bauer, Youzhi Bao, Dr. Sang Kil Cha, Chen Chen,

Michael Farb, Geoff Hasker, Dr. Hsu-Chun Hsiao, Han Jun, Dr. Limin Jia, Dr.

Tiffany Hyun-jin Kim, Dr. Jialiu Lin, Dr. Yue-Hsun Lin, Steve Matsumoto, Em-

manuel Owusu, Dr. Edward Schwartz, Michael Stroucken, Dr. Vyas Sekar, Miao

Yu, and Dr. Jun Zhao.

vii

Finally, I must express my sincere thanks to my family members, whose sup-

port and encouragement in both my life and research inspired me whenever I was

in doubt. In particular, I must thank my wife, Lingjuan, without whose love, sup-

port, and encouragement over the past years in my Ph.D. journey, the dissertation

would not have been completed.

viii

Contents

1 Introduction 1

1.1 Existing Techniques and Limitations 2

1.1.1 Software-Based Attestation 2

1.1.2 Trusted Boot . 3

1.1.3 One-Way Protection and Cloudlets 3

1.2 Thesis Statement . 5

1.3 Outline and Overview . 5

1.4 Summary of Contributions . 7

2 Background 8

2.1 Software-Based Attestation Techniques 8

2.1.1 SWATT: SoftWare-based ATTestation 8

2.1.2 ICE: Indisputable Code Execution 9

2.1.3 Attacks Against Existing Techniques 10

2.2 Modern System Architecture and Buses 14

2.2.1 Modern System Architecture 14

2.2.2 PCI, PCI-X and PCI Express 15

2.2.3 Peer-to-Peer Peripheral Communication 16

2.2.4 Malware on Peripherals 16

ix

2.3 Hardware-Based Trusted Computing Techniques 17

2.3.1 Dynamic Root of Trust for Measurement 17

2.3.2 TrustVisor . 18

2.3.3 On-Demand Isolated I/O 19

2.4 Google Native Client . 20

2.4.1 Validator . 21

2.4.2 Runtime Framework . 21

3 Mead: Establishing a Malware-Free System State on Embedded Plat-

forms 22

3.1 Assumptions & Attacker Model 24

3.2 Mead Overview . 25

3.3 New Attacks & Challenges . 28

3.3.1 Future-Posted Event Attacks 28

3.3.2 I-cache Inconsistency Attacks 29

3.3.3 Measured Time-Variance Based Attacks 30

3.3.4 New Challenge: Heterogeneous Processor Architecture . . 33

3.4 Countermeasures . 34

3.4.1 Verifying Critical Configurations 34

3.4.2 Prevention of I-cache Inconsistency-Based Attacks 36

3.4.3 Overcome Measured Time Variance 44

3.4.4 Measure The Entire Physical Memory 58

3.4.5 Attestation on Heterogeneous Processor Architectures . . 61

3.5 Implementation . 62

3.5.1 Gumstix FireStorm COM 63

3.5.2 Checksum Function Implementation 65

3.6 Evaluation . 71

x

3.6.1 Attacks and Malicious Operations 71

3.6.2 Simulating I-TLB Replacement 72

3.6.3 Simulating I-TLB and D-TLB Replacements 76

3.6.4 Handling Dynamically Modified Instructions 77

3.6.5 Memory Substitution Attacks 79

3.6.6 Evaluation Results . 81

3.7 Discussion . 86

3.8 Summary . 88

4 VIPER: Verifying the Integrity of Peripherals’ Firmware 90

4.1 Problem Definition . 93

4.2 System Design . 94

4.2.1 VIPER Overview . 94

4.2.2 Attestation Protocol . 97

4.2.3 Design of the Checksum Function 103

4.3 Implementation on Netgear GA620 NIC 105

4.3.1 Netgear GA620 Network Adapter 106

4.3.2 Verification for Microcontrollers A and B 109

4.3.3 Checksum Function Implementation 111

4.3.4 Latency-Based Attestation 114

4.4 Evaluation on Netgear GA620 NIC 122

4.4.1 Ethernet-based proxy attack 122

4.4.2 Forging Data Pointer (DP) attack 124

4.4.3 Forging PC attack . 125

4.4.4 Evaluation Results . 126

4.5 Implementation on Apple Aluminum Keyboard 127

4.5.1 The Apple Aluminum Keyboard 127

xi

4.5.2 Verification Function Design 128

4.5.3 Verification Function Implementation 131

4.6 Evaluation on Apple Aluminum Keyboard 134

4.6.1 Verification Time. 134

4.6.2 USB Communication Overhead. 134

4.6.3 Analysis . 135

4.7 Integration: A Malware-Free Operation Environment 136

4.8 Discussion . 140

4.9 Summary . 143

5 MiniBox: A Two-Way Sandbox for x86 Native Code 145

5.1 Assumptions and Attacker Model 151

5.2 System Design . 152

5.2.1 MiniBox Architecture 152

5.2.2 Communication Interfaces 154

5.2.3 Dynamic Memory Management 156

5.2.4 Thread Local Storage Management 157

5.2.5 Multi-threading . 158

5.2.6 Secure File I/O . 160

5.2.7 MIEE Preemption and Scheduling 162

5.2.8 Exceptions, Interrupts, and Debugging 163

5.2.9 Program Loader . 164

5.3 Implementation . 166

5.3.1 Hypervisor . 166

5.3.2 Program Loader and Service Runtime 166

5.3.3 System Calls . 168

5.4 Evaluation . 170

xii

5.4.1 Performance Impact . 170

5.4.2 Porting Effort . 171

5.4.3 MiniBox Microbenchmarks 171

5.4.4 Application Benchmarks 173

5.5 Integration: MiniBox with Trusted I/O 176

5.6 Limitations and Future Work . 179

5.7 Summary . 182

6 Related Work 184

6.1 Software-Based Attestation Techniques 184

6.2 Peripheral Malware Detection 186

6.3 Protecting Applications . 187

6.4 Sandbox for x86 Native Code . 188

7 Conclusion 189

Bibliography 191

xiii

List of Figures

2.1 Hardware Architecture of a Modern Motherboard. 14

2.2 TrustVisor Architecture . 18

2.3 On-Demand Isolated I/O Architecture 20

3.1 Mead system architecture and verification procedure. 26

3.2 Timeline of a WDT reset attack. 28

3.3 Timeline of an I-cache inconsistency attack. 30

3.4 Timeline of normal condition and time-variance based attack. . . . 32

3.5 Heterogeneous processor architecture 33

3.6 Virtual memory and physical memory mappings. 38

3.7 Page Table and TLB . 39

3.8 Memory mappings of Attack IV, Attack VI, or Attack VII. 45

3.9 Memory mappings of Attack V or Attack VIII. 46

3.10 Assembly instructions that measures the VA space D. 67

3.11 Measured time of a single nonce-response pair in seconds 81

3.12 Attack Overhead . 84

4.1 A Proxy Attack. 92

4.2 VIPER System Architecture. 94

4.3 One challenge-response pair for latency-based attestation 98

xiv

4.4 The latency-based attestation procedure after speed-up 101

4.5 Netgear GA620 System Architecture. 106

4.6 Netgear GA620 Memory Layout. 108

4.7 Assembly Instructions for One Checksum Block. 113

4.8 Host CPU to NIC Communication via GA620’s Mailbox. 116

4.9 Impact of Delay . 117

4.10 Communication overhead and checksum computation time 118

4.11 Verification procedure . 121

4.12 Impact of delay1, delay2, and delay3 in Figure 4.11. 122

4.13 Proxy Attack Implementation. 123

4.14 Attacker Performance. 126

4.15 Memory Layout of Program Memory 132

4.16 Verification Time . 134

4.17 USB Communication Overhead 135

4.18 A Malware-Free Operation Environment with Trusted I/O 136

5.1 Sandbox and TrustVisor or Intel SGX Architectures 148

5.2 MiniBox System Architecture. 152

5.3 System Call Return Flow. 159

5.4 System Call Benchmarks in us 171

5.5 File I/O Benchmarks in us . 173

5.6 Network I/O Benchmarks in Mbps 174

5.7 zlib File Compression with File I/O Benchmarks in ms 175

5.8 SSL Connection Benchmarks in ms 175

5.9 SSL Throughput Benchmarks in Mbps 176

5.10 MiniBox System Architecture with Trusted I/O. 177

xv

List of Tables

3.1 Attacks against Mead and Malicious Operations. 73

5.1 SLoC Added to TrustVisor Hypervisor. 167

5.2 SLoC of Modules Added to Google Natice Client 168

5.3 System Calls Supported by MiniBox 169

xvi

Chapter 1

Introduction

As modern commodity computers evolve, their software stack becomes progres-

sively larger. Today, the Trusted Computing Base (TCB) of commodity computers

includes the operating system, the device drivers, applications and peripherals’

firmware. Unfortunately, such software is mainly designed for features, not secu-

rity. As a result, the software stack on commodity computers contains an increas-

ingly larger number of vulnerabilities. Consequently, once a commodity computer

is connected to a hostile environment (e.g., to the Internet or with an untrusted USB

drive), an adversary can exploit the vulnerabilities on a commodity computer. In

addition, today’s supply chains for commodity computers and embedded devices

(e.g., desktops, wireless routers, smartphones) are globalized and diversified, mak-

ing it easier for adversaries to insert malware into commodity platforms during the

manufacturing or shipping process. Consequently, a commodity computer or em-

bedded platform might be infected with malware even before it is delivered to the

user. For instance, in 2015, Kaspersky Lab (a Russian security software maker)

reported [59] that it had discovered spyware on hard drives’ firmware on personal

computers from about 30 countries. The infected hard drives came from major

1

manufacturers including Seagate, Western Digital (WD), IBM, and Toshiba.

To guarantee the absence of malware on commodity computers or embedded

platforms, a number of techniques [32, 77, 88, 89, 95, 121] have been proposed to

verify the integrity of the software image on a commodity computer or embedded

platform based on a hardware- or software-based root of trust. However, a number

of limitations exist in existing techniques.

1.1 Existing Techniques and Limitations

1.1.1 Software-Based Attestation

Software-based attestation techniques for embedded platforms (Section 2.1 in Chap-

ter 2) establish a software-based root of trust on an embedded platform, and then

measure the integrity of the software image on the platform to guarantee the ab-

sence of malware [32, 88, 89, 95, 121]. However, modern embedded platforms

have become increasingly complex with the inclusion of more hardware features,

such as multiple heterogeneous processors, multiple-level caches, and complex

system configurations. The software-based attestation techniques proposed years

ago for much simpler embedded platforms do not cover the new hardware fea-

tures available on modern embedded platforms. Consequently, an adversary might

leverage the new hardware features to break existing software-based attestation

mechanisms.

In the first part of this thesis (Chapter 3), we investigate the feasibility of estab-

lishing a software-only root of trust on a modern embedded platform to guarantee

the absence of malware on the platform. In particular, we examine new hardware

features of embedded platforms that are not covered by existing software-based at-

testation techniques, present new classes of attacks against existing software-based

2

attestation techniques, and propose countermeasures to detect these attacks.

1.1.2 Trusted Boot

On commodity computers, trusted boot technique [77] accumulates a list of the in-

tegrity measurements of the software executed on a commodity computer based on

a hardware-based root of trust, thereby enabling a verifier to verify the integrity of

the software. However, an often-overlooked software attack target is the firmware

that executes in peripheral devices. Attackers can exploit vulnerabilities in pe-

ripherals’ firmware or their firmware update tools [22, 29] to insert malware into

peripherals’ firmware. Such malware, once inside a peripheral, may also compro-

mise other peripherals’ firmware or the host operating system.

Unfortunately, none of the previous techniques provide a mechanism to ver-

ify the integrity of peripherals’ firmware to guarantee the absence of malware in

peripherals. Verifying the integrity of peripherals’ firmware remains a significant

challenge because (1) the limited memory and computational resources on periph-

erals make it difficult to deploy complex security primitives on the peripherals

themselves and (2) hardware-based protection is impractical because it would add

cost and complexity to devices already under severe economic constraints.

In the second part of this thesis (Chapter 4), we investigate the challenges

in verifying the integrity of peripherals’ firmware on commodity computers and

present a novel approach to enable a securely protected program (e.g., bootstrapped

based on a hardware-based root of trust) running on the main CPU to efficiently

verify the integrity of peripherals’ firmware to guarantee the absence of malware

on peripherals.

3

1.1.3 One-Way Protection and Cloudlets

One-Way Protection To securely perform security-sensitive operations on a com-

modity computer in a hostile environment, a current trend is to establish an iso-

lated operation environment for security-sensitive operations with integrity mea-

surement to guarantee the absence of malware in the isolated operation environ-

ment [4, 31, 37, 66, 111, 126, 127]. Existing techniques for establishing an iso-

lated operation environment focus on one-way protection that protects the security-

sensitive portion of a program from a malicious OS (usually with two-way memory

isolation) while the non-sensitive portion of the program is not isolated from the

OS. Such one-way protection is insufficient for some practical scenarios, such as

Cloudlets [86,87], in which two-way protection is highly desirable. In the two-way

protection, a security-sensitive program is protected from a malicious OS while the

OS is protected from a misbehaving program. However, in existing techniques, the

non-isolated portion of the program may contain malware that can compromise the

system.

Cloudlets As mobile computing and cloud computing converge, Satyanarayanan

et al. envision Cloudlets [86, 87], a middle tier of a mobile device-Cloudlet-cloud

hierarchy, enabling resource-poor mobile devices to offload compute-intensive or

data-intensive programs to nearby public computers (e.g., a public computer in a

cafe or airport) with a small communication latency. Meanwhile, users can also

benefit from the rich I/O peripherals available on Cloudlet public computers for

complex operations that are inconvenient on mobile devices with limited I/O pe-

ripherals (e.g., small display with poor resolution).

Two-Way Protection Obviously, a two-way protection mechanism is highly de-

sirable in Cloudlets. In the two-way protection, the offloaded program and corre-

4

sponding security-sensitive data are protected from malicious code on the Cloudlet

public computer (including malicious code in the OS and other programs offloaded

by other users) while the OS on the Cloudlet computer is protected from malicious

offloaded programs. Unfortunately, it is still an open challenge to provide such a

two-way protection mechanism on commodity computers.

In the third part of the thesis (Chapter 5), we investigate the design options

for providing such two-way protection by combining an isolation module (e.g.,

the TrustVisor [66, 111] or Intel Software Guard Extensions (Intel SGX) [4, 31,

37]) with a one-way sandbox (i.e., Google Native Client Sandbox [122, 123]). We

then present MiniBox, the first two-way sandbox for x86 native code. To achieve

two-way protection with trusted peripherals, MiniBox can verifies the integrity of

peripherals’ firmware to prevent malware from spreading to either side.

1.2 Thesis Statement

In this dissertation, we examine the feasibility of verifying the system state to guar-

antee the absence of malware on commodity platforms and make the following

thesis statement:

It is possible to guarantee the absence of malware in the entire system or

in an isolated operation environment (with or without two-way protection) by

verifying the system state (including the peripherals’ state) of the entire system

or the isolated operation environment based on a hardware- or software-based

root of trust on commodity platforms.

1.3 Outline and Overview

Now, we present the outline of this dissertation and an overview of each chapter.

5

1. In Chapter 2, we describe the background knowledge including existing

software-based attestation techniques and known attacks against the software-

based attestation, the hardware architecture of a modern motherboard, the

features of malware on peripherals on commodity computers, existing hardware-

based trusted computing techniques, and the Google Native Client sand-

box [122, 123].

2. In Chapter 3, we present three new classes of attacks against existing software-

based attestation schemes and propose corresponding countermeasures to es-

tablish a software-only root of trust on embedded platforms. In particular,

we leverage a dynamically modified page table to force attackers to perform

complex operations during an attack, thereby inducing detectable overhead.

Based on the software-only root of trust, we can verify the integrity of the

system image and reset all platform configurations to guarantee the absence

of malware on embedded platforms.

3. In Chapter 4, we present VIPER, a novel software-based approach to enable

a trusted verifier program running on the main CPU to efficiently verify the

integrity of peripherals’ firmware to guarantee of the absence of malware on

peripherals. In this chapter, we also show how to integrate the mechanism

for peripheral firmware integrity verification with existing trusted computing

techniques to establish an isolated malware-free operation environment with

trusted peripherals on commodity computers.

4. In Chapter 5, we present MiniBox, a two-way sandbox for x86 native code,

which can provide efficient two-way protection for x86 native code with

a small TCB. The two-way sandbox provides a mutually isolated execution

environment for x86 native code with an efficient service runtime. To protect

6

the host OS, the two-way sandbox also constrains the system call interface

exposed to the native code from the OS. Integrated with VIPER, the two-way

sandbox can offer a two-way protected malware-free operation environment,

thereby enabling users to perform security-sensitive operations on a public

computer (e.g., a Cloudlet computer).

5. In Chapter 6, we review the related work in software-based attestation, pe-

ripheral malware detection, schemes to protect security-sensitive applica-

tions, and sandbox for the host OS protection.

6. In Chapter 7, we conclude this dissertation.

1.4 Summary of Contributions

In the journey to examine the feasibility of verifying the system state to guarantee

the absence of malware, this dissertation makes the following high-level contribu-

tions.

1. An investigation into the new challenges and corresponding countermeasures

to perform software-based attestation to guarantee the absence of malware

on embedded platforms.

2. A software-based approach to verify the integrity of peripherals’ firmware

on commodity computers.

3. A system architecture for providing a two-way protected operation environ-

ment with a small TCB on commodity computers.

7

Chapter 2

Background

In this chapter, we present background knowledge. Existing software-based attes-

tation techniques and the known attacks against existing techniques are presented

in Section 2.1. The hardware architecture of a modern motherboard and the fea-

tures of malware on peripherals are described in Section 2.2. The existing trusted

computing techniques to achieve secure code execution and on-demand isolated

I/O are described in Section 2.3. In Section 2.4, we present Google Native Client

sandbox [122, 123], based on which we design a two-way sandbox.

2.1 Software-Based Attestation Techniques

2.1.1 SWATT: SoftWare-based ATTestation

SoftWare-based ATTestation for embedded devices (SWATT) is based on a challenge-

response protocol between a trusted verifier and an untrusted embedded device, and

a predicted computation time constraint. First, the verifier sends a random nonce

to the embedded device. Using this nonce as a seed, a verification function in the

embedded device computes a checksum over the entire memory contents and re-

8

turns the checksum result to the verifier. The verifier has a copy of the expected

memory contents of the embedded device, so it can verify the checksum result.

Also, the verifier knows the exact hardware configuration of this untrusted embed-

ded device, enabling the verifier to exactly predict the checksum computation time.

Because the checksum function is well optimized, the presence of any malicious

code in memory will either invalidate the checksum result or introduce a detectable

time delay. Therefore, only the checksum result received within the expected time

range is valid. During checksum computation, the checksum function reads mem-

ory in a pseudo-random traversal, thus preventing an attacker from precomputing

the checksum result. SWATT requires that the embedded device can only commu-

nicate with the verifier during attestation. This prevents a malicious device from

communicating with a faster machine to compute the checksum.

2.1.2 ICE: Indisputable Code Execution

Indisputable Code Execution (ICE) sets up a dynamic software-based root of trust

on an untrusted device through a challenge-response protocol between a trusted

verifier and the untrusted embedded device, and a predicted computation time con-

straint. The dynamic software-based root of trust also sets up an untampered exe-

cution environment, which in turn is used to demonstrate verifiable code execution

to the verifier. As in SWATT, the verifier first sends a random nonce to the un-

trusted device. Upon receiving the random nonce, the verification function in the

untrusted device sets up an untampered execution environment. The verification

function includes code to set up an ICE environment by disabling interrupts, a

checksum function that computes a checksum over the contents of the verification

function, a communication function (send function) that returns computation re-

sults to the verifier, and a hash function that computes a hash of the executable that

9

will be invoked in the untampered environment. After checksum computation, the

send function sends the checksum result to the verifier. As in SWATT, the verifier

can verify the checksum result and predict the checksum computation duration. If

the verifier receives the correct checksum within the expected time, the verifier ob-

tains assurance that the untampered execution environment (dynamic root of trust)

has been set up in the untrusted device. The send function invokes the hash func-

tion to compute a hash of the executable in the embedded device and sends the hash

result to the verifier. Then the verification function invokes the executable on the

untrusted device. Simultaneously, the verifier obtains the guarantee of the integrity

of the executable through verifying the hash of the executable.

2.1.3 Attacks Against Existing Techniques

In this section, we describe known attacks against the existing software-based at-

testation schemes.

Memory Copy and Memory Substitution Attacks There are two types of mem-

ory copy attacks. In a first type of memory copy attack, attackers run a modified

checksum function in the correct memory location, and save a correct copy of the

original checksum function in spare memory space. During the checksum com-

putation, the malicious checksum function computes the checksum over the cor-

rect copy. In a second type of memory copy attack, attackers load the original

checksum function to the correct memory location, but run a malicious checksum

function in another memory location that computes the checksum over the orig-

inal copy. In a memory substitution attack, attackers run a modified checksum

function in the correct location and save a correct copy of the original checksum

function in spare memory. During the checksum computation, the modified check-

sum function checks every memory address to read and redirects the memory read

10

to the correct copy when the modified memory contents are read. In the check-

sum computation, the Program Counter (PC) value or the Data Pointer (DP) value

(the memory address to read) are incorporated into the checksum. In a memory

copy or memory substitution attack, the malicious checksum function has to forge

the correct PC or DP value to compute the expected checksum, thereby causing a

computation overhead.

Proxy Attack In a proxy attack, the untrusted device under attestation (prover

device) asks a remote faster computer (a proxy that can compute the expected

checksum results faster than the prover device) to compute the expected check-

sum. The proxy attack can be detected if the user monitors all the communication

channels of the prover device. For example, the user can use a Radio Frequency

analyzer (e.g., RF-Analyzer HF35C) to detect any wireless communications of the

prover device, thus detecting wireless proxy attacks.

Split-TLB Attack In a split-TLB attack, attackers carefully configure the In-

struction Translation Lookaside Buffer (I-TLB) and the Data Translation Looka-

side Buffer (D-TLB) such that the entries for the checksum function memory pages

point to different physical addresses in the I-TLB and the D-TLB separately. In

this way, attackers can run a malicious checksum function, but compute the check-

sum over the correct copy of the checksum function without additional operations.

However, attackers must guarantee that the carefully configured entries in the D-

TLB and the I-TLB will be preserved during the checksum computation.

Return Oriented Programming Attack Return oriented programming (ROP) [16,

40,97] performs computation on a system by executing several pieces of code that

are terminated by a return instruction. These pieces of code are executed through

11

well-controlled stack content. If there is sufficient existing binary code in the sys-

tem, an adversary can execute arbitrary computations through a ROP attack with-

out injecting any code, except for overwriting the stack with well-designed con-

tent. Castelluccia et al. [17] present that an adversary can use a ROP attack to

protect malicious code from being detected by software-based attestation schemes.

Briefly, the adversary code first saves a copy of the adversary code on data memory

before attestation. Then the adversary code modifies the contents of data memory

by embedding ROPs on the stack. Through these ROPs, the attacker erases all the

malicious code in program memory and restores the original code before check-

sum computation. Then, during checksum computation, the contents of program

memory are exactly as expected. After attestation, the attacker restores malicious

code in program memory through an additional ROP. The ROP attack generates

little computation overhead. For example, in the attack described by Castelluc-

cia et al. [17], the computation overhead caused by a ROP attack is undetectable,

only 0.3% of the expected checksum computation time. To prevent this attack, the

checksum function can incorporate the stack contents into the checksum to mea-

sure the integrity of the stack contents.

Memory Compression Attack One important enabler of a memory copy or

memory substitution attack is that the malicious code can remember or predict

the constant values of empty memory during attestation. Therefore, Seshadri et

al. [96] propose to fill the empty space of program memory with pseudo-random

values and leave no available free space for attackers to make a memory copy

or memory substitution attack. However, an attacker can still create free space

through compressing the existing code on program memory. Some compression

algorithms, such as the Canonical Huffman Encoding [39], can decompress the

compressed stream from an arbitrary position. Thus, the malicious code can de-

12

compress the compressed steam on-the-fly during attestation and obtain the correct

checksum result though the checksum code reads memory in a pseudo random

traversal. However, the decompression procedure causes a detectable computation

overhead because of the complexity of the decompression algorithm.

Two-part checksum computation attack Another attack against software-based

attestation mechanisms is two-part checksum computation attack [90]. In software-

based attestation schemes, a checksum function executes the checksum blocks for

a large number of iterations (assuming the checksum function executes the check-

sum blocks for N iterations). In a two-part checksum computation attack, an ad-

versary runs a malicious checksum function (with additional operations to protect

malicious contents from being detected) for only K iterations, and then runs the

original checksum function for the left N−K iterations. Because the checksum

function reads the memory contents in a random pattern (for integrity measure-

ment), it is possible that the malicious contents would not be measured during the

left N−K iterations. The overhead caused by the malicious operations in the K

iterations might be not be detectable.

To prevent this attack, we can increase the number of checksum iterations per-

formed on the prover device. Based on the result of the Coupon Collector’s Prob-

lem [42], we denote the minimal number of checksum iterations to measure every

memory location in high probability as M. The verifier machine can request the

checksum function to execute the checksum blocks for c×M iterations (assuming

the checksum function measures the memory contents one time in each checksum

iteration). c is a number greater than 1. To prevent two-part computation attacks,

we set a detection threshold that could detect malicious operations in (c−1)×M

iterations.

13

2.2 Modern System Architecture and Buses

2.2.1 Modern System Architecture

CPU

Memory

Northbridge

(memory

controller hub)

Southbridge

(I/O controller hub)

PCI Express

Bus

High Speed

Graphics Card

PCI or PCI-X

Bus

PCI Peripherals

Others

Super I/O

(I/O devices)

IDE

USB

SATA

LPC Bus

Flash Rom

(BIOS)

Clock

Generator

Figure 2.1: Hardware Architecture of a Modern Motherboard.

Figure 2.1 shows a diagram of a modern motherboard. Two logical chipsets

(north- and southbridge) connect the host CPU(s) with memory, PCI-family buses,

and numerous other buses and peripherals. The northbridge (memory controller

hub) typically deals with communication among the CPU, main memory, any

PCI Express (PCIe) peripherals, and the southbridge (I/O controller hub). The

southbridge primarily handles communication among the northbridge, IDE, SATA,

USB, LPC, PCI or PCI-X buses / peripherals, and so on.

Memory-mapped I/O (MMIO) [47] maps part of the memory inside peripherals

(MMIO memory) to the main memory address space of the host CPU, and enables

the host CPU to access the MMIO memory on peripherals through ordinary mem-

ory read or write instructions. A separate I/O address space also exists and can be

used to interface with some peripherals, in which case the host CPU accesses the

peripherals through special I/O instructions (e.g., outb).

Direct Memory Access (DMA) enables peripherals to transfer data between

14

main memory and the device’s local memory without involving the host CPU. The

memory addresses in the main memory that a peripheral can access through DMA

can be controlled in newer systems with hardware support for virtualization by

using an input/output memory management unit (IOMMU) [6, 7, 48].

2.2.2 PCI, PCI-X and PCI Express

The original PCI bus is a parallel bus shared by all PCI peripherals. Any periph-

eral on the PCI bus can initiate a transaction by requesting permission to become

the bus master from the PCI bus arbiter. If its request is granted, the initiator

starts the transaction by sending the target address, followed by one or more data

phases. All the PCI peripherals receive the transmissions, but only the PCI periph-

eral with the target address processes the transaction. PCI-X is a faster version of

PCI, which was designed for higher-speed peripherals, such as gigabit Ethernet.

A PCI-X peripheral shares the same bus with other PCI peripherals. Unlike the

PCI or PCI-X buses, PCI Express (PCIe) is a serial communication bus. PCIe pe-

ripherals communicates with each other via a logically named interconnect, which

creates point-to-point links between any two PCIe peripherals on the motherboard.

On a modern motherboard, the clock speed of the northbridge and southbridge can

exceed 1 GHz. The capacity of various versions of the vanilla PCI bus are from

1066 Mbps (32-bit at 33.3 MHz) to 4266 Mbps (64-bit at 66.6 MHz). The capac-

ity of a PCI-X bus is 4266 Mbps (64-bit at 66.6 MHz) or 8512 Mbps (64-bit at

133 MHz). PCIe supports 2 Gbps (v1), 4 Gbps (v2), and 8 Gbps (v3) on each lane,

with up to 32 lanes in each PCIe slot.

15

2.2.3 Peer-to-Peer Peripheral Communication

Based on the PCI and PCIe specifications [68, 69], two PCI / PCIe peripherals

can engage in peer-to-peer communication. However, under typical workloads on

a commodity PC, one endpoint is almost always the host CPU or main memory.

Nevertheless, on a modern motherboard, DMA potentially enables a peripheral

device to read or write other peripherals’ MMIO memory. For instance, the GPU

often has a large amount of memory (1 GB or more) mapped into the main memory

address space using MMIO. A NIC can write or read the GPU’s MMIO memory

using DMA [85, 110]. In today’s systems, the IOMMU is in the northbridge, and

it is responsible for configuring the main memory addresses that peripherals can

access through DMA. Any DMA access to main memory must go through the

IOMMU. However, two PCI peripherals can often avoid the IOMMU, especially if

both peripherals connect via the southbridge [85].

Access Control Services The PCI Express specification, especially as of revi-

sion 2.0, includes support for Access Control Services (ACS), intended to restrict

the ability of devices to engage in unintended peer-to-peer exchanges [78, 79, 85].

While this is a promising mechanism that may help restrict the damage that can

be inflicted by malicious peripheral devices, we emphasize that not all peripheral

devices are PCI Express, and the restricting mechanism provides no any guarantee

of the integrity of the firmware inside the peripheral.

2.2.4 Malware on Peripherals

On a modern computer motherboard, all the firmware-enabled peripheral devices

(e.g. PCI or PCIe-based NIC, GPU, BIOS, USB peripherals) are vulnerable to

attack. Once malware infects computer peripherals, it has the following features:

16

1. Malware on a peripheral can eavesdrop on sensitive data handled by the pe-

ripheral (e.g., passwords).

2. Malware on a peripheral may modify executable programs or scan sensitive

data in main memory via DMA if the IOMMU is not perfectly configured or

not present on a computer system.

3. Malware on one peripheral may spread malicious code to other peripherals

through DMA.

4. Malicious peripherals can collude using peer-to-peer bus communication

without involving the host CPU.

5. Malware on peripherals cannot be removed by firmware update tools if the

firmware update procedure assumes that the existing firmware is benign.

2.3 Hardware-Based Trusted Computing Techniques

2.3.1 Dynamic Root of Trust for Measurement

AMD’s Secure Virtual Machine (SVM) [5, 7] and Intel’s Trusted eXecution Tech-

nology (TXT) [45, 46, 48] provide a mechanism called Dynamic Root of Trust

for Measurement (DRTM), that can late-launch a piece of code with hardware-

based protection and integrity measurement. When launching a piece of code, the

DRTM mechanism reinitializes all CPUs to a known state, sets up DMA protec-

tion to protect the launched code, measures a cryptographic hash of the protected

code, extends the integrity measurement into a Platform Configuration Register

(PCR) in the system’s Trusted Platform Module (TPM) for integrity verification,

and then starts to execute the protected code. The DRTM mechanism was origi-

nally designed for dynamically launching a Virtual Machine Monitor (VMM) with

17

hardware-based protection and integrity measurement at any time when the OS is

running. The protected code can run in the root privilege having full control over

the system. Instead of launching a VMM, McCune et al. demonstrated how to run

a Piece of Application Logic (PAL) using the DRTM mechanism to achieve secure

code execution on an untrusted commodity computer in Flicker [67].

2.3.2 TrustVisor

TrustVisor [66] is a minimized hypervisor that isolates a Piece of Application Logic

(PAL) from the rest of the system and offers efficient trustworthy computing ab-

stractions (via a µTPM API) to the isolated PAL with a small TCB. Figure 2.2

shows the architecture of TrustVisor.

TPMCPU

TrustVisor

Untrusted

Operating

System

uTPM APIS

Hypercalls

App

A

App

B PAL

Motherboard

uTPM

TCB

Peripherals

Figure 2.2: TrustVisor Architecture

Memory Protection TrustVisor isolates the memory pages containing itself and

any registered PALs from the guest OS and DMA-capable devices by configuring

18

nested page tables and the IO Memory Management Unit (IOMMU). TrustVisor

exposes hypercall interfaces for applications in the guest OS to register and unreg-

ister a PAL. When a PAL is registered, information including the memory pages of

the PAL is passed to TrustVisor. TrustVisor configures nested page tables to isolate

the memory pages of the PAL from the guest OS. Any access from the guest OS

to the PAL or from the PAL to the guest OS causes a nested page fault that will

be intercepted by the hypervisor. When a PAL is unregistered, TrustVisor zeroes

the data memory in the PAL, and removes the memory protections on the PAL’s

address space.

Integrity Measurement TrustVisor employs a two-level integrity measurement

mechanism for measuring the integrity of the hypervisor and registered PAL. TrustVi-

sor is booted using the DRTM mechanism (Section 2.3.1) available on commodity

x86 processors. The chipset computes an integrity measurement (cryptographic

hash) of the hypervisor and extends the resulting hash into a Platform Configura-

tion Register (PCR) in the Trusted Platform Module (TPM). TrustVisor computes

an integrity measurement for each registered PAL, and extends that measurement

result into the PCR of the PAL’s µTPM instance. The TPM Quote from the hard-

ware TPM and the µTPM Quote from the PAL’s µTPM instance comprise the com-

plete chain of trust for remote attestation.

2.3.3 On-Demand Isolated I/O

Zhou et al. [127] expanded TrustVisor using a wimpy kernel to support on-demand

isolated I/O for an isolated PAL with a small TCB, thereby enabling an isolated

PAL to securely access I/O peripherals. Figure 2.3 shows the system architecture

providing on-demand isolated I/O.

In this architecture, the wimpy kernel runs in an isolated execution environment

19

TPMCPU

Hypervisor

Untrusted

Operating

System

App

A

App

B PAL (with device driver)

Wimpy Kernel

Securely access

I/O peripherals

Peripherals
Motherboard

uTPM

TCB

Figure 2.3: On-Demand Isolated I/O Architecture

established by a hypervisor. To provide isolated I/O with a small TCB, the wimpy

kernel outsources the complex peripheral initialization processes to the OS, but

verifies the peripheral information with a small TCB, and exports device drivers to

the isolated PAL. The wimpy kernel (running in the root privilege) also configures

the system registers to protect the I/O-port, I/O-memory, and device configurations

from a malicious OS. However, the proposed I/O protection mechanism does not

defend against malware in peripherals; consequently, malware in peripherals might

obtain users’ security-sensitive data (e.g., credit card information, bank account

password).

2.4 Google Native Client

Google Native Client (NaCl) [122, 123] is a sandbox for x86 native code (called

Native Module) using Software Fault Isolation (SFI) [65, 112].

20

2.4.1 Validator

To guarantee the absence of privileged x86 instructions that can break out of the SFI

sandbox in a Native Module, a validator in NaCl reliably disassembles the Native

Module and validates the disassembled instructions as being safe to execute.

2.4.2 Runtime Framework

NaCl provides a simple service runtime including a context switch function and a

system call dispatcher to support the execution of a Native Module. On 32-bit x86,

the service runtime and the Native Module are isolated using the CPU’s segmen-

tation mechanism [48]. NaCl simulates system calls for a Native Module using a

Trampoline Table and Springboard. There is a Trampoline Table in each Native

Module, and a 32-byte entry in the Trampoline Table for each supported system

call. For each system call, the Google NaCl toolchain ensures that control transits

to one of the entries in the Trampoline Table, instead of to a traditional system call.

The Trampoline Table entries switch the active data and code segments, and jump

to the context switch function in NaCl. The context switch function saves the thread

context of the Native Module and transfers control to the system call dispatcher in

NaCl. The system call dispatcher exposes only a subset of the OS system call in-

terface to the Native Module, sanitizes the system call parameters, conducts access

control to constrain the file access of the Native Module, and finally calls the cor-

responding handler in the OS. After the handler execution completes, the context

switch function restores the execution context of the Native Module and calls the

Springboard, which performs the inverse of the control transitions in Trampoline

Table entries.

21

Chapter 3

Mead: Establishing a

Malware-Free System State on

Embedded Platforms

An adversary who can insert malware into a system poses a persistent threat. Mal-

ware can survive across repeated boot operations and can be remotely activated at

the adversary’s discretion. Attempts to detect persistent malware in a system usu-

ally require off-line forensic analysis and hence do not offer timely recourse after

a successful attack. In contrast, on-line detection of adversary presence in a sys-

tem can be fast (e.g., a matter of seconds or minutes), but typically requires some

form of hardware- or software-based attestation by a verifier to test the system’s

state. When strong guarantees are sought in attestation despite persistent adversary

presence, designers usually rely on secrets protected in tamper-resistant hardware

and standard cryptography; viz., the private keys of a Trusted Platform Module

(TPM) [108].

However, hardware-protected secrets can still be successfully attacked by ex-

22

ploiting compelled/stolen/forged certificates for hardware private keys [55, 83],

side channels [119], and padding oracles [13]. Equally important, managing hardware-

based attestation (e.g., TPM-based) poses significant usability challenges; e.g., the

Cukoo attack [76].

Software-based attestation aims to avoid management of secret keys and their

protection in hardware. Software-based attestation uses verifiers that challenge

adversary-controlled systems with the execution of checksum functions whose out-

put is verified and execution time is measured [10, 58, 91, 93, 94, 96]. Hence, a

checksum function must have accurately measurable execution time bounds. Inac-

curate verifier measurements would allow an adversary to exploit the gap between

the verifier’s expected measurements and the adversary’s lower actual execution

time. To avoid numerous false alarms on realistic system configurations, a veri-

fier’s time measurement must be dilated to account for a checksum’s execution-

time jitter. This includes clock variation due to static skew and dynamic (e.g.,

peak-to-peak) jitter, each of which can easily extend a processor’s clock period

by 3–8% [106]. Unfortunately, the attacking detection threshold of the measured

time in previous schemes is limited (e.g., less than 1.7% over the normal condition

in [58]). In addition, to act as a root of trust, software-based attestation must be

uninterruptably linked to other functions. Otherwise, an adversary could pre-plan

unpleasant surprises for a verifier. Modern embedded platforms have became in-

creasingly complex with new hardware features. The new hardware features on

modern embedded platforms might enable attackers to break the link.

