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Abstract

Artificial Intelligence (AI) launches a significant development in recent years. It

has aroused dramatic attention from the academy to industry, and many en-

trepreneurs attempt to transfer their industry or business modes through AI which

they call industry version 4.0. Data is one of the most important components in

AI to support decision making, and we produce a massive amount of data each

day. Extract valuable information from a massive amount of data to help effective

decision making is a critical challenge, in particular under a high-frequency data

environment.

Recent studies attempt to use AI to provide structural health monitoring (SHM)

with an alternative solution. SHM is one of the important areas in civil engineer-

ing. It applies sensor technology to collect data from a structure for monitoring

its health status and deploys different types of sensors to collect data for further

analysis. Any structural damage or failure of sensing or detecting anomaly sig-

nals/data could bring catastrophe to both the economy and public safety. Due to

the high-frequency feature of sensor data, it produces a massive amount of data

each day. How to extract valuable information from a massive amount of sensor

data in time is the challenge. Moreover, time-variation would result in dynamic

distribution increases the complexity of online analysis. Most of the traditional

methodologies use offline analysis, which assumes that the distribution of data

is static. They used monotype of sensor data to evaluate the health status of a

structure.



This research addresses online anomaly detection for high-frequency SHM data

and health status evaluation of a structure using heterogeneous SHM data. I have

investigated and designed different approaches for online anomaly detection and

heterogeneous data analysis. Extensive empirical evaluations have verified the

effectiveness of the proposed approaches with practical SHM data and public UCI

dataset.

To handle the online anomaly detection for high-frequency SHM data, this thesis

formulates the problem and indicates the challenges of online anomaly detection

and proposed three approaches to online analysis. The first approach, Sample

entropy gradient (SEG), is highly reliant on a good quality benchmark dataset,

I then propose the second approach (ensemble kernel, EK) without relying on

a benchmark dataset. The third approach (Multi-dimensional ensemble kernel,

MEK) is an extended version of the second approach which can be used for multi-

dimensional scenario and heterogeneous data. All proposed approaches have stable

and robust performance.

To solve the problem of health status evaluation of a structure for heterogeneous

SHM data, this thesis proposes the MEK method to detect anomalies from multi-

dimensional SHM data. However, this method is oversensitive for a long-term

evaluation. Consequently, this thesis proposes a hybrid intelligence framework

to solve the structural health evaluation. The result of the proposed framework

produces a health index which indicates the health status of a structure. The

effectiveness of the hybrid intelligence framework is verified by practical data and

simulation data, and the benchmark arbitrary are defined in our thesis.



The thesis also contributes to the civil engineering field to make efficient deci-

sions. By using machine learning and data mining techniques, abnormal or risky

signals can be identified early and efficient maintenance and recovery plans can be

developed.
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Chapter 1

Introduction

Artificial Intelligence (AI) launches significant developments in recent years. It

has aroused dramatic attention from the academy to industry, and most of the

entrepreneurs attempt to transfer their industry or business modes through AI

which they called industry version 4.0. Data is one of the most important com-

ponents in AI to support decision making, and we produce a massive amount of

data a day. How to extract valuable information from a massive amount of data

to help effective decision making is a critical challenge [3], in particular under a

high-frequency data environment.

Recent studies attempt to use AI to provide structural health monitoring (SHM)

with an alternative solution. SHM is an important area in civil engineering, as

it applies sensor technology to collect data from a structure for monitoring its

health status [4]. SHM is concerned about damage detection, damage localization,

damage assessment, and prediction. It deploys different types of sensors to collect

1



Chapter 1 2

data for further analysis. Any structural damage or failure of sensing or detecting

anomaly signals/data would bring catastrophe to both the economy and public

safety. Predicting or detecting potential risky circumstances for a structure is

critically important to reduce the occurrence of disasters.

With the tremendous development of sensor technology, various types of sensors

have been deployed on a structure to collect relevant data. These sensors col-

lect various types of information through gauges and measurements, such as dis-

placement, stress and strain. All of these data are featured as time-series and

high-frequency data because sensor collects data with a certain sampling rate.

Traditional SHM analysis methodology uses signal processing technology, such as

Fourier Transform (FT) and wavelet-based method. However, FT and wavelet-

based methodologies fail to handle online analysis. Moreover, FT and wavelet-

based method are used for damage detection or crack detection of a structure or

a structural member.

In the recent decades, machine learning and data mining methodology have been

introduced to help SHM analysis. Current machine learning and data mining

methods mainly used for damage detection and crack detection as well, and most

of the current technology cannot handle online analysis either. It is impossible to

create a universal algorithm to handle all types of data. A specific algorithm is

required to perform a specific task. To analyze high-frequency sensor online, we

need to overcome its high-frequency and time-variation which results in a dynamic

distribution.
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Current machine learning and data mining techniques for SHM problem focus on

damage detection and damage localization, and most of these techniques are offline

methods. Online analysis and prediction can benefit relevant organizations to help

to make the decision to avoid catastrophe. Online analysis provides the real-time

information for the relevant organization to avoid risky circumstances.

Due to the high-frequency feature of sensor data, it produces a massive amount

of data each day. How to extract valuable information from a massive amount of

sensor data in time is the challenge. Most of our research work is based on the

SHM background because a massive amount of high-frequency sensor data gives

us practical data to test the performance of our proposed method. We proposed

different methods for overall structural health evaluation and online anomaly de-

tection on single or multi-dimensional sensor data. Current machine learning and

data mining techniques for SHM are offline analysis, so the online analysis provides

the real-time information for the relevant organizations to help them to avoid po-

tentially risky circumstances. Moreover, it also can guide relevant organizations

to develop maintenance plan and recovery plan efficiently.

1.1 Motivation

Traditional SHM sensor data analysis is based on the signal processing methodol-

ogy, such as FT and wavelet-based method. Through the FT and wavelet method,

a time-series data stream is translated into a spectrum which is a frequency based



Chapter 1 4

analysis methodology. By comparing the frequency between the benchmark fre-

quency with processed data, the damage signal can be identified. However, these

methods fail to demonstrate the time information. In other words, we fail to

observe changes of a data stream over time. Since the development of machine

learning and data mining techniques to SHM problems, most of the current meth-

ods focus on damage detection and damage localization. Moreover, the current

methodology uses monotype SHM dataset, neither to analysis data synthetically.

Therefore, online prediction or evaluation and synthetic analysis of SHM datasets

arouse substantial attention from both academics and industry.

To gain a good online analysis result, the online analysis needs to overcome the

time-variation problem. Moreover, we also need to consider various types of sen-

sor data (heterogeneous data) that has different features. Most current machine

learning and data mining methodologies applied in SHM are based on :

1. Probability-based methodology : uses probability theory, such as Bayesian

probability, to predict the degree of damage of a structure.

2. Model-based methodology : uses the neural network to localized or detect

damage of a structure.

Most of above methodologies are offline analysis, which analyzes data after the

data collection phase. Online anomaly detection is one of the solutions for online

analysis of SHM. Current anomaly detection methods are the offline model-based

method and distance-based method. To do the online anomaly detection for high-

frequency SHM datasets, dynamic distribution is a challenge. Traditional offline



Chapter 1 5

anomaly detection assumes that the distribution of data is static, in fact, the dis-

tribution changes over the times. Moreover, current methods are only concerned

with monotype sensor data. In fact, engineers evaluate a health status of a struc-

ture from different types of sensors. The chanllenge is how to weight various types

of datasets when analysing heterogeneous data. To summarise, the challenges of

online analysis are listed :

1. High-frequency sensor data: it not only increases the volume of datasets but

also introduce the dynamic distribution

2. Online analysis: proposed approaches are offline analysis

3. Heterogeneous data: many proposed approaches are verified with monotype

data.

1.2 Research questions

In order to analyze a massive amount of SHM sensor data and discover valuable in-

formation for evaluating structural health status, we conducted research on mining

SHM sensor data. In my PhD project, I handle the following research questions :

• Research question 1: Can online anomaly detection algorithm be made ro-

bust for high-frequency SHM datasets (for single and multi-dimensional SHM

dataset) ?

• Research question 2: Can heterogeneous SHM dataset be analyzed synthet-

ically?
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1.3 Contributions

In the process of answering the above two research questions, I first investigated

and reviewed the challenge of online anomaly detection with existing literature.

Then I designed possible approaches to each problem. I verified the performance

of my proposed methods extensively with UCI public datasets and practical SHM

datasets. Overall, this thesis makes following contributions :

1. A proposed sample entropy gradient method for comparing the similarity

between two time-series data. It can be used for anomaly detection and

similarity measurement of two time-series datasets (Research Question 1).

This method has been published in IEEE ICIEA conference 2017.