Contributions In this chapter we address the problem of establishing a malware-

free system state on untrusted embedded platforms using software-only approaches.

In particular, we make the following contributions.

23

1. We present new architecture features of embedded system platforms that

pose heretofore unexpected challenges to all prior software-based attestation

protocols.

2. We define three new classes of attacks against software-based attestation pro-

tocols that are enabled by both new architecture features and scalability con-

siderations on commodity computing platforms.

3. We present the implementation of practical protocols based on a new check-

sum design to counter these attacks, and explain their applicability to com-

plex multiprocessor systems comprising heterogeneous processors; e.g., pro-

cessors for DSP and ARM platforms.

4. We evaluate our countermeasures on a popular embedded system platform

(i.e., the Gumstix FireStorm COM) running a Linux operating system (i.e.,

Pocky 3.5 and Linux kernel 3.5) and present the evaluation results.

3.1 Assumptions & Attacker Model

Assumptions We assume attackers cannot physically change the hardware con-

figuration of the prover device (the untrusted embedded platform under attestation),

such as adding additional memory, replacing the device’s CPU with a faster CPU

or over-clocking the device’s CPU frequency. Preventing or detecting physical at-

tacks is out of scope. We assume that a proxy attack (recall Section 2.1.3) can

be detected by the user and attackers cannot control or access the communication

channel between the prover device and the verifier machine.

We assume that the verifier program running on a verifier machine is free of

vulnerabilities and that the verifier machine is free of malware. Malware on the

prover device thus cannot compromise the verifier program or the verifier machine.

24

We assume that the verifier program knows the exact configuration of the prover

device (e.g., the memory size and the kernel image version) and has a golden image

(the correct device image without malware) of the prover device.

We assume that the checksum function we deploy to the prover device is op-

timal for performance: attackers cannot optimize the checksum function to run

it faster or find an alternative algorithm to compute the result faster. However,

we assume that an adversary can compress the checksum function size and run a

compressed checksum function with smaller memory space (e.g., by reducing du-

plicated instruction blocks). Finally, attackers cannot break standard cryptographic

primitives [72].

Attacker Model Attackers may deploy arbitrary software images or files to the

prover device and attempt to hide the malicious contents from being detected. For

example, attackers may run a modified checksum function on the device and at-

tempt to forge the correct checksum result within the expected time (to protect

malicious content from being detected) during the attestation procedure. Attackers

may also attempt to configure the platform to generate interrupts or other events to

break the untampered execution environment (software-based root of trust) without

being detected.

3.2 Mead Overview

Mead establishes an untampered execution environment on a commodity embed-

ded platform, verifies the integrity of the system image, and resets system con-

figurations to achieve a malware-free state on the embedded platform. Figure 3.1

shows the Mead system architecture and verification procedure.

In Mead, a verifier program runs in a trusted verifier machine and performs

25

Prover DeviceVeri�er Machine

Veri�er Program

Checksum

Simulator

Trusted

Image

Timer

Hash Function

1. Install prover code

& initialize device
Checksum Function

Device

 image

Communication

Function

Prover Program

2. Nonce-response

3. Hash(Device image)

4. If Hash(Device image) is

incorrect, load

Trusted Image onto

prover device

Hash Function

Other Functions

Figure 3.1: Mead system architecture and verification procedure.

attestation on a prover device through a nonce-response protocol. The verifier pro-

gram comprises a checksum simulator, a timer, and a cryptographic hash function.

The checksum simulator generates nonces for the attestation, constructs a copy

of the device memory contents, and computes the expected response (i.e., check-

sum result) by simulating the checksum computation on the prover device. The

timer measures the elapsed time of the nonce-response reception. A trusted image

(correct image without malware) is in the verifier machine and the hash function

computes a hash of the trusted image for integrity verification.

On the prover device, a prover program is installed and includes a checksum

function, a communication function, a cryptographic hash function, and other func-

tions. The checksum function disables interrupts on the prover device, resets sys-

tem configurations in a known state (critical system configurations will be incor-

porated into the checksum), computes a checksum over the prover program and

other critical contents (e.g., page table, stack, exception handler table, communi-

cation buffer, and critical system configurations), and establishes an untampered

26

execution environment for the attestation.

Because the checksum function is carefully designed, any additional operations

will invalidate the checksum result or cause a detectable computation overhead.

The verifier program verifies the response (checksum result) and the elapsed time

of the nonce-response pair. If the checksum result is correct and the measured time

is within a detection threshold, the verifier program obtains the guarantee that an

untampered execution environment has been established on the prover device, and

subsequent results sent by the prover device are to be trusted.

After sending the checksum result to the verifier program, the prover program

sets system configurations and any memory locations that are not measured by

the checksum function with known values (to erase malicious contents on system

configuration space and memory locations that are not measured by the check-

sum function), and then calls a hash function to compute an integrity measurement

(i.e., cryptographic hash) of the entire device image on the secondary storage (e.g.,

NAND Flash) and sends the measurement to the verifier program. The verifier pro-

gram verifies the integrity of the device image, and if the device image has been

changed, the verifier program loads the trusted image to the device to establish a

malware-free state on the prover device.

In Mead, the checksum function can also fill all the spare memory space with

pseudo-random values and then computes a checksum over the entire memory con-

tents (instead of only over the prover program and other critical contents). In this

way, the verifier program can prevent attackers from using the spare memory space

on the prover device to perform malicious operations (Section 2.1.3). However,

modern embedded platforms might have a large memory (e.g., 1GB). Verifying the

integrity of the entire memory space by the checksum function might significantly

increase the attestation time.

27

3.3 New Attacks & Challenges

In this section, we describe three new classes of attacks against existing software-

based attestation protocols and new challenges that we need to address on modern

embedded platforms.

3.3.1 Future-Posted Event Attacks

Some modern embedded-system platforms allow the configuration of future-posted

events. These events can be set during system configuration (e.g., during Step 1 of

Figure 3.1) and trigger at a future time when the system runs (e.g., after Step 2 of

Figure 3.1). An example of such an event is the future-posted Watch-Dog Timer

(WDT) reset. Other examples include the future-posted DMA transfers.

On some embedded platforms, attackers can configure the WDT to reset the

device after a specific timer period. For example, on TI DM3730-based platforms,

the CPU [107] supports the future-posted WDT reset, and the specific time period

to reset the device can be configured as between about 62.5 microseconds and 74

hours and 56 minutes. As a result, attackers can perform future-posted WDT reset

attacks.

t0

system

boots

t1 time

start

checksum

computation

t2

send

checksum

to veri!er

t3

send

hash

to veri!er

t0’ t2’

device is reset

and boots from

a malicious image

malware

con!gures WDT,

then erases itself

malware controls device prover program controls device

Figure 3.2: Timeline of a WDT reset attack.

28

Figure 3.2 shows the timeline of this attack. Suppose that malware controls the

platform during the installation of the prover code (i.e., Step 1 of Figure 3.1) and

configures the WDT to reset the device after the correct checksum result is sent to

the verifier program; i.e., after Step 2 of Figure 3.1. Then the malware erases itself

from memory and invokes the prover program. During the attestation, the prover

program calls the checksum function to compute a checksum over the memory

contents based on the nonce from the verifier program, and then sends the correct

checksum result to the verifier program. After the checksum result is sent, the

WDT reset event is triggered and the platform boots from an adversary-modified

device image. After reboot, the malware of the device image controls the platform

and sends a forged hash result (i.e., integrity measurement of the device image) to

the verifier program.

3.3.2 I-cache Inconsistency Attacks

Modern embedded processors have multiple-level caches. However, to save energy,

some embedded processors may not have hardware support for cache coherence

between Instruction-cache (I-cache) and Data-cache (D-cache), and software has to

maintain cache coherence. For example, the ARM Cortex-A8 processor, which is

widely deployed on embedded platforms, does not have hardware support for cache

coherence between I-cache and D-cache. Software has to use cache maintenance

instructions to ensure cache coherence. Therefore, the contents of the I-cache may

differ from those of the D-cache, and attackers can leverage this feature to hide

malicious instructions (e.g., malicious instructions in the communication function

or hash function) in the I-cache without being detected. We call this attack the

I-cache inconsistency attack.

This attack is similar in spirit to the Split-TLB attacks (Section 2.1.3), where

29

the I-TLB and D-TLB contain inconsistent mappings for the checksum function

pages. Experience with those attacks suggests that the I-cache inconsistency attack

is equally practical, particularly since its setup is simpler.

t0

system

boots

t1 time

start

checksum

computation

t2

send

checksum

to veri!er

t3

send

correct hash

to veri!er

t0’

invoke malicious

code in I-Cache

load malicious code

in I-cache, and overwrite

malicious content in memory

with original values

malware controls device prover program controls device

t2’

Figure 3.3: Timeline of an I-cache inconsistency attack.

Timeline. The timeline of an I-cache inconsistency-based attack is shown in Fig-

ure 3.3. Here, malware first loads malicious instructions into the I-cache, then over-

writes the malicious content in memory with the original values to guarantee that

only legitimate contents are in the memory during checksum computation. The

malicious code needs to comprise only a few instructions of the hash or communi-

cation function. The checksum function is computed over the legitimate memory

contents and the correct checksum result is sent to the verifier program. After the

checksum result is sent to the verifier program, the malicious instructions in the

I-cache are invoked, and then the adversary controls the system.

3.3.3 Measured Time-Variance Based Attacks

In software-based attestation protocols, the measured time of one nonce-response

round is utilized to detect malicious operations on the prover device; e.g., malicious

30

operations to forge correct checksum results. Typically the attack-detection thresh-

old is set based on the overhead caused by possible attacks. If a measured time

exceeds the threshold, it is highly likely that malicious operations are performed

on the prover device. However, the measured time may exhibit significant vari-

ance caused by CPU clock variance, Translation Look-aside Buffer (TLB) misses,

and possibly cache misses. Hence, to avoid false-positive malware detection, the

attack-detection threshold must be extended over the maximal value of the mea-

sured time in normal (no-attack) conditions.

Recent research [106] shows that the modern CPU clock variance can be up to

3-8% and it increases with program execution times. Furthermore, because the tra-

ditional checksum functions read the memory contents in a pseudo-random pattern,

the resulting TLB misses could increase the measured execution time significantly.

To account for these types of execution-time jitter, the maximal value of the mea-

sured time in normal (no-attack) conditions must be extended significantly; e.g.,

by nearly 3% of the average execution time.

Previous software-based attestation schemes did not have to account for high

execution-time variance in setting the maximal execution time threshold. Their

designs made cache behavior fairly predictable; e.g., the checksums fit into the

cache and random access patterns resulted in predictably high overheard. TLBs

need not be used since measurements were taken in physical RAM, and clock jit-

ter was small because checksum execution times were short for relatively small

memory configurations. In contrast, some of the new embedded-system proces-

sors force virtual memory (and hence the TLB) use whenever caches are used,

and large memory configurations (i.e., GB size) cause checksum functions to exe-

cute for minutes instead of tens of milliseconds. Consequently, attackers can now

exploit the high execution-time jitter on embedded systems to launch successful

time-variance based attacks with non-negligible probability.

31

t0

system

boots

t1 time

start

checksum

computation

t2

send

checksum

to veri!er

t3

send

correct hash

to veri!er

t0’

load malicious

checksum function

malware controls device prover program controls device

t2+∆t’

t0

system

boots

t1 time

start

checksum

computation

t2

send

checksum

to veri!er

t3

send

correct hash

to veri!er

t2’+∆t

∆t’

Normal Condition (No Attack):

Time Variance-Based Attack:

∆t : anticipated measurement variations (i.e., 3-8%)
∆t’: overhead caused by malicious operations (e.g., 1.4%)

Figure 3.4: Timeline of normal condition and time-variance based attack.

Timeline. Figure 3.4 shows the timeline of a time-variance based attack. Here,

malware that controls the platform loads a modified checksum function that com-

putes the expected checksum result. To protect the modified contents (i.e., ma-

licious code) from being detected, the modified checksum function performs ad-

ditional operations to forge the expected checksum, and these operations cause

an overhead ∆t ′. However, as shown in the figure, under normal (no-attack) con-

ditions, the anticipated measured time variation is ∆t (i.e., the timing detection

threshold), is larger than ∆t ′. Consequently, the verifier receives the correct check-

sum result within the timing detection threshold, and hence the verifier cannot

detect this attack; i.e., a false-negative detection result.

32

3.3.4 New Challenge: Heterogeneous Processor Architecture

Modern commodity-embedded platforms may have multiple processors that are

heterogeneous processors. Figure 3.5 shows an example of a modern commodity-

SDRAM

MPU

(e.g., ARM)

Digital Signal

Processing

Processor

NAND

Flash
Peripherals

Platform

Con!guration

Registers

Interconnect Bus

Figure 3.5: An example of a commodity embedded platform with heterogeneous

processors.

embedded platform with multiple processors. In this example, the platform has a

Main Processing Unit (MPU) processor (e.g., ARM processor) and a Digital Sig-

nal Processing (DSP) processor (for video and audio processing). The MPU and

the DSP share the same interconnect bus to access the SDRAM and NAND Flash.

To establish a software-based root of trust on such a platform, we may need to run

checksum functions on both processors. However, it could be extremely challeng-

ing to design and implement the checksum functions for special-purpose proces-

sors (e.g., DSP). For example, the DSP processor for video or audio processing

may have complex architecture (e.g., complex pipelines for parallel computation),

and it may be extremely challenging to design and implement a checksum func-

tion for the DSP processor. If the checksum function on one processor is broken,

the malicious code on one processor will in turn subvert the execution of other

processors.

33

3.4 Countermeasures

We expand software-based attestation model to cover new hardware features of

commodity embedded platforms. In this section, we describe the mechanisms to

address the new attacks and challenges described in Section 3.3.

3.4.1 Verifying Critical Configurations

To establish an untampered execution environment on embedded platforms, it is

important to verify or reset critical platform configurations to guarantee that at-

tackers cannot leverage malicious configurations to tamper with the prover program

without being detected Pioneer [94] proposes calling on a piece of Epilog code to

reset or verify all critical configurations before sending the checksum result to the

verifier program but after the checksum computation, in order to guarantee that the

platform will be in a known legitimate state after the checksum result is sent to the

verifier program. On embedded platform with multiple heterogeneous processors,

the checksum function might need to call the Epilog code several times in a random

pattern (details are described in Section 3.4.5). In addition, modern embedded plat-

forms have rich and complex configurations; consequently, the Epilog code might

need to verify or reset a number of configuration registers with a high overhead

to read or write those configuration registers. We analyze the requirement for the

overhead caused by the Epilog code.

Requirements To reconfigure the critical configurations in the memory-mapped

register space, the prover program needs to either configure the memory-mapped

register space as non-cacheable or perform additional operations to clean the cor-

responding cache blocks (pushing the corresponding cache blocks to the memory-

mapped register space) in the Epilog code using cache maintenance instructions.

34

However, a read or write operation on a non-cacheable memory-mapped register

space is much slower than a cacheable read or write operation. Cache maintenance

operations are also expensive. Attackers could configure the memory-mapped reg-

ister space as cacheable (by changing the page table attributes) or skip the cache

maintenance instructions to reduce the overhead of the Epilog code. In an attack

in which attackers need to perform additional operations, attackers can get time

compensation by configuring the memory-mapped register space as cacheable or

skip the cache maintenance instructions, thereby reducing the overall overhead of

the attack.

Under normal conditions, a round-trip communication time between the veri-

fier program and the prover program is T comm while the time to verify or reconfig-

ure critical configurations is T Epilog
normal , and other checksum operation time is T cksum.

The measured time variance is ∆T . The time of one nonce-response pair is

T veri
normal = T comm +T cksum +T Epilog

normal±∆T (3.1)

In an attack in which attackers configure the memory-mapped register space as

cacheable or skip the cache maintenance instructions, the time to verify or recon-

figure device configurations is T Epilog
attack while the overhead caused by instructions to

forge the correct checksum is T ops
attack. Thus, the time of one nonce-response pair in

this attack is

T veri
attack = T comm +T cksum +T Epilog

attack +T ops
attack±∆T (3.2)

The minimal overhead of this attack is

T overhead
attack = T ops

attack− (T Epilog
normal−T Epilog

attack)−2∆T (3.3)

We set the detection threshold as Tmax. Then the detection overhead is

T overhead
detection = Tmax−T veri

normal (3.4)

35

To detect this attack, we must have

T overhead
detection < T ops

attack +T Epilog
attack −T Epilog

normal−2∆T (3.5)

3.4.2 Prevention of I-cache Inconsistency-Based Attacks

To prevent an I-cache inconsistency-based attack, the checksum function must

guarantee that attackers cannot keep malicious instructions in the I-cache without

being detected during the checksum computation.

One way to prevent attackers from hiding malicious instructions in I-cache is

to run a checksum function, whose size is several times that of the I-cache (e.g.,

two times or four times the size of the I-cache). During the checksum computation,

the checksum function causes a large number of cache block replacements in every

I-cache block, and the cache blocks that contain malicious instructions are replaced

by the checksum function blocks. However, attackers might be able to compress

the checksum function size (e.g., by reducing duplicated instruction blocks) to be

smaller than the I-cache size, and then run a compressed checksum function in the

I-cache to avoid cache block replacements (and protect malicious instructions in

the I-cache from being replaced). Although the compressed checksum function

might need to run additional instructions (e.g., additional jump instructions), the

overhead caused by additional instructions might not be detectable.

To prevent attackers from running a compressed checksum function in the I-

cache without being detected, we propose a novel mechanism, in which the check-

sum function dynamically updates the Virtual Address-to-Physical Address (VA-

to-PA) mappings in the page table to randomize the virtual addresses of the memory

pages to verify. In this section, we first describe the dynamic page table mechanism

and then describe possible attacks that attackers can perform.

36

Dynamic Page Table

In software-based attestation schemes, the checksum function computes checksum

over memory contents that include all memory pages of the prover program (in-

cluding the checksum function pages) and other critical memory contents (e.g.,

stack, communication buffer, exception handler table, and page table) to estab-

lish an untampered execution environment. During the checksum computation,

the memory contents to verify are mapped in contiguous virtual memory and the

checksum function reads the memory contents using virtual addresses.

In the mechanism we propose, the checksum function dynamically updates the

VA-to-PA mappings of the virtual memory of all memory pages to verify (e.g.,

randomly pick two mappings of the memory pages to verify in the page table and

exchange the values of the two mappings). To avoid a data memory page being

mapped to the virtual address that the checksum function is running, we run the

checksum function in a separate virtual memory. Thus, the memory pages of the

checksum function are mapped to two virtual memory spaces. The checksum func-

tion also dynamically updates the VA-to-PA mappings of the virtual memory for

the checksum execution. To access the page table in constant virtual addresses,

the page table memory pages are also mapped to a separate virtual memory space.

Figure 3.6 shows an example of the virtual memory mappings. In this example, the

memory pages of all the memory pages to verify (including the checksum function

and the page table) are mapped in the Virtual Address (VA) space D; the memory

pages of the checksum function are also mapped in a separate virtual memory (the

VA space A) for checksum execution; the Epilog code memory pages are mapped

in the VA space B; and the page table memory pages are mapped in the VA space C

(to guarantee that the checksum function can update the page table contents in con-

stant virtual memory addresses). During the checksum computation, the checksum

37

function runs in the VA space A and computes checksum over all the VA spaces

(i.e., A, B, C, and D).

Physical Memory

Cheksum func

Other funcs

Other data or

con!gurations

Virtual Memory

VA space D

Page table Epilog code

Other funcs

Other data or

con!gurations

Page table

Cheksum func

Page table

VA space A

VA space B Epilog codeEpilog code

VA space C

Cheksum func

Figure 3.6: Virtual memory and physical memory mappings.

Novelty The novelty of our approach is that, when the checksum function dy-

namically updates the VA-to-PA mappings of the VA spaces A and D, the check-

sum function does not explicitly invalidate the VA-to-PA mappings in the TLB. As

a result, previous VA-to-PA mappings cached in the D-TLB or the I-TLB might

still be utilized by the CPU for data access or code execution. Only when a TLB

miss happens, is a VA-to-PA mapping loaded from the page table to the TLB. Fig-

ure 3.7 shows an example of the TLB buffer contents and the page table contents.

In this example, the TLB buffer has different mappings from the page table: only

when a TLB miss happens, is the VA-to-PA mapping in the page table loaded into

the TLB and utilized by the CPU.

Consequently, the virtual addresses of the memory pages in the VA spaces A

38

Page Table

VA0

VA1

VA125

VA2

VA126

PA125

PA126

PA0

PA1

PA2
.

.

.

I-TLB or D-TLB

VA0

VA1

VA16

VA4

VA13

VA12

PA62

PA63

PA64

PA0

PA3

PA2
.

.

.

.

.

.

31

0

2

1

30

29 VA124 PA124

CPU

Read

VA-to-PA

mapping
TLB miss, then

read page table

Get latest

 VA-to-PA mapping

Return

VA-to-PA

mapping

.

.

.

Figure 3.7: Page Table and TLB. TLB contains different mappings from the page

table.

and D are dynamically changing during the checksum computation. Any addi-

tional memory operations or code executions that cause TLB misses might change

the TLB replacement, and then invalidate the checksum result. In this way, we

force attackers to perform sophisticated operations to guarantee that the malicious

operations will not invalidate the checksum result, causing detectable overhead.

Requirements This dynamic page table mechanism requires that the TLB re-

placement policy be deterministic (e.g., the round-robin replacement policy or the

least recently used replacement policy). Otherwise, the checksum function ex-

ecution is not deterministic and the verifier program can not predict the correct

checksum results. In addition, the checksum function execution and data access

(for integrity measurement) must cover a number of memory pages (greater than

the number of TLB entries) to guarantee that TLB cannot contain all mappings and

TLB misses (in both I-TLB and D-TLB)will happen during checksum execution.

Furthermore, if the cache is Virtually Indexed and Virtual Tagged (VIVT),

cache block contents are indexed and tagged by the corresponding virtual ad-

dresses. Only when a cache miss happens, does the CPU load the expected memory

39

content into the cache using the corresponding physical address. As a result, when

the CPU reads a virtual address, the content that has been previously mapped to

that virtual address can still exist in the cache, and it will be utilized for the check-

sum computation. In this condition, to make the checksum execution deterministic,

the dynamic page table mechanism requires that the cache replacement policy be

deterministic. When the cache Virtually Indexed and Physically Tagged (VIPT) or

Physically Indexed and Physically Tagged (PIPT), the cache content is identified

by its corresponding physical address. The cache replacement policy will not affect

the checksum execution.

Security Analysis

When attackers compress the checksum function size, they might need to change

the virtual addresses of some checksum blocks. Because the VA-to-PA mappings

of virtual memory for the checksum execution are dynamically changing, the le-

gitimate virtual address of each checksum block is dynamically changing during

the checksum computation. In every checksum block, the Program Counter (PC)

can be included in the checksum during checksum computation. As a result, the

compressed function running in the I-cache has to compute the expected PC value.

However, the compressed checksum function cannot simply read the page table to

get the VA-to-PA mapping (to compute the expected PC value) because the I-TLB

might contain a different mapping. Therefore, the compressed checksum function

might need to simulate the I-TLB replacement to calculate the expected PC value,

which will significantly increase the overhead of this attack.

Random Jump Furthermore, to increase the overhead of this attack, we can

force attackers to simulate the I-TLB replacement in every checksum block by per-

forming a random jump at the end of each checksum block. In the random jump

40

operation, the checksum block (that has been executed) randomly jumps to another

checksum block, whose legitimate virtual address might be on another memory

page (that might cause an I-TLB miss). For every code execution that might go

to another memory page, the compressed checksum function has to simulate the

I-TLB replacement.

When simulating I-TLB replacements, the compressed checksum function might

need to perform additional memory read or write operations to save simulated TLB

entry values in the memory and operate on those values (read, write, and update

these values). However, the additional memory operations might change the D-

TLB replacement and then invalidate the checksum result. Attackers can analyze

the data pages used by the checksum function, find a memory page whose map-

ping is always in the D-TLB, and then save the simulated I-TLB entries on that

data page. However, in this attack, attackers change the memory content to verify

and need to perform additional operations to forge the correct checksum result (a

memory copy attack or memory substitution attack in Section 2.1.3). To prevent

this attack, we can carefully configure the data pages accessed by the checksum

function and guarantee that no data page mappings are always in the D-TLB.

There are several other ways that could enable the compressed checksum func-

tion to simulate the I-TLB replacements without invalidating the checksum result.

Now we describe and analyze the attacks.

Attack (I) The compressed checksum function can simulate both I-TLB and D-

TLB replacements. Although the D-TLB replacement sequence is changed, the

compressed checksum function can still calculate the legitimate address to read or

write and guarantee that the checksum result is correct. However, simulating both

I-TLB and D-TLB replacements will cause a high overhead that is not expected by

attackers.

41

In this attack, the checksum computation time by a compressed checksum func-

tion is T cksum
comp ; the overhead to simulate I-TLB replacements is T simu

ITLB ; and the over-

head to simulate D-TLB replacements is T simu
DTLB. Then the measured time of one

nonce-response pair is

T veri
comp = T comm +T cksum

comp +T simu
ITLB +T simu

DTLB±∆T (3.6)

The minimal overhead of this attack is

T overhead
comp = T cksum

comp +T simu
ITLB +T simu

DTLB−T cksum−2∆T (3.7)

To detect this attack, we must have

T overhead
detection < T cksum

comp +T simu
ITLB +T simu

DTLB−T cksum−2∆T (3.8)

In this attack, the compressed checksum function is forced to simulate the D-

TLB replacement for every memory operation that might cause a D-TLB miss.

Thus, to increase the overhead of this attack, we can carefully increase the number

of memory read operations (that might cause D-TLB misses) in every checksum

block, thereby forcing the malicious checksum function to perform more additional

operations.

Attack (II) On embedded platforms, TLB entries might be preserved when the

MMU is disabled (e.g., on an ARM Cortex A8 processor, all TLB entries are pre-

served when the MMU is disabled). After the MMU is disabled, attackers can per-

form arbitrary additional memory access without affecting the TLB replacements.

Thus, the compressed checksum function can disable the MMU before starting to

simulate the I-TLB replacement and enable the MMU after the simulation. How-

ever, disabling and enabling the MMU could be expensive (e.g., hundreds of CPU

cycles). Furthermore, we find that the data cache might be disabled when the MMU

42

is disabled on some processors. When the data cache is disabled, data access would

slow down and simulating the I-TLB replacements could consume a high execution

overhead.

In this attack, the overhead to simulate I-TLB replacements when the MMU is

disabled is T no mmu
simu ITLB. Then the measured time of one nonce-response pair is

T veri
comp = T comm +T cksum

comp +T no mmu
simu ITLB±∆T (3.9)

The minimal overhead of this attack is

T overhead
comp = T cksum

comp +T no mmu
simu ITLB−T cksum−2∆T (3.10)

To detect this attack, we must have

T overhead
detection < T cksum

comp +T no mmu
simu ITLB−T cksum−2∆T (3.11)

Attack (III) Another way to avoid affecting the D-TLB replacement is to save

the simulated I-TLB entries values in spare control registers that are not in the

memory-mapped register space. For example, ARM system control coprocessor

registers are not memory-mapped. Some ARM system control registers are spare

and can be used to save values. However, accessing control registers could be

expensive and might take hundreds of CPU cycles.

In this attack, the overhead to simulate I-TLB replacements using the spare

control registers is T regs
simu ITLB. Then the measured time of one nonce-response pair

is

T veri
comp = T comm +T cksum

comp +T regs
simu ITLB±∆T (3.12)

The minimal overhead of this attack is

T overhead
comp = T cksum

comp +T regs
simu ITLB−T cksum−2∆T (3.13)

43

To detect this attack, we must have

T overhead
detection < T cksum

comp +T regs
simu ITLB−T cksum−2∆T (3.14)

3.4.3 Overcome Measured Time Variance

The measured time variance can cause false positive detection results if the over-

head of the possible attacks is lower than the measured time variance. To reduce

the false positive detection results, we can carefully design the checksum function

to guarantee that the overhead caused by the possible attacks is higher than the

measured time variance.

When we discuss possible attacks, we focus on the memory copy attacks and

the memory substitution attacks (Section 2.1.1). We assume that other counter-

measures already overcome the attacks, in which attackers do not need to per-

form additional operations during the checksum computation (e.g., the split-TLB

attacks [90], the I-cache inconsistency-based attacks, or the future-posted event at-

tacks). Please note that when the dynamic page table-based approach is applied,

the I-TLB and D-TLB entries are frequently updated from a shared page table;

consequently, attackers cannot preserve malicious mappings in either the I-TLB or

the D-TLB to perform a split-TLB attack.

Increase Overhead of Memory Copy Attacks

In a memory copy attack, Program Counter (PC) and Data Pointer (DP) values

are incorporated into the checksum, and attackers are forced to perform additional

operations to forge the PC or DP values to compute the expected checksum, result-

ing in an execution overhead. However, attackers might only need to add several

instructions in every checksum block to forge the PC or DP values, meaning the

overhead is limited.

44

Virtual Memory

VA space D

Cheksum func

Page table

VA space A

VA space B Epilog code

VA space C

All memory

pages

 to verify

Memory pages of correct prover program

Memory pages of malicious prover program

Physical Memory

Cheksum func

Page table

Epilog code

Other funcs,

data or

con!gurations

Cheksum func

Page table

Epilog code

Other funcs,

data or

con!gurations

Cheksum func

Page table

Epilog code

All memory

pages

to verify

VA space D’

VA space A‘

VA space B’

VA space C’

Figure 3.8: Memory mappings of Attack IV, Attack VI, or Attack VII.

One way to increase the overhead of memory copy attacks is to apply dy-

namically modified instructions in the checksum function (discussed in Pioneer-

NG [90]), forcing attackers to perform additional memory operations to update the

correct copy of the checksum function. However, the additional memory opera-

tions can be efficient if the dynamically modified instructions in the correct copy

of the checksum function are in the D-cache; consequently, the overhead caused

by the additional operations might still be limited and within the measured time

variance.

45

Virtual Memory

VA space D

Cheksum func

Page table

VA space A

VA space B Epilog code

VA space C

All memory

pages

 to verify

Memory pages of correct prover program

Memory pages of malicious prover program

Physical Memory

Cheksum func

Page table

Epilog code

Other funcs,

data or

con!gurations

Cheksum func

Page table

Epilog code

Other funcs,

data or

con!gurations

Figure 3.9: Memory mappings of Attack V or Attack VIII.

Dynamic Page Table Fortunately, the dynamic page table mechanism described

in Section 3.4.2 not only prevents the I-cache inconsistency-based attacks, but also

significantly increases the overhead of the memory copy attacks.

In the first type of memory copy attacks (Section 2.1.3), the VA spaces A and

D (Figure 3.6) contain a malicious checksum function. Without the dynamic page

table mechanism, when the checksum function memory pages are read, the ma-

licious checksum function can simply add a constant offset to the DP to redirect

the memory read. However, when the dynamic page table mechanism is applied,

the virtual addresses of memory pages in the VA spaces A and D are dynamically

46

changing and, consequently, the malicious checksum function is forced to perform

additional operations to calculate the virtual address of the expected content before

redirecting the memory read.

In the second type of a memory copy attack (Section 2.1.3), a malicious check-

sum function runs in another VA space and computes the checksum over the VA

spaces A, B, C, and D (the original copy of the memory contents to verify). In

this attack, the malicious checksum function needs to perform similar operations

to compute the expected checksum, except that the malicious checksum function

needs to forge the PC value instead of the DP value.

Using a first type of memory copy attack as an example, we analyze the over-

head of a memory copy attack when the dynamic page table mechanism is applied.

Attack (IV) In the first way, the malicious checksum function uses constant VA-

to-PA mappings for the VA spaces A and D; simulates the D-TLB replacement to

calculate the memory address to read or write; adds a constant offset to the memory

address to read to redirect the memory read; updates the page table in the VA space

C′ and D′ to guarantee that the expected page content is in the VA space C′ and D′;

forges the DP and PC values; and simulates the I-TLB replacement to compute the

expected checksum result.

In this attack, the checksum computation time by the malicious checksum func-

tion is T cksum
Att IV ; the overhead to forge the DP value is T forge

DP ; the overhead to forge

the DP value is T forge
PC . Then the measured time of one nonce-response pair is

T veri
Att IV = T comm +T cksum

Att IV +T simu
ITLB +T simu

DTLB +T forge
DP +T forge

PC ±∆T (3.15)

The minimal overhead of this attack is

T overhead
Att IV = T cksum

Att IV +T simu
ITLB +T simu

DTLB +T forge
DP +T forge

PC −T cksum−2∆T (3.16)

47

To detect this attack, we must have

T overhead
detection < T cksum

Att IV +T simu
ITLB +T simu

DTLB +T forge
DP +T forge

PC −T cksum−2∆T (3.17)

The main overhead of this attack is caused by the operations to simulate the I-

TLB and D-TLB replacements. Thus, we can increase the number of memory read

operations (that might cause D-TLB misses) and the number of random jumps to

increase the overhead of this attack.

Attack (V) In the second way, the malicious checksum function dynamically up-

dates the VA-to-PA mappings of the VA spaces A and D; performs necessary mem-

ory operations over the VA spaces A, B, C, and D (to avoid changing the D-TLB

replacement); gets the PA of the correct memory content in certain ways; performs

an additional memory read to get the correct memory content for every memory

read operation; incorporates the correct value into the checksum to compute the

expected checksum.

In this attack attackers do not need to modify the page table to create VA spaces

for the correct copy of the memory content to verify because the malicious check-

sum function reads the correct copy using the corresponding PA.

There are two possible ways for the malicious checksum function to get the PA

of the correct memory content.

1. The malicious checksum function might be able to get the PA of a VA via the

system control coprocessor (without changing the D-TLB replacement). For

example, on an ARM Cortex A8 processor, the system control coprocessor

can provide VA-to-PA translations for software. The malicious checksum

function can call the system coprocessor to get the PA of the VA to read, and

then add a constant offset to the PA to get the PA that saves the expected

memory content. However, accessing the system control coprocessor can

48

take hundreds of CPU cycles, and frequently accessing the system control

coprocessor for every memory read might cause a high execution overhead.

In this attack, the malicious checksum function needs to call the system con-

trol coprocessor to perform the VA-to-PA translation for every memory read

over the VA spaces A and D. The overhead of each VA-to-PA translation

by the system control processor is T cp15
VA2PA while the numbers of the memory

reads over the VA spaces A and D are NA and ND separately. The overhead

to get the PAes of the correct memory content in this attack is

T overhead
VA2PA = (NA +ND)×T cp15

VA2PA (3.18)

2. Attackers can save the PA of the memory page that contains the correct mem-

ory content in a constant offset of the corresponding memory page in the VA

spaces A and D. In this way, for every memory read over the VA spaces A

and D, the malicious checksum function can easily get the PA of the memory

page that contains the correct memory content by a memory read and then

calculate the PA of the correct memory content to read. In this attack, the

malicious checksum function must read the memory page of every expected

memory addresses to read in the VA spaces A, B, C, and D to avoid chang-

ing the D-TLB replacement (but without incorporating the read result to the

checksum). Thus, the additional memory read to get the PA of the memory

page to read will not cause an overhead to this attack.

After obtaining the PA of the correct memory content, the malicious checksum

function performs an additional memory read to get the expected memory value.

To avoid changing the D-TLB replacement, the malicious checksum function needs

to disable the MMU before the additional memory read, read the memory content

using the corresponding PA, and enable the MMU after the read. When the MMU

49

is disabled, the D-cache might be disabled, the CPU accesses the memory using

the PA and a memory read operation might take hundreds of CPU cycles, thereby

causing a high overhead.

To guarantee that the additional code execution (for malicious operations) does

not change the I-TLB replacement, attackers have to guarantee that the malicious

code to perform malicious operations in every checksum block is in the same mem-

ory page with the corresponding checksum block. Therefore, attackers are forced

to compress the checksum function size to get spare memory space for malicious

code in every memory page of the checksum function. During the checksum com-

putation, the page table content is dynamically updated, and the malicious check-

sum function has to guarantee that the correct page table content is incorporated

into the checksum.

To reduce the number of additional memory operations, the malicious check-

sum function can configure the CPU to utilize the page table in the VA space C;

dynamically update the page table in the VA space C as expected; read the VA

space C to get the expected page table content when the VA space C is measured;

check the memory address to read and read the VA space D to get the page table

content when the page table memory pages in the VA space D are measured. The

malicious checksum function can identify the page table memory pages by the PA

of the memory address to read (save in a constant offset of the page table memory

pages). When the memory location that saves the PA of the page table memory

page is read, the checksum function function can either forge the expected value or

get the expected value from the correct copy by an additional memory read.

Tmmu denotes the overhead to disable and enable the MMU one time; T nocache
read

denotes the overhead of a non-cached memory read; NB and NC denote the numbers

of memory reads over the VA spaces B and C separately; and NPT
D denotes the

number of memory read over the page table memory pages in the VA space D.

50

Then the overhead caused by additional memory reads is

T overhead
read = (NA +NB +ND−NPT

D)× (Tmmu +T nocache
read) (3.19)

Attack (VI) Using another way to perform the first type of memory copy attacks,

attackers run the malicious checksum in the VA space A, dynamically update the

VA-to-PA mappings for the VA spaces A, dynamically update the VA-to-PA map-

pings of the correct copies of the VA spaces A and D (i.e., the VA spaces A′ and

D′), and perform all necessary memory read operations over the copy of the orig-

inal prover program (the VA spaces A′, B′,C′, and D′). This approach is equal to

that attackers adding a constant offset to the memory address to read, but without

changing the D-TLB replacement sequence.

In this attack, to avoid invalidating the I-TLB replacement, attackers can choose

to compress the checksum function size to get spare memory space for the mali-

cious code. Another way to guarantee the correct checksum execution for the ma-

licious checksum function is to simulate the I-TLB replacement (to compute the

correct PC value incorporated into the checksum and the target address to jump to

in a random jump operation) without dynamically updating the mappings of the

VA space A.

In this attack, the malicious checksum function also needs to guarantee that

the correct page table content is incorporated into the checksum. The malicious

checksum function can incorporate the correct page table content in two ways:

1. The malicious checksum function configures the CPU to utilize the page ta-

ble in the VA space C, dynamically updates the page table in the VA space C,

dynamically updates the page table in the VA space C′ (to guarantee that the

VA spaces C′ and D′ contain the expected page table contents), and incorpo-

rates the page table content in the VA spaces C′ and D′ into the checksum.

51

In this attack, to avoid changing the D-TLB replacement sequence, the ma-

licious checksum function disables the MMU to preserve the D-TLB entries

when updating the page table in the VA space C and enables the MMU after

the update. During the checksum computation, the page table content is fre-

quently updated; consequently, the malicious checksum function is forced to

frequently disable/enable the MMU and perform memory write operations

when the D-cache is disabled, causing a high overhead. When the checksum

function updates the mappings for the VA space A′, it also needs to update

the mappings of the VA space A. To randomly update two entries of the

page table, the checksum function needs to perform two memory read oper-

ations and two memory write operations. In the checksum computation, the

checksum function updates the mappings of the VA space A′ for NPT
A′ times;

updates the mappings of the VA space A for NPT
A times (NPT

A′ is equal to NPT
A);

and updates the mappings of the VA space D′ for NPT
D′ times. We denote the

overhead of a non-cacheable memory write is T nocache
write Then the overhead of

updating the page table in the VA space C in this attack is

T overhead
PT = NPT

A × (Tmmu +4×T nocache
read +4×T nocache

write)

+NPT
D′ × (Tmmu +2×T nocache

read +2×T nocache
write) (3.20)

2. Alternatively, the malicious checksum function configures the CPU to uti-

lize the page table in the VA space C′; dynamically updates the page table in

the VA space C′; computes the checksum over the content in the VA spaces

A′, B′, C′, and D′. In this attack, the malicious checksum function adds the

VA-to-PA mappings for the VA spaces A′, B′, C′, and D′ in the page table

being measured (in the VA space C′); but the memory space that saves the

additional mappings should contain pseudo-random values (invalid mapping

52

values). Thus, the malicious checksum function is forced to perform ad-

ditional operations to guarantee that the expected values (instead of values

of the additional mappings) are incorporated into the checksum. Because

the additional mapping values only exist in the page table and can be eas-

ily distinguished from other mapping values or other memory contents, the

malicious checksum function can check the returned value of every memory

read when the VA spaces C′ and D′ are measured and performs an addi-

tional read over the VA space C to get the expected value if the returned

value is an additional mapping. When the VA space C′ is measured, the ma-

licious checksum function could also check every memory address to read

and redirect the memory read to the VA space C if the address containing

an additional mapping is measured. But in this way, to avoid changing the

D-TLB replacement, the malicious checksum function still needs to perform

a read or write on the expected memory page to read in the VA space C′. The

malicious checksum function might only need several instructions to check

the returned value or the memory address to read. The overhead to check

the memory address to read is similar to the overhead to check the returned

value.

We denote the numbers of memory reads over the VA spaces C′ and D′ as NC′

and ND′ separately; the overhead to check one returned value or one mem-

ory address as Tcheck; the probabilities to read additional mappings (modified

contents) in the VA spaces C′ and D′ are PC′ and PD′ . The overhead to incor-

porate the expected values into this attack is

T overhead
mappings = Tcheck×(NC′+ND′)+(Tmmu+T nocache

read)×(PC′×NC′+PD′×ND′)

(3.21)

The memory range containing the additional mappings may be only a small

53

portion of the memory pages to verify in the VA spaces C′ and D′ (PC′ and

PD′ are small). Although the additional memory read over the VA space C

might be expensive, the main overhead of this attack might be caused by

the additional operations to check the returned value or the memory address

to read. However, Tcheck is small (only several additional instructions) and

consequently, the overhead of this attack might be limited.

Dynamically Modified Instructions To increase the overhead of the second type

Attack (VI), we can apply a large number of dynamically modified instructions in

the checksum function. In this way, we can force the malicious checksum function

running in the VA space A to perform additional operations to compute the expected

checksum.

The malicious checksum function can compute the expected checksum result

in three ways.

1. In the first way, the malicious checksum function dynamically updates the

checksum instructions in the VA spaces A′ and D′, and performs additional

memory write operations on the VA space A to update the checksum func-

tion instructions in the VA spaces A and D. To avoid changing the D-TLB

replacement, the malicious checksum function has to disable the MMU (to

preserve the D-TLB entries) when updating the instructions in the VA space

A and enable the MMU after the update.

2. In the second way, the malicious checksum function dynamically updates

the checksum instructions in the VA spaces A′ and D′, performing read-

decode-execute operations to compute the expected checksum. In a read-

decode-execute operation, the malicious checksum function running in the

VA space A reads the dynamically modified instructions in the VA space A′,

54

decodes them, and then forges the execution based on the decoding result. In

this attack, attackers have to perform additional memory read operations to

read the dynamically modified instructions, which might change the D-TLB

replacement and invalidate the checksum result. Thus, the malicious check-

sum function has to disable MMU when reading the instructions and enable

MMU after the read operations.

3. In the third, to reduce the number of additional memory operations (to re-

duce overhead), the malicious checksum function can save the random in-

formation (bits that are dynamically updated) of the dynamically modified

instructions in the spare memory space or the spare system control regis-

ters. When the dynamically modified instructions need to be executed, the

malicious checksum function reads the random information from the space

memory space or the spare system control registers and then forges the ex-

ecution. However, performing additional memory operations or frequently

accessing the system control registers might cause a high execution over-

head. In addition, we can increase the number of random bits updated to the

dynamically modified instructions to force the malicious checksum function

to perform more operations on the space memory space or the spare system

control registers, thereby increasing the overhead of this attack.

Using dynamically modified checksum instructions also increases the over-

heads of previously described attacks (I), (II), (III), (IV), (V), and first type (VI),

because in those attacks the malicious checksum function has to perform similar

additional operations to compute the expected checksum result. In the Attacks

(I and IV), the malicious checksum function does not need to disable the MMU

when performing the additional read or write operations. In the Attack (V), the

malicious checksum function can avoid the additional memory operations (to re-

55

duce the overhead) by checking every memory address to read when the VA spaces

A and D are measured and read the VA spaces A and D when the dynamically

modified instructions are measured.

Increase Overhead of Memory Substitution Attacks

The dynamic page table mechanism also significantly increases the overhead of

the memory substitution attacks (Section 2.1.1). When the dynamic page table

mechanism is applied, attackers can perform a memory substitution attack in two

ways: Attack (VII) and Attack (VIII).

Attack (VII) The malicious checksum function uses constant mappings for the

VA spaces A and D, simulates the I-TLB replacement for the correct checksum

execution, simulates the D-TLB replacement to compute the memory address to

read, checks every memory address to read, and redirects the memory address to

read to the correct copy (by adding a constant offset to the memory address to

read) when the modified content is being measured. The overhead of this attack is

mainly caused by the operations to simulate the I-TLB and D-TLB replacements,

which is similar to the overhead of the Attack (IV).

Attack (VIII) In this attack, the malicious checksum function dynamically up-

dates the mappings of the VA spaces A and D, checks every memory address to

read to identify if the modified content is being measured, and performs an addi-

tional memory read on the correct copy to get the expected value if the modified

content is being measured. To avoid changing the D-TLB replacement, the ma-

licious checksum function is forced to disable the MMU to preserve the D-TLB

entries before the memory read, read the memory content using the PA, and enable

the MMU after the memory read.

56

Attackers can reduce the number of the additional memory read operations by

constraining the malicious code to be a small portion of all memory pages to ver-

ify. For example, attackers can only modify the Epilog code and a small part of

the checksum function to perform attacks. In this condition, the malicious check-

sum function performs additional memory read operations only when the modified

checksum instructions or the modified Epilog code instructions are being mea-

sured. As we discussed in Section 3.4.2, when the dynamic page table mechanism

is applied, any additional code execution in extra memory pages might change the

I-TLB replacement and invalidate the checksum result. Therefore, in this attack

attackers are forced to keep the malicious instructions of every checksum block in

the same memory page with the corresponding checksum block. Attackers need to

compress the checksum function to get the spare memory space for malicious in-

structions in every memory page of the checksum function. Consequently, a large

portion of the VA space A might contain the modified content and the malicious

checksum function has to perform additional memory read operations in a high

probability when the checksum function memory pages (e.g., in the VA space A) is

being measured. Thus, we can increase the number of memory reads (for integrity

measurement) over the VA space A in every checksum block to force the malicious

checksum function to perform more additional memory read operations, thereby

increasing the overhead of this attack.

During the checksum computation, the virtual addresses of the checksum func-

tion memory pages in the VA space D are dynamically changing. Thus, the ma-

licious checksum function is forced to perform additional operations to identify if

the memory page to read (in the VA space D) is a checksum function memory page

before performing the additional memory read operations. As we discussed in the

Attack (V) the malicious checksum function can save a special tag in a constant

offset of every memory page of the checksum function (further guaranteeing that

57

the tag does not exist in other memory pages). The malicious checksum function

can easily read the tag to identify if it is reading a memory page of the checksum

function. The special tag can be the PA of the corresponding memory page that

contains the correct copy of the original checksum function. For other memory

pages that contain the modified content (e.g., the Epilog code memory page), the

malicious checksum function can perform similar operations to identify the mem-

ory page to read, then check if the modified content is being read.

We denote the probabilities to read the modified content in the VA spaces A

and D as PA and PD separately; denote the overheads to check one memory address

to read in the VA space A or the VA space D (to identify if the modified content is

being measured) as T A
check and T D

check separately. The overhead to get the expected

memory content in this attack is

T overhead
sub = T A

check×NA +T D
check×ND +(Tmmu +T nocache

read)× (PA×NA +PD×ND)

(3.22)

The modified content might be only a small portion of the VA space D (PD is

small). When the VA space D is measured, the overhead is mainly caused by the

operations to check the memory address to read. In this attack, T D
check is limited

because the malicious checksum function might only need several instructions to

check the memory address. However, PA might be large as analyzed above and

hence we can increase the overhead of this attack by increasing the value of NA.

3.4.4 Measure The Entire Physical Memory

To establish a software-only root of trust, the checksum function can also fill the

free memory space with pseudo-random values and then compute a checksum over

the entire physical memory (the VA space D covers the entire physical memory).

This section analyzes the attacks and limitations when the checksum function mea-

58

sures the entire physical memory.

Attack IX When the entire physical memory is measured during the checksum

computation, attackers cannot find the free memory space to save a correct copy of

the original prover program or to run a malicious checksum function. However, on

some embedded platforms with secondary storage (e.g., NAND Flash), attackers

can save a correct copy of the original checksum function in the second storage and

then perform a memory substitution attack. On embedded platforms, accessing the

secondary storage could be much more expensive than accessing the SDRAM or

SRAM memory. For example, to get a 32-bit word from a NAND Flash (for the

checksum computation), the CPU might need to (1) send a read-data command

to the NAND Flash, (2) receive a block of data (e.g., 512 bytes) that includes the

expected word from the NAND Flash, (3) read the corresponding Error-Correction

Code (ECC) from the NAND Flash, and finally (4) perform error correction over

the block of data to get the expected word. In this attack, the malicious checksum

function might only need to access the secondary storage in a low probability be-

cause the modified content (e.g., the malicious checksum function) is only a small

portion of the entire physical memory. For example, on a 512MB SDRAM, a

256KB checksum function is only 0.05% of the entire SDRAM memory. Conse-

quently, the main overhead of this attack is caused by the operations to check the

memory address to read.

The dynamic page table mechanism can significantly increase the overhead of

this attack. In a memory substitution attack, attackers run a modified checksum

function (the memory contents in the VA space A are modified), check every mem-

ory address to read, and access the secondary storage to get the expected value

when the modified contents are measured. When the dynamic page table mech-

anism is applied, the malicious checksum function is forced to perform similar

59

operations as Attack VII or Attack VIII, except that the malicious checksum func-

tion accesses the secondary storage (instead of the free memory space) to get the

expected value. In every checksum block, the VA space A might be measured sev-

eral times (to increase the overhead of Attack VII or Attack VIII). To reduce the

number of operations to access the secondary storage, attackers can save a correct

copy of the original checksum function in the memory and save the original values

of the memory that saves the correct checksum function in the secondary storage.

During the checksum computation, the malicious checksum function checks every

memory address to read when the VA space A is measured, reads the correct copy

in the memory when the modified content in the VA space A is measured, checks

every memory address to read when the VA space D is measured, gets the expected

value from the secondary storage when the memory space saving the correct check-

sum function is measured, and gets the expected value from the correct copy of the

checksum function when the modified parts of the checksum function in the VA

space D is measured. Consequently, the overhead of this attack should be close to

the overhead in Attack VII or Attack VIII, depending on the approaches (i.e., the

approach in Attack VII or Attack VIII) attackers choose to perform.

Limitations An approach that measures the entire physical memory during the

checksum computation is not scalable to the memory size. On the platform with

a large memory (e.g., 512MB SDRAM), the checksum function needs to perform

a large number of memory read operations in a random pattern to measure every

memory location in high probability (based on the result of the Coupon Collector’s

Problem). As a result, the entire checksum execution time will be significantly in-

creased, compared with the approach that only measures part of the memory. Also,

the measured time variance caused by CPU jitter will be increased (Section 3.3.3).

When the checksum function measures the entire physical memory (e.g., SDRAM)

60

instead of a part of the memory, the D-cache miss rate will increase. Consequently,

the average execution time of every checksum block is increased (because the av-

erage memory read time is increased).

3.4.5 Attestation on Heterogeneous Processor Architectures

On embedded platforms, a large number of system control registers are available to

the MPU, enabling the MPU to configure or control the hardware components, such

as interconnect bus, peripheral interfaces, and the clock of other processors. We

find that on embedded platforms it is possible that the MPU could configure system

registers to disable special purpose processors or prevent other processors from

accessing the main memory. Leveraging the hardware features, we might be able to

establish a software-only root of trust on embedded platforms with multiprocessors

without running a checksum function on every processor.

To establish a software-only root of trust, we can run a checksum function on

the MPU (the fastest processor). The checksum function configures the platform

to disable other processors or prevent other processors from accessing the main

memory (where the checksum function is running) and the memory-mapped regis-

ter space (where the critical configurations are), includes the configuration values

in the checksum (i.e., in the Epilog code), and establishes an untampered execution

environment using the software-based attestation approach. To prevent malicious

code in other processors from overwriting the Epilog code, the checksum function

calls the Epilog code in a random pattern and includes the critical configurations in

the checksum.

However, malicious code on other processors might predict the time at which

the Epilog code will be invoked and overwrite the Epilog code (i.e., to bypass it)

after the checksum computation, but before the Epilog code is called. To bypass the

61

Epilog code, attackers can overwrite register-write instructions (that reset platform

configurations) with NOP instructions and overwrite register-read instructions (that

read configuration values) with instructions that construct correct configuration val-

ues without any reads.

To prevent this attack, the checksum function can call the Epilog code several

times during the checksum computation in a random pattern and consequently, ma-

licious operations to bypass the Epilog code either invalidate the checksum result

or cause a detectable overhead.

In addition, because the checksum function cannot be computed in parallel, the

attackers cannot run the checksum function on multiple processors in parallel to

speed up the checksum computation.

This approach requires that the MPU be the fastest processor on the platform.

When other processors are faster than the MPU the processors that run at a faster

frequency (than the MPU) might have a different TLB architecture or TLB re-

placement, and consequently, have to simulate the TLB replacements to compute

the expected checksum result for the MPU, thereby causing a detectable overhead.

3.5 Implementation

We implement a proof of concept prototype of Mead and evaluate our system using

a Gumstix FireStorm COM1 as the prover device and an HP laptop as the verifier

machine. The device and the laptop are directly connected via Ethernet cables and

a Linksys wireless-G broadband router. The router is set using the default con-

figurations, allowing both the verifier machine and prover device to dynamically

get IPs via DHCP protocol. We run a Linux operating system (based on Yocto

1https://store.gumstix.com/

62

Poky Dylan 9.0.02) on the Gumstix FireStorm COM and the Linux kernel version

is 3.5.7. We implement the prover program as a loadable kernel module. In the

prover kernel module, we implement the Ethernet communication function and

the function to read and write NAND Flash partition contents. We implement the

checksum function using ARM assembly in the prover kernel module.

The HP laptop has an Intel Quad-Core i5 CPU running at 2534 MHz, 4GB of

RAM, and runs 32-bit Ubuntu 12.04 LTS as the guest OS. We implement a verifier

program that runs on the HP laptop. The verifier program communicates with the

prover kernel module on the Gumstix FireStorm COM through ICMP packets. A

timer in the verifier program measures the time of one nonce-response pair using

the RDTSC instructions.

3.5.1 Gumstix FireStorm COM

The Gumstix FireStorm COM is a TI DM3730-based platform, and it has 512M

SDRAM, 64KB SRAM, and 512MB NAND Flash. The FireStorm COM is also

equipped with a wireless module for WiFi and Bluetooth communications. We

expand the FireStorm COM with a Gumstix Tobi expansion board3 that expands

the platform with external interfaces (e.g., 10/100 Ethernet and USB ports).

The TI DM3730 [107] Central Processing Unit has an ARM Cortex-A8 pro-

cessor (MPU) with 1-GHz maximum frequency, and a High Performance Image

Video Audio (IVA) subsystem. In the IVA subsystem, there is a TMS320C64x+

Digital Signal Processing (DPS) core (800-MHz) and a ARM9 core (200-MHz).

The MPU and the IVA subsystem share the memory system. DM3730 supports

firewalls to restrict accesses of SDRAM, SRAM and NAND Flash from other sub-

systems (e.g., IVA subsystem or the DMA controller). By leveraging the access

2https://www.yoctoproject.org/
3https://store.gumstix.com/tobi.html

63

control enforced by the firewalls, the MPU can prevent illicit accesses from other

subsystems and only allows the MPU itself to access SDRAM, SRAM and Flash

contents.

ARM Cortex-A8 The MPU subsystem has an ARM Cortex-A8 core [8, 9]. The

MPU core has 32 entries of I-TLB and D-TLB respectively. TLBs use round-robin

replacement policy, which is deterministic. Besides TLBs, MPU has two levels of

caches. The first-level (L1) has 32KB I-cache (4-Way Set Associative) and 32KB

D-cache (4-Way Set Associative), while the second level (L2) is a 256KB unified

cache (8-Way Set Associative) for both instructions and data. Page table content

in L1 D-cache is not available for MMU to read on ARM Cortex-A8. When TLB

miss happens, MMU reads the L2 cache to get the page table contents. On Cortex

A8, there is no hardware-support for cache coherence in L1 level caches. Caches

use random replacement policy. The data cache (L1 data cache and unified L2

cache) could be configured as write-through, which allows any modification on

the L1 data cache will be reflected on the L2 cache or SDRAM. The L1 I-cache

is Virtually Indexed and Physically Tagged (VIPT) while the L1 D-cache and the

L2 unified cache is Physically Indexed and Physically Tagged (PIPT). ARM Cor-

tex A8 has a NEON coprocessor for Single-Instruction-Multiple-Data (SIMD) and

floating point operations. The NEON coprocessor has 32 64-bit general purpose

registers and share the same instruction Fetch unit with the ARM processor.

Device Registers On DM3730, there are more than 5000 readable and writable

device control registers in memory-mapped register space, and those control reg-

isters could be used by an adversary to hold malicious code/data. To achieve a

malware-free system state, we reset all device registers (with known values) im-

mediately after the checksum computation. There are several control registers that

64

could subvert the untampered execution environment established on the MPU. In

particular, the WDT could be configured to reset the embedded device once the pre-

configured timer threshold is triggered. Moreover, the DMA could be configured

to issue a DMA request to transfer malicious contents to the prover kernel mod-

ule. To handle such control registers, the checksum function periodically calls the

Epilog code to incorporate the WDT and firewall configurations in the checksum.

3.5.2 Checksum Function Implementation

We implement the checksum function as 512 checksum blocks and each check-

sum block has 128 ARM instructions that take 512B memory space. The check-

sum function is deployed on 4KB-aligned virtual memory and the 512 checksum

blocks take 64 4KB memory pages (256KB memory). On the Gumstix FireStorm

COM, accessing the SRAM is faster than accessing the SDRAM (our measure-

ments shows that on the Gumstix FireStorm COM, a non-cached memory read over

SRAM consumes 95 CPU cycles while a non-cached memory read over SDRAM

consumes 135 CPU cycles when the CPU runs at 1GHz). To obtain the best perfor-

mance, we deploy part of the checksum function on the 64KB SRAM4. In partic-

ular, 128 checksum blocks are deployed on the 64KB SRAM while 384 checksum

blocks are deployed on the SDRAM.

Pseudo-Random Number Generator In the checksum function, we use a 32-

bit T-function to build a Pseudo-Random Number Generator (PRNG) and con-

struct the memory address to read using the PRNG outputs. Because T-function is

a Pseudo-Random Permutation Function (PRPF), after every 216 checksum itera-

4We also evaluated other configurations (e.g., deploying the frequently-accessed page table in

the SRAM) and evaluation results show that our current implementation have the best performance

compared with other configurations.

65

tions, the checksum function updates the seed to the T-function to build a PRNG

from the T-function [35]. In particular, the checksum function saves a large number

of Pseudo-Random Numbers (PRNs) in the memory before the checksum compu-

tation (the memory space saving the PRNs is measured by the checksum function

during checksum computation) and then generates the seed to the T-function based

on the T-function outputs, checksum states, and saved PRNs during checksum com-

putation. In this way, the verifier program does not need to send new nonces (as the

seed) to the prover program during checksum computation. Note that an adversary

could not precompute the seed based on the saved PRNs because the T-function

outputs and checksum states are incorporated with the saved PRNs to generate the

new seed. In addition, the initial seed to the T-function is sent from the verifier and

the prover program generates the PRNs using an Advanced Encryption Standard

(AES)-based PRNG based on the random values sent from the verifier before the

checksum computation (another way is that the verifier program sends all required

PRNs to the prover device before the checksum computation).

Strongly-Ordered Checksum Function In each checksum block, the checksum

function updates one 32-bit checksum state, out of a total 30 checksum states, using

strongly-ordered ADD, XOR, and SHIFT operations. Each checksum block takes

as input: other checksum states, the memory address being read (Data Pointer),

memory contents, current processor status (i.e., the Current Processor Status Reg-

ister (CPSR) value), Program Counter (PC), the pseudo-random numbers generated

by a T-function, and a counter. We carefully order the checksum instructions and

guarantee that they cannot be executed in parallel. In the checksum function, all

30 available ARM General Purpose Registers (GPRs) are used (2 GPRs in monitor

mode are not available to access on ARM Cortex A8): 25 GPRs are used to save

checksum states; r0 stores the pseudo-random value from T-function; r1, r2, and

66

r3 are used as temporary variables; r4 stores the counter value. Figure 3.10 shows

the ARM assembly instructions that measure the VA space D in one checksum

block. To prevent attackers from using NEON coprocessor to perform malicious

operations, we save pseudo-random values in all 32 64-bit NEON GPRs. In each

checksum block, all NEON GPR values are updated (based on the checksum states)

and incorporated into the checksum.

r12 checksum state to update

C Carry flag

Assembly Instruction Explanation

umull r2, r1, r0, r0 tmp = PRN×PRN, T-function computation

orr r1, r2, #0x5 tmp = tmp | 5, T-function computation

add r0, r0, r1 PRN = PRN + tmp, T-function computation

lsr r1, r0, #12 tmp = PRN >> 12

and r2, r1, #0xFFFFFFFC addr VA D = tmp & mask

ldr r1, [r2] tmp = mem[addr VA D]

eor r12, r12, r1 r12 = r12⊕ tmp

adcs r12, r12, r11 r12 = r12+ r11+C, update C

eor r12, r12, r0 r12 = r12⊕PRN

adcs r12, r12, r15 r12 = r12+PC+C, update C

eor r12, r12, r13 r12 = r12⊕ r13

adcs r12, r12, r2 r12 = r12+addr VA D+C, update C

Figure 3.10: Assembly instructions that measures the VA space D in one checksum

block. The checksum state is saved in r12 in this checksum block.

Memory Read Over VA Spaces As analyzed in Section 3.4, we could increase

the overhead of attacks by increasing the number of memory read operations in the

checksum function. Also, the overhead of Attack VIII is mainly caused by mali-

67

cious operations when the VA space A is measured. Thus, the checksum function

performs multiple memory reads over the VA spaces in every checksum block with

more memory read operations over the VA space A than other VA spaces. In par-

ticular, the checksum function performs five memory reads over the VA spaces A,

B, C, or D for integrity measurement in every checksum block (total 2560 mem-

ory reads in the 512 checksum blocks). In the 2560 memory reads, the checksum

function performs 2423 memory reads over the VA space A (256KB), one memory

read over the VA space B (8KB), eight memory reads over the VA space C (64KB),

and 128 memory reads over the VA space D (1MB) (for 128 checksum blocks, the

checksum function performs one memory read over the VA space D and four mem-

ory reads over other VA spaces in every checksum block). In our implementation,

the program program and other critical memory contents (e.g., page table, stack,

communication buffer) take about 912KB memory. The spare memory in the 1MB

VA space D are filled with PRNs before checksum computation.

Dynamic Page Table The memory contents to verify (including the checksum

function, the communication function, hash function, stack, communication buffer,

page table, exception handler table, and so on) are mapped in a 1MB virtual mem-

ory (256 4KB pages) for integrity measurement. The memory pages containing

checksum function is also mapped to another 256KB virtual memory (64 4KB

pages) for checksum execution. The checksum function dynamically updates the

mappings of the 1MB virtual memory and the mappings of the 256 KB virtual

memory (for checksum execution) separately. Between the five memory reads,

the checksum function dynamically updates page table contents in each checksum

block. In 128 checksum blocks (out of the 512 checksum blocks), the checksum

function dynamically updates the VA-to-PA mappings of the 256KB virtual mem-

ory for checksum execution while in other 384 checksum blocks, the checksum

68

function dynamically updates the VA-to-PA mappings of the 1MB virtual mem-

ory for integrity measurement. The L1 D-cache is configured as write-through,

so the updated mappings are available in L2 cache immediately. When TLB miss

happens, the MMU reads the updated page table contents in L2 cache directly.

Dynamically Modified Instructions In additional, each checksum block con-

tains 13 ARM instructions that are dynamically modified during checksum execu-

tion. After every 211 checksum iterations (executing one checksum block is one

checksum iteration), the checksum function modifies 13 ARM instructions in ev-

ery checksum block, and invalidate all I-cache blocks. The 13 ARM instructions

in every checksum block perform arithmetic computation with SHIFT operations.

The checksum function incorporates 7 random bits to each instruction to update the

number of bits to shift (5 random bits) and the way to shift (2 random bits) in the

instruction. In our implementation, the L1 D-cache is configured as write-through,

so the dynamically modified instructions are available in L2 cache after modifica-

tion. After I-cache blocks are invalidated, the dynamically modified instructions in

L2 cache are executed by the CPU.

Untampered Execution Environment The checksum function disables mask-

able interrupts by configuring the CPSR value and incorporating the CPSR value

in the checksum in every checksum block. To prevent nonmaskable interrupts

(e.g., undefined instruction exception or data access abort), all Save Processor Sta-

tus Registers (SPSR) are used to save checksum states. When an exception or abort

happens, the MPU (ARM Cortex A8) automatically overwrites the SPSR value of

the exception handling mode with the CPSR value of the operating mode in which

the exception happens, consequently invalidating the checksum state saved in the

SPSR. Every checksum block randomly jumps to another checksum block after

69

checksum computation. In this way, we can force attackers to simulate I-TLB re-

placement in every checksum block in an I-cache inconsistency-based attack. the

checksum function calls the Epilog code to incorporate critical platform configu-

rations in the checksum or reconfigure critical control registers values in a random

pattern (in one out of the 128 checksum blocks that perform memory reads over

the VA space D, the checksum function checks the value of the memory address to

read and calls the Epilog code when a specific memory range in the VA space D

is measured). The implemented Epilog code first verifies the firewall configuration

(to guarantee that the IVA subsystem and the DMA cannot access the SDRAM,

SRAM, or NAND Flash), then verifies other critical configurations (e.g., WDT

configuration, exception handler table base address, and page table base address).

Attestation on DM3730 During attestation processor, we only run the checksum

function on the Cortex A8 processor (1-GHz). The DSP processor (800-MHz) or

the ARM9 processor (200-MHz) in the IVA subsystem cannot tamper with the exe-

cution environment established on the Cortex A8 by writing malicious instructions

to the main memory (SDRAM and SRAM) because the checksum function con-

figures the firewall to prevent the IVA subsystem from accessing the main memory

where the prover program is running and verifies the firewall configuration during

the checksum computation. The DSP processor (800-MHz) or the ARM9 proces-

sor (200-MHz) in the IVA subsystem cannot compute the checksum for the Cortex

A8 processor (1-GHz) in a shorter time than the Cortex A8 processor, because (1)

the DSP and the ARM9 processors run in slower CPU frequencies than the Cortex

A8 processor and they cannot compute the expected checksum in parallel; (3) the

IVA subsystem has only a unified TLB for the DSP and the ARM9 processors, so a

checksum function running on the DSP or the ARM9 processor has to simulate the

I-TLB and D-TLB replacements (on Cortex A8) to compute the expected check-

70

sum causing high overhead; (4) a checksum function running on the DSP or the

ARM9 processor has to change the firewall configuration (to access the memory

contents to verify in main memory) and perform additional operations to forge the

expected checksum result causing overhead. After a software-only root of trust

has been established on the Cortex A8 processor, the prover program can reset the

IVA subsystem to set the IVA subsystem in a known state (cleaning all malicious

contents in the IVA subsystem).

3.6 Evaluation

We evaluated Mead and measured the overhead caused by possible attacks on a

Gumstix FireStorm COM.

3.6.1 Attacks and Malicious Operations

Table 3.1 summarizes the attacks against Mead and corresponding malicious op-

erations described in this chapter. In these attacks, Attack (VI-1) performs more

operations than Attack (VI-2), causing a higher overhead than Attack (VI-2). Thus,

we did not measure the overhead of Attack (VI-1) as Attack (VI-2) is a better choice

for adversaries. In addition, Attack (V) performs an additional non-cached memory

read operation for nearly every memory read operation in the checksum function,

causing a much higher overhead than Attack (VIII), which performs additional

non-cached memory read operations only when modified contents (a small portion

of the prover program) are measured. Thus, we did not measure the overhead of

Attack (V).

As shown in Table 3.1, the main malicious operations in other attacks (except

Attacks (V) and (VI-1)) include simulating the I-TLB replacement by saving vari-

ables in spare memory space (when MMU is disabled) or by saving variables in

71

spare system control coprocessor registers, simulating both I-TLB and D-TLB re-

placements when MMU is enabled, handling dynamically modified instructions by

performing additional memory write operations when MMU is disabled or by per-

forming read-decode-execute operations, and operations in Attack (VIII) (checking

every memory address to read and performing additional memory read only when

modified contents are measured). We evaluated these attacks by measuring the

overhead caused by these malicious operations.

3.6.2 Simulating I-TLB Replacement

In Attack (II) or (III), a malicious checksum function simulates the I-TLB replace-

ment. In our evaluation, we focused on the overhead caused by the operations that

simulate the I-TLB replacement and assumed that attackers already compressed

the checksum function size to be smaller than the I-cache size and a compressed

malicious checksum function runs in the I-cache (with spare I-cache blocks for ma-

licious instructions). The compressed checksum function runs in a virtual memory

with constant VAes. The I-TLB entries for the compressed checksum function are

preserved. At the end of each checksum block, the malicious checksum function

simulates the I-TLB replacement using the round-robin replacement policy and

calculates the target address to jump.

Saving Variables in Spare Memory We implemented the malicious code that

simulates the I-TLB replacements by saving variables in the spare memory for the

checksum function. Our implementation of simulating the I-TLB replacement con-

tains 63 ARM instructions. The implemented malicious code saves 32 simulated

I-TLB entries (each entry contains a 32-bit PA) and 384-bit status bits for 64 VA-

to-PA mappings of the checksum function pages in the spare memory. The status

bits indicate if a VA-to-PA mapping is cached in I-TLB (1 bit for each mapping)

72

Table 3.1: Attacks against Mead and Malicious Operations.

Attacks Main Malicious Operations

Attack (I) Simulate I-TLB and D-TLB replacements (MMU is enabled) (Equation 3.6);

Perform read-decode-execute to handle dynamically modified

instructions

Attack (II) Simulate I-TLB replacement (MMU is disabled) (Equation 3.9);

Perform read-decode-execute to handle dynamically modified

instructions

Attack (III) Simulate I-TLB replacement using spare coprocessor

registers to save variables (Equation 3.12);

Perform read-decode-execute to handle dynamically modified instructions

Attack (IV) Simulate I-TLB and D-TLB replacements (MMU is enabled) (Equation 3.15)

Attack (V-1) Call coprocessor to perform VA-to-PA translation (Equation 3.18);

Perform additional memory read (when MMU is disabled)

when VA spaces A, B, D are measured (Equation 3.19)

Attack (V-2) Perform additional memory read (when MMU is disabled)

when VA spaces A, B, D are measured (Equation 3.19)

Attack (VI-1) Perform additional memory write to update page

table (MMU is disabled) (Equation 3.20);

Handle dynamically modified instructions by additional

write operations when MMU is disabled or by read-decode-execute

Attack (VI-2) Handle dynamically modified instructions by additional

write operations when MMU is disabled or by read-decode-execute

Attack (VII) Simulate I-TLB and D-TLB replacements when MMU is enabled

Attack (VIII) Check memory address to read and perform additional memory read

(MMU is disabled) when modified contents are measured (Equation 3.22)

73

and also include the entry index number in I-TLB (5 bits for each mapping) if the

mapping is cached in I-TLB. In total, the malicious code saves 1408-bit values

(1024+384) values in the spare memory.

For each memory read, the malicious code checks the status bits of the memory

page to read. If the mapping is already in I-TLB, the malicious code reads the

mapping value in the simulated I-TLB to get the corresponding PA. However, if

the mapping is not in I-TLB, the malicious code reads the mapping in the page

table to get the PA, updates the simulated I-TLB entries using the round-robin

replacement policy, and then updates the status bits. To avoid changing the D-

TLB replacement, the malicious checksum function first disables the MMU before

simulating the I-TLB replacement, and then enables the MMU after the simulation.

The measurement results are described in Section 3.6.6.

Saving Variables in Spare Coprocessor Registers As previously described, a

malicious checksum function might be able to save the variable values for sim-

ulating the I-TLB replacement in spare coprocessor registers to avoid expensive

non-cached memory operations. On the ARM Cortex-A8 processor, we found 14

spare system control coprocessor (cp15) registers that could be used to save vari-

able values for the simulation. The spare cp15 registers are mainly used to save

fault status information or context ID, whose values will not affect the processor

status. In these 14 32-bit cp15 registers, 77 bits are reserved (cannot be used to

save values), and only 371 bits can be used to save variable values. As a result, we

could only save part of the variable bits (e.g., part of status bits) in the spare cp15

registers. If accessing a spare cp15 register is faster than a non-cached memory

read or write, we could speed up the simulation.

We first measured the time for a non-cached read or write operation, the time

for reading or writing a spare cp15 register, and the time for enabling and enabling

74

MMU. Our measurement results show that on the Cortex-A8 processor (1GHz) on

a Gumstix FireStorm COM, a non-cached read operation (over SDRAM) consumes

about 135 CPU cycles; meanwhile, a non-cached write operation consumes the

same amount of CPU cycles. However, reading a spare cp15 register consumes

about 30 CPU cycles on average5, and writing a spare cp15 register consumes

about 38 CPU cycles on average6. Thus, using the cp15 registers to save part of

variable values will reduce the overhead. Our measurement results also show that

disabling and then enabling MMU on the Cortex-A8 processor (1GHz) consumes

about 113.6 CPU cycles.

In our simulation algorithm, simulated I-TLB entries are accessed less fre-

quently than status bits. When the mapping is in I-TLB, the malicious code per-

forms one read on the status bits and one read on the simulated I-TLB entries,

disables and enables MMU one time; when the mapping is not in I-TLB, the ma-

licious code performs one read and two writes on the status bits, one read and one

write on the simulated I-TLB entries, and one read on the page table, and disables

and enables MMU one time. Thus, it is reasonable to use the spare cp15 registers

to save the status bits to reduce the overhead.

We denote the time of one non-cached read or write operations as Tmem, the time

of reading a spare cp15 register as T r
cp15, the time of writing a spare cp15 register

as T w
cp15, the time of disabling and then enabling MMU one time as Tmmu, and the

average time to simulate one I-TLB replacement as T simu
ITLB . The checksum function

executes the checksum blocks in 64 memory pages by random jumps (using the

same probability). The I-TLB has 32 entries, so the I-TLB miss rate should be

close to 50%. Ignoring other additional operations, when the status bits are saved

5Reading the 14 cp15 registers consumes about 420 CPU cycles in total
6Writing the 14 cp15 registers consumes about 532 CPU cycles in total

75

in spare cp15 registers, the average time to simulate one I-TLB replacement is

T simu
ITLB = 0.5× (T r

cp15 +Tmem +Tmmu)+0.5× (Tmem×3+T w
cp15×2+T r

cp15 +Tmmu)

(3.23)

T simu
ITLB = T r

cp15 +T w
cp15 +2×Tmem +Tmmu (3.24)

When all variables are saved in spare memory space, the average time is

T simu
ITLB = 4×Tmem +Tmmu (3.25)

Although we did not implement the malicious code that simulates the I-TLB

replacement by saving status bits in cp15 coprocessors, based on the above equa-

tions, we can estimate that—when using cp15 registers to save status bits—the

overhead to simulate I-TLB replacement can be reduced by about 30.9%7.