2. A proposed ensemble kernel (EK) for online high-frequency data anomaly

detection. It detects anomalies for a single dimensional data stream effi-

ciently with a stable performance. (Research Question 1). This method has

been submitted to the Journal of Pattern Recognition, and it is under review

by pattern recognition.

3. A proposed multi-dimensional ensemble kernel method for online high-frequency

data anomaly detection. It detects anomalies for the multi-dimensional data

stream with a stable performance. (Research Question 1 and 2). This

method has been submitted to the IEEE ICDM 2018, and it is under re-

view.

4. A proposed a structural health monitoring evaluation method using the neu-

ral network and fuzzy inference system. It introduces the health index(HI) as
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a health status indicator of a structure (Research Question 2). This method

has been published in IEEE ICIEA conference 2018.

1.4 Structure of thesis

This thesis organized as follow :

• Chapter 1 gives an overview of the research background, current challenges,

proposed approaches and outline of the thesis.

• Chapter 2 firstly introduces the general background of SHM and its relevant

challenges. Then, it describes an in-depth review of the relevant theoreti-

cal models and design principles of data mining and machine learning. In

addition, it also gives a review about current methods used in SHM. This

chapter ends with the review of potential applications such as using data

mining and machine learning method. The research gaps and novelty of this

research project are presented here.

• Chapter 3 introduces a sample entropy gradient method for comparing the

similarity between two time-series data, which is derived from cross sample

entropy and approximated entropy. In addition, this method can be used for

anomaly detection as well. This chapter includes all experimental studies to

develop sample entropy gradient.

• Chapter 4 proposes a new method for anomaly detection. In this chapter,

I introduce EK method for online high-frequency data anomaly detection.
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This study describes the EK method and its performance and includes ex-

perimental result compared with other online anomaly detection methods.

• Chapter 5 demonstrates the extended version of EK method which is called

multi-dimension ensemble kernel (MEK) method. It includes the process of

MEK and relevant experimental results. It enables detecting of anomalies

in a multi-dimensional scenario, and give an overall structural evaluation.

• Chapter 6 introduces a structural health monitoring framework for SHM.

This framework is based on the hybrid intelligent systems to compute com-

posite structure health index as structure health indicator. It provides a

decision-level analysis for structural health monitoring. The outcome of our

proposed framework is a structural composite health index which is an ag-

gregated index via optimally weighted variables.

• Chapter 7 gives a conclusion to my PhD work, along with a brief discus-

sion on future perspectives of high-frequency mining and application of data

mining and machine learning on SHM problems.
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Literature Review

Structural health monitoring (SHM) applies various technologies(e.g. sensing tech-

nology, guided wave, data analytics) to monitor and analyze the health status of

a structure. In current SHM projects, various sensors to collect different types of

data. There is a massive volume of data generated each day, how to extract valu-

able information from a massive volume of data becomes a critical challenge. Ma-

chine learning and data mining have a tremendous development in recent decades.

It gives a solution to various domains, such as medical, engineering, and finance.

There are many applications of using machine learning and data mining techniques

on structural health monitoring. Our concerns are anomaly detection on structural

health monitoring and overall structural health evaluation. Generally, current ma-

chine learning and data mining methods on SHM can be categorized on statistical

probability-based method, neural network based method and etc. There are differ-

ent categories of data type, such as image data, time-series data, and categorical

data. Each data type requires a different specific method to process.

9
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In this chapter, I firstly review current sensing technology on SHM. This gives a

general view of recent studies of sensing technology applied to SHM.

After demonstrating recent studies of sensing technology, I present current machine

learning and data mining techniques applying to SHM. After we discussing current

sensing technology, traditional anomaly detection methods are discussed, since

anomaly detection is one of the important techniques to help SHM analysis.

Finally, limitations of recent studies are discussed in order to reflect the motivation

of our studies.

Apart from brief descriptions of recent studies, I present some popularly used

performance measurements in data mining in terms of usability, and measurement

we used to evaluate my proposed methods.

2.1 Overall structural health monitoring

2.1.1 Sensing technology on SHM

Current structural health monitoring can be categorised into two classes: one

class relates to detection technology, for instance, sensing technology; another

class relates to sensor data analytic methodology.

Sensing technology is one of the most important technologies in SHM, it pro-

vides the fundamental infrastructure for structural monitoring. Current sensing

technology includes optic fibre sensing technology, piezo-electric ceramic sensors,
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cement-sensor strain sensors, corrosion sensors, seismometers, and GPS technol-

ogy and some traditional sensing technology (e.g. accelerometer). Civil experts

and engineers can predict and evaluate the health status according to sensor data

according to their experience, fieldwork and theoretical model. Although tra-

ditional sensing technology and advanced sensing technology have been applied

successfully, there are some challenges need to confront in future research and

development [5].

Figure 2.1: Example of a FBG sensor

Optic fibre sensor is a new advanced sensor type applying to SHM. It permits a

long gauge to measure an overall average strain of a structure. Currently, there

are five types of commercial use optic fibre sensor [6]. Some of these optic sensors

are based on measuring the light intensity according to change of fibre curvature

or reflection of a mirrored surface. The majority of commercial use optic fibre

sensors measure the light intensity, which they called fibre Bragg grating(FBG)

[7]. They provide a linear response with a wide strain range and temperature com-

pensation (Figure 2.1 c©[8] ). The primary advantage of FBG is the immunity to

the EMI/RF inference by measuring the light wavelength rather than the signal

aptitude. Due to its immunity to the inference, it has been deployed in many

complicated electronically environments in practice to avoid the electrical current

[9] [10]. However, the durability and reliability of FBG are two most important

considerations. The performance of sensors decline with the increasing service
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time, which affects the quality of data collection [11]. Optic fibre sensors usually

attach to the structure surface. With the changing surface temperature, the ma-

terial would result in deformation of optic fibre sensors. As a result, the quality

of the data becomes unreliable. Other factors, such as oxygen carbonization, acid

erosion, material ageing ,have an impact on data collecting. Consequently, the

durability and reliability are the first two important considerations.

Figure 2.2: Example of a PTZ sensor

Piezo-electric ceramic (PTZ) sensor (Figure 2.2 c©[12]) is an acoustic sensor, which

has been deployed in many large-scale buildings and structures [13]. It receives the

stress wave signal when any damage occurrences within a structure. According to

the acoustic emission, a damage index can be calculated. Since the PTZ receives

acoustic emission signal, the interference is a critical challenge. Although we have

de-noise algorithms and methods, we do not know the effectiveness of de-noise

algorithms on the PTZ inference problem.

The cement-based strain sensor is one of most utilized in civil engineering. Ce-

ment is capable of solving the incompatibility issue [5] [14]. Moreover, it gives

possibility to combine different types of sensors in one cement unit. Such sensors
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like conductive nano-sensor, PTZ, and short carbon fibre can be processed using

cement. However, cement structures would expand or contract with temperature.

Any change(expansion or contraction) of a cement structure would generate some

signal which can be sensed by sensors. Consequently, the quality of the sensor

data is not good enough to be used for further analysis.

GPS is also an extensively applied sensor in many domains [5]. In SHM domain,

GPS sensor is used to measure the displacement of a structure. However, the

resolution of commercially used GPS sensors are low, which fails to detect small

deformation displacement in a small-scale structure. In addition, GPS sensors are

not immutable to the environmental factor. It usually fluctuates to an abnormal

level for a period, until the abnormal signal has been tackled.

To sum up, current advanced sensing technology provides rich functions for SHM,

but the performance of advanced sensors need to overcome their limitations to

ensure the data quality. Except for the physical performance of the sensor, ex-

tracting valuable information from a massive amount of sensor data for decision

making is also a challenge.

2.1.2 Structural health monitoring measurements

Structural health evaluation is a sub-category of structural health monitoring, it

applies different techniques to evaluate a health status of a structure. Fieldwork

is a traditional method to evaluate the structure health status. A fieldwork of a

structure usually contains :
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• Visual observation of crack of a structure member

• Collect signals using special equipment

Based on the result of visual observation and signal analysis, engineers would give

a health evaluation on a structure. With the development of sensing technology

which we have presented in the previous section, various types of sensors have

been installed to help health evaluation. In this section, structural health status

measurements and evaluation methods for structural health status are discussed.

In this section, we discuss more details in this section in terms of measurements

and evaluation methodology.

2.1.2.1 Stress and Strain

Stress and strain are usually measured together and this approach has have been

applied in structural health monitoring for many years. Stress and strain reflect

forces in material or a structure. These two measurements help to understand the

load of the structure and the potential for deformation and cracks. Optic fibre is

the latest advanced sensing technology to measure the strain. Optic fibre famous

for its FBG is widely used for monitoring strain of a structure. Many researchers

have contributed to optic fibre in terms of its functionality and robustness for

practice.