3.6.3 Simulating I-TLB and D-TLB Replacements

In Attacks (I), (IV), and (VII), the malicious checksum function simulates both I-

TLB and D-TLB replacements. We implemented the malicious code to simulate

both I-TLB and D-TLB replacements in the checksum function. In every check-

sum block, the malicious code simulates the D-TLB replacement for every memory

read operation to compute the legitimate memory address to read. Our implementa-

tion of simulating D-TLB replacement contains 82 ARM instructions. In addition,

at the end of every checksum block, the malicious code simulates the I-TLB re-

placement to compute the legitimate target address to jump. Our implementation

of simulating I-TLB replacement contains 55 ARM instructions (this implemen-

tation contains less instructions than the implementation in Section 3.6.2 because

it does not disable or enable MMU). Note that, when the D-TLB replacement is

71− 30+38+2×135+113.6
4×135+113.6 = 0.309

76

simulated, the malicious checksum function does not need to disable MMU when

performing additional memory operations. The measurement results are described

in Section 3.6.6.

3.6.4 Handling Dynamically Modified Instructions

In Attacks (I), (II), (III), and (VI), a malicious checksum function needs to han-

dle the dynamically modified instructions to compute the correct checksum results.

There are two ways to compute the correct checksum (as detailed in Section 3.4.3):

(1) performing additional write operations to update the malicious checksum func-

tion and (2) performing read-decode-execution operations. When performing ad-

ditional write operations, the malicious checksum function disables MMU to pre-

serve D-TLB entries. In the read-decode-execute operation, a malicious checksum

function can save the random bits in spare memory or in spare cp15 registers.

We implemented the malicious code that performs additional write operations

to dynamically update the instructions in the malicious checksum function (the

malicious checksum function is saved on the correct memory location). In our im-

plementation, to update each instruction, the malicious code disables the MMU,

performs one memory write operation (write the updated instruction to the mali-

cious checksum function), and then enables the MMU. Thus, to update one check-

sum block, the malicious code performs 13 additional memory write operations

and also disables and enables MMU thirteen times. The measurement results are

described in Section 3.6.6.

In read-decode-execute operations, the malicious code has to save 91 random

bits (13×7 bits) in spare memory space or in spare cp15 registers for every check-

sum block. For all 512 checksum blocks, the malicious code needs to save 46,592

77

random bits. Thus, only a small portion of the random bits (0.8%8) can be saved

in the 14 spare cp15 registers that can save 371-bit values. When saving the ran-

dom bits in spare memory, the malicious code disables MMU, performs 3 memory

write operations (saves random bits in memory), and then enables MMU. During

the checksum execution, to read the random bits, the malicious checksum func-

tion disables MMU, performs 3 memory read operations (to get the random bits),

enables MMU, and then decodes and executes the instructions correctly. The cur-

rent checksum function has 512 checksum blocks and the checksum instructions

are dynamically updated after every 2048 checksum iterations (one checksum it-

eration is the execution of one checksum block). Thus, each checksum block is

executed four times on average before the checksum instructions are dynamically

updated again. Therefore, before the instructions are updated again, the malicious

checksum function needs to perform 3 additional memory write operations and 12

additional memory read operations for every checksum block on average (15 ad-

ditional memory operations total). The malicious checksum function also needs to

disable and enable MMU five times for every checksum block on average. Note

that 64KB checksum function are deployed on the SRAM while 192KB check-

sum function are deployed on the SDRAM. A non-cached memory write over the

SRAM is faster than a non-cached memory write over the SDRAM. However, in

Attacks I, II, and III, the malicious checksum function cannot save random bits on

the SRAM because the data memory (data cache, SRAM, and SDRAM) should not

contain any modified contents in these attacks (Section 3.3.2). In Attack VI-2, the

malicious checksum function can save all random bits in the SRAM, reducing the

overhead of read-decode-execute operations (in this attack, attackers have to move

several checksum blocks from the SRAM to SDRAM to get spare memory space

80.008 = 371
46592

78

on the SRAM for saving the random bits).

Our measurements show that disabling and then enabling MMU on an ARM

Cortex-A8 processor (1 GHz) consumes about 113.6 CPU cycles while a non-

cached read or write operation over the SDRAM consumes about 135 CPU cycles.

A non-cached read or write operation over the SRAM consumes about 95 CPU

cycles. Ignoring the operations to decode the random bits and then execute the

instructions correctly, when random bits are saved in the SDRAM (Attacks I, II

and III) the read-decode-execute operation could reduce the overhead by 16.4%9,

compared with performing additional writes to update the malicious checksum

function. When random bits are saved in the SRAM (Attacks VI-2) the read-

decode-execute operation could reduce the overhead by 35.7%10, compared with

performing additional writes to update the malicious checksum function. Note that

we did not implement the malicious code to perform read-decode-execute oper-

ations. In addition, the spare cp15 registers can be used to save random bits to

speed up the read-decode-execute operations. However, as the spare cp15 registers

can only save 0.8% of the random bits, we ignored the spare cp15 registers in the

computation.

3.6.5 Memory Substitution Attacks

We implemented the malicious operations in Attack (VIII) and measured the over-

head of this attack. To avoid changing the I-TLB replacements, we kept the ma-

licious code for each checksum block in the same memory page with the corre-

sponding checksum block. To get sufficient spare memory space for malicious

operations, we reduced the size of three checksum blocks (out of the eight check-

sum blocks) in every checksum function memory page by reducing the duplicated

91− 15×135+5×113.6
(13×135+13×113.6)×0.75+(13×95+13×113.6)×0.25 = 0.164

101− 15×95+5×113.6
(13×135+13×113.6)×0.75+(13×95+13×113.6)×0.25 = 0.357

79

T-function instructions. The implemented malicious code checks every memory

address to read and reads the correct copy (an additional memory read) if malicious

contents are measured. To avoid changing the D-TLB replacement, the malicious

code disables MMU before performing the additional memory read and enables

MMU after the memory read.

In every checksum block, the memory read instructions are replaced with jump

instructions that jump to the malicious code. In every checksum function memory

page, when the memory space that contains the three compressed checksum blocks

is read, the malicious code performs an additional memory read to get the correct

values; when the other five checksum blocks are read, the malicious code reads

the memory, checks the returned value, and replaces it with the value of the mem-

ory read instruction if the returned value is a jump instruction. In this attack, the

malicious checksum function saves the PAes of the memory pages containing the

correct copy in a constant offset of the corresponding checksum function memory

page (Section 3.4.3). Because a non-cached read over the SRAM is faster than

a non-cached read over the SDRAM, the malicious checksum function might be

able to reduce the overhead by saving a correct copy of the modified contents on

the SRAM (running the malicious checksum function on the SDRAM). Therefore,

we implemented this attack in two ways and measured the overheads of both im-

plementations. In the first approach (Attack VIII Implementation A), we ran the

malicious checksum function on the original memory location (64KB of the check-

sum function are on the SRAM) and saved the correct values of modified contents

on the SDRAM. In the second approach (Attack VIII Implementation B), we ran

the malicious checksum function on the SDRAM, but saved 64KB (out of 96KB)

of the correct values of modified contents on the SRAM (other 32KB were saved

on the SDRAM). The measurement results are described in Section 3.6.6.

80

3.6.6 Evaluation Results

Counter Value Based on the result of the Coupon Collector’s Problem [42], the

minimal counter value (the number of checksum iterations to run) to measure all

memory locations in the VA spaces A, B, C, and D is 0xc80000. We set the counter

value as 0x2000000 (approximately three times of 0xc80000) in all measurements

against two-part checksum computation attacks (see Section 2.1.3).

20 40 60 80 100

Trials

25

30

35

40

45

50

55

60

S
e

c
o

n
d

s

Simulate I-TLB replacement saving all variables in memory
Attack VIII Implementation A
Perform additional writes to handle dynamically modified instructions
Attack VIII Implementation B
Simulate I-TLB and D-TLB replacements
Normal condition (no attack)

Figure 3.11: Measured time of a single nonce-response pair in seconds (iteration

counter is 0x2000000). The malicious checksum function performs malicious op-

erations in all 0x2000000 iterations.

Normal Conditions On normal conditions without attacks, the average latency

of a single nonce-response pair measured by the verifier program over 100 trials is

24.55 seconds (standard deviation is 0.18 seconds). We also measured the time of

a single nonce-response pair when the Epilog code is skipped (simulating the at-

tacks in which attackers configure the memory-mapped register space as cacheable

described in Section 3.4.1). The measurements show that the overhead caused by

the Epilog code is negligible. In addition, in Attacks (I), (II), and (III), because

81

the malicious checksum function runs inside the I-cache without I-cache misses or

I-TLB misses, the I-cache misses and I-TLB misses are avoided in these attacks.

To estimate the time reduced by avoiding I-cache misses and I-TLB misses, we

ran a modified checksum function that contains only 64 checksum blocks (32KB).

The modified checksum function runs in the 32KB I-cache and uses only 8 (out of

32) I-TLB entries. The average latency of a single nonce-response pair over 100

trials is 21.33 seconds (standard deviation is 0.33 seconds) (reducing the checksum

execution time by 13%).

Measurement Results The measurement results (Figure 3.11) show that, in At-

tack VIII Implementation A (Section 3.6.5), the average latency of a nonce-response

pair over 100 trials is 53.11 seconds (standard deviation is 0.003 seconds and the

caused overhead is 116% of the average latency on normal conditions). Mean-

while, in Attack VIII Implementation B, the average latency of a nonce-response

pair over 100 trials is 48.76 seconds (standard deviation is 0.003 seconds and the

caused overhead is 98.6% of the average latency on normal conditions). Thus,

Attack VIII Implementation B demonstrated better performance than Attack VIII

Implementation A. The Attack VIII measurement results showed a smaller stan-

dard deviation than the measurement results for normal conditions, because Attack

VIII performed a large number of non-cached memory read operations, causing

less cache misses than normal conditions. When the malicious checksum function

performs additional memory writes to handle the dynamically modified instruc-

tions, the average latency of a nonce-response pair over 100 trials is 49.21 seconds

(standard deviation is 0.17 seconds). The caused overhead is 100.5% of the av-

erage latency on normal conditions. Based on the analysis in Section 3.6.4, the

overhead caused by the read-decode-execute operations would be about 84.0%11

11100.5%×(1−16.4%) =84.0%

82

(when random bits are saved in the SDRAM) and about 64.6%12 (when random

bits are saved in the SRAM). When the malicious checksum function simulates the

I-TLB replacement by saving the variables in the spare memory (on the SDRAM)

when MMU is disabled, the average latency of a nonce-response pair is 57.38 sec-

onds (standard deviation is 0.007 seconds). The caused overhead is 133.7% of

the average latency on normal conditions. Based on the analysis in Section 3.6.2,

the overhead caused by simulating the I-TLB replacement when using spare cp15

registers to save status bits would be about 92.4%13. The average latency of a

nonce-response pair when the malicious checksum function simulates both I-TLB

and D-TLB replacements (when MMU is enabled) is 43.45 seconds (standard de-

viation is 0.004 seconds and the caused overhead is 77.0% of the average latency

on normal conditions), which is less than the latency when simulating only the I-

TLB replacement when the MMU is disabled. The reason for this is that, when

the MMU is disabled, the non-cached memory operations in the I-TLB simulation

consume a large number of CPU cycles, significantly slowing down the simulation

operations. The measurement results when the checksum function simulates TLB

replacements showed a smaller standard deviation than the measurement results for

normal conditions. The reason for this is that, when simulating TLB replacements

the checksum execution causes less TLB misses than the checksum execution on

normal conditions.

Attack Overhead Based on the measurement results, we analyze the overhead

of the attacks summarized in Table 3.1 (except Attacks V and VI-1). Note that

we did not evaluate Attacks V or VI-1 because they cause higher overhead than

other attacks (see Section 3.6.1). Figure 3.12 shows the overheads caused by these

12100.5%×(1−35.7%) =64.6%
13133.7%×(1−30.9%) =92.4%

83

Figure 3.12: Attack Overhead.

attacks.

In Attacks I, II, and III, although the malicious checksum function can obtain

time compensation by avoiding I-cache and I-TLB misses (reducing the execution

time of the original checksum function by 13%), it needs to not only simulate the

TLB replacements, but also perform read-decode-execute operations to handle the

dynamically modified instructions (saving random bits on the SDRAM). We com-

pute the overheads of the Attacks I, II and III by combining the overhead caused

by simulating TLB replacement and the overhead caused by read-decode-execute

operations; we then subtract the compensation time reduced by avoiding I-cache

and I-TLB misses. Note that in Attacks II and III, the malicious checksum function

cannot save the variables for simulating the I-TLB replacements on the SRAM, be-

cause the SRAM should not contain any malicious contents in these attacks. The

results shows that Attacks I, II, and III cause high overheads (148.0%, 205.0%,

and 163.0% of the average latency on normal conditions, respectively). In At-

tack VI-2, we assume that the malicious checksum function saves the random bits

(for dynamically modified instructions) on the SRAM and performs read-decode-

84

execute operations to handle the dynamically modified instructions. The overhead

in Attack VI-2 could be 64.6% of the average latency on normal conditions. At-

tacks IV and VII performs additional operations to simulate I-TLB and D-TLB

replacements (the overhead is 77.0% of the average latency on normal conditions).

In a two-part checksum computation attack, the malicious checksum function

could perform malicious operations in only 0x1380000 (0x2000000− 0xc80000)

iterations. Thus, if an adversary also performs a two-part checksum computation

attack with these attacks, the attack overhead would be reduced by 39.1%14. For

Attack VI-2 with two-part checksum computation operations, the overhead caused

by malicious operations would be about 39.3%15 of the average latency on normal

conditions. To detect this attack, we could set a detection threshold (e.g., 15.0% of

the average latency on normal conditions) that is much lower than 39.3%, but still

higher than the possible measured time variance (e.g., 3% to 8%).

Note that the overheads shown in Figure 3.12 are caused by the main malicious

operations in these attacks. Real attacks require additional operations. For exam-

ple, to successfully perform a read-decode-execute operation, a malicious check-

sum function needs to perform the decoding and execution operations, which are

ignored in our measurements. In addition, to successfully perform Attack VI-2,

a malicious checksum function also needs to perform the operations presented in

Equation 3.21. We ignored these operations in our measurements. Furthermore,

we can increase the overhead of these attacks by increasing the number of dynam-

ically modified instructions in every checksum block (forcing attackers to perform

more non-cached memory operations) or increasing the number of memory read

operations or the number of random jumps (forcing attackers to simulate TLB re-

placement more frequently). Although our current implementation for simulating

14 0xc80000
0x2000000 =39.1%

1564.6%×(1−39.1%) =39.3%

85

TLB replacements is not optimal, it would be extremely challenging for attackers

to significantly reduce the attack overhead to be lower than the detection threshold.

For example, our current implementation for simulating both I-TLB and D-TLB re-

placements includes 82 ARM instructions. To reduce the overhead to be lower than

15.0%, an adversary might have to simulate the TLB replacements by less than 27

ARM instructions, which could be extremely challenging. The measurement re-

sults indicate that the dynamic page table mechanism significantly increases the

overhead of possible attacks.

3.7 Discussion

Measured Time Variance The measured time variance might be caused by the

CPU clock variance, the cache misses, or the TLB misses. The dynamic page ta-

ble mechanism dynamically updates the TLB entries and might cause a high TLB

miss rate, consequently increasing the measured time variance. In addition, the

cache misses might increase the measured time variance. To overcome the vari-

ance caused by the TLB misses and the cache misses, the verifier program can

run the integrity measurement with the same nonce and the same checksum iter-

ation number on a known malware-free device that has the same configuration a

the prover device. With the same nonce and the same checksum iteration number,

the checksum executions on identical devices are the same (the same TLB misses

and cache misses). In this way the verifier program can use the measured time of

the nonce-response reception on the known malware-free device as the baseline

for configuring the timing-detection threshold for the prover device, thereby over-

coming the variances caused by the TLB misses and cache misses. However, we

cannot avoid the variance caused by the CPU clock, which is due to the hardware

limitation.

86

Optimal Attack Implementation When the dynamic page table mechanism is

applied, the malicious checksum function might simulate the I-TLB or D-TLB re-

placements (or both) to compute the expected checksum. However, it is difficult

to evaluate the minimal overhead caused by the TLB replacement because it is

extremely challenging to have an optimal implementation of simulating the TLB

replacement. We cannot guarantee that attackers cannot have a faster implemen-

tation that simulates the TLB replacement. However, we might be able to analyze

the simulation procedure, summarize the minimal operations (e.g., disable and en-

able the MMU, read the mapping values from the simulated TLB, and update the

TLB), and then evaluate the overhead of the minimal operations. In future work,

we will analyze the attacks, estimate the minimal operations attackers are forced to

perform, and evaluate the overhead of the minimal operations.

Malware in Peripherals A modern commodity embedded platform might also

have peripherals with firmware running in them. Malware in peripherals may have

access to the main memory and be able to inject malicious code in the main mem-

ory to break the execution of the prover program without being detected. On

DM3730, the firewall feature can prevent peripherals from accessing the main

memory (e.g., SDRAM or SRAM). Thus, the checksum function running on the

MPU can configure the firewall to prevent peripherals from accessing the main

memory (assuming that the MPU is faster than peripherals), then establish an un-

tampered execution environments in main memory (a software-based root of trust).

After a software-based root of trust been established on the MPU, the verifier pro-

gram can verify the integrity of peripherals’ firmware using the mechanisms de-

scribed in Chapter 4.

87

Optimal Checksum Implementation Existing software-based attestation schemes

require that the checksum implementation be optimal. If an adversary could op-

timize the checksum implementation (e.g., by reducing one instruction), the ad-

versary might obtain time compensation for malicious operations and then run a

malicious checksum function within the attacking detection threshold without be-

ing detected. One observation is that in the checksum function, memory read in-

structions (for integrity measurement) consume more CPU cycles than arithmetic

instructions (on the ARM Cortex-A8, one memory read over SDRAM with cache

miss consumes more than one hundred CPU cycles while an arithmetic instruction

consumes only one CPU cycle). However, it is extremely challenging for the adver-

sary to reduce the number of memory read operations (for integrity measurement)

in the checksum function. Optimizing the checksum function by reducing several

arithmetic instructions would not significantly reduce the checksum execution time

(the time compensation is limited). In Mead, the dynamic page table mechanism

significantly increase the overhead of malicious operations. If an adversary could

optimize the checksum function by reducing only several arithmetic instructions,

the time compensation would not be enough to protect malicious operations for

being detected.

3.8 Summary

Nowadays, embedded platforms are used pervasively and consequently are becom-

ing targets of software attacks [57]. Approaches to establish malware-free state on

embedded platforms are necessary. However, hardware-based approaches would

increase the cost of embedded platforms. In Mead, we propose novel software-

based approaches to establish a software-only root of trust for integrity verifica-

tion on modern commodity embedded platforms. The proposed approaches pre-

88

vent software attacks and we anticipate that the proposed approaches will make

software-based attestation practical on current commodity embedded platforms.

89

Chapter 4

VIPER: Verifying the Integrity of

Peripherals’ Firmware

Malware on peripherals’ firmware is becoming a popular trend for next-generation

malware. In 2008, Triulzi demonstrated how to exploit a vulnerability in a Broad-

com Tigon Network Interface Card (NIC), and inject malware into the NIC to

eavesdrop on all traffic [109]. Triulzi also showed that the malware on the NIC

can deploy malicious code into the GPU, causing the GPU to store and analyze

the data sent through the NIC [110]. In 2009, Chen exploited a vulnerability in

the Apple keyboard firmware update tool, which enables attackers to inject mali-

cious code into the firmware of an Apple Aluminum Keyboard during firmware

update [22]. In 2010, a buffer overflow vulnerability in a Broadcom NIC firmware

was published [29], through which a remote attacker can compromise the NIC

firmware by sending malicious packets to this NIC, then execute arbitrary code on

the NIC.

On modern commodity computers, a peripheral might have a dedicated mi-

crocontroller and dedicated internal non-volatile memory (e.g., NAND Flash) or

90

volatile memory (e.g., SDRAM), making the peripheral essentially a separate sys-

tem that cannot be fully accessed or controlled by the main CPU. Since the main

CPU cannot access peripherals’ internal memory, it is considerably challenging for

any antivirus programs running on the main CPU to detect malware in peripherals.

In addition, malware in a peripheral can be persistent (stored in non-volatile mem-

ory) and survive after repeated reboots. Even worse, malware in a peripheral might

be able to perform arbitrary read or write over the entire memory space (includ-

ing the main memory containing the operating system) through the Direct Memory

Access (DMA). Consequently, the malware can compromise users’ privacy and

safety, such as eavesdropping a user’s bank account password or credit card num-

ber, or embedding a kernel-level rootkit into a clean re-installed operating system.

Stewin [104] demonstrates the capabilities of a peripheral-based malware that an-

alyzes the contents in the main memory to obtain security-sensitive information

(e.g., disk encryption password).

At first glance, software-based attestation [94, 96] may provide an approach

for verifying the integrity of firmware. Device vendors could embed an attestation

function in their firmware. Driver code executing on the main CPU could query the

attestation function to verify firmware integrity. The advantages of software-based

attestation are that no costly hardware changes are needed, and that the OS can

validate firmware integrity (e.g., as a standard part of device driver initialization).

Unfortunately, previously proposed approaches for software-based attestation have

several shortcomings that preclude applicability in this context. The most serious

shortcoming is a proxy attack, in which a queried device contacts a faster device

(the proxy) to compute the correct answer to the time-sensitive checksum compu-

tation, which enables malware on the device to go undetected.

Figure 4.1 demonstrates a proxy attack. Peripherals, such as a NIC, can com-

municate with a remote proxy server to compute the expected answer. Also, faster

91

Veri�er
Untrusted

Device
Proxy

1. nonce

4. response

2. nonce

3. response

Figure 4.1: A Proxy Attack.

peripherals can work as a proxy server to compute correct answers for slower pe-

ripherals in the face of previous software-based attestation mechanisms.

Thanks to several new approaches, we improve software-based attestation for

devices and bring these approaches into the realm of practicality. In fact, we lever-

age intricacies of the system buses to create a software-based attestation function

that prevents proxy attacks and dramatically increases the time overhead that mali-

cious code exhibits. More specifically, we propose to verify the peripheral firmware

integrity on a modern computer system, and propose a software-only primitive,

Verifying Integrity of PERipherals (VIPER). In the spirit of software-based attes-

tation, VIPER is based on a timed challenge-response protocol between the host

CPU and each peripheral. Our attestation protocols can detect all known software-

based attacks on peripherals.

This chapter makes the following contributions:

1. We propose a software-only primitive, VIPER, to verify the integrity of pe-

ripheral devices’ firmware.

2. We propose novel attestation protocols that prevent all known software-only

attacks. Specifically, our attestation protocols can prevent a proxy attack

that would have been successful against previous software-based attestation

mechanisms.

3. We evaluate VIPER on a Netgear GA620 network adapter in an off-the-

shelf computer and on an Apple Aluminum keyboard in an Apple Macbook

92

laptop, and also implement an Ethernet-based proxy attack. Our evalua-

tion shows that VIPER can efficiently verify the integrity of peripherals’

firmware.

4.1 Problem Definition

Problem Definition In today’s computer systems, all peripheral devices with

firmware, such as network adapters, USB and disk controllers, and even the BIOS,

are at risk from computer malware. Verifying the integrity of these components’

firmware, and guaranteeing the absence of malware, is the main problem we ad-

dress in this chapter.

Assumptions Our focus is in protecting peripherals from network-based threats.

Attacks where an attacker physically accesses the target device to change its hard-

ware configuration (e.g., over-clocking peripherals’ CPUs or increasing their mem-

ory) are out of scope. We assume that the verification program on the host CPU

is correct, and that the operating system on the host CPU is secure and trustwor-

thy during verification. While this is a strong assumption [84], recent work in

OS-level security and trusted computing may in fact provide a reasonable platform

from which to attempt peripheral device verification [11, 67, 113]. We also require

that the verifier program on the host CPU has been configured with sufficient in-

formation about peripheral devices installed in a computer system, i.e., the verifier

knows what is supposed to be there.

Attacker Model The attacker may compromise firmware executing inside pe-

ripheral devices. The attacker may also control remote machines that may assist

a compromised device in responding to challenges. This machine may have con-

93

siderable computation and memory resources, though the attacker is still unable

to break standard cryptographic primitives [72]. However, we assume practical

communication constraints, such as the bandwidth and latency characteristics of

PCI [68, 69] and Gigabit Ethernet.

4.2 System Design

We describe the VIPER system architecture, attestation protocols, and checksum

function.

4.2.1 VIPER Overview

VIPER is a software-only solution to verify the integrity of peripherals’ firmware

using a timed challenge-response protocol between the host CPU and peripherals.

PeripheralHost CPU

Veri!er Code

Attestation

(Challenge-

response

protocol)

Checksum

Function

Communication

Function

Cryptographic

Hash Function
Timer

Checksum

Simulator

Expected

Peripheral

Firmware

Veri!cation

Function

Figure 4.2: VIPER System Architecture.

System Architecture In VIPER (Figure 4.2), a verifier program executes on the

host CPU and performs the verification procedure over all peripherals one-by-one

94

on a computer system. The verifier program has correct copies of all peripheral

firmware (e.g., bundled with device drivers) in the computer. A checksum simu-

lator in the verifier program generates challenges (cryptographic nonces) and the

corresponding expected responses by simulating the verification procedure over

the correct copies of peripherals’ firmware. A timer is used to measure the time

of the verification procedure from inside the verifier program (“Verifier Code” in

Figure 4.2). On each peripheral device, a verification function comprised of three

main parts engages in the VIPER verification protocol to set up an untampered ex-

ecution environment and compute a special checksum function over the contents

of the verification function’s components (the checksum function itself, a commu-

nication function, and a cryptographic hash function). The checksum function is

carefully designed to offer optimal performance. Any malicious code or operations

during verification either invalidate the checksum result, or cause a detectable delay

in the verification function’s response. When the checksum computation finishes,

the checksum function invokes the hash function over the entire memory contents

of the peripheral. By verifying the checksum result and the computation time, the

verifier program obtains the guarantee that an untampered execution environment

has been set up inside the peripheral device, and that the subsequent computation

of the complete hash of the peripheral’s firmware is trustworthy.

Full System Verification In VIPER, the host CPU verifies the firmware integrity

of all peripherals one-by-one. However, a faster peripheral on the motherboard can

work as a proxy helper for a slower peripheral. Consider a resource-impoverished

device such as a keyboard. Such devices are likely equipped with 8-bit micro-

controllers running at a few tens of MHz. The computational latency imposed by

running a checksum algorithm on such devices may actually be large enough to

cover up the communication latency induced by forwarding nonces and responses

95

to a faster malicious device elsewhere in the system or even on an external system.

The solution for verifying a device with a particular level of computational

capability is that all devices with greater capabilities must be verified first. For

example, to verify a slow 8-bit microcontroller, all high-speed peripheral devices

(e.g., NIC, SATA controller, GPU, USB 3.0) must first be verified. After the at-

testation of a faster peripheral, the verification function on the faster peripheral

continues running until all peripherals have been verified. In this way, VIPER can

prevent the faster peripheral from being compromised during the time interval be-

tween initial verification of the faster peripheral and completion of the verification

of all peripherals. Thus, the verifier program on the host CPU can conclude that

the devices capable of masquerading as the weak device are all benign, and will

not interfere with the verification process.

Verification Procedure We now detail the verification procedure for a single

peripheral.

1. The verifier program calls the checksum simulator to generate nonces, and

expected checksum and hash results by simulating the verification procedure.

2. The verifier program sends an attestation request to the peripheral. The

checksum function on the peripheral resets the peripheral into a known-good

state.

3. The verifier program starts a timer, and begins to perform the attestation

by sending the nonces generated by the checksum simulator to the target

peripheral over the system’s bus (Section 4.2.2).

4. After receiving the nonces, the verification function executing inside the pe-

ripheral sets up an untampered execution environment, performs the check-

sum computation, and sends the result back to the verifier program on the

96

host CPU (note that the nonces are used to initialize the initial checksum

states and other registers. The verification function cannot start the check-

sum computation before receiving the nonces). The verification function

then calls the hash function to compute a hash over the full memory contents

of the target peripheral.

5. The verifier program confirms that the checksum results are correct and

timely.

6. The verification function on the peripheral sends the hash result to the verifier

program.

7. The verifier program validates the hash result.

4.2.2 Attestation Protocol

Though an on-board proxy attack can be prevented or detected as described in Sec-

tion 4.2.1, it is a challenge to detect a remote proxy attack. A network-enabled

peripheral device can communicate with a remote proxy helper through its net-

work interface. Also, the network-enabled peripheral can work as a communica-

tion medium in a hybrid proxy attack, e.g., when a USB peripheral is being verified,

a NIC may help the USB peripheral to contact a remote proxy helper, even if the

NIC’s CPU is slower than the USB peripheral’s. In this section, we propose novel

attestation protocols that detect such remote proxy attacks.

Latency-based Attestation Protocol

In a proxy attack, the peripheral to be verified always incurs some latency to com-

municate with a proxy helper. If the checksum computation time is well-controlled

and smaller than the minimal communication latency between the peripheral and a

97

proxy helper, the additional latency caused by the proxy attack is detectable, even

if the proxy helper has infinitely fast computation resources. In this section, we

detail a latency-based attestation protocol based on these observations. Also, we

describe a technique to increase the communication overhead between a periph-

eral and a proxy helper, and a technique to accelerate the attestation procedure by

synchronizing the host CPU and peripheral. Figure 4.3 shows the time line of one

challenge-response pair in a latency-based attestation protocol, including both the

normal computation, and the proxy attack.

Host CPU

Peripheral

Peripheral

Tsend Trecv

Tcomp

Helper

Tsend
per

Trecv
per

per

cpu cpu

Tcomp
helper

Time line
Normal

Computation

Proxy Attack

Host CPU
Tsend Trecv

cpu cpu

Time line

Figure 4.3: One challenge-response pair for latency-based attestation under both

normal computation and a proxy attack.

Under normal conditions, the host CPU sends a challenge to the peripheral

requiring time T cpu
send, and the checksum computation consumes time T per

comp. After

checksum computation, communication consumes time T cpu
recv to send the checksum

back to the host CPU. Thus, the time of one challenge-response pair is:

T normal
comp = T cpu

send +T per
comp +T cpu

recv (4.1)

In a proxy attack, the peripheral forwards the challenge sent by the host CPU

to a proxy helper, which consumes time T per
send. The remote helper consumes T helper

comp

98

to compute the correct checksum, and then takes T per
recv to send the result back to the

peripheral. Thus, in the proxy attack, the time of each challenge-response pair is:

T proxy
comp = T cpu

send +T per
send +T helper

comp +T per
recv +T cpu

recv (4.2)

We assume that T helper
comp is zero because we conservatively assume that the remote

helper has massive computational and memory resources available. Then, the over-

head caused by a proxy attack is:

T proxy
overhead = T per

send +T per
recv−T per

comp (4.3)

To detect a proxy attack, T proxy
overhead must be positive and detectable. Therefore, T per

comp

must be well-controlled to guarantee that T per
comp is smaller than the minimal de-

tectable proxy overhead. Note that modern network interfaces can have extremely

low latency for short connections (e.g., consider a gigabit Ethernet crossover ca-

ble). Thus, the practical bound for minimal proxy overhead is a function of the

application scenario. Internet-based attacks are unlikely to be less than one mil-

lisecond away, but an “evil maid” attack can easily manage sub-millisecond laten-

cies.

If T per
comp must be small, it is unlikely that the entire memory region contain-

ing the verification function can be checked during a single challenge-response

pair. Thus, VIPER employs multiple challenge-response iterations to guarantee

that the entire verification function memory region is verified. Between two con-

secutive challenge-response pairs, the communication function waits for the next

challenge. Note that the communication function is also part of the verification

function (Figure 4.2) and is verified by the checksum function. However, during

the time interval between two consecutive challenge-response pairs, an adversary

can accurately guess the expected behavior of the checksum function. To remove

this potential attack surface, we work to minimize any idle waiting time by over-

lapping checksum computation and challenge-response exchange.

99

Increasing Proxy Communication Overhead The checksum function main-

tains state as an array of bit vectors. During one iteration of the checksum computa-

tion, several checksum vectors may be updated. However, to make the communica-

tion between the verifier program and the peripheral efficient, only one randomly-

selected checksum vector is returned to the host CPU during each challenge-response

pair. To increase the communication overhead between peripherals and the proxy

helper, we design the protocol such that the host CPU sends a new challenge to the

peripheral before the checksum vector is returned, and the checksum vector to be

returned is chosen based on this newly-received challenge sent by the verifier pro-

gram. This is illustrated in Figure 4.4, where cksum[i] denotes a single checksum

vector randomly selected from the full checksum state as it exists after an iteration

computed with nonce[i] as an input. The random selection is chosen based on the

value of nonce[i+1]. T n
diff , the time interval between receiving the new challenge

and sending the correct checksum result, is so small that a proxy helper is forced

to return the entire set of correct checksum vectors or at least all the checksum

vectors that have been updated during the checksum computation back to the pe-

ripheral before missing the time deadline. (A proxy that randomly guesses which

vector to return will quickly be detected as additional checksum iterations drive the

probability of repeated successful guessing to a negligible level.) This technique

then increases the value of T per
recv. The additional communication overhead of send-

ing the entire set of vectors makes it overwhelmingly likely that the attacker will

miss the deadline.

Continuous Checksum Computation It is desirable to eliminate any idle wait-

ing on the peripheral between checksum iterations, both for efficiency and to re-

duce the time during which an attacker knows that the checksum’s internal state re-

mains constant. The previous paragraph describes how a portion of the checksum

100

state as influenced by nonce[i] is not returned to the host CPU until nonce[i+1]

is received. If the peripheral device supports concurrent computation and data ex-

change (as is commonly the case with memory-mapped IO), then the reception of

new nonces can be closely synchronized with the runtime of checksum iterations,

thereby enabling continuous checksum computation. This is evident in Figure 4.4,

when viewing a checksum iteration as the elapsed time at the host CPU between

transmission of nonce[i] and reception of chsum[i]. Excluding the very first and last

checksum iterations, T cpu
send for iteration i+1 and T cpu

recv for iteration i do not impose

any additional latency on the total checksum computation time.

Host CPU

Host CPU

Peripheral

Peripheral

Time line

Normal

Computation

Proxy

 Attack

Nonce[i]

Cksum[i-1] Cksum[i]

Nonce[i+1]

Tcomp
per

Time line

Nonce[i]
Cksum[i-1]

Cksum[i]
Nonce[i+1]

Helper

Tcomp
helper

Nonce[i]
Cksum[i]

Tsend
cpu

Tdi!

Tsend
per

Trecv
per

i

Tdi!
i

Tsend
cpu

Trecv
cpu

Trecv
cpu

Figure 4.4: The latency-based attestation procedure after speed-up under benign

and (hypothetically successful) attack conditions.

The time for a single challenge-response pair is:

T normal
comp = T cpu

send +T n
diff +T per

comp +T cpu
recv (4.4)

In this equation, T n
diff is the time interval between receiving the nth nonce and send-

ing the (n−1)th checksum result on the peripheral.

101

In a proxy attack, the malicious code on the peripheral sends the challenge to a

proxy helper as soon as it receives the challenge. The time of a challenge-response

pair in the proxy attack is:

T proxy
comp = T cpu

send +T per
send +T helper

comp +T per
recv +T cpu

recv (4.5)

We still assume that T helper
comp is zero. Thus, the time overhead caused by a proxy

attack is:

T proxy
overhead = T per

send +T per
recv−T n

diff −T per
comp (4.6)

Through this equation, we can see that T n
diff decreases the value of T proxy

overhead.

Thus, it is desirable that the CPU and peripheral are well-synchronized so that

T proxy
overhead remains positive and detectable.

Other Potential Attestation Solutions

Other features of communication channels, such as communication latency vari-

ance, packet loss, and throughput, may also be viable tools to detect a proxy attack

when verifying the integrity of peripherals’ firmware. Compared with Ethernet

communication, the communication channel between the host CPU and the pe-

ripheral is very efficient and stable, with low communication latency variance and

near-zero packet loss rate. In a communication latency variance-based attestation

protocol, if the communication variance on the proxy communication channel is

larger than the well controlled checksum computation time, the proxy helper can-

not always send the expected checksum result back to the peripheral in time. A

packet loss-based attestation protocol is similar. Network devices suffer from dif-

ferent levels of packet loss with Ethernet. However, on the motherboard, the com-

munication between the host CPU and peripherals over system buses has near-zero

loss rate. Therefore, a packet loss-based attestation protocol may also represent a

102

practical solution to verify the integrity of peripherals’ firmware in a computer sys-

tem. A throughput-based attestation protocol requires that the throughput between

the host CPU and the peripheral is larger than the throughput between the periph-

eral and the proxy helper. The host CPU can send a large amount of random data

to the peripheral and require that the random data is incorporated into the check-

sum computation. To attempt an attack, all of the random data must be sent from

the peripheral to the proxy helper. The protocol can be constructed such that the

checksum computation on the NIC will complete before the necessary challenge

and response can be exchanged with the proxy. We leave the detailed investigation

of these mechanisms as future work.

4.2.3 Design of the Checksum Function

In this section, we describe the design of our checksum function in detail. Similar

to other software-based attestation schemes [60,94,96], our checksum function sets

up an untampered execution environment, computes a fingerprint over the contents

of the verification function (i.e., the checksum function itself, and communication

and hash functions). Through the checksum result and elapsed computation time,

the checksum function provides a guarantee to the verifier program that the veri-

fication function has not been modified and the following hash computation was

carried out in the untampered execution environment, and is therefore trustworthy.