Superimposed FBGs proposed by [15] used two superimposed fibre Bragg gratings

to allow measuring of dynamic and static strain. By using smoothing filtering
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technique and centroid finding technique increase interrogation speed and accu-

racy with reflection spectrum. This method improved the functionality of FBG

sensor and allowing it to measure dynamic and static gauge. [16] used time-

division multiplexing method to enrich the functionality of FBG. TDM systems

used semiconductor optical amplifier (SOA) which emits a short broadband optical

pulse, and FBG sensor is capable of capturing this weak signal. Due to the time

efficiency, this TDM based FBG sensing system was able to monitor large-scale

structure. [17] combined FBG sensor with a wet etch-erosion procedure to enable

an FBG sensor to be a multi-functional sensor which can be not only used for

SHM but also environmental monitoring and biochemical sensing.

Researchers also contributed to improving the robustness of FBG sensor used in

practice. [18] [19] [20] [21] have proposed and implemented FBG on large-scale

structure. These applications demonstrated FBG which can report dynamic strain

correctly and accurately. [18] suggested that FBG has the potential to be deployed

to a large-scale structure for long-term monitoring. However, the study lacked evi-

dence that FBG can be deployed for long-term monitoring with good quality data.

From some reports of some institutions, we found that there is no doubt about

the performance of FBG, but installation methods and environmental tempera-

ture have an impact on FBG. Current FBG sensors are attached on a structure

using some material (e.g. glue), with the change of environmental temperature,

the material used for installation has an impact on data gathering of FBG sensor

[11].
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2.1.2.2 Displacement

Strain-stress can reflect displacement of a structure due to deformation. The

global positioning system (GPS) can present the displacement immediately via

3D(x,y and z) coordinates. GPS has been deployed on a structure to monitor

its displacement. With its high sampling rate (10Hz), GPS sensor provides the

solution to real-time monitoring. [22] [23] [24] [25]reported the applications of GPS

sensor on structure health monitoring in practical engineering. However, there are

some limitations of using GPS sensors [11]:

• Limited GPS granularity: The precision of current GPS sensor can take to

meter unit, which is not good enough for some civil structure monitoring.

• Limited to a specific structure: The application range is limited by its preci-

sion limitation, in some civil structure monitoring project, GPS sensor fails

to provide enough information about its health status.

2.1.2.3 Wind load

Wind is the primary source of vibration of a structure. Especially, for some large-

scale structure like a bridge, the wind could result in vibration for a bridge struc-

ture [26]. In some application, the wind is not directly measured instead of mea-

suring the GPS displacement immediately [19], [19] thought it is hard to collect

accurate wind data due to the complexity of wind data. [27] [28] reported the

applications of using wind sensors in large-scale structures to monitor wind speed.
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2.1.2.4 Summary

In this section, I present the details of measurements used in SHM in terms of

stress-strain, GPS and wind load. These three measurements are the most impor-

tant measurements in SHM. Although FBG is famous for its immunity to inter-

ference, the environmental factors would have an impact on data quality which

reported in practical applications. GPS is specialized in monitoring large-scale

structure, but it has some limitations in some civil structural monitoring projects.

Wind load is a critical monitoring measurement, in practical application, some

argue that it is difficult to measure the wind data due to the complexity of envi-

ronmental factors, but others used wind sensor to collect wind data directly. Due

to the drifted distribution of wind speed, an effective method to analyze wind

speed data is required.

2.1.3 Structural health monitoring analysis methodology

2.1.3.1 Traditional method

A massive amount of data are collected from a bridge. After data collection, how

do we extract valuable information from a massive amount of sensor data is a

critical challenge. Manual observation and analysis are one of the methods to

process that massive amount of sensor data. Civil experts and engineers evaluate

and predict the health status according to their significant experience. However,

manual works could delay their decision making for a massive amount of data.
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Machine learning and data mining techniques have been introduced to help to

evaluate and predict the health status of a structure.

Traditional manual observation and analysis rely on the spectrum (frequency)

analysis and trend analysis of some specific sensors. It helps the experts and

engineers to determine whether currently collected data in the defined health

range(defined according to model simulation or initial design safe range). The

fast Fourier transform and the wavelet transform are two typical signal analysis

methods which analyze the data from the frequency domain. The wavelet trans-

form overcome the limitation of FFT. The result of FFT was a summation of a

give length signal, which means we fail to indicate the time occurrence of a signal

[29]. WT provided the solution to allow signal decomposition with time informa-

tion. However, there are several wavelet families ( each family has multiple wavelet

types) for frequency analysis. Only experienced experts and engineers know how

to select proper wavelet type.

Nevertheless, researchers still auguring the effectiveness of using Fourier transform

or wavelet transform to analysis signal. Researchers argued that Fourier transform

fails to reveal the time information, the application of Lamb wave overcomes the

problem. Lamb wave method is a new method for damage detection for SHM

without a benchmark signal[30]. It has been well-known by it dispersive property

and multi-modal where at least two Lamb models existed simultaneously. With

the increase of frequency and thickness of an object, more Lamb models can be

found. Various of Lamb models provides abundant information in time-domain

and frequency domain, but it also increases the complexity to analyze frequency
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and time information. [31] proposed a short-space frequency-wave method which

is capable of showing the number of wave change during its propagation. This

method was a Fourier transform based method, which used 2D Fourier transform

to locate the crack within an aluminium plate. [32] is a wavelet-based Lamb

wave analysis method, it also used for damage detection. However, environmental

factors such as temperature and signal attenuation. This paper only had been

verified in some simple samples, and the robustness of this wavelet-based is needed

more experimental verification under various circumstances with different samples.

Finite element model (FEM) is another extensively used technique which helps ex-

perts and engineers to simulate a structure response situation according to different

sensor data [5]. Vibration modelling , for example, uses the FEM technology and

theoretical models to simulate a structure. Based on the simulation result, experts

and engineers can give an evaluation of a structure. However, this method con-

sumes time to build a structure model to give a reliable evaluation of a structure.

Therefore, machine learning and data mining methods started to help experts and

engineers to evaluate and predict the health status of a structure.

To sum up, traditional sensor data analysis uses frequency analysis methodology

and FEM simulation. Signal processing methodology helps to detect damage or

locate cracks within a structure. However, some of these methods are only tested

in the laboratory, there is no evidence presented that proposed methods can be

applied in practice. Moreover, these methods do not support online analysis and

some of them are too time-consuming.
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2.1.4 Multi-agent based evaluation system

The multi-agent system is one of artificial intelligence technique where each agent

is an autonomous system with a specific task or without. Generally, agents can

be categorised into three groups:

• Passive agent: no specific task assigned to an agent

• Active agent: simple tasks assigned to an agent

• Cognitive agent: complex calculation tasks are assigned to agents.

Agents has following features:

• Autonomy: agents are independent to each other (at least palatially), self-

organized

• Local view: no agent have a global view

• Decentralization: no agent is designed to control other agents

Some researchers proposed a multi-agent system for SHM problem, especially

large-scale SHM monitoring. [33] designed and implemented a multi-agent sys-

tem for SHM. Generally, the proposed multi-agent system had three layers which

are data monitoring layer, data interpretation layer, data diagnostic layer, and

information layer respectively.

In the data monitoring layer, agents were assigned with sensing task, which de-

ployed with sensors to reflect the health status of a structure. In their experiment,
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they deployed FBG and PZT sensors on a plate structure which divided into sev-

eral subareas. In the data interpretation layer, significant signals are extracted for

further processing, agents in this layer were assigned with data processing task.

In the data diagnostic layer, agents used data extract from the previous layer to

estimate potential damage. In the information layer, all information are gathered

to make a reliable conclusion and reports to users. This multi-agent system had

been evaluated via a simulation in the lab [34]. Although this method has been

evaluated in the laboratory and demonstrated a good performance, the perfor-

mance of this multi-agent system in practice project is unknown. [35] and [36]

used multi-agent system for wireless sensor monitoring. However, the wireless

sensor technology is not robust enough in practice. [37] implemented a simple

multi-agent system to monitor a wind turbine system, a number of malfunctions

had been detection via the multi-agent system.

2.1.4.1 Machine learning and data mining method

In the recent decade, the tremendous development of artificial development arouses

attention from various domains. It offers a potential opportunity to promote multi-

disciplinary research. Application of machine learning and data mining method-

ology in SHM is a new launched in the recent decade. Generally, application of

machine learning and data mining can do following tasks[38]:

• Damage detection : gives a qualitative indication of potential damage to a

structure

• Damage localization: locates probable damage in a structure
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• Damage assessment: assesses the damage severity of a structure

• Prediction: offering information about the safety of a structure, e.g. detect

anomalies, estimating a residual life of a structure.