As discussed in the above sections, the checksum function needs to be carefully

designed to achieve the necessary timing properties.

There are many different system architectures and instruction sets on peripheral

devices. It is difficult to design a single generic checksum function for all cases.

However, we first discuss the general principles that apply to the design of the

checksum function for any peripheral:

103

1. All available registers are used during checksum computation. For any ad-

ditional operations (malicious operations), an attacker has to utilize memory

operations (read and write) to save the register values first. This causes large

computational overhead since memory operations are much slower than reg-

ister operations.

2. Each iteration of the checksum function should fit into the Instruction Cache

if there is an Instruction Cache, and cause as few cache misses as possi-

ble. Any additional operations inserted by malicious code should cause more

cache misses.

3. To prevent an attacker from predicting the memory addresses to read, the

checksum function reads from memory addresses in a pseudo-random pat-

tern.

4. To prevent an attacker from computing the expected checksum result over

a correct copy of the verification function located in some other memory

address, the data pointer (DP) value used to address memory should be

included in the checksum computation, i.e., the checksum computation is

position-dependent.

5. To further prevent malicious code from performing the computation at other

memory addresses, the program counter (PC) value is also included in the

checksum computation if the PC value can be efficiently read by the check-

sum function.

6. The checksum function is simple enough that it is feasible to determine that

the implementation is optimal but non-parallelizable.

We design our checksum function using a sequence of strongly-ordered ADD

and XOR operations, since they are naturally non-parallelizable. Strongly-ordered

104

means that the sequence of checksum operations cannot be changed without caus-

ing the checksum result to be different with high probability. Each checksum state

update incorporates the value of the program counter (PC), data pointer (DP), con-

tents of the memory referenced by the DP, the most recent nonce sent by the ver-

ifier, and the existing checksum states. The carry bit should be included during

addition operations if a carry bit is supported on the target peripheral, to avoid

losing entropy due to repeated invocation of the checksum. We use intermediate

checksum results to select the memory addresses to read in a pseudo-random fash-

ion. This helps to optimize the implementation of the checksum function, since

we do not need additional instructions to generate pseudo-random numbers. Mal-

ware, in an attempt to remain undetected, must forge the correct PC or DP values

during checksum computation. However, forging the PC or DP value will require

additional register and memory operations, and cause cache misses and extra mem-

ory operations, which will result in detectable computational overhead. We de-

scribe our specific implementation of the checksum function on a Netgear GA620

NIC [44] in Section 4.3.3.

4.3 Implementation on Netgear GA620 NIC

We implement and evaluate VIPER on an x86-class computer system. Because

of the limited availability of source code for peripherals’ firmware, we focus on

a PCI-X Netgear GA620 Gigabit Ethernet Adapter (NIC) that uses open source

firmware [43]. We installed this card in a Sun Fire V20z 1U rack-mount server

that includes a single-core AMD Opteron processor running at 1.795 GHz, 2 GB

of RAM, and two PCI-X expansion slots. In this section, we describe the hardware

architecture of the Netgear GA620 NIC, and present the detailed implementation

of our latency-based attestation scheme.

105

4.3.1 Netgear GA620 Network Adapter

The Netgear GA620 is a Gigabit Ethernet adapter with a 64-bit PCI-X interface.

The theoretical maximum throughput between the host CPU and the GA620 NIC is

8.5 Gbps on a 133.3 MHz, 64-bit PCI-X bus. The maximal bandwidth of the Eth-

ernet link of the Netgear GA620 is 1 Gbps. Figure 4.5 illustrates the architecture

of a Netgear GA620.

External RAM (4 MB)

D-cache

I-cache

CPU A

Scratch

Pad RAM

(16 KB)

D-cache

I-cache

CPU B

Scratch

Pad RAM

(8 KB)

Figure 4.5: Netgear GA620 System Architecture.

The GA620 features two MIPS microcontrollers “A” and “B” running at 200

MHz. The two microcontrollers work simultaneously, and the firmware assigns

work to both microcontrollers. In firmware version 12.4.3 [43], Microcontroller

A works as the main controller in charge of packet transmission, and microcon-

troller B assists by preparing DMA descriptors. On each microcontroller, there is a

64-byte Instruction Cache (which fits 16 instructions), and an 8-byte Data Cache.

On microcontroller A there are 16 KB of scratch pad memory, though microcon-

troller B has only 8 KB of scratch pad memory. The scratch pad memory of each

microcontroller is located in the same memory address range, and one microcon-

106

troller physically cannot address the other’s scratch pad memory. The host CPU

and DMA transactions are also unable to address either scratch pad memory re-

gion. During NIC initialization, the firmware moves some time-critical functions

into the scratch pad memory. A 4 MB SRAM is shared by both microcontrollers.

Instruction Set Architecture The microcontrollers implement a 32-bit MIPS in-

struction set architecture. There are 32 registers, where r0 is always zero, and r1 –

r31 are used for common operations. All arithmetic operations, logical operations,

memory operations, and jump operations are supported while the rotation-shift,

multiply, and divide operations, which are available in general MIPS microcon-

trollers, are removed. In arithmetic operations the carry bit value is not included,

which makes the design of an attestation function significantly more challenging

because the lack of the carry bit results in entropy loss. The lack of a multiplier or

rotation shift also complicates implementation of a size-optimized cryptographic

hash function. However, firmware can read the program counter value indirectly

using jump instructions (e.g., JAL or JALR).

Memory Layout Figure 4.6 illustrates the memory layout of the external SRAM

on a Netgear GA620 NIC.

The first 16 KB of the external SRAM is mapped into the memory addresses of

the host CPU via a memory-mapped IO (MMIO) interface. Both the host CPU and

NIC firmware can read or write this MMIO memory. Following the shared MMIO

memory, the NIC firmware is in the space from 0x04000 to 0x16000. After the

firmware space follows the space for each microcontroller’s stack, RX/TX DMA

descriptors and RX/TX buffers. On microcontroller A, the 16 KB internal scratch

pad memory is addressable from 0x00c00000 to 0x00c04000. On microcontroller

B, the 8 KB internal scratch pad memory occupies 0x00c00000 to 0x00c02000.

107

MMU IO Memory

Firmware

Stack A

Stack B

Tx/Rx DMA Descriptor

0x000000h

0x004000h

0x016000h

0x400000h

0xc00000h

0xc04000h

Tx/Rx DMA Bu!er

Scratch Pad Memory

Figure 4.6: Netgear GA620 Memory Layout.

NIC – Host CPU Communication The Netgear GA620 NIC and host CPU com-

municate via a Mailbox abstraction, which is a bank of 32 8-byte communication

registers that are mapped into the host CPU’s MMIO address space. Microcon-

troller A uses the lower 16 mailbox registers and microcontroller B uses the higher

16 mailbox registers. The host CPU can read or write to the mailbox registers di-

rectly using ordinary memory operations (e.g., mov). When the host CPU writes a

mailbox register, an event is generated on the GA620 NIC and the NIC firmware

can detect the event by checking the event register. However, the GA620 NIC can-

not cause interrupts to the host CPU by writing values into the mailbox registers,

because the interrupt mechanism on the host CPU is too slow to support Gigabit-

speed communication. For large amounts of data, such as network packets, the

NIC transmits the data between local memory (TX/RX buffer) and main memory

through DMA.

108

4.3.2 Verification for Microcontrollers A and B

We conduct the attestation protocol on both microcontrollers A and B to verify

the entire memory contents of the Netgear GA620 NIC. To prevent the verification

functions running on one microcontroller from being modified by malicious code

running on the other microcontroller, we execute the verification functions within

the scratch-pad memory of each microcontroller. On each microcontroller, we

implement: a checksum function VCF (Viper Checksum Function) (Section 4.2.3)

that computes a checksum over the entire verification function memory contents; a

communication function that initializes the checksum states, reads nonces from the

host CPU, and randomly returns a 32-bit checksum state vector to the host CPU for

each nonce-checksum pair. VCF and the communication function are implemented

using 656 MIPS instructions, and are deployed into the scratch pad memory of each

microcontroller. A SHA-1 hash function is deployed into the scratch pad memory

of Microcontroller A and its binary code consumes 2 KB. In detail, the attestation

procedure performs the following operations:

1. The verifier program on the host CPU sends an attestation request to both

microcontrollers A and B on the NIC. The checksum functions on both mi-

crocontrollers A and B set the NIC to a known state.

2. The verifier program conducts the latency-based attestation protocol for mi-

crocontroller B first.

3. During the attestation, VCF, which is in microcontroller B’s scratch-pad

memory, sets up an untampered execution environment and computes a check-

sum over the entire 8 KB scratch pad memory on Microcontroller B. Because

microcontroller A cannot access microcontroller B’s scratch pad memory,

any malicious code on microcontroller A cannot tamper with the execution

109

environment on microcontroller B.

4. Because VCF verifies the entire scratch pad memory on Microcontroller B,

it is not necessary to call the SHA-1 hash function to compute a hash over

the scratch pad memory on Microcontroller B. After the attestation proce-

dure for microcontroller B, the communication function on microcontroller

B continues to run but waits for an EXIT command from the host CPU. The

host CPU will not send an EXIT until the attestation for both microcon-

trollers B and A are complete. Note that while it waits, the program counter

of microcontroller B remains within the scratch-pad memory that has just

been verified, so its behavior is known.

5. The verifier program on the host CPU verifies the checksum results and com-

putation time during the attestation for microcontroller B. If the attestation

for microcontroller B is successful, the verifier program conducts the attesta-

tion for microcontroller A, also using the latency-based attestation protocol.

6. During the attestation for microcontroller A, VCF on microcontroller A first

sets up an untampered execution environment, and computes checksums

over VCF itself, the communication function, and the SHA-1 hash function.

7. The VCF calls the SHA-1 hash function to compute a cryptographic hash

over the memory contents of the entire scratch-pad memory on microcon-

troller A, and of the external SRAM. It then sends the hash result to the

host CPU. Because the verification function on microcontroller B is running

during the attestation of microcontroller A, the attestation procedure of mi-

crocontroller A cannot be tampered with by B.

8. The verifier program on the host CPU confirms the attestation results (check-

sum results, timing results, and hash result) of the attestation for microcon-

110

troller A.

9. The verifier program informs both microcontrollers A and B to exit their

attestation functions.

4.3.3 Checksum Function Implementation

We implement the checksum function VCF as 32 checksum computation blocks.

Each block has 16 MIPS CPU instructions and fits precisely into the 64-byte in-

struction cache, since all instructions are 32 bits long. As each block executes, one

32-bit checksum vector, out of a total of 26 checksum state vectors, are updated

using alternating ADD and XOR operations. Each block takes as input: a subset

of the contents of scratch pad memory in the NIC, other checksum states, nonces

from the verifier program on the host CPU, the memory addresses being read (data

pointer), and the program counter. All 31 available general purpose registers (r1

to r31) are used by the checksum computation: 26 registers (r5 to r30) are used to

save checksum states; r1 and r31 are used as temporary variables to save memory

addresses and the values of recently read memory; r2 stores the nonce provided

by the host CPU; r3 stores the end address of each checksum block; r4 stores the

starting address of each checksum block (both r3 and r4 essentially reflect pro-

gram counter values). Following is the pseudo-code to update one checksum state

in each block.

/* Pseudo Code to update one checksum state:

C is the checksum vector,

i is the index of a checksum vector register,

tmp is a temporary variable,

addr is the memory address to read,

memory_base can be the beginning address of

111

a checksum block or the end address of

a checksum block. */

/* in odd blocks */

tmp = mem[addr] xor C[(i-2) mod 26] + addr

/* construct another memory address */

addr = memory_base xor (tmp & mask)

/* update one checksum state */

C[i] = mem[addr] xor C[i] + PC xor nonce + tmp

/* create dependency on C[i] for next iteration */

nonce = nonce + C[i]

/* in even blocks */

tmp = mem[addr] + C[(i-2) mod 26] + addr

/* construct another memory address */

addr = memory_base xor (tmp & mask)

/* update one checksum state */

C[i] = mem[addr] + C[i] xor PC + nonce xor tmp

/* create dependency on C[i] for next iteration */

nonce = nonce xor C[i]

Figure 4.7 shows the assembly code of one checksum computation block. In

this checksum block, one checksum state (r7) is updated based on the contents of

two memory addresses, the values in r3, and another checksum state (r5). At the

end of this checksum block, the value of r3 is updated by the instruction JALR,

which reads the program counter (PC) value into r3 as part of a jump to the mem-

ory address saved in r4. Note that MIPS executes the instruction following a jump

instruction even if the jump is taken; it executes prior to the instruction residing at

112

Assembly Instruction Explanation

xor r31, r4, r1 addr = memory base⊕offset

lw r1, 0(r31) memory read

xor r1, r5, r1 tmp1 = r5⊕mem[addr]

add r31, r31, r1 tmp2 = addr+ tmp1

andi r1, r31, 0x1ffc offset = tmp2 & mask

xor r1, r3, r1 addr = memory base⊕offset

lw r1, 0(r1) memory read

xor r1, r7, r1 tmp3 = r7⊕mem[addr]

add r1, r3, r1 tmp3 = PC+ tmp3

xor r1, r2, r1 tmp3 = nonce⊕ tmp3

add r7, r31, r1 r7 = tmp2+ tmp3

add r2, r7, r2 nonce = r7+nonce

andi r1, r7, 0x7c0 tmp4 = r7 & mask1

xor r4, r4, r1 r4 = r4⊕ tmp4

jalr r3, r4 r3 = PC+8; jump to r4

andi r1, r2, 0x1ffc offset = nonce & mask

Figure 4.7: Assembly Instructions for One Checksum Block.

the jump target. The value of r4 is updated using five bits (bits 6 to bits 10) of r7.

Because the target address (r4) of the JALR instruction is updated randomly, the

PC jumps to the beginning address of one of the 32 checksum blocks at the end of

each checksum block in a pseudo-random fashion. In this way, we can prevent an

attacker from predicting the target address of the jump instruction. Out of the 32

checksum blocks, 4 checksum blocks are chosen as ‘exit’ blocks, which determin-

istically jump to the communication code following checksum computation. The

communication code returns one 32-bit checksum state vector to the host CPU and

reads the nonce most recently sent from the host CPU (i.e., the verifier program).

113

One checksum state is read in each block, and one state is updated (written) in

each block. Cumulatively across all 32 checksum blocks, all 26 checksum states

are updated. Since an attacker cannot predict which block will be used for com-

putation until the current block has completed, the attacker cannot use any of the

registers that store checksum states for malicious operations, unless the attacker

first uses memory operations to save the values stored in those registers.

4.3.4 Latency-Based Attestation

As described in Section 4.2.2, to prevent a proxy attack, the checksum computation

time must be well controlled, and small enough that the overhead of a proxy attack

(T proxy
overhead from Eqn. 4.3) is detectable. In this section, we calculate the theoretical

minimal time of a proxy attack over a 1 Gbps Ethernet link. Then, we describe the

mailbox communication overhead between the host CPU and the GA620 NIC, the

checksum computation time for one challenge-response pair, and an optimization

to speed up the attestation procedure via synchronization.

Theoretical Fastest Time for a Proxy Attack

In an Ethernet-based proxy attack, to explore the best case for the attacker, we

assume that both the peripheral and the proxy helper need no time to prepare the

network packets. However, the packets used in a proxy attack must go through the

hardware Ethernet MAC (physical serial communications port) of the NIC. There-

fore, theoretically the fastest time of an Ethernet-based proxy attack is the time

that it takes the packets to go through the Ethernet MAC of both the sender’s and

receiver’s NICs, and the time that the data actually spends on the wire. We assume

that the peripheral and the proxy helper utilize 72 byte raw Ethernet frames to ex-

change data during a proxy attack, as 72 bytes is the minimal allowable Ethernet

114

frame size [41]. Assuming that both the peripheral and the proxy helper use 1 Gbps

Ethernet MAC, the time consumed by packet transmission is 1152 nanoseconds for

a round trip.1 This is useful to set a lower bound for the shortest possible proxy

attack (i.e., the fastest attack that could ever be performed with this hardware con-

figuration), and sets T per
send +T per

recv = 1152 ns from Eqns. 4.3 and 4.6. Under these

conditions, to detect a proxy attack, T per
comp (Eqn. 4.3) and (if using the synchronized

version) T n
diff (Eqn. 4.6) must be sufficiently small that T proxy

overhead remains positive

and detectable.

Communication Overhead

During attestation, the host CPU measures the time for each challenge-response

pair between the host CPU and the peripheral device. To detect the time overhead

caused by malicious operations, the communication between the host CPU and

peripheral should be efficient and stable. Figure 4.8 shows the mailbox communi-

cation architecture between the host CPU and the microcontrollers on the GA620

NIC.

Determining Communication Delay We now describe our approach to empiri-

cally determine the CPU-NIC communication overheads (T cpu
send and T cpu

recv from Sec-

tion 4.2.2). Essentially, we exchange the smallest possible amount of data between

the CPU and the NIC, with the NIC performing the absolute minimum amount of

computation to return a result. This is as close as we can practically come to set-

ting T per
comp = 0. First, the host CPU writes a 32-bit value into address A (a mailbox

register address), which generates an event on the GA620 NIC. As soon as it de-

tects the mailbox event, the firmware on the GA620 NIC updates the 32-bit value

12 · 72 bytes·8 bits/byte
1,000,000,000 bits/second = 1152 ns. 72 bytes is the minimal usable Ethernet frame size with

payload [41].

115

MMIO Memory

Addr A

Addr B

Host CPU

NIC

Micro-

controller

Mailbox Event

Write IO memory

Tsend

Trecv

Tdelay

Figure 4.8: Host CPU to NIC Communication via GA620’s Mailbox.

in address B. After a time delay, the host CPU repeatedly reads address B until it

obtains the updated value from address B.

Since memory operations can take hundreds of CPU cycles, the communica-

tion between the host CPU and NIC is the most efficient when the host CPU can

predict the precise time to read the updated value, and obtain the updated value

from address B in a single read operation. Therefore, we design an experiment to

predict the time delay between a mailbox write and mailbox read on the host CPU,

so that the host CPU can communicate efficiently and reliably. In our experiment,

the host CPU stalls for a fixed delay interval between the MMIO write and MMIO

read. For each delay period, we repeat the MMIO write and MMIO read 200 times,

and record the frequency that the host CPU obtains the updated value from address

B in a single MMIO read. We then increase the delay, and repeat the same experi-

ment until the delay is large enough that the host CPU can always read the updated

value in a single MMIO read.

We implement the measurement code on both the host CPU and the GA620

NIC in assembly for efficiency. On the host CPU, we disable all interrupts on the

116

CPU core where the measurement code is executing. We choose the instruction

RDT SC to read the current CPU counter as a timer, taking care to incorporate a

serializing instruction (i.e., CPUID) to prevent instruction reordering from impact-

ing the accuracy of our measurements. We implement the delay by spinning in a

tight loop that consumes exactly two clock cycles per loop iteration.

Figure 4.9: Impact of delay on probability that host CPU reads expected value from

address B in a single MMIO read.

Figure 4.9 shows our experimental results. In this figure, the X-axis is the

delay in nanoseconds, N. The Y-axis is the probability that the host CPU reads the

updated value from address B in a single MMIO read when the host CPU stalls for

N nanoseconds between writing the mailbox at address A and reading the value

from address B. The experimental results show that when the delay is larger than

790 ns, the probability is 1.

117

Demonstrating Communication Reliability We then fix the delay at 790 ns (de-

termined from the previous results), and repeat the measurement another 200 times

to confirm that communication is reliable. In this experiment, the host CPU mea-

sures the time between writing the mailbox event and obtaining the updated value

from address B after a delay of 790 ns. Figure 4.10 shows our measurement results.

The X-axis is individual trials and the Y-axis is the timing result in nanoseconds

computed from CPU cycles. The average result of the 200 trials is T cpu
send +T cpu

recv =

1375 ns. The standard deviation is 4 nanoseconds.

Figure 4.10: Communication overhead and checksum computation time (time of a

challenge-response pair) measured by the host CPU.

Checksum Computation Time

We conduct two experiments to measure the time for checksum computation on

the GA620 NIC. These experiments are similar to the experiments used to mea-

sure the communication overhead between the host CPU and NIC in Section 4.3.4.

118

The only difference is that in the communication overhead measurement, the NIC

writes a 4-byte value to MMIO memory immediately upon receiving a mailbox

event, while in these experiments the NIC executes three checksum blocks before

writing to MMIO memory. Because we have implemented a checksum simulator,

the checksum simulator always selects nonces where the NIC returns a checksum

state after executing precisely three checksum blocks.

As with the communication overhead measurement, we first perform experi-

ments to predict the necessary delay on the host CPU to guarantee that the host

CPU can obtain the expected checksum result in a single MMIO read operation.

Figure 4.9 shows the probability that the host CPU gets the expected checksum

result using a single MMIO read operation while varying the delay. For each delay

period, the experiments are repeated 200 times. The experimental results show that

after the delay reaches 1616 ns, the host CPU starts to read the expected checksum

result for all 200 experiments, i.e., it becomes sufficiently reliable.

We conduct a second experiment to measure the entire time between the host

CPU writing the mailbox event to MMIO memory, and reading the checksum result

after a delay of 1616 ns (one challenge-response pair). In each trial, the checksum

function on the NIC computes three checksum blocks. Figure 4.10 shows the time

of 200 challenge-response pairs measured by the host CPU. The average value of

a single challenge-response pair (T normal
comp) is 2202 nanoseconds, with a standard

deviation 4 nanoseconds. Based on these results, we can calculate that the time

required for computing three checksums blocks (T per
comp) on the NIC is about 827

nanoseconds, (i.e., T per
comp = T normal

comp − (T cpu
send +T cpu

recv) = 2202 ns − 1375 ns = 827

ns). Thus, the overhead caused by the theoretical fastest proxy attack over 1 Gbps

Ethernet is about 325 nanoseconds (T proxy
overhead = (T per

send +T per
recv)−T per

comp = 1152 ns −

827 ns = 325 ns).

119

Host CPU – NIC Synchronization

A design goal of VIPER is to maximize the utilization of the system buses and the

CPUs in the NIC, and to minimize the overall attestation runtime. Recall (Sec-

tion 4.2.2) that we can parallelize bus communication and NIC computation; the

host CPU sends the next nonce before the NIC writes the current checksum result

into MMIO memory. These tight timing constraints require that the host CPU and

NIC be synchronized, to guarantee (1) that the host CPU is able to send the nonce

to the NIC before the NIC starts to return current checksum states, and (2) that the

host CPU reads the checksum result from MMIO memory only after the NIC has

updated the result. We describe the design and implementation of our synchroniza-

tion mechanisms and the experiments that demonstrate their effectiveness.

To remain synchronized, the time interval between two consecutive MMIO

reads by the host CPU should match the time required to compute checksum blocks

on the NIC CPU. Therefore, given the initiation time of a read of cksum[i], the time

when the host CPU should start to read the value of cksum[i+1] can be predicted.

In our implementation, the verifier code again uses RDTSC to read the CPU time

stamp counter before starting to read cksum[i], and then predicts the future time

stamp counter value when the host CPU should start to read the following check-

sum state. The host CPU busy-waits in a tight loop that consumes exactly 2 CPU

cycles per iteration until the necessary time arrives, although we convert iterations

to nanoseconds to streamline presentation here. Figure 4.11 shows the verification

procedure with synchronization between the host CPU and NIC. nonce1 is the first

nonce that the host CPU sends to the NIC, while cksum1 is the first checksum result

that the NIC returns to the host CPU.

To implement synchronization between the host CPU and NIC, the checksum

computation time must be long enough that the host can perform one MMIO read

120

Host CPU

NIC

nonce1

nonce 2 ck
su

m
1

ck
su

m
2nonce 3

delay1 delay2 delay3 delay4

ck
su

m
 n...

Figure 4.11: Verification procedure with synchronization between host CPU and

NIC.

operation (read a checksum result) and one MMIO write operation (write a nonce

to the NIC) inside the time interval where two consecutive checksum results are

returned by the NIC. When the NIC computes three checksum blocks for each

nonce-checksum pair, the checksum computation time is not long enough to keep

synchronization between the host CPU and NIC. Therefore, we increase the num-

ber of checksum blocks to compute on the NIC for each nonce-checksum pair. Our

synchronization experiments show that the host CPU and NIC can remain syn-

chronized for over 300 nonce-checksum response pairs when the NIC computes

six checksum blocks for each nonce-response pair.2

Figure 4.12 illustrates the first few iterations of this procedure, yielding delay1=

780 ns, delay2 = 670 ns, and delay3 = 390 ns. Although 300 nonce-response it-

erations are not sufficient to verify the entire memory contents of the verification

function (this is a simple application of the coupon collector’s problem), the same

procedure can be repeated multiple times to verify the entire memory with over-

whelming probability.

The average time for a single challenge-response pair is 3106 ns (T normal
comp from

Eqn. 4.4), with a standard deviation of 19 ns. The entire time for performing 300

2Note that the time for computing six checksum blocks on the NIC is longer than the time of the

theoretical fastest proxy attack described in Section 4.3.4. However, it is much shorter than the time

of the real proxy attack we have implemented. We discuss this discrepancy further in Section 4.8.

121

Figure 4.12: Impact of delay1, delay2, and delay3 in Figure 4.11.

challenge-response pairs is 535 microseconds. The entire verification procedure

(excluding the time for SHA-1 to process the firmware in SRAM on the NIC)

consumes about 2 milliseconds.

4.4 Evaluation on Netgear GA620 NIC

We implement a real Ethernet-based proxy attack, the forging DP attack, and the

forging PC attack on the Netgear GA620 NIC to evaluate VIPER’s ability to detect

the attacks.

4.4.1 Ethernet-based proxy attack

We implement a real Ethernet-based proxy attack (Figure 4.13). Computers A and

B connect directly (without a switch) through a crossover cable. The NICs in both

computers are 1 Gbps Netgear GA620s. On computer A, the host CPU verifies the

122

GA620 NIC

Computer A Computer B

(Proxy)

Host CPU

2. nonce

3. checksum

1.

nonce

4.

check-

sum

GA620 NIC

Host CPU

Figure 4.13: Proxy Attack Implementation.

firmware integrity of the GA620 NIC using the latency-based attestation protocol.

Once the NIC on computer A receives a challenge from the host CPU, it sends the

challenge to computer B (the proxy) over the crossover cable. It then waits for the

reply from computer B. In the real implementation, we assume that the proxy is

very fast, and needs no time to compute the excepted checksum result. Therefore,

on computer B, as soon the NIC receives the packet that contains the challenge for

attestation, it sends the response, which includes the expected checksum, to com-

puter A. The NIC on computer B (the proxy) generates the response immediately

within its firmware, without bus activity and without involving the host CPU. Then,

on computer A, the NIC receives the checksum from computer B, and returns the

checksum to the host CPU.

Note that there is no timer on the NIC. Thus, the host CPU measures the time

of the proxy attack indirectly, since it measures the time of the proxy procedure

plus the communication overhead between the host CPU and the NIC. The aver-

age latency of a single challenge-response pair measured by the host CPU over

123

200 trials during the proxy procedure is 43.72± 0.38 microseconds. The proxy

attack we implement consumes much more time than the checksum computation

time for each challenge-response pair in our implementation on the GA620 NIC.

Our implementation shows that computer B cannot send the expected checksum

back to the NIC on computer A on time because the latency to communicate with

the proxy is longer than the expected checksum computation time. Note that our

simple C code implementation in the NIC firmware is slower than the theoretical

fastest gigabit Ethernet proxy attack, although this limitation is only a weakness

for an attacker with a direct physical connection (no intermediate network hops) to

the target system’s Ethernet port. Further optimization of our attack is interesting

future work.

4.4.2 Forging Data Pointer (DP) attack

In a forging DP attack, the attacker maintains a shadow copy of the correct veri-

fication function in unused memory, and then executes malicious code out of the

original address range of the checksum function, computing the expected check-

sum over the shadow copy. In this attack, the malicious code needs to add or sub-

tract a constant offset to the DP value to redirect the memory addresses to read (one

instruction). Because the DP value is also included in the checksum computation,

the malicious code also needs to forge its value before the computation (another

instruction). To keep the PC value correct, the malicious code cannot inject addi-

tional instructions in the checksum computation block. Thus, the malicious code

has to jump out of the main checksum computation block (one jump instruction)

to change the DP value to compute the expected checksum. After the computation,

malicious code has to jump back (another jump instruction) to the main checksum

computation block to obtain the expected PC value. In our current checksum de-

124

sign, two memory addresses (DP) are checked in each checksum block and the DP

value is included in the checksum computation once in each checksum block, so

a forging DP attack needs five additional instructions (two jump instructions and

three arithmetic or logical instructions) to compute the expected checksum result

in each checksum block. The two jump instructions also cause two cache misses

in each checksum block.

4.4.3 Forging PC attack

In a forging PC attack, malicious code is deployed in some other memory address

and computes the expected checksum over the original copy of the verification

function. In this attack, the malicious code does not need to forge the DP value

since the checksum is computed over the original copy of the verification function.

However, the malicious code does need to forge the correct PC. In VCF, r4 stores

the beginning address of the current checksum computation block while r3 stores

the end address of the previous checksum computation block. r4 and r3 are up-

dated at the end of each checksum computation block. In the forging PC attack,

the memory address of the malicious checksum computation block has a constant

offset from the address of the original checksum computation block. To jump to

the malicious code block, the malicious code adds a constant offset to r4 (one in-

struction) before the jump instruction in each checksum block. To forge the correct

PC values (both r3 and r4) before the checksum computation, the malicious code

also needs to subtract a constant value from r3 and r4 (two instructions). As with

the forging DP attack, to guarantee that the value of r3 and r4 have a constant

offset from the correct value, the malicious code has to jump out of the malicious

checksum block (one jump instruction) to modify the PC value, and then jump

back (another jump instruction) before the jump instruction at end of each check-

125

sum block. Therefore, the forging PC attack needs five additional instructions (two

jump instructions, three arithmetic or logical instructions) and causes two addi-

tional cache misses for each checksum computation block to compute the expected

checksum result.

4.4.4 Evaluation Results

Figure 4.14: Attacker Performance.

Figure 4.14 shows the verification time (checksum computation time plus com-

munication overhead) of normal computation (the host CPU and NIC are not syn-

chronized; three checksum blocks are computed for each nonce-checksum pair),

a forging PC attack, a forging DP attack, the theoretical best proxy attack, and a

time threshold to detect attacks. The theoretical proxy attack line represents the

communication overhead between the host CPU and the NIC plus the time of the

theoretically fastest proxy attack (1152 nanoseconds for a round-trip) between the

NIC and a proxy helper over 1 Gbps Ethernet. Our results show that a forging PC

126

attack or a forging DP attack cause over 280 nanoseconds of computation over-

head, while the theoretical fastest proxy attack causes over 325 nanoseconds of

overhead compared with the normal computation. These overheads are readily de-

tected by the host CPU executing in a tight loop with interrupts disabled. Thus,

VIPER successfully detects all of the attacks.

4.5 Implementation on Apple Aluminum Keyboard

We also evaluate VIPER with a wired Apple Aluminum keyboard. We assume the

Apple Aluminum keyboard is the last (slowest) peripheral to verify and malicious

code inside the keyboard cannot perform a local or remote proxy attack. Thus, we

utilize a simple nonce-response protocol to verify the integrity of the firmware on

the Apple Aluminum keyboard.

In this Section, we first describe the hardware feature of the Apple Aluminum

keyboard, then detail the verification function design and implementation on the

Apple Aluminum keyboard.

4.5.1 The Apple Aluminum Keyboard

The Apple Aluminum Keyboard connects to a computer via a USB interface.

Inside the Apple Aluminum keyboard, a Cypress CY7C63923 microcontroller

controls the keyboard matrix. During a firmware update, the firmware on the

CY7C63923 microcontroller is updated. The Cypress CY7C63923 microcontroller

belongs to the Cypress enCoReTM II family and is primarily designed for low-

speed USB peripheral controllers, such as mice, keyboards, joysticks, game pads,

barcode scanners, and remote controllers. The Cypress CY7C63923 is a Harvard

Architecture, 8-bit programmable microcontroller with 256 bytes of RAM and 8

KB of Flash. Five registers on this microcontroller control the operations of its

127

CPU. These five registers are the Flag register (F), Program Counter (PC), Accu-

mulator Register (A), Stack Pointer (SP), and Index Register (X). PC is 16-bits

in length, while all the other registers are 8-bits long. A and I are used during

arithmetic or logical operations on this microcontroller.

4.5.2 Verification Function Design

Due to the constrained computation and memory resources in the simple microcon-

trollers that are deployed on low-speed peripherals, the verification functions that

are used in previous proposals cannot be deployed directly on the Apple Aluminum

Keyboard. In this section, we detail the verification by describing the pseudo-

random number generator, our design for filling data memory with pseudo-random

values, and our checksum function.

Pseudo-Random Number Generator (PRNG). In the verification function, the

PRNG is used for two purposes:

1. output PRNs to fill the data memory;

2. output PRNs to construct memory address to read in a pseudo-random fash-

ion.

In previous proposals [96], T-functions [56] or RC4 [118] are used to output PRNs.

However, on low speed peripherals, it is challenging to implement the same PRNGs

efficiently due to constrained computation or memory resources. T-functions need

a multiplication unit to generate PRNs efficiently. However, a hardware multipli-

cation unit is not available in many low-speed microcontrollers that are used in

peripherals. Software-based multiplication is too slow to be a viable option. For

instance, on a CY7C63923 microcontroller [25], a software-based multiplication

requires thousands of cycles to complete a 16-bit multiplication. An RC4-based

128

PRNG outputs pseudo-random numbers through simple arithmetic and logical op-

erations. However, RC4 requires at least 256 bytes of RAM, which consumes all

memory resource on some microcontrollers (such as the CY7C63923). Laszlo et

al. [36] propose several efficient PRNGs that are primarily designed for low speed

embedded devices. The PRNGs proposed by Laszlo et al. only require simple

addition, XOR, or shift operations and few memory resources to output PRNs ef-

ficiently. From the PRNGs that Laszlo et al. propose, we select a 2-stage PRNG

in our design. Other PRNGs that have the same features are also potential choices.

The PRNG we select outputs PRNs as follows:

x[i+1] = x[i−1]+ (x[i]⊕ rot(x[i−1],1)) (4.7)

⊕ is the logical XOR operation and rot is the left rotation shift operation. x is the

output of this PRNG, a 32-bit long stage. The value of one stage is updated based

on the values of the previous two stages in each iteration.

Filling Data Memory With Pseudo-Random Values. The verification function

fills data memory in a pseudo-random fashion. Such a design is required to prevent

an attacker from reserving one small block at the end of data memory to store

malicious data, and then generating the PRNs that are expected to be in that small

block of data memory on-the-fly when they are needed by the checksum routine.

In our design, the verification function determines the data memory addresses to be

filled based on the outputs of the PRNG. Each address is then filled using the XOR

of two bytes of PRNG output. This prevents the attacker from generating the PRNs

that are expected in data memory based on the values of existing PRNs in other

locations in data memory, since only XOR results are stored in data memory. To

make sure that all data memory is filled, the verifier can obtain the number of loop

iterations upon which all data memory has been filled. This value is determined by

129

simulating the filling procedure before sending the attestation request.

Checksum Function Design. The checksum function computes a fingerprint

over the entire contents of both program memory and data memory. As in SWATT

or ICE, the checksum is computed through a strongly ordered sequence of ad-

dition, XOR, and rotation shift operations. If the sequence of the operations is

altered or some operations are removed, the checksum result will be different with

a high probability. Also, the checksum function reads memory in a pseudo-random

traversal. If the memory size is N bytes, each memory location is accessed at least

once after O(NlnN) memory read with a high probability [96]. The input to the

checksum function is a 16-byte pseudo-random value, which is used to seed the

PRNG (i.e., to provide stages x[0] and x[1]) and to initialize an 8-byte checksum

vector. The output of the checksum function is also an 8-byte checksum vector.

Each byte of the checksum vector is called a checksum state. For each iteration of

the checksum function, the value of one checksum state is updated based on the

current memory contents, the pseudo-random value, and the values of other check-

sum states. In order to preserve the entropy of the carry bit, we add each carry bit to

the checksum state. Following is the pseudo code of one iteration of the checksum

function:

/* C is the checksum vector, i is its current index. */

/* PRN is the pseudo-random number */

/* addr is the memory address */

addr = PRN & MASK /* Construct memory address */

/* update one checksum state */

C[i] = C[i] + (Mem[addr] xor C[(i-2) mod 8])

tmp = C[i] mod 256

C[i] = rotation_left_shift(tmp, 1) + (C[i] >> 8)

130

C[i] = C[i] + i

i = (i + 1) mod 8 /* update the index i */

To optimize the computation time of the checksum, we unroll the checksum loop

eight times and each time one checksum state is updated by either the contents of

program memory or the contents of data memory, which can be adjusted based on

the memory size proportion of each. For example, on a peripheral that has 8 KB of

programmable Flash and 256-bytes of RAM, seven checksum states can be updated

based on the contents of Flash memory while one checksum state can be updated

based on the contents of RAM. To make the computation of each checksum state

different, we also add the index value to the checksum state.

4.5.3 Verification Function Implementation

Following a keyboard firmware update, the Flash memory from 0xe00 to 0x1300

(1280 bytes) is available free space, where we implement our verification function.

Figure 4.15 shows the final memory layout of keyboard Flash memory.

The verification function is located at addresses 0x0e00 – 0x1268 in the Flash

memory. The Flash memory from 0x1268 to 0x1300 is filled with pseudo-random

values. In the verification function, a ’Send Function’ is the communication mod-

ule that handles the attestation request from the verifier and returns checksum re-

sults through the USB channel to the verifier following checksum computation.

Before the attestation, the contents of RAM is unpredictable to the verifier. There-

fore, an ’Initial Function’ sets the contents of data memory to a known state by

filling the data memory with pseudo-random values (we fill data memory in a lin-

ear sequence instead of in a pseudo-random fashion as designed). The data memory

from 0x18 to 0xff is filled with with pseudo-random values, while the data memory

131

Interrupt Table

Key Handling Func

Veri!cation

Function
Checksum Func

Send Func

Initial Func

Randomness

USB Func

0x0000

0x1FFF

0x0080

0x0e00

0x1300

Program Memory

0x1268

Figure 4.15: Memory Layout of Program Memory

from 0x00 to 0x17 is used to store variables for the verification function. Also, the

’Initial Function’ disables all interrupts on the CY7C63923 microcontroller, which

prevents the contents of data memory from being modified by an interrupt call

during checksum computation. A ’Checksum Function’ is implemented, which

computes a checksum over the entire contents of both program memory (Flash)

and data memory (RAM). After attestation, we reset the Apple Aluminum Key-

board. A two-stage pseudo-random number generator (PRNG) is implemented in

both the ’Initial Function’ and ’Checksum Function’. The 8-byte nonce sent by

the verifier is used to seed the PRNG in the ’Initial Function’. After filling RAM,

the PRNG in ’Initial Function’ outputs a 16-byte random number to serve as in-

put to the ’Checksum Function’, which is used to seed the PRNG in ’Checksum

Function’ and to initialize the 8-byte checksum vector. All of these functions are

implemented in assembly. The two-stage PRNG is implemented using 23 assem-

132

bly instructions. It outputs 4 bytes of pseudo-random values every 157 CPU cycles

on the Apple Aluminum Keyboard. We unroll the checksum iteration eight times.

Each time one checksum state is updated. The first seven checksum states are

updated based on the content of Flash memory while the last checksum state is

updated based on the content of RAM. Including the two-stage PRNG, ’Checksum

Function’ only requires 19.5 instructions and 133.5 CPU cycles on the average to

update one checksum state on the Apple Aluminum Keyboard. Following is the

assembly we implement to update one checksum state:

; [0x00] to [0x07] saves outputs of PRNG

; [0x08] to [0x0f] saves temp variables, such as counter

; [0x10] to [0x17] saves checksum states

; ROMX is the instruction to read flash memory

; CPU loads memory address from register A

; and register X when ROMX is executed

; the result of ROMX is saved in register A automatically by CPU

; Update checksum[0]

MOV X, [0x00] ; read pseudo-random values

MOV A, [0X01] ; to register X and A

AND A,0X1F ; construct memory address

ROMX ; read Flash memory, result is saved in A

XOR A, [0x16] ; Mem[addr] xor checksum[6]

ADD [0x10], A ; add previous checksum value

RLC [0x10] ; left rotation shift 1 bit, add carry bit

ADC [0x10],0x00 ; add carry bit (add index too)

133

4.6 Evaluation on Apple Aluminum Keyboard

In this section, we detail the evaluation results on the Apple Aluminum keyboard.

4.6.1 Verification Time.

Figure 4.16: Verification Time

Figure 4.16 shows the verification time for 40 trials. In each trial, the veri-

fier measures the entire verification time between sending a nonce to the Apple

Aluminum Keyboard and receiving the checksum result from the keyboard. The

average verification time of the 40 trials is 1706.77 ms while the standard deviation

is only 0.18 ms.

4.6.2 USB Communication Overhead.

In this experiment, the verifier first sends an attestation request to the Apple Alu-

minum Keyboard. Upon receiving a request from the verifier, the verification func-

tion on the Apple Aluminum Keyboard returns an 8-byte value to the verifier im-

mediately without computing the checksum. To obtain accurate experimental re-

134

Figure 4.17: USB Communication Overhead

sults, the verifier measures the entire time of 1000 runs of the communication in

each trial. Figure 4.17 shows the average communication time of the 1000 runs

in each trial. The average value of the USB communication overhead for all the

experiments is 1.83 ms and the standard deviation is only 0.01 ms.

4.6.3 Analysis

The experimental results show that the verification procedure is very stable. As

shown in Figure 4.16, the verification time for all 40 trials varies from about 1706

ms to about 1708 ms. An attacker cannot hide malicious code from an attestation

unless the malicious code computes the correct checksum result with a computation

overhead less than 3 ms, which is only about 0.2 percent of the verification time.

This kind of attack is extremely challenging for the attacker since there is not any

free space left in program or data memory. Also, the experimental results show

that the communication overhead does not affect the detection of the computation

overhead caused by malicious code, since the communication is also very efficient

and stable.

135

4.7 Integration: A Malware-Free Operation Environment

We can integrate VIPER with on-demand I/O isolation (Section 2.3) to establish

a malware-free operation environment with trusted I/O (isolated I/O with trusted

I/O peripherals). Figure 4.18 shows the system architecture of such an isolated

malware-free operation environment on commodity computers.

TPMCPU

Untrusted

Operating

System

App A App B PAL (with device drivers)

Wimpy Kernel

PeripheralsMotherboard

TCB for PAL ProtectionPiece of App Logic (PAL)

Veri!er Program

Peripheral Attestation

Environment (PAE)

Integrity

veri!cation

Regular Environment
Isolated Execution

Environment

Hypervisor uTPM

Environment switch, hypercalls

or interfaces between Wimpy Kernel and drivers

Trusted I/O

(without involving the hypervisor)

Trusted

I/O

Figure 4.18: System Architecture of a Malware-Free Operation Environment with

Trusted I/O.

Architecture As shown in Figure 4.18, in the isolated execution environment,

a wimpy kernel [127] (Section 2.3) provides on-demand I/O isolation to a PAL.

136

To guarantee the absence of malware in peripherals, a peripheral attestation envi-

ronment (PAE) is established and isolated from the regular environment and the

isolated execution environment. In the PAE, a verifier program is responsible for

verifying the integrity of peripherals’ firmware using the VIPER attestation mech-

anism.

An alternative design is to include the verifier program in the isolated execution

environment. However, such a design will increase the complexity of the code

running inside the isolated execution environment. Establishing a separate isolated

execution environment (PAE) for the verifier program is an on-demand add-on

approach. Only when the PAL needs to access I/O peripherals, the PAE is included

in the TCB.

Assumptions Please note that we assume that the chips on the I/O channel (i.e.,

the Northbridge, the Southbridge, the USB host controller, the USB hub) do not

have firmware and focus on verifying the firmware integrity of the end-point pe-

ripherals (e.g., a keyboard connected to a USB hub, a NIC connected to the PCI).

We also assume that the verifier program has the information of all peripherals on

the commodity computer (e.g., the peripherals’ memory address, the USB hierar-

chy, a copy of the original firmware that should run inside the peripherals).

Verifying the Integrity of Peripherals’ Firmware Before enabling the PAL to

access the I/O peripherals, the wimpy kernel first invokes the verifier program in

the PAE (by an environment switch or a hypercall to the hypervisor that will invoke

the verifier program) to verify the integrity of peripherals’ firmware.

The verifier program first verifies the peripheral information to guarantee that

all peripherals’ configurations are not modified. The verifier program utilizes sim-

ilar approaches with wimpy kernel (outsource-and-verify) to verify the peripheral

137

information. For instance, the verifier program scans through all MMIO memory

mappings to prevent MMIO mapping attacks [127]. However, as the verifier pro-

gram already has the expected peripheral information, the verification process is

simpler. For example, because the prover program already has the information of

the USB hierarchy and connected USB devices on the computer, the prover pro-

gram can quickly verify the USB hierarchy and detect any hidden USB devices

without the complex operations in the original wimpy kernel [127].

After verifying the peripheral information, the verifier program calls the hyper-

visor to (1) configure IOMMU, Nested Page Table (NPT) or Extended Page Table

(EPT), the I/O port-access-interception bitmap, and the PCI eXpress (PCIe) Ac-

cess Control Services (ACS) (Section 2.2) to isolate the I/O peripherals from the

malicious OS and other peripherals, and (2) configure the Programmable Interrupt

Controller (PIC) to temporarily disable interrupts from all peripherals.

If the I/O peripherals are not on the PCIe bus or the PCIe ACS is not avail-

able on the computer, the I/O peripherals might be able to engage in peer-to-peer

communication with other peripherals by avoiding the IOMMU (see Section 2.2).

Consequently, if an I/O peripheral under attestation is in such a peer-to-peer bus

network (e.g., in the south-bridge), a faster peripheral in the same peer-to-peer

bus network could help the I/O peripheral under attestation compute the expected

checksum (a local proxy attack). In addition, after the I/O peripheral has been ver-

ified, malware in other peripherals in the same peer-to-peer network might com-

promise the verified I/O peripheral by exploiting vulnerabilities in the firmware of

the I/O peripheral. Therefore, to prevent proxy attacks and run-time attacks from

other peripherals, all following peripherals have to be isolated from the malicious

OS and other peripherals on the computer and be associated with the PAE the iso-

lated execution environment: (1) the I/O peripherals requested by the PAL; (2) and

all other peripherals (that cannot be isolated by configuring the PCIe ACS) in the

138

same peer-to-peer bus network with the I/O peripherals requested by the PAL on

the motherboard. The verifier program then verifies the firmware integrity of all

associated peripherals to guarantee the absence of malware on these peripherals.

After verifying the integrity of the associated peripherals’ firmware, the veri-

fier program invokes the wimpy kernel (via an environment switch or a hypercall

to the hypervisor that will invoke the wimpy kernel) and informs the wimpy kernel

that the firmware integrity of I/O peripherals (and other peripherals in the same

peer-to-peer bus network) has been verified. Note that during and after integrity

verification, all verified peripherals are isolated from the malicious OS and other

peripherals. In addition, after integrity verification, the wimpy kernel does not

need to verify the peripheral information (e.g., the USB hierarchy, the MMIO ad-

dress) again as the verifier program already verifies these values. To establish I/O

isolation, the wimpy kernel also enables interrupts from the I/O peripherals, and

establishes interrupt isolations. The wimpy kernel then enables the PAL to access

the I/O peripherals with the guarantee of I/O isolation and the absence of malware

in peripherals’ firmware. In this system, a user needs to verify the integrity of the

isolated PAL and the entire TCB for PAL protection (including the hypervisor, the

wimpy kernel, and the verifier program) using an external verifier device [127].

Limitations To prevent proxy attacks, the wimpy kernel might isolate not only

the I/O peripherals but also other peripherals in the same peer-to-peer bus network

with the I/O peripherals. However, a malicious OS might need to access the iso-

lated peripherals for non-sensitive operations. For instance, when a PAL requests

access to the keyboard, wimpy kernel establishes isolated I/O to access the key-

board for the PAL. Because the keyboard and the NIC are in the same peer-to-peer

bus network (PCIe ACS is not available), the wimpy kernel also isolates the NIC

from the malicious OS and other peripherals; however, when the system switches

139

back to the regular environment, the OS might need to access the NIC for network

communication.

To address the problem, the wimpy kernel can temporarily disable the I/O iso-

lation to enable the OS to access the isolated peripherals when the system switches

back to the regular environment (the wimpy kernel might also need to reset the iso-

lated I/O peripherals to clean any temporary security-sensitive data in I/O peripher-

als). When the I/O isolation is disabled, a malicious OS could insert malware into

the I/O peripherals (or other peripherals that need to be isolated). Therefore, after

the system switches back to the isolated execution environment, all peripherals are

no longer trusted for the wimpy kernel and the PAL; consequently, the wimpy ker-

nel needs to invoke the verifier program (to guarantee the absence of malware in

peripherals’ firmware) and establishes I/O isolation for the PAL again. Frequently

performing peripheral firmware integrity verification might cause a high overhead

for the execution of the PAL. This problem is caused by the peer-to-peer communi-

cation feature available on modern motherboards. If the peer-to-peer communica-

tion could be prevented, the wimpy kernel only needs to isolate the I/O peripherals

without needing to invoke the verifier program to verify the firmware integrity fre-

quently.

4.8 Discussion

We now discuss open problems, limitations, and known issues with VIPER.

It remains an open problem to prove that a program of any appreciable com-

plexity is time-optimal. This has been a significant hurdle for all software-based

attestation proposals to date. Two requirements have proven especially challeng-

ing: (1) The Checksum algorithm design does not have any flaws that allow an

attacker to obtain the expected result with less than the expected data available.

140

(2) The code design of the checksum algorithm must require precisely the smallest

number of cycles to complete.

A primary goal of the present work has been to suggest that additional sources

of asymmetry may be viable primitives for software-based attestation, and that

these other sources of asymmetry are easier to quantify. We used the asymmetry of

the latencies from CPU-to-peripheral, as compared to the latencies from peripheral-

to-proxy.

Interestingly, we also face the challenge of being unsure as to whether our

attack implementations are optimal. For example, the theoretically fastest RTT for

an Ethernet frame is significantly shorter than the RTT that we observed with our

implementation of a proxy attack. We believe our VIPER prototype to be secure

against proxy attacks facing the empirically measured proxy attack time, but an

attacker who can communicate at gigabit Ethernet’s theoretical speeds may have an

advantage. In practice, this limitation is minor, since we primarily consider attacks

arriving via multiple network hops on the Internet, which even today entails several

orders of magnitude higher latency.

Full System Verification An overview of full-system verification with VIPER is

presented in Section 4.2. While theoretically straightforward, learning the expected

configuration of all programmable elements of a computer system is a considerable

practical challenge. Today’s vendor ecosystem does not propagate such informa-

tion, and we were unable to obtain enough information about a complete system to

attempt such verification. We suggest such endeavors as fertile ground for future

research.

Quiescing the System to Enable Verification We ran our experiments (Sec-

tion 4.4) on hardware that is several generations removed from the latest systems.

141

Our motivation for doing so was in reducing the amount of system activity for

which we could not account. Multicore processors, system management interrupts

(SMIs), and platform management tools such as OPMA, IPMI, or Intel AMT are all

capable of generating system activity that may be difficult or impossible to quan-

tify from a vantage point on a single platform CPU. We view this as one instance of

the challenges faced in attempting to identify expected or baseline system behavior

with high-assurance.

It is also worth mentioning that modern platforms include significant support

for power management. While the logic that governs these operations is itself in

scope for verification, one way to achieve necessary levels of system quiescence

may be to power down peripherals that cause (possibly benign) interference. Fail-

ure to respond to power-down requests is itself an indictment of a particular pe-

ripheral.

Hardware Variability Nightingale et al. study 1,000,000 consumer PCs and find

that a full 1% run outside 0.5% of their rated clock speed, even when intentional

overclocking is taken into consideration [71]. This level of variability may com-

plicate the process of establishing baseline, or expected, behavior for VIPER on a

particular platform. Additional investigation is warranted.

Why Not Hide? Attackers may be incentivized to infect peripherals with mal-

ware that deletes itself when interrogated for verification. In principle the system

must have had a vulnerability somewhere, and the attacker may be able to reinfect

the system post-verification. However, it is not easy to correlate infected firmware

in one device with a vulnerability in that device’s expected firmware, e.g., the vul-

nerability may have been in the OS and the driver that updates device firmware

may have been compromised. The malware-free operation environment with on-

142

demand I/O offers the mechanism to solve Time Of Check To Time Of Use (TOCT-

TOU) problem.

Network Infrastructure as the Verifier In an enterprise network it may be rea-

sonable to let network infrastructure such as gateway systems act as verifiers.

While feasible for verifying NIC firmware, this approach does not trivially allow

verification of all other peripherals in a full system.

Denial of Service One malicious device can easily create excessive bus traffic

such that verification of another device would fail. This can be interpreted as po-

tentially being a form of inter-device “blackmail”, but ultimately one has detected

that something is amiss in the system. Localizing the source of the attack is a

secondary problem.

4.9 Summary

Attackers have elevated malware to a new frontier: executing invisibly on devices

within a computer system. Such malware can exploit DMA to compromise the OS

or misuse PCI buses to compromise other devices. We address the research chal-

lenge of how to reliably detect such malware. This work shows how we extend

previous software-based attestation mechanisms to defend against proxy attacks,

where the untrusted system obtains help for computing the time-critical check-

sum from a remote party. By harnessing the inherent properties of PCI buses,

we have developed a new approach for software-based attestation that can prevent

the proxy attack and simultaneously achieve lower verification time overhead. We

anticipate that our proposed techniques will make software-based attestation prac-

tical on current platforms and provide uncircumventable advantages to defenders

143

without relying on specialized hardware.

144

Chapter 5

MiniBox: A Two-Way Sandbox

for x86 Native Code

Mobile devices are starting to increasingly change the world. Although the hard-

ware performance of mobile devices has been significantly improved over the past

decade, mobile devices are still resource-poor relative to server-level hardware

platforms. In addition, energy consumption is alway critical for mobile devices.

Consumers would never complain a mobile device’s battery lasts too long. How-

ever, compute-intensive or data intensive tasks on mobile devices (e.g., speech

recognition or face recognition) can dramatically decrease the battery life of mo-

bile devices. Thus, compute-intensive and data-intensive operations are often of-

floaded from mobile devices to the remote cloud data center (e.g., via the wireless

network). For example, Google Glass might offload its face recognition tasks to a

remote cloud server. Apple Siri voice recognition is another example of offloading

the compute-intensive task to a remote cloud server. However, humans are sensitive

to delays. The Round Trip Time (RTT) between a mobile device and a remote com-

mercial cloud service (e.g., Amazon EC2) over the Wide Area Network (WAN) is

145

unsatisfactory for delay-sensitive tasks (e.g., real-time speech translation).

Cloudlets Satyanarayanan et al. propose Cloudlets [86, 87], a middle tier of a

mobile device-Cloudlet-cloud hierarchy, in which mobile devices can offload its

tasks to nearby public computers (Cloudlets) to avoid the high and unstable com-

munication latency with a remote cloud server. For example, when a user with

a Google glass is having a rest in a cafe, the user’s Google glass may automat-

ically connect with the public computer in the cafe via a local wireless network

and offload the execution of compute-intensive voice recognition task to the public

computer. The communication latency in the local wireless network is much lower

than the WAN latency and hence the user benefits from the Cloudlet service.

Furthermore, mobile devices, especially wearable devices usually provide lim-

ited user-device interaction interfaces (e.g., a small display or a small keypad

for user input). In contrast, public Cloudlet computers can provide rich user-

interaction I/O peripherals (e.g., keyboard or high resolution monitor). Thus, a

user might also prefer to offload operations from a mobile device to a Cloudlet

computer, perform complex operations (e.g., editing document) that are not conve-

nient on small wearable devices.

Security Issues However, there are practical issues for deploying such a middle

tier. When such Cloudlet is widely deployed, how can we protect the Cloudlet

public computers from being compromised by a large number of untrusted of-

floaded programs from users’ mobile devices? In the meantime, users may offload

security-sensitive data (e.g., face images or voice data) to Cloudlet computers. If a

Cloudlet public computer is compromised, the adversary can breach users’ privacy

and secrecy. How can we protect the users’ security-sensitive data on the Cloudlet

computers? When a user edits an document she offloads to the Cloudlet computer,

146

how can we protect the user’s document from being leaked?

Satyanarayanan et al. propose a Virtual Machine (VM) based system architec-

ture to provide a clean and isolated environment (an initialized Virtual Machine in

a clean state) for each offloaded program in Cloudlets. In this way, the offloaded

program (including the user’s security-sensitive data) is isolated from other offload

programs through VMs. However, such a VM-based architecture has a large TCB.

An adversary can exploit vulnerabilities in the VM to control the Cloudlet public

computer, then access the security-sensitive data from other users.

Two-Way Sandbox We think the security model of Cloudlets, and argue that a

two-way sandbox is desirable in Cloudlet public computers. The two-way sand-

box not only protects a benign OS from a misbehaving program offloaded by a

user (OS protection) but also protects one offloaded program from a malicious

OS (application protection). Researchers have explored several approaches for

either protecting the OS from an untrusted application [27, 51, 54, 122] or protect-

ing security-sensitive applications (or security-sensitive PALs) from a malicious

OS [12,20,21,23,24,26,33,38,52,66,67,100–102,105,120]. Unfortunately, none

of these schemes provides two-way protection, and many challenges remain to de-

sign a two-way sandbox.

TrustVisor [66] and Intel Software Guard Extensions (Intel SGX) [4, 31, 37]

are examples of systems that provide efficient memory space isolation mechanisms

to protect a Security-Sensitive Portion of an Application (security-sensitive PAL)

from a malicious OS (Figure 5.1-B). On TrustVisor or Intel SGX, memory access

from the OS to the security-sensitive PAL or from the security-sensitive PAL to

the OS is disabled by an isolation module, which is a hypervisor (on TrustVisor)

or CPU hardware extensions (on Intel SGX). However, the Non-Sensitive Portion

of an Application (non-sensitive PAL) is not isolated from the OS, and the non-

147

OS

Isolation Module

Sandbox

(1-C) Combination option #1 (1-D) Combination option #2

OS

Sandbox

System call interface

Isolation Module

(Attacks:

(1) Iago attacks

(2) Subvert OS

if sandbox is broken)

System call interface

(Attack: subvert OS

if sandbox is broken)

OS

Sandbox

TCB

Attacks

(e.g., direct

memory

access)

OS

Isolation Module

(1-A) Sandbox architecture

for OS protection
(1-B) TrustVisor or SGX architecture

for application protection

Security-Sensitive

Piece of App Logic (PAL)

Non-Sensitive

Piece of App Logic (PAL)

System call interface

(Attack: subvert OS

if sandbox is broken)

Env switch

Env switch

System call interface

(Attack: subvert OS)

Break

sandbox

Break

sandbox

Break

sandbox

Figure 5.1: Sandbox Architecture, TrustVisor or Intel SGX Architecture, and Com-

bination Options.

sensitive PAL may contain malware that can compromise the OS.

Google Native Client (NaCl) [122] and Microsoft Drawbridge [27, 81] are ex-

amples of application-layer one-way sandboxes for native code. We found that

combining an application-layer sandbox and an efficient memory space isolation

mechanism is promising for the two-way sandbox design. However, it it not straight-

forward. Figure 5.1-C and 5.1-D show two combination options. In option #1, the

security-sensitive PAL runs in an isolated memory space while a sandbox confines

148

the non-sensitive PAL. However, in this design application developers need to split

the application into security-sensitive and non-sensitive PALs, requiring substan-

tial porting effort. In option #2, the sandbox is included inside the isolated memory

space to avoid porting. The isolation module forwards system calls (from the sand-

box) to the OS. However, there are several issues with this option. First, because

the sandbox is complex and exposes a large interface to the application, a mali-

cious application may exploit vulnerabilities in the sandbox and in turn subvert the

OS. Second, a malicious OS may be able to compromise the application through

Iago attacks [19]. In Iago attacks, a malicious OS can subvert a protected process

by returning a carefully chosen sequence of return values to system calls. For in-

stance, if a malicious OS returns a memory address that is in the application’s stack

memory for an mmap system call, sensitive data (e.g., a return address) in the stack

may subsequently be overwritten by the mapped data. Finally, because the OS is

isolated from the sandbox and the application, it is challenging to support the ap-

plication execution in an isolated memory space. Thus, both options have obvious

shortcomings and we shall not choose them for the two-way sandbox design.

MiniBox In this chapter, we present MiniBox, a two-way sandbox for x86 native

applications. Leveraging a hypervisor-based memory isolation mechanism (pro-

posed by TrustVisor) and a mature one-way sandbox (NaCl), MiniBox offers ef-

ficient two-way protection. MiniBox splits the NaCl sandbox into OS protection

modules (software modules performing OS protection) and service runtime (soft-

ware modules supporting application execution), runs the service runtime and the

application in an isolated memory space (Section 5.2.1), and exposes a minimized

and secure communication interface between the OS protection modules and the

application (Section 5.2.2). MiniBox also splits the system call interface available

to the isolated application as sensitive calls (the calls that may cause Iago attacks)

149

and non-sensitive calls (the calls that cannot cause Iago attacks), and protects the

application against Iago attacks by handling sensitive calls inside the service run-

time in the isolated memory space (Section 5.2). MiniBox also provides secure

file I/O for the application (Section 5.2.6). Integrated with the on-demand isolated

I/O mechanism (recall Section 2.3) and VIPER (recall Chapter 4), MiniBox not

only offers trusted I/O to the isolated application, but also prevents malware from

spreading to either side through peripherals by verifying the integrity of peripher-

als’ firmware in both sides (Section 5.5). Using a special toolchain, application

developers can concentrate on application development with small porting effort

(Section 5.4). We implement a MiniBox prototype based on the Google Native

Client (NaCl) [122] open source project and the TrustVisor hypervisor [66, 111]

(Section 5.3), and port several applications to MiniBox. Evaluation results show

that MiniBox is practical and provides an efficient execution environment for iso-

lated applications (Section 5.4).

Contributions

1. We design, implement, and evaluate MiniBox, the first attempt toward a

practical two-way sandbox for x86 native applications.

2. MiniBox demonstrates it is possible to provide a minimized and secure com-

munication interface between OS protection modules and the application to

protect against each other.

3. MiniBox demonstrates it is possible to protect against Iago attacks, and pro-

vide an efficient execution environment with secure file I/O for the applica-

tion.

150

5.1 Assumptions and Attacker Model

Assumptions We assume that the attacker cannot conduct physical attacks against

the hardware units (e.g., CPU and TPM). We assume that the attacker cannot break

standard cryptographic primitives and that the TCB of MiniBox is free of vulner-

abilities. For application protection, we also assume that the application does not

have any memory safety bugs (e.g., buffer overflows) or insecure designs. One ex-

ample of the insecure designs is that an application seeds a pseudo-random number

generator by the return value of a system call handled by the untrusted OS. It is the

developer’s responsibility to take measures to eliminate memory safety bugs or in-

secure designs. For OS protection, we assume that the system call interface that the

OS protection modules expose to the application (a subset of the OS system call

call interface) is free of vulnerabilities, and that the OS does not have concurrency

vulnerabilities [114] in system call wrappers.

Attacker Model For Application Protection We assume that the attacker can

execute arbitrary code on the OS. For example, the attacker may compromise and

control the OS, and then attempt to tamper with the protected application by access-

ing the application memory contents or handling the system calls of the application

in malicious ways (Iago attacks). The attacker may attempt to inject malicious code

into the application binary or into the service runtime binary before the application

runs in an isolated memory space without being detected. The attacker may subvert

DMA-capable devices on the platform in an attempt to modify memory contents

through DMA. The attacker may also attempt to access security-sensitive files of

the application. However, we do not prevent denial of service attacks. Finally we

do not prevent side-channel attacks [125].

151

Attacker Model For OS Protection The untrusted application may attempt to

subvert the hypervisor or break out of the hypervisor-based memory isolation. The

application may also attempt to read or modify sensitive files that do not belong to

the application on the system. The application may attempt to subvert the OS by

making arbitrary system calls with carefully-chosen parameters.

5.2 System Design

5.2.1 MiniBox Architecture

CPU

Hypervisor

Motherboard

Low-level System

(e.g., Guest OS

or VMM)

Regular Environment Mutually Isolated Execution Environment (MIEE)

x86 Native App

Context Switch

Param Marshaling

System Call

Dispatcher

System

call

dispatcher

(param

sanitizing,

access

control)

Environment

Switch

System

Calls

GDTLDT

Thread Scheduler

TPM

uTPM

Hypercalls

Memory Management,

TLS Management,

Multi-threading,

Secure !le IO, uTPM API

C
o

n
te

x
t S

w
itch

TCB for

App Protection

OS Protection

Modules

P
a

ra
m

 U
n

m
a

rsh
a

lin
g

P
ro

g
ra

m
 lo

a
d

e
r

TCB for two-way

protection

Environment

Switch

Figure 5.2: MiniBox System Architecture.

Figure 5.2 shows the MiniBox architecture. As shown in this figure, a hyper-

visor underpins the system. The hypervisor sets up the two-way memory space

152

isolation between the Mutually Isolated Execution Environment (MIEE) and the

regular environment, and creates a µTPM instance for the MIEE.

On MiniBox, the hypervisor and a service runtime in the MIEE comprise the

runtime TCB for application protection. In the MIEE, beyond the x86 native ap-

plication, a service runtime is included, containing: a context switch module that

stores and switches thread contexts between the application and the service run-

time; a system call dispatcher that distinguishes between non-sensitive and sensi-

tive calls, calls handlers in the MIEE for sensitive calls, or invokes the parameter

marshaling module for non-sensitive calls; a parameter marshaling module that

prepares parameter information for non-sensitive calls (for the hypervisor); system

call handlers for handling sensitive calls; and a thread scheduler that schedules the

execution of multiple threads comprising an application; device drivers to access

I/O peripherals (recall Section 2.3). In sensitive call handlers, the service run-

time supports dynamic memory management, thread local storage management,

multi-threading management, secure file I/O, and µTPM API. Integrated with the

isolated I/O mechanism [127] (recall Section 2.3) and VIPER (Chapter 4), Mini-

Box can provide trusted I/O (isolated I/O with trusted peripherals) to the isolated

application. We present how to integrate MiniBox with isolated I/O and VIPER to

provide such trusted I/O in Section 2.3.

On MiniBox, the OS protection modules include a user-level program loader,

a context switch module, a parameter unmarshaling module, a system calls dis-

patcher in the regular environment, and a kernel module containing a prover code

and a wimpy kernel. In the regular environment, the user-level program loader sets

up the MIEE and loads the application into the MIEE; the context switch module

stores and restores the thread context of the regular environment during environ-

ment switches between the regular environment and MIEE; the parameter unmar-

shaling module unmarshals system call parameters; and the system call dispatcher

153

confines the system call interface exposed to the application (allowing only a subset

of the OS system calls), sanitizes the system call parameters, conducts access con-

trol to constrain the file access of the application, and forwards the non-sensitive

system calls to corresponding handlers in the regular environment.

Finally, MiniBox adopts TrustVisor’s integrity measurement (recall Section 2.3)

to enable a remote verifier to verify the integrity of the hypervisor, the service run-

time, and the isolated application. In this way, MiniBox prevents adversaries from

injecting malicious code into the hypervisor, the service runtime or the application

before the memory isolation is established without being detected. This is also the

reason that the program loader is not in the TCB for application protection.

5.2.2 Communication Interfaces

The MiniBox hypervisor exposes a small interface to the rest of the system. Mini-

Box minimizes and secures the communication interface between OS protection

modules and the application to protect against each other.

Hypervisor Interface Other than passing system call information between the

MIEE and the regular environment, the hypervisor exposes a small interface (i.e.,

only several hypercalls) to the rest of the system. Thus, assuming the small hy-

percall interface is free of vulnerabilities, malicious code in the rest of the system

cannot compromise the hypervisor or break out of the hypervisor-based memory

isolation.

Minimizing Communication Interface On MiniBox, the communication inter-

face between OS protection modules and the application consists of only the pro-

gram loader and the system call interface. Because privileged instructions cannot

break out of the hypervisor-based memory isolation, the NaCl validator (that val-

154

idates that the application binary does not contain privileged instructions) is not

included in MiniBox, which significantly reduces the interface exposed to the ap-

plication. Without the validator, privileged instructions in the application can break

out of the segmentation-based isolation and compromise the service runtime in the

MIEE. However, a malicious service runtime in the MIEE cannot break out of the

hypervisor-based memory isolation.

Secure Communication On MiniBox, the hypervisor is the only communication

channel between the regular environment and the MIEE. Each non-sensitive sys-

tem call causes environment switches between the MIEE and the regular environ-

ment. For each environment switch from the MIEE out to the regular environment,

the parameter marshaling module in the MIEE updates the parameter information

of the system call that will be used by the hypervisor for copying parameters be-

tween the two environments. However, the parameter marshaling module in the

MIEE cannot specify where the parameters will be stored in the regular environ-

ment. The hypervisor copies the system call parameters to a parameter buffer in

the regular environment, and constrains the total data size of system call parame-

ters (to prevent buffer overflow attacks). In this way, malicious code in the MIEE

cannot overwrite critical data (e.g., stack contents) in the regular environment. To

prevent a misbehaving application from sending arbitrary system call parameters

to the regular environment, the system call dispatcher in the regular environment

checks the system call parameters before sending them to the OS. For example, the

system call dispatcher checks the value of every pointer parameter and guarantees

that it is safe to access the memory space the parameter points to. If a check fails,

the system call dispatcher returns an error code without calling the corresponding

system call handler.

After the system call is handled, the system call dispatcher copies return values

155

to the parameter buffer in the regular environment and triggers the environment

switch back to the MIEE. When MiniBox switches from the regular environment

back to the MIEE, the hypervisor uses the same parameter information specified

by the MIEE to copy parameters from the parameter buffer in regular environment

to the MIEE. This prevents malware in the regular environment from attempting to

compromise MIEEs by manipulating parameter information.

5.2.3 Dynamic Memory Management

MiniBox supports three system calls (sysbrk, mmap, and munmap) to provide dy-

namic memory management for the application running inside the MIEE. To pre-

vent the OS from returning arbitrary memory addresses for the sysbrk or mmap sys-

tem calls (Iago attacks) or removing arbitrary data memory pages from the MIEE,

memory management system calls are handled inside the MIEE.

Design One naive design is pre-allocating and registering a large amount of data

memory in the MIEE as data memory for the application. This design has low exe-

cution time overhead, but it wastes memory and is inflexible. Another design is al-

lowing the hypervisor to allocate memory pages as the application’s data memory.

However, the MiniBox hypervisor does not support swapping of memory pages to

disk, and cannot be sure that pages marked as unused by the guest OS are actually

present in memory. To resolve this issue, we design the system call handlers that

request more data memory (i.e., sysbrk and mmap) in two modules: one in each

of the isolated and regular environments. When the application requests more data

memory but the requested data memory is not in the MIEE, the system call handler

in the MIEE calls the module in the regular environment that allocates the memory

page(s) and writes zero to them to ensure that the new memory page(s) are loaded

into physical memory, and then returns to the handler inside the MIEE. The system

156

call handler inside the MIEE then makes a hypercall to the hypervisor to add the

new memory page(s) to the MIEE. The munmap handler inside the MIEE makes a

hypercall to unregister memory from the MIEE.

Security Protection To prevent Iago attacks caused by mmap or sysbrk, the hy-

pervisor checks that the newly registered pages are not already registered to the

MIEE (so that the malicious OS cannot overwrite stack contents of the application

in the MIEE). To prevent leakage of sensitive data in either direction, the MiniBox

hypervisor zeroes memory pages during registration and unregistration. To prevent

a misbehaving or malicious application from adding privileged data pages (e.g.,

kernel pages) into MIEE, the hypervisor checks that the newly registered pages are

user-level memory pages that are in ring 3, and correspond to the same OS process

that originally registered the MIEE. Presently MiniBox does not allow additional

memory to be mapped as executable, as this represents a significant increase in

attack surface. Thus, the hypervisor checks that the requested memory pages are

data pages that are not executable. In data memory page unregistration, the hy-

pervisor checks that the unregistered memory pages are data pages that are already

registered to the MIEE.

5.2.4 Thread Local Storage Management

Background On 32-bit Linux, the native code on vanilla NaCl stores the mem-

ory address of its Thread Local Storage (TLS) as the base address of a segment

descriptor in the Local Descriptor Table (LDT) [48]. During program initialization

or when a new thread is created, tls init system call initializes the TLS base

address and updates the appropriate LDT entry. During execution, the tls get

system call is frequently called to get the TLS base address.

157

Design Because the TLS and LDT represent critical configuration data, MiniBox

handles the tls init and tls get entirely within the MIEE. The MiniBox hyper-

visor creates an LDT instance for each MIEE and supports a hypercall interface

to the MIEE to handle tls init system call. MiniBox supports caching the latest

TLS address inside the MIEE, so that the tls get handler can quickly return the

latest TLS base address to the application without calling the hypervisor.

5.2.5 Multi-threading

Background NaCl applies a 1:1 thread model (i.e., creating a kernel thread for

each Native Module user-level thread) and uses the OS to handle thread-related

system calls (e.g., thread synchronization system calls) and schedule the execution

of Native Module threads.

Design If MiniBox applies the same multi-threading mechanism, the OS con-

trols the thread context of the application threads. A malicious OS could break

the Control Flow Integrity (CFI) [1–3] of the isolated application by changing the

thread context. Also, when the OS handles all thread synchronization system calls,

a malicious OS could break the application CFI by arbitrarily changing application

thread states. To protect the application thread context from being accessed by the

OS, MiniBox can store the thread context in the MIEE and never leak it out of the

MIEE. Also, the service runtime in the MIEE can verify the thread synchronization

results by duplicating all supported thread synchronization system call handlers. In

this design, all thread context and the application CFI are protected from a mali-

cious OS. However, the complexity of this design is comparable to implement-

ing the multi-threading operations within the MIEE. Also, if thread-related system

calls are handled by the OS, the environment switches caused by thread-related sys-

tem calls will increase the overhead of application execution in the MIEE. Thus,

158

to reduce execution overhead and avoid duplicated operations, MiniBox supports

multi-threaded application execution via a user-level multi-threading mechanism

entirely within the MIEE. System calls to create, exit and synchronize threads are

handled in the MIEE.

Hypervisor

Regular

Environment (RE)

Mutually Isolated Execution

Environment (MIEE)

x86 Native

Application
Context

Switch

Parameter

Marshalling
Service call

Dispatcher

Context

Switch

Service call

Dispatcher

Operating

System or

Applications

r-s2

r-s1

nested

page

fault

copy parameters

return

Sensitive

System call

Handlers

Thread

Scheduler

r-s3

TCB for

App Protection

OS Protection

Modules

TCB for two-way

protection

Figure 5.3: System Call Return Flow.

Thread Scheduler MiniBox provides a thread scheduler to schedule the thread

execution of the application in the MIEE. The thread scheduler is invoked each

time there is a call from an entry of the Trampoline Table (recall Section 2.4).

After the call is handled, control returns to the thread scheduler inside the MIEE

before the context switch module is invoked (r-s1 in Figure 5.3). Before scheduling

the execution of application threads, the thread scheduler first obtains the thread

ID of the thread that made the system call, and saves the thread context in the

corresponding thread context data structure. The scheduler checks the state of

each thread, and schedules the execution of runnable threads using a round-robin

159

algorithm. The thread scheduler finally calls the context switch module (r-s2 in

Figure 5.3), which resumes the execution of the scheduled thread by restoring the

thread context of the scheduled thread and jumping to the Springboard within the

application (r-s3 in Figure 5.3).