Statistic and probability based are widely used in SHM. [39] is a Bayesian-based

approach for SHM. At the initial stage, [39] performed a modal test based on

an undamaged structure to build a PDF reference. Then, used these undamaged

data to create alarm functions for each substructure. All these probabilities were

computed under the naive Bayesian framework. During the monitoring phase,

it computes the damage degree and comparing with alarm function. The alarm

functions keep updating along with the time and new incoming data. Although

the alarm functions kept updating with new incoming data, the PDF reference

was not. This kind of sensor data is also considered as a time-series data, we

cannot assume that the distribution is static through all the time. [40] is an en-

hanced Bayesian-based version for SHM. In the initial step, [40] was same with

[39] which computed PDF using undamaged structural data as a reference prob-

ability. The second step was model updating, which updates the parameters us-

ing the expectation-maximum(EM) algorithm. EM is an optimization algorithm

which addresses parameters estimation under uncertain circumstances. In this

method, some simulation data were used to verify the performance of their pro-

posed method. However, it lacks evidence to support their method that can be

applied into practice.

[41] is another statistics-based anomaly detection method for SHM. It applied auto-

regressive (AR) and auto-regressive with exogenous (ARX) model to construct a
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new reference signal for comparing with a signal. By measuring the distance

between the newly constructed signal and a normal signal, anomalies can be found

if the distance is large. This method was not an online analysis method, ant it

relying on a good-quality of a constructed signal, which we cannot guarantee that

the newly constructed signal is qualified to be used as a benchmark. An evaluation

method was required to evaluate the result of a newly constructed signal. In

addition, regressive functions are easily affected by the density of data, which has

an impact on the quality of the newly constructed signal as well as the final result

of anomaly detection. [42] is a wavelet-based method which using AR and SVM

to detect damage of a structure. It firstly used wavelet to remove the noise and

compress the data. Based on the result of the wavelet transform, it used AR to

model the data and extract the coefficient. Based on the AR coefficient, SVM

classified the coefficient into two group in order to distinguish between damaged

structure and undamaged structure. The effectiveness of WAR-SVM has been

proven via a case study which detects the damage to a magnetorheological(MR)

damper.

Application of neural network is another branch of using machine learning on SHM.

Generally, it applied the neural network to detect damage or crack of a structure.

[43] proposed to use the artificial neural network (ANN) to detect damage PTZ

signal. For engineers, it does not require prior knowledge to analyze the PTZ

damage signal. However, training a good quality ANN to detect damage signal

requires datasets with various damage features. In this paper, it only applied to a

simple structure, which lacks further practical evidence. [44] used similar neural
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network method to detect damage PTZ signal, but it applied to different scenarios

with :

• on a bolt-jointed aluminium beam

• multi-type and multiple damage detection on a pipe system

• multi-type and multiple damage detection on a real-scale bridge

From a long-term consideration, the impedance signature is easily affected by the

external factors such as temperature and degradation of a structure member, so a

further investigation and study are required.

Except using the neural network to detect PTZ damage signal, new developed

convolutional neural network (CNN) arouses civil engineers attention. Basically,

CNN is specialized in pattern recognition in domains like image and voice. In civil

engineering, to recognize the crack from a massive amount of image is efficient for

engineers to make maintenance decision. In the study of CNN on crack detection

[45], they used 332 images for training, and 55 images for testing. The result of

recognizing the line cracks can achieve around 97% accuracy. However, in this

study, their training samples were simple which is a single crack of a concrete.

Under such high accuracy circumstances, the training result was considered over-

fitting. In the future study, different types of crack should be considered to add

into training samples, and the size of training sample need to increase as well.

To sum up, most of current machine learning applications to SHM are offline meth-

ods, and most of these methods concentrate on damage detection and localization.
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Some of these methods are only tested in the laboratory, there is a gap between

practical and laboratory.

2.1.5 Summary

In this section, a general SHM overview is presented, which includes current sens-

ing technology on SHM, traditional sensor data analysis methodologies and current

machine learning and data mining based methodologies. Advanced sensing tech-

nologies confront challenges of durability and reliability. Some of the advanced

technology, for example, optic fibre can avoid inference in a complicated environ-

ment. But optic fibre could be deformed due to environmental factors such as

material surface temperature. PTZ sensor and cement-based sensor are widely

used in many civil statures to measure the strain, but PTZs are sensitive which is

easily interfered by the noise signal.

Frequency analysis methodology is extensively used in SHM problem. Methods

like Fourier transform and wavelet transform are two most used frequency analysis

technique. Recent, advanced studies attempt to use FT or WT to analyze lamb

wave in order to locate the damage location. However, some of these methods have

not applied in practice or only tested on some samples. There is a gap between ex-

perimental result and practise. To promote these advanced methodologies require

more cooperation between academics and industries.

Application of machine learning and data mining methodology arouses dramatic

attention. Bayesian-based method and neural network based method helps civil
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Figure 2.3: Example of anomaly

engineers to recognize damage signal of a structure or crack of a concrete. Most of

the current application is offline analysis, and some of these methods only tested

with some samples. A robust online analysis methodology is required to support

decision making on SHM problem.

2.2 Traditional Anomaly detection

Anomaly detection is a branch of data mining technique. It attempts to identify

any events, items or observations that not conform expected pattern in datasets

(Figure 2.3 [46] is an example of an anomaly). It has been applied in various

domains such as finance(i.e. credit card fraud detection), signal processing ( i.e.

military surveillance) , network security. Anomalies can be categorized into [47]:

• Point anomalies : if a data point is considered as an anomaly according to

rest part of data points. Point anomalies are the simplest type of anomaly,

and most of the researches focus on this type.
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• Contextual anomalies : if data points are considered as anomalous with

respect to its context. Most of the contextual anomalies can be found in

time-series data.

• Collective anomalies : if a collection of data instances are considered as

anomalous with respect to an entire dataset. Most of the collective anomalies

can be found from some periodical signal dataset.

Anomaly detection also can be applied into SHM to help to identify abnormal

data, which is one of the most critical parts of SHM. Most of SHM sensor data

are time-series data , and most of the anomalies in SHM domain are contextual

anomalies and collective anomalies.

Current anomaly detection methodology can be categorised by the supervised,

semi-supervised and unsupervised method. In supervised anomaly detection method,

a number of anomalies need to be labelled, as well as normal data. Based on the

labels, models are built according to these labels. However, the anomalies are rare

in datasets that the number of training samples is not enough to train models to

recognized the anomalies. The imbalanced dataset is the most challenge for su-

pervised anomaly detection. Unlike supervised learning, semi-supervised anomaly

detection methods are much more applicable which do not need the labels for

anomalies. Based on the label of normal data, the model for normal data are con-

structed. By comparison with new incoming data with trained models, anomalies

can be detected. Unsupervised anomaly detection does not require any training

sets and labels, which allows this category applicable widely. However, the chal-

lenge of this category increases the false alarm rate. Except for this categorization,
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anomaly detection methods can be categorised into a distance-based method and

model-based method as well. In the following sections, methods present according

to this categorisation.

2.2.1 Distance based methodology

2.2.1.1 Global outlier method

Distance-based anomaly detection methods use distance as the primary arbitrary

to identify anomalies. Generally, there are two sub-categories which are the global

outlier and the local outlier. Data instance considered as a global outlier if the

data instance deviates from a number of other data instances. In this sub-category,

researchers are focusing on different purpose:

• Focusing on global outlier score computation Summation of data distance

from its neighbours is one of the techniques used in anomaly detection. [48]

[49] [50] used this technique to compute the outlier score to detect anomaly

detection. In addition, these three methods also concerned about the effi-

ciency of their proposed methods. In [48] study, it used only one dataset

(dataset size is 10,000) which showed a good performance. However, one

dataset fails to prove that this method is good for other datasets. [49] and

[50] concerned with efficiency study, both of them fail to use a standard

dataset to prove the performance of their method.

• Focusing on measurements of anomalies Some methods used another way

to measure the distance to evaluate an anomaly. Counting the number of
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neighbours is alternative way to detect anomalies [51] [52] [53]. This method

cannot strictly to be considered as the density-based method since it count

number of neighbours around data instance in radius range. The reciprocal

of the number of neighbours is the anomaly score to a data instance. Based

on the anomaly score, top-k data instances are considered as an anomaly.

The hypergraph is another alternative way to detect anomalies. Based on the

hypergraph, a strength of connectivity is computed to determine an anomaly

in a categorical dataset.

• Focusing on efficiency Efficiency on detection anomaly detection is also crit-

ical as well since some anomalies occurred in some domains result in a detri-

mental impact, such as SHM, credit card fraud detection and network se-

curity. To improve the efficiency of detecting anomalies, pruning normal

data instance is a key point. The threshold is a simple and common way to

prune non-anomalous data. After calculating the distance of data instance,

a threshold can screen the weakest score data instances. Partition technique

and sampling technique can help to reduce the search space in order to de-

tect anomalies efficiently. [54] used a partitioning technique to pre-process

dataset via clustering technique. Based on the result of clustering result,

anomaly detection method was performed on the interesting dataset (which

contains anomalies). [55] used a sampling technique to enhance efficiency, it

computed the distance from small samples of a dataset. Based on the pre-

vious result, anomaly detection method was performed to detect anomalies.
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2.2.1.2 Local outlier method

The local outlier is another distance-based anomaly detection method. A data

instance is defined as a local outlier when a data instance deviates from a number

of neighbours around that data instance. Local outlier factor is the first proposed

method using local outlier. It computes a local outlier factor for each data in-

stance which equals the ratio of the average local density of a number of nearest

neighbours and the local density of the data instance itself. To detect anomalies,

the LOF [56] first found the smallest hypersphere from the dataset with k nearest

neighbours. Then it computed the local density by dividing k by the size of the

founded hypersphere. Any normal data instance within that hypersphere, the local

density was similar with its density of neighbours, but abnormal data has a lower

density comparing with other normal data in that hypersphere. Consequently, the

LOFs of the anomalies are high which can be detected by the algorithm. Following

researchers started to focus on different purse base on LOF :

• Efficiency improvement [57] and [58] proposed to improve LOF efficiency

by using clustering technique. [57] used clustering technique to find micro-

cluster with lower bound and upper bound. Based on the result, it performed

LOF calculation to compute LOF. [58] enhanced others version of LOF to

enhance the efficiency of LOF. It made some assumption about a problem

to prune clusters that do not contain anomalies. LOF score was computed

based on the remaining data instance to enhance the efficiency.
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• LOF computation Except for the original LOF computation method, many

other researchers attempt to the different way to compute LOF score for each

data instance. [59] proposed a simpler version of LOF, which called Outlier

Detection using In-degree Number (ODIN). It computed ODIN for each data

instance, and the inverse of ODIN is the LOF of each data instance.

[60] proposed a Multi-Granularity Deviation Factor (MDEF), which is a

LOF based method. MDEF computed the standard deviation of the local

densities of the nearest neighbours for a given data instance. The inverse of

MDEF is the LOF of a given data instance. This paper not only used to

detect anomalies but also used to detect anomalous clusters, which is called

LOCI.

2.2.1.3 Summary

Global outlier based or local outlier based both are the unsupervised and semi-

supervised method of anomaly detection. It does not require any assumption of

distribution to a dataset. However, the computation of distance to each data

instance is expensive and defining the anomalous threshold is a challenge in a

complex dataset.

2.2.2 Model-based anomaly detection

Model-based anomaly detection is different from distance-based anomaly detec-

tion. It used different methods such as classification, probability, neural network,
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and clustering. In the following section, anomaly detection using these methods

are presented.

2.2.2.1 Classification based anomaly detection

Classification is considered as a supervised or semi-supervised anomaly detection

method since it depends on the assumption that a classifier is capable of recognis-

ing the anomalous and normal data instance, which can be learned from during

training phase. Generally, the classification-based method can be categorized into

two sub-categories which are one-class anomaly detection and multi-class classifi-

cation. According to existing labels, classes are trained for different purposes. In

on-class classification, it assumed only one class label existed, and all normal data

instances should be classified into one class. Such SVM method like [61] and [62]

proposed methods to compute the class boundary to distinguish the normal data

instance and anomalies.

Multi-class anomaly detection method was complicated than one-class anomaly

detection method. This method assumed that data instances can be classified into

multiple normal classes, any data instance does not belong to any normal classes

is considered as an anomaly [63].

2.2.2.2 Probability based anomaly detection

Probability-based anomaly detection also classifies to supervised or semi-supervised

anomaly detection method. Bayesian network is an extensive used and studied
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probability-based method. It computes posterior probability from labelled normal

classes and labelled anomalous classes. In general, this method aggregated all

posterior probabilities from each test instance and based on the aggregated prob-

abilities to determine the label of test instances. This method has been applied

into intrusion detection with outstanding contribution [64][65].

2.2.3 Neural network based anomaly detection

There are many types of the neural network which can be used for anomaly de-

tection. It can be considered as supervised and unsupervised anomaly detection,

which depends on its type of neural network. In a tradition neural network, nor-

mal data are used to train for normal classes, and the test instances are used to

test the training result. If the neural network accepted the test instance, which

indicates this instance is normal, while any rejected instances are considered as

anomalies[63]. Adaptive resonance theory [66] based neural network is an unsu-

pervised neural network. It classified the input variables into different neurons by

computing the forward weight and feedback weight. When a new neuron is set

up when it fails in vigilance test and no more neurons to test [67]. If an input

is greater than the pre-defined threshold, the weights are updated according to

the input. This method like clustering method, which normal data and anomalies

classify into separated clusters. Multi-layer perceptron (MLP) neural network also

can be used for anomaly detection [47]. In the MLP neural network, there are a

number of hidden layers, an original data instance is reconstructed through hidden

layers, which uses the output of the previous layer as input for next layer. This
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Figure 2.4: Example of anomaly detection using clustering method. F1,F2
and F3 are recognized as anomalies

method is a one-class anomaly detection method, the final result of data instances

are similar, while anomalies are deviates from normal instances [68].

2.2.3.1 Clustering based anomaly detection

Clustering based anomaly detection method is usually considered as unsuper-

vised anomaly detection, but some researchers also proposed some semi-supervised

methods (Figure 2.4 [69] is an example of anomaly detection using clustering

method). It can be categorized into three sub-categories: centroid based method,

density based method and clusters based method [47].

The centroid is introduced with the development of clustering, which means a

centre of a cluster. The centroid-based method assumes that normal data within

a cluster should lies closely, while anomalies deviate from centroids. In centroid
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method, data instances are clustered into clusters first. An anomaly factor is

computed according to the distance to a centroid within a cluster. K-means [70],

Self-organized map (SOM) [71], and Expectation maximization(EM) are three typ-

ical centroid based method. Unlike K-means and EM, SOM is a semi-supervised

method which has been applied in intrusion detection, fault detection and fraud

detection.

The density-based method assumes normal data should be classified into a large

and dense cluster, but anomalies should be classified into a small and sparse cluster.

Evaluation of size and density of a cluster is critically important for the density-

based method. [72] proposed cluster-based local outlier factor(CBLOF) score to

evaluate of data instance including the size of the cluster, and the distance of a

data instance to its centroid. Other methods like [73] and [74] used threshold to

screen normal dataset.

The cluster-based method assumes that anomalies fail to classify into any cluster,

while normal data instances should belong to a cluster. [75] proposed FindOut

algorithm to detect anomalies. However, the disadvantage of this cluster-based

method is they are classifying data instances to a cluster rather than focusing on

detecting anomalies.

2.2.3.2 Summary

Most of the model-based anomaly detection can be deployed by supervised and

semi-supervised method. For these methods, they make some assumptions about

the datasets followed by some models or distributions. During the training phase,
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we have to provide enough labelled data instances to train models. Clustering

can be deployed for unsupervised learning without assumptions. Comparing the

distance-based method, the distance-based method is much more computationally

expensive than model-based method. But there are many methods proposed to

improve the efficiency of them.

2.3 Performance measuring

Once new methods are proposed, how to evaluate the performance of a method

is important. There are many measurements to evaluate a method from different

aspects. The most extensively used measurements to evaluate a method in data

mining and machine learning are accuracy, specificity, sensitivity and precision.

All of these measurements are derived from the confusion matrix. In this sec-

tion, commonly used measurements in machine learning and data mining field are

introduced.

2.3.1 Confusion matrix

The confusion matrix is used to evaluate the performance of a model in ma-

chine learning. This table contains two rows and two column reporting true posi-

tive(TP), false positive(FP), true negative (TN) and false negative(FN). Table 2.1

is the template of the confusion table. All measurements are derived from this

confusion matrix.
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Condition positive Condition negative
Predicted positive TP FP (Type 1 error)
Predicted Negative FN (Type 2 error) TN

Table 2.1: Template of confusion matrix

Accuracy(ACC) measures the quantity of that quantity’s true value, equation 2.1

defined the accuracy.

ACC =
TP + TN

TP + FP + TN + FN
(2.1)

Specificity (SPC) measures the proportion of negatives that have been correctly

identified, equation 2.2 defined the specificity.

SPC =
TN

FP + TN
(2.2)

Sensitivity (SEN) also known as recall measures the proportion of all positives

that have been correctly identified, equation 2.3 defined the sensitivity.

SEN =
TP

TP + FN
(2.3)

Precision(PRE) measures the proportion of correctly identified positives and all

predicted positives, equation defines the precision.