Note that, before calling the thread scheduler, the hypervisor and the param-

eter marshaling module in the MIEE have already unmarshaled the system call

parameters, and copied the returned parameters to the application’s stack or data

memory.

5.2.6 Secure File I/O

On MiniBox, the application running in the MIEE still needs to access the file

system in the regular environment, so the file system calls are forwarded to the

OS. However, to protect the file contents and metadata of an isolated application,

MiniBox supports secure file I/O for applications running in the MIEE through

five system calls: secure write, secure read, secure open, secure close,

create siokey. The five system calls are handled in the MIEE.

Confidentiality and Integrity secure write encrypts the data written by the

application (with a symmetric secret key) and sends the encrypted data to the gen-

eral file I/O, while secure read decrypts the data and returns the decrypted data to

the application in the MIEE. In secure write and secure read, the data is writ-

ten or read by a chain of blocks of a constant size. To protect the integrity of file

contents and file metadata, including file name and path, a hash tree is constructed

and computed over the blocks of file contents and file metadata in the MIEE (this

approach has been demonstrated in the Trusted Database System [63], VPFS [116]

and jVPFS [117]). A HMAC of the master hash is computed in the MIEE and

stored at the end of the file (as file contents). When a file created by secure file I/O

160

is opened, secure open reads the HMAC and verifies the integrity of the file con-

tents and metadata by reconstructing the hash tree. secure open stores the hash

tree in the MIEE. When a data block is read, secure read verifies the integrity

of the data block based on the stored hash tree. When file contents are modified,

secure write updates the hash tree stored in the MIEE. When a file is closed,

secure close recomputes the master hash and the HMAC, and stores the updated

HMAC at end of the file. This allows the integrity of file contents and file metadata

to be verified. The attacker cannot remove, add, or replace data blocks in the file

because any changes will invalidate the HMAC. The attacker cannot replace the

file with other files that are created by the same application running in the MIEE

either because file metadata is also verified.

Rollback Prevention (Freshness) MiniBox adds a counter in each HMAC com-

putation to guarantee freshness of files stored through the secure file I/O. The

counter is sealed by the µTPM. Because the µTPM cannot provide freshness for

sealed contents, the integrity of the counter is measured every time the same appli-

cation runs in the MIEE (the measurement result is extended into µPCR for remote

attestation). This allows a verifier to verify the freshness during remote attestation.

Key Management Before using secure file I/O, the application running in the

MIEE must call create siokey to create the secret keys used in secure file I/O

(i.e., a symmetric encryption key and a HMAC key). The application specifies

the file name and file path for storing the keys when calling create siokey.

Create siokey first checks if the file already exists. If not, create siokey cre-

ates new secret keys, seals the secret keys with the current µPCR values. Then it

stores the sealed secret keys in the file, and returns the key ID to application. If the

file already exists (i.e., keys are already created), create siokey reads the sealed

161

keys from the untrusted file system, unseals the keys and returns the key ID to the

application.

Access Control and Migration Because the secret keys are sealed with the cur-

rent µPCR (i.e., the integrity measurement of the application), the sealed keys can

only be unsealed by the µTPM when the same application runs in the MIEE. Thus,

any data encrypted through secure File I/O can only be decrypted and verified when

the same application runs in the MIEE. To share the sensitive files with other ap-

plications running in the MIEE (e.g., an updated version of the application), the

application can seal the secret keys with the integrity measurement result of other

applications, and share the sealed keys to other applications. Then, other applica-

tions running in the MIEE can unseal the secret keys (using create siokey) and

access the secret files.

Cache Buffer On MiniBox, environment switches between the MIEE and the

regular environment cause high overhead in file I/O (Section 5.4). To reduce the

number of environment switches, MiniBox creates a cache buffer in the MIEE for

each opened file descriptor. Both general file I/O and secure file I/O benefit from

the cache buffer because the number of environment switches is reduced.

5.2.7 MIEE Preemption and Scheduling

As described in Section 5.2.5, MiniBox does not preempt an application thread

running in the MIEE. However, if an application thread is in an endless loop, the

thread will not freeze the entire system because the MIEE is preemptive on Mini-

Box. When the system switches into a MIEE, the hypervisor starts a timer for the

MIEE and preempts the code execution in the MIEE when the timer expires. After

preempting the MIEE, the hypervisor stores the MIEE context and transfers control

162

to the regular environment by simulating a special system call (i.e., MIEE sleep).

The MIEE sleep handler sleeps for a while and then calls the hypervisor to resume

the code execution in the MIEE. In this way, the hypervisor transfers the control

to the OS, which can schedule the execution of other processes. When multiple

MIEEs are registered (one MIEE in each process), the OS can implicitly schedule

the execution of multiple MIEEs by scheduling process execution. However, the

question is how much CPU time should be assigned to each MIEE by the hypervi-

sor. One design is that the hypervisor exposes a hypercall interface to the regular

environment and the MIEE to enable the OS and the isolated application in the

MIEE to configure the MIEE process priority. The hypervisor assigns CPU time to

each MIEE based on the MIEE process priority.

5.2.8 Exceptions, Interrupts, and Debugging

Exceptions and Interrupts While the code in a MIEE is running, the processor

cannot access exception and interrupt handlers in the OS. Thus, the hypervisor is

configured to intercept exceptions (e.g., segmentation fault, invalid opcode) and

Non-Maskable Interrupts (NMIs) when system runs in a MIEE. Maskable inter-

rupts are disabled when system runs in a MIEE. When NMIs happen, the hypervi-

sor handles NMIs and resumes the code execution in the MIEE. When an exception

happens, the hypervisor first checks whether the exception is because the applica-

tion in the MIEE needs more stack pages. If so, the hypervisor calls a module in

the regular environment to allocate more data pages as stack pages, adds the stack

pages into the MIEE, and resumes the code execution in the MIEE. If not, the hy-

pervisor terminates the code execution in the MIEE by simulating an Exit system

call. The Exit call is forwarded to the program loader, which unregisters the MIEE

from the hypervisor via hypercall.

163

Debugging Though the MiniBox execution environment is compatible with NaCl’s,

the NaCl debugging tool for application development cannot be directly used on

MiniBox because on MiniBox the OS cannot access the memory contents in the

MIEE. However, MiniBox can be configured in a debugging mode, in which the

hypervisor functionalities are disabled, and an application layer module passes pa-

rameters between the two environments. In debugging model, memory manage-

ment and TLS management calls are handled by the OS. In this way, the memory

isolation is disabled and application developers can use the NaCl debugging tool

for MiniBox application development. An alternative way is including the NaCl

debugging tool in the MIEE and supporting an interface to access the debugging

tool from the regular environment. In this way, the developers can debug the appli-

cation when the memory isolation is enabled.

5.2.9 Program Loader

In MiniBox, a user-level program loader prepares the service runtime for the ap-

plication, loads the application binary to page-aligned memory, registers the whole

thing as a MIEE through hypercalls, and finally launches the execution of the ap-

plication.

Initialization After loading the application into page-aligned memory, the pro-

gram loader initializes the relevant LDT for segments of the application (code,

data and stack), initializes the system call parameter information for environment

switch, and populates the initial thread context of the application. The program

loader allocates a 32 MB stack section for each application at the high end of the

application’s address space. The application accepts arguments upon its initial in-

vocation like a typical process. The program loader copies the arguments into the

application’s stack memory.

164

MIEE Registration Before launching the execution of the application, the pro-

gram loader registers the MIEE comprising the service runtime, and the applica-

tion’s code, data and stack sections. During registration, the hypervisor sets up

memory protection for the MIEE, instantiates a fresh µTPM instance, instantiates

a GDT and LDT for the MIEE, measures the memory contents of the MIEE, and

extends the measurement results into a PCR in the µTPM instance for remote at-

testation. Before registration, the program loader has full access permissions to the

application and the service runtime. Thus, it could potentially maliciously modify

the contents of the application or service runtime. However, any such modifica-

tions or injected malicious contents will cause the µTPM’s PCR to take on a differ-

ent value than expected. As a result, the MIEE will be unable to generate correct

µTPM Quotes in remote attestation or unseal the secret data that are sealed with

the expected µTPM PCR value.

Launching Application After registration, the program loader launches appli-

cation execution by triggering the environment switch into the MIEE. Inside the

MIEE, the context switch module initializes the application thread context, switches

segment selector registers, and starts application execution.

MIEE Unregistration After the application completes its execution it invokes

an Exit system call that is forwarded to the program loader. After receiving this

system call, the program loader unregisters the MIEE from the hypervisor via hy-

percall. The MIEE data memory is zeroed and the memory protections on the

MIEE’s memory space are removed by the hypervisor.

165

5.3 Implementation

We implement a MiniBox prototype running on recent x86 multi-core systems

from Intel or AMD, with 32-bit Ubuntu 10.04 LTS as the guest OS. This section

describes the MiniBox implementation in details.

5.3.1 Hypervisor

The implementation of the MiniBox hypervisor is based on the public implemen-

tation of TrustVisor hypervisor (version 0.1.2) [66, 111] with support for multi-

core and both AMD and Intel processors. We changed the parameter marshaling

implementation [61] and added a hypercall interface for handling sensitive sys-

tem calls. We added code to create new Global Descriptor Table (GDT) [48] en-

tries and instantiate an LDT for every MIEE, and added code to handle GDT- and

LDT-related operations. The original implementation of TrustVisor hypervisor has

14414 source lines of code (SLoC), computed using the sloccount tool1. Our im-

plementation adds an additional 691 SLoC. Table 5.1 shows the code size of each

module that we added or modified in TrustVisor hypervisor. Note that the parame-

ter marshaling module and the extended hypercall interface are independent of the

CPU manufacturer, The GDT- and LDT-related module support both AMD and

Intel processors. Thus, as with TrustVisor hypevisor, the MiniBox hypervisor also

works on both AMD and Intel processors.

5.3.2 Program Loader and Service Runtime

We implement the user-level program loader, the service runtime in the MIEE, the

context module and the system call dispatcher in the regular environment based

on the Google Native Client (NaCl) open source project (SVN revision 7110). We

1http://www.dwheeler.com/sloccount/

166

http://www.dwheeler.com/sloccount/

Table 5.1: Source Lines of Code (SLOC) Added to TrustVisor Hypervisor.
MiniBox hypervisor module SLOC

Parameter Marshaling 201

Extended Hypercall Interface and Handlers 230

GDT and LDT-related 260

Total 691

have focused our work on the 32-bit x86 architecture, though there are no funda-

mental barriers to expanding to 64-bit. In the NaCl source code, we implement

code to conduct MIEE registration and unregistration in 299 SLoC. We implement

the service runtime in the MIEE within the NaCl source code, adding 3550 SLoC.

The secure file I/O module has a large code base (1065 SLoC) because it contains

cryptographic primitives for AES and HMAC. The implemented service runtime

can be configured in debugging mode for application development (recall Sec-

tion 5.2.8). The parameter marshaling module in the MIEE has a large codebase

because it needs to be capable of preparing parameter information for the 42 dif-

ferent system calls that are handled in the regular environment (23 SLOC for each

system call on average). The sensitive system call handlers we implemented are

mainly for handling thread synchronization (e.g., mutexes, semaphores, and con-

dition variables), which results in a larger codebase than other modules. We use a

custom linker script when building the NaCl ELF loader to link the service runtime

framework in page-aligned memory pages. Table 5.2 summarizes the SLOC added

to Google’s NaCl source code.

167

Table 5.2: Source Lines of Code (SLOC) of Modules Added to Google Native

Client.
Module SLOC

MIEE registration and unregistration 299

Context Switch in regular environment. 29

Total in regular environment. 328

System Call Dispatcher in MIEE 379

Parameter Marshaling in MIEE 970

Thread Synchronization in MIEE 711

Secure File I/O in MIEE 1065

Other Sensitive Call Handlers in MIEE 373

Context Switch in MIEE. 52

Total in MIEE 3550

5.3.3 System Calls

MiniBox adopts NaCl system call interface to expose a closed set of system call in-

terface to the isolated application. MiniBox does not support dynamic code for the

application, so NaCl dynamic code system calls are removed on MiniBox. How-

ever, MiniBox extends the NaCl system call interface with µTPM API, network

I/O system calls, and secure file I/O calls, supporting a total of 75 system calls for

the application.

Table 5.3 shows the system calls supported by MiniBox. The implementa-

tion entails adding header files and statically linked libraries into the NaCl Newlib

toolchain, and modifying the NaCl source code to (1) add extended system call

entries to the application’s Trampoline Table and add corresponding parameter

marshaling functions and (2) add corresponding hypercalls to the MiniBox ser-

168

Table 5.3: System calls supported by MiniBox. Starred calls (∗) are handled inside

the MIEE or hypervisor; the remaining calls are forwarded to the regular environ-

ment and handled by the OS.
Operations System Calls

µTPM∗ µTPM PCR Read, µTPM PCR Extend, µTPM Random,

µTPM Seal, µTPM unSeal, µTPM PCR Quote

Memory∗ sysbrk, mmap, munmap

TLS∗ tls init, tls get

Thread∗ thread create, thread exit, thread nice, sched yield

Mutex∗ mutex create, mutex lock, mutex trylock, mutex unlock

Condition∗ cond create, cond wait, cond signal, cond broad

Semaphore∗ sem create, sem wait, sem post, sem getvalue

Secure File∗ secure read, secure write, secure open, secure close,

create siokey, read siokey

File dup, dup2, open, close, read, write, lseek, ioctl, stat, fstat

Time time of day, clock, nanosleep

Inter-Module imc bound, imc accept, imc connect,imc send, imc recv,

Communication imc objcreate,imc socket

(IMC) [122]

Socket accept, bind, connect, send, recv, listen, getpeername,

getsockname, getsockopt, recvmsg, recvfrom, sendmsg, sendto

setsockopt, shutdown, socket, socketpair

Others nameservice, getdents, exit, getpid, sysconf

vice runtime. MiniBox supports 17 socket system calls. The network I/O system

calls are forwarded to the regular environment, because they are treated as part of

the untrusted communication channel. Secure communication (e.g., SSL) can be

implemented in the application layer to protect the data in network I/O.

169

In the MIEE, the supported thread synchronization system calls include semaphores,

mutexes, and condition variables, which have the same functionality as the cor-

responding POSIX APIs. The thread synchronization implementation passes the

internal thread synchronization test suite included in the NaCl source code. The

secure file I/O calls encrypt/decrypt the data using AES with a 128-bit key in CBC

mode and computes HMAC-SHA-1 using a 160-bit key.

The µTPM API is exposed to applications through system calls. The imple-

mentation entails adding µTPM header files and a statically linked µTPM library

into the NaCl Newlib toolchain, and modifying the NaCl source code to (1) add

µTPM API entries to the application’s Trampoline Table, and (2) add correspond-

ing hypercalls to the MiniBox service runtime framework.

5.4 Evaluation

In this section, we present the evaluations including system call overhead, file I/O

overhead, network I/O, and application performance in the MIEE on MiniBox.

Experiments were conducted on a Dell PowerEdge T105 server with a Quad-Core

AMD Opteron Processor running at 2.3 GHz with 4 GB memory. The operating

system is Ubuntu 10.04 with 32-bit kernel Linux 2.6.32.27. To obtain accurate

timing results, the hypervisor does not preempt the MIEE.

5.4.1 Performance Impact

MiniBox hypervisor extends the TrustVisor with hypercall interface and modified

parameter marshaling [61], neither of which affects the guest OS performance.

Thus, MiniBox hypervisor imposes similar guest overhead to the TrustVisor [111].

Yee et al. [122,123] presented that the NaCl toolchain can cause significant increase

in code size (2% to 57% on SPEC2000 benchmarks), but non-significant impact

170

on performance (on average less than 5% on SPEC2000 benchmarks).

5.4.2 Porting Effort

MiniBox uses the NaCl toolchain with extended API for application development

and imposes similar porting efforts to the NaCl. Yee et al. [122,123] presented that

porting an internal implemented H.264 decoders (11K lines of C code) to NaCl

requires adding about twenty lines of C code, and porting Bullet2 to NaCl took

only a few hours. Compared to NaCl, MiniBox requires additional porting effort

for application protection. For instance, application developers must understand

the MiniBox protection mechanisms and avoid insecure application designs (recall

Section 5.1). Application developers must understand the trustworthy computing

abstractions exposed to every MIEE, and correctly use them.

5.4.3 MiniBox Microbenchmarks

Figure 5.4: System Call Benchmarks in us. Average of 100 runs and standard de-

viation is less than 5%. Calls with ∗ are sensitive calls handled inside the MIEE

without environment switches. Calls with # are sensitive calls that involve hyper-

call or environment switches.

2http://www.bulletphysics.com

171

System Call Overhead In the MIEE, non-sensitive system calls are handled in

the OS with environment switches while sensitive system calls are handled either

in the application layer inside the MIEE or by the hypervisor. The system call

overhead in the MIEE was measured, and compared with the corresponding system

calls on vanilla NaCl, and MiniBox in debugging model (recall Section 5.2.8). The

evaluation results (Figure 5.4) show that the non-sensitive system calls (e.g., file

operation calls) that involve environment switches on MiniBox are slower than on

vanilla NaCl. However, the corresponding system calls on MiniBox in debugging

mode have similar performance to those on vanilla NaCl. Thus the overhead of

these system calls on MiniBox is mainly caused by environment switches. The

sensitive system calls that are handled within the MIEE without any environment

switch (e.g., thread synchronization calls) have similar performance to those on

vanilla NaCl. The sensitive system calls that involve hypercall and environment

switches (e.g., memory management system calls) on MiniBox are slower than on

vanilla NaCl.

File I/O We evaluate the file I/O overhead on MiniBox and compare it to the

file I/O on vanilla NaCl and MiniBox in debugging mode. We measure reads &

writes of 32B for both general file I/O and secure file I/O. The measurement results

(Figure 5.5) show that when the data is cached in the MIEE (cache-hit), the cache

buffer significantly reduces the file I/O overhead for both general file I/O and secure

file I/O.

Network I/O We evaluate the network I/O throughput on MiniBox and compare

it to the network I/O throughput on MiniBox in debugging mode and vanilla NaCl.

The server runs in the MIEE using MiniBox on the Dell T105 while the client

runs on plain Linux on a Dell Optiplex 755 desktop with two Intel Core2 Duo

172

Figure 5.5: File I/O Benchmarks in us. Average of 100 runs and standard deviation

is less than 2%.

processors running at 2.0 GHz with 2 GB memory. The operating system on the

Dell Optiplex machine is Ubuntu 8.04.4 LTS with a 32-bit Linux kernel 2.6.24.30.

Both the server and the client connect to a Netgear Gigabit Ethernet Switch using

a Gigabit Ethernet Adapter. During each connection, the client sends 16 KB data

to the server and we measure the network I/O throughput. The results (Figure 5.6)

show that network I/O on MiniBox is about 10% slower than on vanilla NaCl.

Thus, although the environment switches impose a small overhead on MiniBox, the

network throughput remains high.

5.4.4 Application Benchmarks

CPU-bound application (AES key search and BitCoin) We measure the per-

formance of CPU-bound applications on MiniBox and compare it to the perfor-

mance of equivalent applications on vanilla NaCl and MiniBox in debugging mode.

We first evaluate AES key search, which encrypts a 128-Byte plain-text using a 128-

173

Figure 5.6: Network I/O Benchmarks in Mbps. Average of 100 runs and standard

deviation is less than 2%.

bit key in CBC mode 200,000 times, simulating a AES key search operation. We

port CBitCoin [70]), an open source BitCoin implementation to run on MiniBox.

We measure the time to construct a BitCoin block, requiring 200,000 SHA-256

computations. The results show that MiniBox does not add any noticeable over-

head (less than 1% [61]) for CPU-bound applications over NaCl.

I/O-bound application (Zlib) We evaluate the performance of I/O-intensive ap-

plications on MiniBox by testing Zlib [62], an open source library used for data

compression. Zlib is already ported to run on NaCl as part of the naclports project,

and does not require additional porting efforts to run on MiniBox. We measure

the time elapsed to read 1 MB of file data from the file system over the general

file I/O, and then compress the read data. The file data always misses the cache

buffer, so every read operation involves an environment switch. The evaluation re-

sults (Figure 5.7) show that because of environment switches, the zlib application

on MiniBox is slower than on vanilla NaCl. The slowdown is mainly caused by

the environment switches since MiniBox in debugging mode has the same perfor-

174

mance as vanilla NaCl. We repeat the measurement on MiniBox while storing the

file data in the cache buffer in the MIEE. The zlib application read file data with

cache-hit without environment switches. The measurement result shows that the

overhead is significantly reduced. Thus, while file I/O in MiniBox can be expensive

in the worst case, we expect that the cache buffer will significantly improve the

application performance in practice.

Figure 5.7: zlib File Compression with File I/O Benchmarks in ms. Average of 10

runs and standard deviation is less than 2%.

Figure 5.8: SSL Connection Benchmarks in ms. Average of 10 runs and standard

deviation is less than 3%.

175

Figure 5.9: SSL Throughput Benchmarks in Mbps. Average of 10 runs and stan-

dard deviation is less than 1%.

SSL Server We port the entirety of OpenSSL [74] (version 1.0.0.e) to run on

MiniBox. We also run the SSL server on NaCl by adding socket system call in-

terface on the NaCl. In this experiment, the Dell Optiplex machine serves as the

SSL client, and the Dell T105 acts as the SSL server. The SSL client runs on plain

Linux while the SSL server runs inside the MIEE on MiniBox. We recorded both

the time required to create an SSL connection and the overall SSL throughput. The

SSL client sends 16KB of data to the SSL server during each connection. As in

previous experiments, both machines connect to a Netgear Gigabit Ethernet Switch

via a Gigabit Ethernet Adapter. The results show that MiniBox impose about a 15%

overhead to SSL connections (Figure 5.8) and that SSL throughput on MiniBox has

about a 10% slowdown (Figure 5.9). The overhead is mainly caused by environ-

ment switches, since MiniBox in debugging mode has the same performance as

NaCl.

5.5 Integration: MiniBox with Trusted I/O

We can expand MiniBox with on-demand isolated I/O (Section 2.3) and VIPER

(Chapter 4) to provide trusted I/O to the isolated application in the MIEE. Fig-

176

ure 5.10 shows the MiniBox architecture with trusted I/O.

CPU

Hypervisor

Motherboard

Low-level System

(e.g., Guest OS

or VMM)

Regular Environment Mutually Isolated Execution Environment (MIEE)

x86 Native App

Context Switch

Param Marshaling

System Call

Dispatcher

System

call

dispatcher

(param

sanitizing,

access

control)

System calls

GDTLDT

Thread Scheduler

TPM

uTPM

Memory Management,

TLS Management,

Multi-threading,

Secure !le IO, uTPM API

and I/O Device drivers

C
o

n
te

x
t S

w
itch

TCB for

App Protection
OS Protection

Modules
P

a
ra

m
 U

n
m

a
rsh

a
lin

g

P
ro

g
ra

m
 lo

a
d

e
r

Peripherals

Veri!er Program

Environment switch, hypercalls, system calls,

or interfaces between Wimpy Kernel and drivers

Trusted peripheral acccess

(without involving the hypervisor)

Peripheral Attestation

Environment (PAE)

Integrity

veri!cation

TCB for

two-way protection

 Wimpy Kernel

Trusted

I/O

Figure 5.10: MiniBox System Architecture with Trusted I/O.

Architecture As shown Figure 5.10, a wimpy kernel is included in the MIEE to

establish an on-demand isolated I/O for the MIEE; I/O device drivers are included

in the service runtime in the MIEE for I/O access. To guarantee the absence of

malware in peripherals, a peripheral attestation environment (PAE) is registered

and isolated from the regular environment and the MIEE. In the PAE, a verifier

program verifies the integrity of peripherals’ firmware to guarantee the absence of

malware on peripherals (trusted peripherals). We assume that the verifier program

has the detailed information of the peripherals on the commodity computer and that

177

the chips in the I/O channel (e.g., Northbridge, Southbridge) do not have firmware.

Before enabling the isolated application in the MIEE to access I/O peripherals, the

wimpy kernel in the MIEE invokes the verifier program in the PAE (via a hypercall

to the hypervisor or an environment switch) to verify the integrity of peripherals’

firmware.

Two-Way I/O Isolation The hypervisor configures IOMMU, Nested Page Table

(NPT) or Extended Page Table (EPT), the I/O port-access-interception bitmap, the

PCIe Access Control Services (ACS) (Section 2.2), and Programmable Interrupt

Controller (PIC) to establish two-way I/O isolation: malicious code in the regu-

lar environment or peripherals manipulated by the OS cannot access the isolated

peripherals associated with the MIEE or PAE; similarly, a misbehaving isolated

application, the wimpy kernel in the MIEE and peripherals manipulated by the

wimpy kernel cannot access the peripherals manipulated by the OS in the regu-

lar environment. After the two-way I/O isolation is established, the wimpy kernel

and the OS in the regular environment cannot bypass the hypervisor to arbitrarily

change the system configurations, breaking the two-way isolation.

The original I/O isolation mechanism [127] also establishes two-way I/O isola-

tion. However, the wimpy kernel is in the TCB for establishing two-way isolation.

For example, in the original I/O isolation mechanism [127], the hypervisor enables

the wimpy kernel to access the memory space of Programmable Interrupt Con-

troller (PIC) to configure the interrupts while protecting the PIC memory space

from the OS. In MiniBox, the wimpy kernel is not in the TCB for OS protec-

tion. Thus, the hypervisor performs all system configurations to establish two-way

I/O isolation protection and protect the configurations from being modified by the

wimpy kernel or the OS without being detected. For example, in MiniBox, the

hypervisor protects the PIC memory space from both the wimpy kernel in MIEE

178

and the OS in the regular environment.

OS Protection MiniBox applies the mechanisms described in Section 4.7 to es-

tablish the trusted I/O for the isolated application. Now we describe how to protect

the OS from malware in the peripherals that were manipulated by the MIEE. Al-

though the wimpy kernel in the MIEE mediates the I/O access from the application

to the associated I/O peripherals, it is still possible that a misbehaving application

could insert malware into the firmware of the peripherals associated with the MIEE

by exploiting firmware vulnerabilities. When the isolated peripherals are released

to the regular environment, malware in the infected peripherals could compromise

the OS or other peripherals. Therefore, to protect the OS and other peripherals

from malware in peripherals associated with the MIEE, before releasing the iso-

lated peripherals to the regular environment, the hypervisor configures the system

to guarantee that only the prover program in the PAE can access the peripherals

that were manipulated by the wimpy kernel and invokes the prover program in

the PAE to verify the integrity of these peripherals’ firmware (to guarantee the ab-

sence of malware on these peripherals). Only after obtaining the guarantee that

all verified peripherals are free of malware, the hypervisor configures the system

to release the verified peripherals to the regular environment (note that during and

after the integrity measurement, code in the MIEE could not access these verified

peripherals).

5.6 Limitations and Future Work

Application Interface MiniBox includes the entire application (the security-

sensitive and non-sensitive PALs) in the MIEE and does not prevent adversaries

from compromising the application through malicious inputs. The application can

179

measure the integrity of critical inputs (known inputs) and extend the results into

the µTPM PCR for remote attestation. However, the isolated application may

expose a large interface to unknown inputs. Schemes that focus on protecting a

security-sensitive PAL [12, 33, 66, 67, 100, 105] can significantly reduce the attack

surface by exposing a constrained interface between the security-sensitive PAL and

the untrusted OS. On those schemes, the security-sensitive PAL remains secure

when the application is compromised by the OS. Thus, for protecting the security-

sensitive PAL, MiniBox may expose a larger attack surface to the untrusted OS

than schemes that focus on protecting the security-sensitive PAL.

Thread Scheduling Application developers must consider that MiniBox does

not make the scheduler work preemptively (recall Section 5.2.5), and so must al-

ways use supported system calls for thread synchronization (e.g., avoid situations

where a thread performs busy waiting by watching a global variable in a loop in-

stead of calling a blocking system call). In addition, the application-layer thread

scheduler does not support multi-thread parallel computation to improve the perfor-

mance of threaded applications on multi-core systems. One design is to allow the

hypervisor to conduct thread scheduling and to manage the parallel computation

on multiple cores, which will significantly increase the hypervisor complexity. As

future work, we will investigate how to support parallel computation for a threaded

application running inside the MIEE on multi-core systems. However, security-

sensitive applications more concerned with a small TCB than performance may

prefer not to include code for such complex operations in the hypervisor. To solve

this issue, MiniBox can allow the application to configure the hypervisor function-

ality (e.g., disable the support for multi-thread parallel computation) at registration

time, and can boot the hypervisor with the application-preferred configurations.

180

System Call Interface Exposing a large system call interface to the application

increases the attack surface for OS protection; thus, MiniBox exposes a subset of

the OS system call interface to the application to confine the application’s opera-

tions. However, it will be interesting to investigate how to support the entire OS

system call interface on MiniBox. If the entire OS system call interface is sup-

ported, statically linked legacy applications may be able to run on MiniBox. As

future work, we will examine the OS system call interface, obtain a comprehen-

sive list of sensitive calls, and investigate how to support the entire OS system call

interface on MiniBox.

Improving Performance The hypervisor-based isolation mechanism causes over-

head in environment switches. It is expected that the hardware-based isolation

mechanism provided by Intel SGX will decrease the environment switch overhead.

The VMFUNC instruction [48] released on the latest Intel 4th Generation Processor

enables software in a guest Virtual Machine to switch nested page tables without

a Virtual Machine exit. It is expected that the VMFUNC instruction will decrease

the environment switch overhead. However, the VMFUNC instruction does not

switch other critical system configurations (e.g., the GDT or IDT). As future work

we will investigate how to perform secure environment switch using the VMFUNC

instruction.

Supporting Multi-tenant Cloud Platform The MiniBox hypervisor prototype

supports only a single guest OS. There is no fundamental barrier to port Mini-

Box with a virtual machine monitor like Xen [14] that supports multiple tenants,

though doing so increases the TCB size. CloudVisor [124] demonstrates the ap-

proach to minimize the TCB on multi-tenant cloud platforms by leveraging nested

virtualization technology. Nested virtualization can be added in MiniBox to sup-

181

port multi-tenant cloud platforms. On multi-tenant cloud platforms, the virtual

machine (VM) may be constructed, destructed, saved, restored, or migrated. It is

critical to protect the MIEE during VM management. The MiniBox hypervisor can

encrypt or decrypt the memory contents of MIEEs in VM management, and verify

the integrity of the MiniBox hypervisor on other machines to guarantee that MIEEs

are only migrated to machines with a verified hypervisor. Also, the MiniBox hy-

pervisor needs to encrypt or decrypt the µTPM instance together with a MIEE in

VM management, to make the trustworthy computing abstractions provided to the

MIEE transparent to the VM management.

Control Flow Integrity (CFI) Since the application that runs on MiniBox is iso-

lated using nested page tables at the hypervisor level, and always runs in ring 3,

MiniBox does not share NaCl’s CFI requirement to be able to reliably disassem-

ble and validate all instructions. Therefore, the CFI mechanisms implemented in

NaCl are not necessary in MiniBox. The NaCl CFI mechanism depends upon its

toolchain inserting many nop instructions into the compiled program, which de-

creases performance. The benefit of keeping the CFI mechanism, however, is that

programs compiled by the same toolchain will be compatible with both NaCl and

MiniBox. Also, the NaCl CFI mechanism does raise the bar for an adversary who

wants to attack a specific application running in the MIEE.

5.7 Summary

MiniBox is a hypervisor-based sandbox that provides two-way protection between

x86 native applications and the guest OS. MiniBox protects the guest OS through

hypervisor-based memory isolation and OS protection modules. MiniBox signifi-

cantly reduces the attack surface for both OS protection and application protection

182

by minimizing and securing the interface between OS protection modules and the

application, and protects against Iago attacks on the application. The MiniBox de-

sign and protection mechanisms are promising for establishing two-way protection

on commodity computer systems. In addition, MiniBox significantly decreases the

porting effort compared to previous systems for isolating security-sensitive PALs,

making MiniBox practical for wide adoption. Thus, we anticipate that MiniBox

will be widely adopted on systems where two-way protection is desired.

183

Chapter 6

Related Work

6.1 Software-Based Attestation Techniques

We now chronologically review previous work on software-based attestation. Spinel-

lis proposes “reflection” as an approach to verify the software running on a sys-

tem [103]. Spinellis sketches an approach that fills the memory with random con-

tent, clears the system state and disables all interrupts, computes a hash function

over the entire memory, and finally returns the system state and hash to a verifier.

The verifier checks the execution time and returned information. Unfortunately,

Spinellis only presents a high-level approach but no implementation details.

Kennell and Jamieson present Genuinity [53], an approach where a verifier ex-

ecutes a verification function on an untrusted system to validate the system config-

uration. Genuinity is based on the observation that simulating low-level hardware

is slower than actual execution on that hardware, and intentionally creates random-

ized memory accesses that create many TLB misses. By validating the number

of TLB misses the verifier can inspect whether the code was correctly executed.

Mead is the first scheme to use the dynamic page tables to detectably increase at-

184

tackers overhead; i.e., virtual addresses (VAes) are dynamically changed during the

checksum computation to force attackers incur verifier-detectable overhead in any

checksum modification. In contrast, Genuinity uses constant page tables with ran-

dom mappings from constant VAes to physical addresses (PAes), performs random

reads to cause TLB misses, and includes the TLB miss counter in the checksum

to detect attacks. Adversary modified memory contents have constant VAes, so

Genuity cannot significantly increase the attackers overhead. Genuity is already

broken by memory substitution/copy attacks [99].

Seshadri et al. introduced software-based attestation and developed SWATT,

a system to verify the software of an embedded device [96]. SWATT relies on a

checksum function that computes a checksum over the entire memory contents and

is constructed to force an attacker to induce overhead to compute the correct check-

sum. Seshadri et al. proposed a variety of extensions: enable verification of a small

amount of memory on sensor nodes through the ICE function [92], verification of

code running on an Intel Pentium IV processor through the Pioneer function [94],

and code running on an AMD Opteron K8 architecture through the Outpost func-

tion [90]. Castelluccia et al. point out weaknesses in the specific SWATT and ICE

functions [18], triggering significant discussion [30, 80]. The basic approach of

software-based attestation remains sound, but special care has to be paid to ensure

security, as the current work demonstrates.

Concurrently, Gratzer and Naccache have presented a more theoretical treat-

ment of software-based attestation, which relies on the assumption that the verifier

can physically observe and reset the untrusted device and assuming that the reset

and execution times can be accurately observed [34]. Park and Shin have proposed

soft tamper-proofing, an approach that fills memory with random data and exe-

cutes a hash function, however, without considering timing [75]. Shaneck et al.

explore the use of encrypted and self-modifying code to verify software on sensor

185

nodes [98]. Their approach also relies on randomized traversal and timing. Jakob-

sson and Johansson have studied new approaches to software-based attestation on

mobile devices [49, 50].

6.2 Peripheral Malware Detection

Duflot et al. [28] propose runtime firmware integrity verification of a network

adapter by utilizing the debugging features available on a Broadcom network adapter.

The debugging features enable the host CPU to single-step the microcontroller on

the Broadcom NIC and inspect the memory contents on the NIC by accessing the

NIC’s MMIO registers. Unfortunately, similar debugging features are not available

on all peripherals, and these features may themselves be susceptible to imperson-

ation. A more general mechanism is needed to conduct the firmware integrity

verification.

Lone Sang et al. discuss peer-to-peer attacks within computer systems by lever-

aging DMA-based communication [85]. They propose approaches to prevent unau-

thorized communication between devices within a computer system, but they do

not propose any detection mechanisms for verifying the integrity of the firmware

of devices.

Stewin [104] investigated the mechanisms to detect peripheral DMA malware

that scans the entire main memory to obtain security-sensitive information (e.g.,

credit number). To detect such DMA malware, Stewin proposed to run a piece of

trusted code on the main CPU that monitors the bus activities to detect abnormal

DMA memory access from peripherals. However, malware on periperhals could

protect itself from being detected by avoiding DMA-based memory access.

186

6.3 Protecting Applications

Systems aspiring to protect entire applications from a potentially compromised OS

have been proposed (e.g., [15, 21, 23, 24, 26, 38, 64, 73, 105, 120]). Most of these

schemes mainly focus on protecting application data from malicious code on an

operating system and expose sensitive system calls to the untrusted OS, thus mak-

ing the protected application vulnerable to Iago attacks. InkTag [38] secures ap-

plications running on an untrusted OS by verifying that the untrusted OS behaves

correctly using a trustworthy hypervisor. It prevents mmap-based Iago attacks by

verifying memory address invariants. However, in InkTag some other security-

sensitive system calls (e.g., thread synchronization and TLS-related calls) are still

performed by the untrusted OS without being verified. Proxos [105] splits sys-

tem calls and forwards sensitive system calls to a trusted private OS to protect

applications from an untrusted OS. However, Proxos needs application developers

to specify the splitting rule. Baumann et al. [15] propose Haven that protects a

legacy application in the isolated memory space provided by Intel SGX, and pro-

pose to include a library OS in the isolated memory space to prevent Iago attacks.

The proposed protection mechanisms (for application protection) are similar to the

mechanisms on MiniBox. However, Haven contains a larger TCB than MiniBox.

Mai et al. [64] proposed mechanisms to prove that the OS implements the applica-

tion security invariants (e.g., secure storage and memory isolation) correctly. The

proposed verification approach is promising for application isolation.

Researchers have explored many systems for isolating sensitive code using vir-

tualization, microkernels, and other low-level mechanisms [12,33,66,67,100,105],

or by running the code inside trusted hardware [20,52,101,102]. The virtualization-

based schemes contain a large TCB. Other schemes either do not enjoy compati-

bility with a large set of commodity systems or require significant porting effort.