PRE =
TP

TP + FP
(2.4)
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Condition positive Condition negative
Predicted positive TP FP (Type 1 error) PRE = TP

TP+FP

Predicted Negative FN (Type 2 error) TN NPV = TN
TN+FN

SEN = TP
TP+FN

SPC = TN
FP+TN

F = 2 ∗ SEN∗PRE
SEN+PRE

Table 2.2: Confusion table summary

Negative predictive value (NPV) measures the proportion of correctly identified

negatives and all predicted negatives, equation 2.5defines the NPV.

NPV =
TN

TN + FN
(2.5)

F score, also known as the F1 score, which is a harmonic average of sensitiv-

ity(recall) and precision. It gives equal weight to both precision and sensitivity.

Equation 2.6 defines the F1 score :

F = 2 ∗ SEN ∗ PRE
SEN + PRE

(2.6)

Many researchers argued that F1 score is not reliable under some special circum-

stances due to its bias. In the natural language processing (NLP) field, the F1

score is widely used for evaluating NLP algorithm.

To sum up, table 2.2 shows the summary of above equations.
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An approach to the computation

of time-series data similarity

using Sample Entropy Gradients

Traditional anomaly detection method like clustering based methodologies com-

pare to local density; or distance to centroids; or a number of neighbour clusters.

The distance-based methodologies attempt to compute a global outlier score or

local outlier score to determine anomaly with respect defined thresholds. In a time-

series dataset, time is a unique characteristic of time-series data. The challenge of

time-series data is the dynamic distribution that the distribution is change over

the time. Consequently, we developed a gradient-based algorithm using data sam-

ple entropy (SEG) for trend and outlier prediction in high-frequency time series

data streams. To answer the first question, we investigated cross sample entropy

which is applied widely in medical time-series data analysis and propose our SEG

39
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method. We conduct practical data experiments on SEG algorithm to two ap-

plication areas: dynamic wind speed data stream; and financial time series data.

Our experiments demonstrate that SEG algorithm could be feasibly used in on-

line implementation to derive predictive early warning signals to a domain-specific

decision maker.

3.1 Motivation

Cross-sample entropy (CSE) has been applied in many domains, including medical,

engineering, and financial analyses [76–78, 78–82], where it has provided good

results. It specializes in analyzing time-series and comparing the similarity of two

time-series data. However, it is still necessary to specify certain parameters (i.e.,

r and m) to execute the computation, especially r, that indicates a tolerance of

similarity. In fact, however, it is difficult to control tolerance in order to compare

similarity. Except for similarity, CSE fails to indicate the similarity over the time

stamp between two datasets/signals, so it is incapable to be applied into anomaly

detection domain. Since the Cross-sample entropy only gives value to indicate the

similarity between two time-series datasets. Therefore, we proposed our method

called ‘sample entropy gradient’ (SEG), which detects the correlations of two time-

series datasets/signals without using a tolerance parameter and able to apply to

anomaly detection. The SEG was developed according to the CSE method, which

is specialized for measuring the similarity and correlations of time-series datasets.

It also can be used to anomaly detection problems, since the nature of anomaly

detection is trying to find the particular dissimilarity.
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Cross-sample entropy is devised based on sample entropy (SE), which is an en-

hanced version of approximate entropy (AE). These methods are concerned with

nonlinear dynamic analysis for biological data. AE method observes the similarity

of a given dataset. AE [83] and SE observe time-series datasets for similarity.

Informally, given a dataset, AE and SE measure the similarity of two sequences

that are subsets of the given dataset. A lower value of AE or SE indicates the

higher regularity and lower complexity of a given dataset. Importantly, AE counts

a sequence as matching itself, whereas SE does not. In fact, SE is an enhanced

version of AE that avoids the limitations of AE in measuring the complexity and

regularity of a given dataset.

Cross-sample entropy extends the theory of AE to compare the similarity of two

datasets. Other than comparing sequences of a given dataset, CSE has also been

used to compare sequences from two datasets. A higher value of CSE reflects a

lower degree of synchrony or dissimilarity of two datasets/signals and vice versa.

The computation of AE, SE or CSE [84] requires specification of two parameters, m

and r, i.e., the length of a sequence (subset) and the tolerance of similarity, respec-

tively. Consequently, tolerance r is the critical parameter that has an impact on

the final result. Theoretically, people usually use standard deviation times 0.2 as

the similarity tolerance when computing AE and SE. For CSE, 0.2 is also common

selection. Furthermore, CSE can only identify the similarity and synchronicity

of two time-series datasets/signals. It is unable to demonstrate the relationship

between two time-series datasets/signals or to quantify the correlation between

two time-series datasets/signals.
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Sample Entropy gradient (SEG) is a new method for measuring the similarity

between two time-series datasets. It is able to reveal the relationships between

time-series without requiring a tolerance r parameter. Instead of measuring the

difference between sequences, SEG measures the gradient of sequences (subsets),

avoiding the use of a tolerance parameter to measure similarity. Moreover, SEG

can be extended to anomaly detection problems by comparing with a benchmark

dataset.

In this study, we computed and compared SEGs of two time-series datasets. As an

illustrative example, we conducted experiments by injecting a number of outliers

into a normal dataset to see whether our SEG method is able to detect these

outliers. In our experiment, we introduced practical sensor data from a cable

bridge.

3.2 Preliminary

3.2.1 Approximate entropy

Approximate entropy was developed by Grassberger and Procaccia and by Eck-

mann [85] and Ruelle [83, 86]. AE requires two important parameters, m and r,

where m is the length of the sequence (a subset of a dataset) and r is the tolerance.

AE compute the natural logarithm of the conditional probability of two similar

sequences (with length m). It reflects the complexity and repeatability (regular-

ity) of a dataset. A higher value of AE indicates the higher complexity and lower
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regularity, and vice versa. The formula is defined in 3.1 :

AE(Sn,m, r) = ln(
Cm(r)

Cm+1(r)
) (3.1)

where Cm(r) is defined in 3.2

Cm(r) =

∑m
k Cim(r)

n−m+ 1
(3.2)

where Cm(r) is defined in 3.3

Cim =
Nim(r)

n−m+ 1
(3.3)

where the Nim(r) is the number of similar sequences (subsets). The similarity is

computed by 3.4:

|SNi − SNj| < r, x < y < N (3.4)

where SNi and SNj are the data in the sequences (subsets). Importantly, AE

counts similar sequences including itself. In other words, the number of similar

sequences includes a self-match count. As AE includes the self-matching count to

avoid the ln(0) circumstance, it introduces bias to the result [87].

Let A1 equals to probability of similar sequences (with length m), and B1 equals

to probability of similar sequences (with length m+1). A1 and B1 are computed

according to the equation 3.2 and Nim(r) ≥ 1, therefore A1

B1
> 0.

If we use the same sequence without self-count, the A1 and B1 are denoted as A′1

and B′1 respectively. Since without the self-count, the Cm(r) of A′1 and B′1 are ≥ 0,
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which Nim(r) ≥ 0 . Therefore,
A′

1

B′
1
≥ 0.Therefore,

A′
1

B′
1
< A1

B1
which indicates AE is

biased with self-count. Sample entropy is introduced for reducing bias.

3.2.2 Sample entropy

As AE introduces bias to the computation, the most straightforward way to remove

that bias is to ignore the self-matching count. Sample entropy is an enhanced

version of AE and is a bias-free method. SE is same as AE in that it requires two

important parameters for computation, namely, m and r (length of the sequence

(subsets)) and tolerance. Equation 3.5 defines SE.

SE(Sn,m, r) = ln(
A

B
) (3.5)

where A is defined in equation 3.6, B is defined in equation 3.7 respectively.

A = Am(r) =

∑N−m
i=1 Ami (r)

n−m
(3.6)

where Ami (r) is the probability of matched sequences with m+1 length.

B = Bm(r) =

∑N−m
i=1 Ami (r)

n−m
(3.7)

where Ami (r) is the probability of matched sequences with m length. If A or B is

equal to 0, it indicates that there is no complexity or regularity of a given dataset.
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If we want to measure the similarity of two time-series datasets, SE fails to meet

the requirements since it only applies to a single dataset. As a result, CSE is

introduced for measuring the similarity of two datasets.

3.2.3 Cross sample entropy

CSE[84, 88] is introduced to deal with the comparison of two different time-series

datasets. It is able to describe the similarity or synchrony of two time-series

datasets/signals. The definition of CSE is similar to that of SE but, instead of

comparing the similarity of sequences from a single dataset, it compares a pair

of sequences (subsets) from two datasets individually. Let v and v be the two

different n length datasets, each of which can be divided into m-length sequences

(subsets), namely, xm = (u(i), u(i+ 1), . . . , u(i+m− 1)) and ym(j) = (u(j), u(j+

1), . . . , u(j + m − 1)), where 1 ≤ i, j ≤ N −m. The CSE is defined in equation

3.8.