187

TrustVisor [66] and Flicker [67] isolate a PAL from an untrusted OS with a small

TCB. However, porting security-sensitive applications on TrustVisor or Flicker re-

quires significant efforts. Nizza [100] also requires developers to perform similar

operations to port sensitive applications to Nizza.

6.4 Sandbox for x86 Native Code

Google Native Client [122] confines untrusted native code using SFI [65, 112] and

enables developers to port native code as web applications. Drawbridge [27, 81]

isolates an application in a picoprocess and provides a library OS to the isolated

application. However, Native Client and Drawbridge provide only one-way protec-

tion. TxBox [51] confines an untrusted application by executing the application in a

system transaction and conducting security check. MBox [54] protects the host file

system from an untrusted application by exposing a virtual file system on top of the

host file system for the application. Capsicum [115] supports capability-sandbox

for applications on UNIX-like OS (e.g., FreeBSD). It focuses on application com-

partmentalization and fine-grained access control. Systrace [82] improves the host

OS security by confining the program privilege using a configurable system call

policy. The protection mechanisms provided by MBox, Capsicum and Systrace

can be applied on MiniBox as part of the OS protection modules.

188

Chapter 7

Conclusion

As malware-detection mechanisms have become increasingly advanced, so has

malware that tries to hide itself from being detected. Sophisticated malware can

hide itself in system configuration registers without changing any existing software

or hide itself inside peripherals to prevent it from being detected, raising signifi-

cant challenges for establishing malware-free system states or operation environ-

ments on commodity platforms. A hardware- or software-based root of trust on

a commodity platform is the foundation for addressing the challenges. However,

establishing a software-based root of trust on commodity platforms with complex

hardware features is challenging and requires considerable efforts. This thesis ex-

amines those challenges and shows how to expand existing software-based attes-

tation techniques to detect malware on peripherals or to establish a software-based

root of trust on embedded platforms with complex architectures.

The techniques proposed in this thesis are generic and can be applied in other

application scenarios. For example, the mechanisms to defend against proxy at-

tacks can also be applied in other scenarios where proxy attacks are possible, for

establishing a software-based root of trust. In addition, the two-way protection

189

mechanism in MiniBox can be applied in Platform-as-a-Service (PaaS) cloud com-

puting platforms to provide efficient two-way protection for customers’ programs

as well as security-sensitive data. Furthermore, the isolated malware-free operation

environment can be applied on a user’s host computer to enable a remote server to

authenticate not only a user (to prevent spam users), but also the integrity of the

client-side program, significantly improving the end-to-end security.

We can imagine that defending against malware to protect security-sensitive

programs or data on commodity platforms will become increasingly challenging.

However, the techniques proposed in this thesis open up new directions for defend-

ers, and we anticipate that trusted computing technology-based protection mecha-

nisms will be widely adopted on commodity platforms in the future.

190

Bibliography

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow Integrity

Principles, Implementation, and Applications. ACM Transaction on Infor-

mation and System Security (TISSEC), 13:1 – 40, 2009. (Referenced on

page 158.)

[2] Martı́n Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. CFI: Prin-

ciples, implementations, and applications. In Proc. ACM Conference and

Computer and Communications Security (CCS), 2005. (Referenced on

page 158.)

[3] Martı́n Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. A theory of

secure control flow. In Proc. Conference on Formal Engineering Methods,

2005. (Referenced on page 158.)

[4] Uttau Abatu, Shay Gueron, Simon P Johnson, and Vincent R Scarlata. In-

novative technology for cpu based attestation and sealing. In Proceedings of

International Workshop on Hardware and Architectural Support for Security

and Privacy, HASP ’13, New York, NY, USA, 2013. ACM. (Referenced on

pages 4, 5, and 147.)

191

[5] Advanced Micro Devices. AMD64 virtualization: Secure virtual machine

architecture reference manual. AMD Publication no. 33047 rev. 3.01, May

2005. (Referenced on page 17.)

[6] Advanced Micro Devices. AMD I/O virtualization technology (IOMMU)

specification. Publication No. 34434, Revision: 1.26, February 2009. (Ref-

erenced on page 15.)

[7] Advanced Micro Devices. AMD64 architecture programmer’s manual vol-

ume 2: System programming. Publication No. 24593, Revision: 3.17, June

2010. (Referenced on pages 15 and 17.)

[8] ARM. Cortex-A8 technical reference manual. Revision:r3p2, May 2010.

(Referenced on page 64.)

[9] ARM. Arm architecture reference manual. ARMv7-A and ARMV7-R edi-

tion, July 2012. (Referenced on page 64.)

[10] Frederik Armknecht, Ahmad-Reza Sadeghi, Steffen Schulz, and Christian

Wachsmann. A security framework for the analysis and design of software

attestation. In Proceedings of ACM Conference on Computer and Commu-

nications Security, pages 1–12. ACM, 2013. (Referenced on page 23.)

[11] Ahmed M. Azab, Peng Ning, Zhi Wang, Xuxian Jiang, Xiaolan Zhang, and

Nathan C. Skalsky. HyperSentry: enabling stealthy in-context measurement

of hypervisor integrity. In Proceedings of ACM conference on Computer

and Communication Security, 2010. (Referenced on page 93.)

[12] Ahmed M. Azab, Peng Ning, and Xiaolan Zhang. SICE: a hardware-level

strongly isolated computing environment for x86 multi-core platforms. In

192

Proc. ACM Conference on Computer and Communications Security, 2011.

(Referenced on pages 147, 180, and 187.)

[13] Romain Bardou, Riccardo Focardi, Yusuke Kawamoto, Lorenzo Simionato,

Graham Steel, and Joe-Kai Tsay. Efficient padding oracle attacks on cryp-

tographic hardware. In CRYPTO, pages 608–625, 2012. (Referenced on

page 23.)

[14] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex

Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of

virtualization. In Proc. Symposium on Operating Systems Principles, 2003.

(Referenced on page 181.)

[15] Andrew Baumann, Marcus Peinado, Galen Hunt, Krystof Zmudzinski, Car-

los V. Rozas, and Matthew Hoekstra. Secure execution of unmodified ap-

plications on an untrusted host. http://research.microsoft.com/apps/pubs/

default.aspx?id=204758, 2013. (Referenced on page 187.)

[16] E. Buchanan, R. Roemer, H. Shacham, and S. Savage. When good instruc-

tions go bad: Generalizing return oriented programming to RISC. In Pro-

ceedings of the ACM Conference on Computer and Communications Secu-

rity (CCS), 2008. (Referenced on page 11.)

[17] C. Castelluccia, A. Francillon, D. Perito, and C. Soriente. On the difficulty

of software-based attestation of embedded devices. In Proceedings of ACM

Conference on Computer and Communications Security (CCS), 2009. (Ref-

erenced on page 12.)

[18] C. Castelluccia, A. Francillon, D. Perito, and C. Soriente. On the difficulty

of software-based attestation of embedded devices. In Proceedings of ACM

193

http://research.microsoft.com/apps/pubs/default.aspx?id=204758
http://research.microsoft.com/apps/pubs/default.aspx?id=204758

Conference on Computer and Communications Security (CCS), November

2009. (Referenced on page 185.)

[19] Stephen Checkoway and Hovav Shacham. Iago attacks: Why the system

call api is a bad untrusted rpc interface. In Proc. Architectural Support for

Programming Languages and Operating Systems (ASPLOS), March 2013.

(Referenced on page 149.)

[20] B. Chen and R. Morris. Certifying program execution with secure proces-

sors. In Proceedings of HotOS, 2003. (Referenced on pages 147 and 187.)

[21] H. Chen, F. Zhang, C. Chen, Z. Yang, R. Chen, B. Zang, P.C. Yew, and

W. Mao. Tamper-resistant execution in an untrusted operating system using

a VMM. Technical Report FDUPPITR-2007-0801, Fudan University, 2007.

(Referenced on pages 147 and 187.)

[22] K. Chen. Reversing and exploiting an Apple firmware update. In Black Hat,

2009. (Referenced on pages 3 and 90.)

[23] Xiaoxin Chen, Tal Garfinkel, E. Christopher Lewis, Pratap Subrahmanyam,

Carl A. Waldspurger, Dan Boneh, Jeffrey Dwoskin, and Dan R.K. Ports.

Overshadow: a virtualization-based approach to retrofitting protection in

commodity operating systems. In ASPLOS, 2008. (Referenced on pages

147 and 187.)

[24] Yueqiang Cheng, Xuhua Ding, and Robert Deng. AppShield: Protecting

applications against untrusted operating system. In Singaport Management

University Technical Report, SMU-SIS-13-101, 2013. (Referenced on pages

147 and 187.)

194

[25] CYPRESS. CYPRESS enCoRe II low-speed USB peripheral controller

(CY7C639XX). (Referenced on page 128.)

[26] Prashant Dewan, David Durham, Hormuzd Khosravi, Men Long, and Gay-

athri Nagabhushan. A hypervisor-based system for protecting software run-

time memory and persistent storage. In Proc. Spring Simulation Multicon-

ference, 2008. (Referenced on pages 147 and 187.)

[27] John R. Douceur, Jeremy Elson, Jon Howell, and Jacob R. Lorch. Leverag-

ing legacy code to deploy desktop applications on the web. In Proceedings of

the USENIX conference on Operating systems design and implementation,

OSDI’08, pages 339–354, Berkeley, CA, USA, 2008. USENIX Association.

(Referenced on pages 147, 148, and 188.)

[28] L. Duflot, Yves-Alexis Perez, and Benjamin Morin. Run-time firmware

integrity verification: what if you can not trust your network card? In

CanSecWest, 2011. (Referenced on page 186.)

[29] Loic Duflot, Yves-Alexis Perez, Guillaume Valadon, and Olivier Levillain.

Can you still trust your network card? CanSecWest, 2010. (Referenced on

pages 3 and 90.)

[30] Aurélien Francillon, Claude Castelluccia, Daniele Perito, and Claudio Sori-

ente. Comments on “refutation of on the difficulty of software-based at-

testation of embedded devices”. http://planete.inrialpes.fr/∼perito/papers/

2010 CCS attestation comments on rebutal .pdf, October 2010. (Refer-

enced on page 185.)

[31] McKeen Frank, Alexandrovich Ilya, Berenzon Alex, Rozas Carlos V, Shafi

Hisham, Shanbhogue Vedvyas, and Savagaonkar Uday R. Innovative in-

195

http://planete.inrialpes.fr/~perito/papers/2010_CCS_attestation_comments_on_rebutal.pdf
http://planete.inrialpes.fr/~perito/papers/2010_CCS_attestation_comments_on_rebutal.pdf

structions and software model for isolated execution. In Proceedings of

International Workshop on Hardware and Architectural Support for Secu-

rity and Privacy, HASP ’13, pages 10:1–10:1, New York, NY, USA, 2013.

ACM. (Referenced on pages 4, 5, and 147.)

[32] A. Frederik, S. Ahmad-Reza, S. Steffen, and W. Christian. A security frame-

work for the analysis and design of software attestation. In Proceedings of

ACM Conference on Computer and Communications Security, pages 1–12,

2013. (Referenced on page 2.)

[33] Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblum, and Dan Boneh.

Terra: A virtual machine-based platform for trusted computing. In Proc.

ACM Symposium on Operating System Principles (SOSP), 2003. (Refer-

enced on pages 147, 180, and 187.)

[34] Vanessa Gratzer and David Naccache. Alien vs. quine, the vanishing circuit

and other tales from the industry’s crypt. In Proceedings of Eurocrypt, May

2006. (Referenced on page 185.)

[35] C. Hall, D. Wagner, J. Kelsey, and B. Schneier. Building PRFs from PRPs.

In CRYPTO, pages 370–389, 1998. (Referenced on page 66.)

[36] Laszlo Hars and Gyorgy Petruska. Pseudo-random recursions: Small

and fast pseudo-random number generator for embedded applications. In

EURASIP Journal on Embedded Systems, 2007. (Referenced on page 129.)

[37] Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Vinay Phegade, and

Juan Del Cuvillo. Using innovative instructions to create trustworthy soft-

ware solutions. In Proceedings of International Workshop on Hardware and

196

Architectural Support for Security and Privacy, HASP ’13, pages 11:1–11:1,

New York, NY, USA, 2013. ACM. (Referenced on pages 4, 5, and 147.)

[38] Owen Hofmann, Alan Dunn, Sangman Kim, Michael Lee, and Emmett

Witchel. Inktag: Secure applications on an untrusted operating system.

In Proc. Architectural Support for Programming Languages and Operating

Systems (ASPLOS), March 2013. (Referenced on pages 147 and 187.)

[39] D.A Huffman. A method for the construction of minimum redundancy

codes. In Proceedings of the IRE 40, 1962. (Referenced on page 12.)

[40] R Hund, T Holz, and Freiling F. C. Return oriented rootkit: Bypassing

kernel code integrity protection mechanisms. In Proceedings of the 18th

USENIX Security Symposium, 2009. (Referenced on page 11.)

[41] IEEE Computer Society: 802.3 Working Group. IEEE standard 802.3x-

1997, 1997. (Referenced on page 115.)

[42] Virtual Laboratories in Probability and Statistics. The coupon collector

problem. http://www.math.uah.edu/stat/urn/Coupon.html. (Referenced

on pages 13 and 81.)

[43] Alteon Networks Inc. Tigon Open Firmware. http://alteon.shareable.org.

(Referenced on pages 105 and 106.)

[44] Alteon Networks Inc. Tigon/PCI Ethernet Controlller (revision 1.04). http:

//alteon.shareable.org, 1997. (Referenced on page 105.)

[45] Intel Corporation. Trusted execution technology – preliminary architecture

specification and enabling considerations. Document number 31516803,

November 2006. (Referenced on page 17.)

197

http://www.math.uah.edu/stat/urn/Coupon.html
http://alteon.shareable.org
http://alteon.shareable.org
http://alteon.shareable.org

[46] Intel Corporation. Intel trusted execution technology – software develop-

ment guide. Document number 315168-005, June 2008. (Referenced on

page 17.)

[47] Intel Corporation. Intel 64 and IA-32 architectures software developer’s

manual volume 1: Basic architecture. Order Number: 253665-073US, Jan-

uary 2011. (Referenced on page 14.)

[48] Intel Corporation. Intel 64 and IA-32 architectures software developer’s

manual volume 3b: System programming guide, part 2. Order Number:

325384-048US, September 2013. (Referenced on pages 15, 17, 21, 157,

166, and 181.)

[49] Markus Jakobsson and Karl-Anders Johansson. Assured detection of mal-

ware with applications to mobile platforms. DIMACS Technical Re-

port 2010-03, http://dimacs.rutgers.edu/TechnicalReports/abstracts/2010/

2010-03.html, 2010. (Referenced on page 186.)

[50] Markus Jakobsson and Karl-Anders Johansson. Assured detection of mal-

ware with applications to mobile platforms. In Proceedings of the Workshop

on Hot Topics in Security (HotSec), August 2010. (Referenced on page 186.)

[51] Suman Jana, Donald E. Porter, and Vitaly Shmatikov. Txbox: Building se-

cure, efficient sandboxes with system transactions. In Proceedings of the

IEEE Symposium on Security and Privacy, SP ’11, pages 329–344, Wash-

ington, DC, USA, 2011. IEEE Computer Society. (Referenced on pages 147

and 188.)

198

http://dimacs.rutgers.edu/TechnicalReports/abstracts/2010/2010-03.html
http://dimacs.rutgers.edu/TechnicalReports/abstracts/2010/2010-03.html

[52] S. Jiang, S. Smith, and K. Minami. Securing web servers against insider

attack. In Proc. Computer Security Applications Conference, 2001. (Refer-

enced on pages 147 and 187.)

[53] Rick Kennell and Leah H. Jamieson. Establishing the genuinity of remote

computer systems. pages 295–308. (Referenced on page 184.)

[54] Taesoo Kim and Nickolai Zeldovich. Practical and effective sandboxing for

non-root users. In Proceedings of USENIX conference on USENIX annual

technical conference, USENIXATC’13, 2013. (Referenced on pages 147

and 188.)

[55] Tiffany Hyun-Jin Kim, Lin-Shung Huang, Adrian Perrig, Collin Jackson,

and Virgil Gligor. Accountable key infrastructure (aki): A proposal for a

public-key validation infrastructure. In Proceedings of International World

Wide Web Conference (WWW 2013). WWW Consortium, 2013. (Referenced

on page 23.)

[56] A. Klimov and A. Shamir. A new class of invertible mappings. In CHES

02: Revised Papers from the 4th International Workshop on Cryptographic

Hardware and Embedded Systems, page 470 to 483, 2003. (Referenced on

page 128.)

[57] Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak Patel, Tadayoshi

Kohno, Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Ander-

son, Hovav Shacham, and Stefan Savage. Experimental security analysis

of a modern automobile. In Proceedings of the 2010 IEEE Symposium on

Security and Privacy, SP ’10, pages 447–462, Washington, DC, USA, 2010.

IEEE Computer Society. (Referenced on page 88.)

199

[58] Xeno Kovah, Corey Kallenberg, Chris Weathers, Amy Herzog, Matthew

Albin, and John Butterworth. New results for timing-based attestation. In

Proceedings of IEEE Symposium on Security and Privacy, pages 239–253.

IEEE, 2012. (Referenced on page 23.)

[59] Kaspersky Lab. Equation Group: Questions and Answers. https://securelist.

com/files/2015/02/Equation group questions and answers.pdf, 2015. (Ref-

erenced on page 1.)

[60] Yanlin Li, Jonathan M. McCune, and Adrian Perrig. SBAP: Software-Based

Attestation for Peripherals. In Proceedings of the 3rd International Confer-

ence on Trust and Trustworthy Computing, 2010. (Referenced on page 103.)

[61] Yanlin Li, Adrian Perrig, Jonathan M. McCune, James Newsome, Brandon

Baker, and Will Drewry. MiniBox: A Two-Way Sandbox for x86 Native

Code. Technical Report CMU-CyLab-14-001, Carnegie Mellon University,

2014. (Referenced on pages 166, 170, and 174.)

[62] Jean loup Gailly and Mark Adler. zlib open source library. http://www.zlib.

net. (Referenced on page 174.)

[63] Umesh Maheshwari, Radek Vingralek, and William Shapiro. How to build

a trusted database system on untrusted storage. In Proceedings of the 4th

conference on Symposium on Operating System Design & Implementation

- Volume 4, OSDI’00, pages 10–10, Berkeley, CA, USA, 2000. USENIX

Association. (Referenced on page 160.)

[64] Haohui Mai, Edgar Pek, Hui Xue, Samuel Talmadge King, and

Parthasarathy Madhusudan. Verifying security invariants in expressos. In

Proceedings of International Conference on Architectural Support for Pro-

200

https://securelist.com/files/2015/02/Equation_group_questions_and_answers.pdf
https://securelist.com/files/2015/02/Equation_group_questions_and_answers.pdf
http://www.zlib.net
http://www.zlib.net

gramming Languages and Operating Systems, ASPLOS ’13, pages 293–

304, New York, NY, USA, 2013. ACM. (Referenced on page 187.)

[65] Stephen McCamant and Greg Morrisett. Evaluating sfi for a cisc architec-

ture. In Proc. USENIX Security, 2006. (Referenced on pages 20 and 188.)

[66] Jonathan M. McCune, Yanlin Li, Ning Qu, Zongwei Zhou, Anupam Datta,

Virgil Gligor, and Adrian Perrig. TrustVisor: Efficient TCB reduction and

attestation. In Proceedings of the IEEE Symposium on Security and Privacy,

2010. (Referenced on pages 4, 5, 18, 147, 150, 166, 180, and 187.)

[67] Jonathan M. McCune, Bryan Parno, Adrian Perrig, Michael K. Reiter, and

Hiroshi Isozaki. Flicker: An execution infrastructure for tcb minimization.

In Proceedings of the ACM European Conference in Computer Systems (Eu-

roSys), April 2008. (Referenced on pages 18, 93, 147, 180, 187, and 188.)

[68] Mindshare Inc., Ravi Budruk, Don Anderson, and Tom Shanley. PCI Ex-

press System Architecture. Addison-Wesley Professional, September 2003.

(Referenced on pages 16 and 94.)

[69] MindShare Inc., Tom Shanley, and Don Anderson. PCI System Architecture

(4th Edition). Addison-Wesley Professional, June 1999. (Referenced on

pages 16 and 94.)

[70] Matthew Mitchell, Auston Sterling, and Andrew Miller. Cbitcoin open

source project. http://code.google.com/p/naclports/. (Referenced on

page 174.)

[71] Edmund B. Nightingale, John R. Douceur, and Vince Orgovan. Cycles,

cells and platters: an empirical analysis of hardware failures on a million

201

http://code.google.com/p/naclports/

consumer PCs. In Proceedings of the European Conference on Computer

systems (EuroSys), 2011. (Referenced on page 142.)

[72] NIST. Recommendation for key management. Special Publication 800-57

Part 1, March 2007. (Referenced on pages 25 and 94.)

[73] Kaan Onarlioglu, Collin Mulliner, William Robertson, and Engin Kirda.

Privexec: Private execution as an operating system service. In Proceedings

of the 2013 IEEE Symposium on Security and Privacy, SP ’13, pages 206–

220, Washington, DC, USA, 2013. IEEE Computer Society. (Referenced on

page 187.)

[74] OpenSSL Project team. OpenSSL. http://www.openssl.org/, May 2005.

(Referenced on page 176.)

[75] T. Park and K. G. Shin. Soft tamper-proofing via program integrity verifica-

tion in wireless sensor networks. IEEE Transactions on Mobile Computing

(TMC), 4(3), 2005. (Referenced on page 185.)

[76] Bryan Parno, Jonathan M. McCune, and Adrian Perrig. Bootstrapping Trust

in Modern Computers, volume 10 of SpringerBriefs in Computer Science.

Springer, 2011. (Referenced on page 23.)

[77] Bryan Jeffery Parno. Trust Extension As a Mechanism for Secure Code Ex-

ecution on Commodity Computers. Association for Computing Machinery

and Morgan, 2014. (Referenced on pages 2 and 3.)

[78] PCI-SIG. PCI Express access control services (ACS). PCI-SIG Engineering

Change Notice, October 2006. (Referenced on page 16.)

[79] PCI-SIG. PCI express 2.0 frequently asked questions. http://www.pcisig.

com/, March 2011. (Referenced on page 16.)

202

http://www.openssl.org/
http://www.pcisig.com/
http://www.pcisig.com/

[80] Adrian Perrig and Leendert van Doorn. Refutation of “on the difficulty

of software-based attestation of embedded devices”. http://sparrow.ece.

cmu.edu/group/pub/perrig-vandoorn-refutation.pdf, 2010. (Referenced on

page 185.)

[81] Donald E. Porter, Silas Boyd-Wickizer, Jon Howell, Reuben Olinsky, and

Galen C. Hunt. Rethinking the library os from the top down. SIGPLAN

Not., 46(3):291–304, March 2011. (Referenced on pages 148 and 188.)

[82] Niels Provos. Improving host security with system call policies. In Proceed-

ings of Conference on USENIX Security Symposium - Volume 12, SSYM’03,

pages 18–18, Berkeley, CA, USA, 2003. USENIX Association. (Referenced

on page 188.)

[83] Christopher Sagoian and Sid Stamm. Certified lies: Detecting and defeating

government interception attacks against ssl. In Proceedings of ACM Sympo-

sium on Operating Systems Principles, pages 1–18, 2010. (Referenced on

page 23.)

[84] Fernand Lone Sang, Èric Lacombe, Vincent Nicomette, and Yves Deswarte.

Exploiting an I/OMMU vulnerability. In Proceedings of IEEE Conference

on Malicious and Unwanted Software (Malware), 2010. (Referenced on

page 93.)

[85] Fernand Lone Sang, Vincent Nicomette, Yves Deswarte, and Loı̈c Duflot.

Attaques DMA peer-to-peer et contremesures. In Proceedings of the Sym-

posium sur la Sécurité des Technologies de L’Information et des Communi-

cations (SSTIC), June 2011. (Referenced on pages 16 and 186.)

203

http://sparrow.ece.cmu.edu/group/pub/perrig-vandoorn-refutation.pdf
http://sparrow.ece.cmu.edu/group/pub/perrig-vandoorn-refutation.pdf

[86] Mahadev Satyanarayanan. Cloudlets: At the leading edge of cloud-mobile

convergence. In Proceedings of the 9th International ACM Sigsoft Confer-

ence on Quality of Software Architectures, QoSA ’13, pages 1–2, New York,

NY, USA, 2013. ACM. (Referenced on pages 4 and 146.)

[87] Mahadev Satyanarayanan, Paramvir Bahl, Ramón Caceres, and Nigel

Davies. The case for vm-based cloudlets in mobile computing. IEEE

Pervasive Computing, 8(4):14–23, October 2009. (Referenced on pages 4

and 146.)

[88] A. Seshadri, M. Luk, A. Perrig, L. van Doorn, and P. Khosla. SCUBA:

Secure code update by attestation in sensor networks. In ACM Workshop on

Wireless Security (WiSe 2006), 2006. (Referenced on page 2.)

[89] A. Seshadri, M. Luk, A. Perrig, L. Van Doorn, and P. Khosla. SAKE: Soft-

ware attestation for key establishment in sensor networks. In International

Conference on Distributed Computing in Sensor Systems, 2008. (Referenced

on page 2.)

[90] Arvind Seshadri. A Software Primitive for Externally-verifiable Untampered

Execution and its Applications to Securing Computing Systems. PhD thesis,

Electrical and Computer Engineering Department, Carnegie Mellon Univer-

sity, 2009. (Referenced on pages 13, 44, 45, and 185.)

[91] Arvind Seshadri, Mark Luk, Adrian Perrig, Leendert van Doorn, and

Pradeep Khosla. SCUBA: Secure Code Update By Attestation in sensor

networks. In Proceedings of ACM Workshop on Wireless Security, pages

85–94. ACM, 2006. (Referenced on page 23.)

204

[92] Arvind Seshadri, Mark Luk, Adrian Perrig, Leendert van Doorn, and

Pradeep Khosla. SCUBA: Secure code update by attestation in sensor net-

works. In Proceedings of ACM Workshop on Wireless Security (WiSe),

September 2006. (Referenced on page 185.)

[93] Arvind Seshadri, Mark Luk, Ning Qu, and Adrian Perrig. SecVisor: A tiny

hypervisor to provide lifetime kernel code integrity for commodity OSes.

In Proceedings of ACM Symposium on Operating Systems Principles, pages

335–350. ACM, 2007. (Referenced on page 23.)

[94] Arvind Seshadri, Mark Luk, Elaine Shi, Adrian Perrig, Leendert van Doorn,

and Pradeep Khosla. Pioneer: Verifying integrity and guaranteeing execu-

tion of code on legacy platforms. In Proceedings of ACM Symposium on

Operating Systems Principles (SOSP), pages 1–16, October 2005. (Refer-

enced on pages 23, 34, 91, 103, and 185.)

[95] Arvind Seshadri, Adrian Perrig, Leendert van Doorn, and Pradeep Khosla.

SWATT: SoftWare-based ATTestation for embedded devices. (Referenced

on page 2.)

[96] Arvind Seshadri, Adrian Perrig, Leendert van Doorn, and Pradeep Khosla.

SWATT: SoftWare-based ATTestation for embedded devices. (Referenced

on pages 12, 23, 91, 103, 128, 130, and 185.)

[97] H Shacham. The geometry of innocent flesh on the bone: Return into libc

without function calls (on the x86). In Proceedings of the ACM Conference

on Computer and Communications Security (CCS), 2007. (Referenced on

page 11.)

205

[98] M. Shaneck, K. Mahadevan, V. Kher, and Y. Kim. Remote software-based

attestation for wireless sensors. In Proceedings of ESAS, 2005. (Referenced

on page 186.)

[99] Umesh Shankar, Monica Chew, and J.D. Tygar. Side effects are not suf-

ficient to authenticate software. In Proceedings of the USENIX Security

Symposium, 2004. (Referenced on page 185.)

[100] L. Singaravelu, C. Pu, H. Härtig, and C. Helmuth. Reducing TCB complex-

ity for security-sensitive applications. In EuroSys, 2006. (Referenced on

pages 147, 180, 187, and 188.)

[101] Sean W. Smith and Steve Weingart. Building a high-performance, pro-

grammable secure coprocessor. Computer Networks, 31(8):831–860, April

1999. Special Issue on Computer Network Security. (Referenced on pages

147 and 187.)

[102] Sean W. Smith and Steve Weingart. Building a high-performance, pro-

grammable secure coprocessor. Computer Networks, 31(8), April 1999.

(Referenced on pages 147 and 187.)

[103] Diomidis Spinellis. Reflection as a mechanism for software integrity verifi-

cation. ACM Transactions on Information and System Security, 3(1):51–62,

February 2000. (Referenced on page 184.)

[104] Patrick Stewin. Detecting Peripheral-based Attacks on the Host Memory.

Springer, 2015. (Referenced on pages 91 and 186.)

[105] R. Ta-Min, L. Litty, and D. Lie. Splitting interfaces: Making trust between

applications and operating systems configurable. In ACM SOSP, 2006. (Ref-

erenced on pages 147, 180, and 187.)

206

[106] Simon Tam. Modern clock distribution systems. In Clocking in Mod-

ern VLSI Systems, Integrated Circuits and Systems, chapter 2, pages 6–95.

Springer, 2009. (Referenced on pages 23 and 31.)

[107] Texas Instruments. AM/DM37X multimedia device technical reference

manual. Version R, September 2012. (Referenced on pages 28 and 63.)

[108] The Trusted Computing Group. TPM Main specification version 1.2 (revi-

sion 116), 2011. (Referenced on page 22.)

[109] Arrigo Triulzi. Project Maux Mk.II, I Own the NIC, now I want a shell. In

The 8th annual PacSec conference, 2008. (Referenced on page 90.)

[110] Arrigo Triulzi. The Jedi Packet takes over the Deathstar, taking NIC back-

door to the next level. In The 12th annual CanSecWest conference, 2010.

(Referenced on pages 16 and 90.)

[111] Amit Vasudevan, Sagar Chaki, Limin Jia, Jonathan McCune, James New-

some, and Anupam Datta. Design, implementation and verification of an

extensible and modular hypervisor framework. In Proceedings of the 34th

IEEE Symposium on Security and Privacy, May 2013. (Referenced on pages

4, 5, 150, 166, and 170.)

[112] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham.

Efficient software-based fault isolation. In ACM SOSP, 1993. (Referenced

on pages 20 and 188.)

[113] Jiang Wang, Angelos Stavrou, and Anup K. Ghosh. HyperCheck: A

Hardware-Assisted Integrity Monitor. In Proceedings of International Sym-

posium on Recent Advances in Intrusion Detection (RAID), 2010. (Refer-

enced on page 93.)

207

[114] Robert N. M. Watson. Exploiting concurrency vulnerabilities in system call

wrappers. In Proceedings of USENIX Workshop on Offensive Technologies,

WOOT ’07, pages 2:1–2:8, Berkeley, CA, USA, 2007. USENIX Associa-

tion. (Referenced on page 151.)

[115] Robert N. M. Watson, Jonathan Anderson, Ben Laurie, and Kris Kennaway.

Capsicum: Practical capabilities for unix. In Proceedings of USENIX Con-

ference on Security, USENIX Security’10, pages 3–3, Berkeley, CA, USA,

2010. USENIX Association. (Referenced on page 188.)

[116] Carsten Weinhold and Hermann Härtig. Vpfs: building a virtual private

file system with a small trusted computing base. In Proceedings of the 3rd

ACM SIGOPS/EuroSys European Conference on Computer Systems 2008,

Eurosys ’08, pages 81–93, New York, NY, USA, 2008. ACM. (Referenced

on page 160.)

[117] Carsten Weinhold and Hermann Härtig. jvpfs: adding robustness to a secure

stacked file system with untrusted local storage components. In Proceedings

of the 2011 USENIX conference on USENIX annual technical conference,

USENIXATC’11, pages 32–32, Berkeley, CA, USA, 2011. USENIX Asso-

ciation. (Referenced on page 160.)

[118] wikipedia. http://en.wikipedia.org/wiki/RC4. (Referenced on page 128.)

[119] Thomas Wollinger, Jorge Guajardo, and Christof Paar. Security on fp-

gas: State-of-the-art implementations and attacks. In ACM Transactions

on embedded computing systems (TECS), volume 3, 2004. (Referenced on

page 23.)

208

[120] J. Yang and K. Shin. Using hypervisor to provide data secrecy for user appli-

cations on a per-page basis. In Proc. ACM Conference on Virtual Execution

Environments (VEE), 2008. (Referenced on pages 147 and 187.)

[121] Yi Yang, Xinran Wang, Sencun Zhu, and Guohong Cao. Distributed

software-based attestation for node compromise detection in sensor net-

works. In Proceedings of IEEE International Symposium on Reliable Dis-

tributed Systems, 2007. (Referenced on page 2.)

[122] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, Robert Muth,

Tavis Orm, Shiki Okasaka, Neha Narula, Nicholas Fullagar, and Google

Inc. Native client: A sandbox for portable, untrusted x86 native code. In

Proceedings of the IEEE Symposium on Security and Privacy, 2009. (Ref-

erenced on pages 5, 6, 8, 20, 147, 148, 150, 169, 170, 171, and 188.)

[123] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, Robert Muth,

Tavis Ormandy, Shiki Okasaka, Neha Narula, and Nicholas Fullagar. Native

Client: A sandbox for portable, untrusted x86 native code. Communications

of the ACM, 53(1):91–99, 2010. (Referenced on pages 5, 6, 8, 20, 170,

and 171.)

[124] Fengzhe Zhang, Jin Chen, Haibo Chen, and Binyu Zang. Cloudvisor:

retrofitting protection of virtual machines in multi-tenant cloud with nested

virtualization. In Proceedings of the ACM Symposium on Operating Systems

Principles, 2011. (Referenced on page 181.)

[125] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. Cross-

vm side channels and their use to extract private keys. In Proceedings of

the 2012 ACM conference on Computer and communications security, CCS

209

’12, pages 305–316, New York, NY, USA, 2012. ACM. (Referenced on

page 151.)

[126] Zongwei Zhou, Virgil D. Gligor, James Newsome, and Jonathan M. Mc-

Cune. Building verifiable trusted path on commodity x86 computers. In

Proceedings of IEEE Symposium on Security and Privacy, May 2012. (Ref-

erenced on page 4.)

[127] Zongwei Zhou, Miao Yu, and Virgil D. Gligor. Dancing with giants: Wimpy

kernels for on-demand isolated I/O. In Proceedings of the 2014 IEEE Sym-

posium on Security and Privacy, pages 308–323. IEEE, 2014. (Referenced

on pages 4, 19, 136, 138, 139, 153, and 178.)

210

	Introduction
	Existing Techniques and Limitations
	Software-Based Attestation
	Trusted Boot
	One-Way Protection and Cloudlets

	Thesis Statement
	Outline and Overview
	Summary of Contributions

	Background
	Software-Based Attestation Techniques
	SWATT: SoftWare-based ATTestation
	ICE: Indisputable Code Execution
	Attacks Against Existing Techniques

	Modern System Architecture and Buses
	Modern System Architecture
	PCI, PCI-X and PCI Express
	Peer-to-Peer Peripheral Communication
	Malware on Peripherals

	Hardware-Based Trusted Computing Techniques
	Dynamic Root of Trust for Measurement
	TrustVisor
	On-Demand Isolated I/O

	Google Native Client
	Validator
	Runtime Framework

	Mead: Establishing a Malware-Free System State on Embedded Platforms
	Assumptions & Attacker Model
	Mead Overview
	New Attacks & Challenges
	Future-Posted Event Attacks
	I-cache Inconsistency Attacks
	Measured Time-Variance Based Attacks
	New Challenge: Heterogeneous Processor Architecture

	Countermeasures
	Verifying Critical Configurations
	Prevention of I-cache Inconsistency-Based Attacks
	Overcome Measured Time Variance
	Measure The Entire Physical Memory
	Attestation on Heterogeneous Processor Architectures

	Implementation
	Gumstix FireStorm COM
	Checksum Function Implementation

	Evaluation
	Attacks and Malicious Operations
	Simulating I-TLB Replacement
	Simulating I-TLB and D-TLB Replacements
	Handling Dynamically Modified Instructions
	Memory Substitution Attacks
	Evaluation Results

	Discussion
	Summary

	VIPER: Verifying the Integrity of Peripherals' Firmware
	Problem Definition
	System Design
	VIPER Overview
	Attestation Protocol
	Design of the Checksum Function

	Implementation on Netgear GA620 NIC
	Netgear GA620 Network Adapter
	Verification for Microcontrollers A and B
	Checksum Function Implementation
	Latency-Based Attestation

	Evaluation on Netgear GA620 NIC
	Ethernet-based proxy attack
	Forging Data Pointer (DP) attack
	Forging PC attack
	Evaluation Results

	Implementation on Apple Aluminum Keyboard
	The Apple Aluminum Keyboard
	Verification Function Design
	Verification Function Implementation

	Evaluation on Apple Aluminum Keyboard
	Verification Time.
	USB Communication Overhead.
	Analysis

	Integration: A Malware-Free Operation Environment
	Discussion
	Summary

	MiniBox: A Two-Way Sandbox for x86 Native Code
	Assumptions and Attacker Model
	System Design
	MiniBox Architecture
	Communication Interfaces
	Dynamic Memory Management
	Thread Local Storage Management
	Multi-threading
	Secure File I/O
	MIEE Preemption and Scheduling
	Exceptions, Interrupts, and Debugging
	Program Loader

	Implementation
	Hypervisor
	Program Loader and Service Runtime
	System Calls

	Evaluation
	Performance Impact
	Porting Effort
	MiniBox Microbenchmarks
	Application Benchmarks

	Integration: MiniBox with Trusted I/O
	Limitations and Future Work
	Summary

	Related Work
	Software-Based Attestation Techniques
	Peripheral Malware Detection
	Protecting Applications
	Sandbox for x86 Native Code

	Conclusion
	Bibliography