CSE(m, r) = −ln(
Am(r)(v||u)

Bm(r)(v||u)
) (3.8)

where Am(r)(v||u) is defined in equation 3.9

Am(r)(v||u) =

∑n−m
i=1 Ami (r)(v||u)

n−m
(3.9)

where Am(r)(v||u) is defined in equation 3.10

Ami (r)(v||u) =
N(s[xm+1(i), ym+1(j)])

n−m
(3.10)
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where s[xm+1(i), ym+1(j)] is defined in equation 3.11

s[xm+1(i), ym+1(j)] = max(|u(i+ k)| − |v(j + k)|); (3.11)

The CSE measures the similarity of each pair of data points and uses the maximum

value as the similarity of those two sequences. The definitions of Bm(r)(v||u) and

Bm
i (r)(v||u) are similarly shown in 3.12 and 3.13:

Bm(r)(v||u) =

∑n−m
i=1 Bm

i (r)(v||u)

n−m
(3.12)

where

Bm
i (r)(v||u) =

N(s[xm(i), ym(j)])

n−m
(3.13)

CSE needs parameters, like SE and AE, to complete the computation. It compares

two datasets rather than a single dataset. Thus, it is crucially important to select

a proper tolerance. In general, the selection of tolerance r ranges from 0.1 to 0.25.

In cases that require high precision in the measurement of similarity, the tolerance

selection range from 0.1 to 0.25 [77, 81, 89] is no longer useful. For instance, we

assume that we have two sequences, [0.11, 0.12, 0.13 . . . ] and [0.12, 0.12, 0.11. . . ],

respectively. If we still adopt the tolerance range from 0.1 to 0.25, these two

sequences are recognized as similar, whereas by observation we would expect the

result to be dissimilar. If an inappropriate tolerance is used, the entire result is

affected detrimentally. In other words, subsequent analysis and interpretation of

the data are misinterpreted.
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Figure 3.1: Process of SEG

Moreover, CSE cannot demonstrate inter- and intra-period correlation. It can

only provide an overall value to indicate the degree of the similarity and synchrony

between two datasets. As well, it fails to quantify the similarity of different periods.

3.2.4 Sample entropy gradient

By exploiting time-series data, we propose an approach to compute the similarity

(Euclidean distance) of two time-series using SEGs derived from real data. The

SEG is a novel measure that has not previously been described. The process of

our approach for similarity computation is in Fig.3.1:

The SEG is a new method for comparing two time-series datasets/signals. It en-

ables us to investigate the correlations between two time-series datasets/signals
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with different periods. In addition, it is also able to find the outliers by compar-

ing with a standard benchmark dataset. The SEG overcomes the limitations of

CSE in that there is no need to select the tolerance in order to avoid its impact.

Furthermore, the SEG provides a mechanism to observe the outliers. Unlike CSE,

we use the SEG to measure both correlation and similarity, avoiding the need for

a tolerance parameter. In addition, the SEG implies the outliers of a dataset that

can be used for real-time anomaly detection.

Algorithm 1: Main CSE algorithm

Data: dataset u and v
Result: Distance of xm and ym
xm(i) ←(ui, u(i+ 1), ui+2, ..., ui+k) // xm contains all xm(i)
yn(i) ←(vi, v(i+ 1), vi+2, ..., vi+k) // ym contains all ym(i)
Entropy(xm) ← φ
Entropy(ym) ← φ
D(xm, ym) ← φ
while i ≤n-m do

Entropy(xm) ←Entropy(xm(i))
Entropy(xm(i)) ←Entropy(xm(i))

end
while i ≤ sizeofEntropy(xm and i ≤ sizeofEntropy(ym) do

D(xm, ym) ←Distance(Entropy(xm(i), ym(i))
end
return D(xm, ym)

Generally, the principle of the SEG is similar to that of CSE. A complete set is

divided into several sequences (subsets) according to the length m, which indicates

the time period as a unit. For each sequence, entropy is computed based on the

frequency distribution of each sequence/subset. For two adjacent entropies, we

compute the slope them. Fig. 1 shows the entire process of the SEG. For two

time-series datasets u = {ui, ui+2, ui+3, ..., ui+k} and v = {vi, vi+2, vi+3, ..., vi+k} ,

the sequences can be formed :
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xm(i) = (ui, u(i+ 1), ui+2, ..., ui+k)

ym(i) = (vi, v(i+ 1), vi+2, ..., vi+k)

The SEG can be defined by equation 3.14 and 3.15

SEG(xm) = L(Entropy(xm(i), xm(i+ k))) (3.14)

SEG(ym) = L(Entropy(ym(i), ym(i+ k))) (3.15)

where entropy(.) is computed by 3.16 and L is a linear regression function:

Entropy = −
n∑
i=1

−ln(p(si))p(si), si ∈ xmorym (3.16)

where p(.) is the probability of si.

Fig. 3.2 shows an example of SEG. For any two time-series data stream, both

time-series data streams are equally divided into identical number of sequences;

we computed entropy value for each sequence of both time-series data stream;

in case Fig 3.2, we linearize each two adjacent entropy to compute its SEG (In

general case, the number of linearization process can be customised according to

the specific requirements). For each pair of the sequence in both time-series data

stream, we compute the Euclidean distance (L2) to determine the similarity in

that time-stamp.
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Figure 3.2: Example process of SEG

3.3 Empirical Evaluation

To evaluate our proposed approach, we used two different domains of time-series

data, which are wind velocity data collected from a cable bridge and financial data.

We investigated if our method is able to detect outliers we injected in the dataset.

In anomaly detection experiment, we injected a different amount of outliers into

dataset to see whether our method is affected by the density of outliers. If the

place of detected outliers are consistent with our arranged injecting place, which

can indicate our method is able to detect the outliers.

From the financial study, we investigated the correlation between Australian stock

market (NASDQ) and American stock market (ASX). Our SEG method gives

a quantitative analysis between NASDQ and ASX, and we also survey relevant

financial report and papers to prove our quantitative analysis (Further detail of

financial study is presented in Appendix A).
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Data length Outlier rate
86400 0.2%
86400 0.4 %
86400 0.6 %
86400 0.8%

Table 3.1: Wind speed dataset

3.3.1 Data

3.3.1.1 Structural health dataset

We introduced the sensor data collected from a cable bridge. Specifically, we used

the wind load data as our experiment data. The length of the wind load data is

86,400, which collects data every second (1Hz). The difference within a minute

(60 seconds) is slight, so we aggregate the data into 1440 points by computing

the average of every minute. In this experiments, we have four different altered

datasets which inject with a different number of outliers. Table 3.1 showed the

outliers status.

3.3.1.2 Financial dataset

All finance data were downloaded from Yahoo Finance [89, 90] from March 1, 2000

to September 1, 2015. The share market indices were the ASX and NASDAQ In

this study, we used only the closing price over the given period.
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Figure 3.3: Result of 0.2% injection rate

3.3.2 Results

Fig.3.6 shows the result of 0.6% outlier rate. We injected an outlier at every 150th

of the original data. We computed the entropy of every 10 points, consequently,

at sequence 15, 30, 45 and so forth. Totally, there are nine outliers are detected

by our method. Any outlier detected by our SEG method showed by the red bar,

otherwise, the SEG of altered data and original data should be identical. For each

outlier, it would result in two adjacent SEG change. The result reveals that the

injecting place is consistent with where we detected outliers.

Fig.3.5 shows the result of 0.4% outlier rate, which we injected an outlier at every

200th of the original data. We computed the entropy of every 10 points, con-

sequently, at sequence 20, 40, 60 and so forth. Totally, there are 7 outliers are

detected by our method. Any outlier detected by our SEG method is shown by the
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Figure 3.4: Result of 0.3% injection rate

red bar, otherwise the SEG of altered data and original data should be identical.

The result shows that the injecting place is consistent with where we detected

outliers.

Fig.3.4 shows the result of 0.3% outlier rate, which we injected an outlier at every

300th of the original data. We computed the entropy of every 10 points, conse-

quently, at sequence 30, 60, 90 and 120. Totally, there are 4 outliers are detected

by our method. Any outlier detected by our SEG method is shown by the red

bar, otherwise the SEG of altered data and original data should be identical. The

result shows that the injecting place is consistent with where we detected outliers.

Fig.3.3 shows the result of 0.2% outlier rate, which we injected an outlier at every

400th of the original data. We computed the entropy of every 10 points, conse-

quently, at sequence 40, 80 and 120. Totally, there are 3 outliers are detected
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Figure 3.5: Result of 0.4% injection rate

Figure 3.6: Result of 0.6% injection rate
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by our method. Any outlier detected by our SEG method is shown by the red

bar, otherwise the SEG of altered data and original data should be identical. The

result shows that the injecting place is consistent with where we detected outliers.

In conclusion, our method is able to detect the outliers and consistent with our

arranged place. However, benchmark dataset is the most important component in

our experiment. Every altered dataset needs to be compared with a benchmark

dataset for detecting the difference between them.

3.3.2.1 Case study of between ASX and NASDAQ

Fig.3.7 shows the entropy gradients of the NASDAQ and the ASX indices. It is

evident that the ASX index is correlated with the NASDAQ index, especially over

the first six sequences (the first 180 trading days); sequence 21 to sequence 34

and sequence 74 to 85 are also highly correlated. From the political perspective,

Australia is an ally of the U.S., sharing information and interacting closely [91].

Also, branches of many international corporations are located in Australia.

Reference [92] provides a detailed report of corporations financed by the U.S. From

this report, JP Morgan Chase and Citibank were two major investors in some

of Australia’s largest corporations including the banking, mining, and retailing

sectors and so forth. These two corporations accounted for at least 11% of the

shares of those companies (details can be found in the report). In banking industry

especially, JPMorgan Chase and Citibank held at least 30% of the shares of four of

the most important Australian banks (Commonwealth, National Australia Bank,

Westpac, and ANZ). Thus the U.S. has a tremendous impact on the Australian



Chapter 3 56

Figure 3.7: NASDAQ SEG and ASX SEG

financial market. Consequently, the ASX index correlates with the NASDAQ

index over many periods. Fig. 3.7 demonstrates the Euclidean distance between

the ASX index entropy gradient and the NASDAQ index entropy gradient as well

by the grey bar chart. The gradient distance reflects that the difference between

the two entropy gradients is small, ranging from 0.0011 to 0.02. Most of the

distances between these two entropy gradients are around 0.01. Thus, we can

conclude that the ASX is correlated with the NASDAQ over this period.

3.4 Summary

In this chapter, we proposed a SEG method for comparing two time-series dataset-

s/signals for similarity and anomaly detection. The SEG method avoids the need

to use a tolerance parameter, allowing the method to be adapted to various cases.

Moreover, it allows comparison of time-series datasets/signals for specified time
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segments with quantified differences, enabling us to observe similarity or abnor-

malities over the different time segments. Our experiment demonstrated that the

method could identify the outliers by comparing with a benchmark dataset. Our

financial case study demonstrates there is a correlation between ASX and NAS-

DAQ in different timestamps, and surveys and reports can support our analysis

and the further financial study are presented in Appendix A. For anomaly detec-

tion, the limitation of our method is dependent on a well-constructed benchmark

dataset. The main material of this chapter has been published in IEEE Interna-

tional Conference on Industrial Electronics and Applications (ICIEA 2017).

Publication arising in this chapter:

• D.Sun, V.Lee and Y. Lu, “A Gradient-based Algorithm for trend and out-

lier prediction in dynamic data streams”, proceeding of International Con-

ference on Industrial Electronics and Applications (ICIEA) ERA Rank A

Conference, June 2017, Sime Reap, Cambodia. Proceeding of IEEE ICIEA

pp.1975-1980.
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An ensemble kernel density

estimator method for online

high-frequency data stream

anomaly detection

In Chapter 3 we proposed the SEG method to detect anomalies and analyze two

time-series datasets. However, there are some limitations of our SEG method:

• Highly relying on the benchmark datasets for anomaly detection

• High-quality of benchmark datasets is expensive to produce

• Hard to determine the euclidean distance for detecting anomalies under poor

benchmark datasets

58
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Therefore, a benchmark dataset free method is required. To answer the first re-

search question, in this chapter I proposed an ensemble kernel density method for

online anomaly detection. It applied ensemble analysis, kernel density estimator

and sliding window to detect anomalies for a data stream. To evaluate the per-

formance of our EK method in terms of accuracy, specificity and sensitivity, we

compared it with other method using UCI and structural health monitoring (SHM)

data in which accuracy and sensitivity, in particular, are significant measurements.

Any type-2 error (false negative) can have a fatally detrimental impact on both

structural and public safety. The results show that our EK method is capable of

capturing anomalies with a rapid reaction time compared to other online anomaly

detection methods.

4.1 Motivation

Online anomaly detection is a branch of anomaly detection that helps monitor

the status of incoming data in real time. Traditional anomaly detection suites

focus on assumptions of static data distribution and environments. Researchers

and scientists have worked extensively on this problem across a wide range of do-

mains, with various results, as reviewed in [93]. Online detection of anomalies in

data streams has been undertaken in recent years, where the challenge lies in the

dynamically changing data environments. Application of current online anomaly

detection methods to data stream anomaly detection is inappropriate for rapidly

changing data environments. Time variation, in which the data stream possesses

uncertainties and non-stationary process characteristics, is a unique characteristic
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which differentiates dynamic from static data environments. For instance, a data

point may be recognized as non-anomalous based on an offline method, but it may

actually be an anomaly in a specific time-segment. To overcome this challenge, we

proposed an ensemble kernel density estimator (EK) method for online anomaly

detection in high-frequency data streams. Our method adopted a sliding window

principle [94] and used an ensemble analysis principle for recent temporal data den-

sities to evaluate abnormalities in incoming data[95]. We conducted experiments

on UCI datasets and SHM data collected from a highway steel cable suspension

bridge in China. SHM deploys various types of sensors on a structure to detect any

abnormal status. Wind speed is one critical data type of concern in SHM. With

increasing wind speed, a structure (especially a cable bridge) can bear dramati-

cal variations in wind load and structural stress. We introduced high-frequency

wind speed data to test the performance of the EK method and compare it with

other methods. Our experimental findings suggest that the proposed EK method

has stable and significantly better performance in terms of accuracy, sensitivity,

specificity and efficiency in of online anomaly detection.

4.2 Related Work

Anomaly detection problems have been extensively studied for years. Previous

anomaly detection work has been based on the assumption of static and stationary

data distribution. In real climate data environments, streaming data are non-

stationary, yet, coupled with the need for timeliness of decision making, online

anomaly detection is essential. For instance, civil structural engineers’ concerns



Chapter 4 61

about the real-time safety of a structure (e.g. a bridge, a building) belong to a

branch of SHM. Offline anomaly detection would clearly be inappropriate in such

context, a situation that leads us to online anomaly detection, the most important

challenge resulting from dynamic changes within an incoming data stream.

Two general categories of anomaly detection methods exist, the distance-based

method and the model-based method. Distance-based methods use the distance

of a data point away from an arbitrary threshold as the criterion for judging the

anomaly of an actual data point. Global outliers and the local outliers are two

sub-categories of distance-based anomaly detection methods. A data point is de-

fined as a global outlier if it deviates more than the distance R (a domain specific

threshold) from k data points. Ref. [96] first proposed the use of global out-

lier approach to detect outliers. However, because R is a constant threshold for

measuring global distance, that approach fails to produce a good performance (in

terms of accuracy) for heterogeneous datasets. A local outlier differs from global

outliers, in that any data point is defined as a local outlier if it deviates more than

distance R from the k nearest neighbours. [97] and [98] each presented enhanced

versions of LOF that could be applied to data stream anomaly detection. However,

these local outlier approaches assumed that distribution was static, without any

impact on performance. Furthermore, it is difficult to select the k nearest neigh-

bours in a dynamically changing environment, especially in high-frequency data

stream environments. Adaptive online outlier detection for data stream (AODDS)

[99] is another distance-based method for data stream. AODDS adopts a global

deviation factor (GDF) and a local deviation factor (LDF) to determine anomalies
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in data streams. However, AODDS is not efficient in detecting anomalies espe-

cially in a high frequency environment, because it consumes a large amount of

time for computing both local distance and global distance, as demonstrated in

our experiment in Section 5.4.2.2.

Model-based anomaly detection is an alternative method category for anomaly de-

tection, which attempts to capture anomalies via modelling data. [100] and [101]

are two examples of model-based methods for offline anomaly detection. [100]

adopted a clustering method based on a graph-based method to extract clustering

and outliers at the same time. [101] proposed a support vector domain descrip-

tion to establish a tight boundary for describing a dataset in order to distinguish

anomalies by measuring the distance to the boundary. However, both methods fail

to be applied to a high-frequency data environment. The relevance-weighted en-

semble model [95] and the method of outlier detection in stream data by K-means

clustering [102] are two model-based methods. [95] attempted to model normal

data in a previous period by clustering according to previous normal clusters. That

clustering formed a relevant normal model for detecting anomalies in the current

period. However, the method was designed for switching data streams rather than

high-frequency data streams. [102] adopted a sliding window principle; that ap-

plied an incremental K-means clustering method to capture outliers. However, an

increase in data volume had a negative impact on accuracy and detection time of

the method.

Ensemble analysis enhances the performance of anomaly detection methods and
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[93] has been adopted widely in anomaly detection. An analyst’s primitive under-

standing of a dataset is subjective, and the selection of a model(s) or function(s)

contains elements of the analyst’s preference. Thus, the result produced by the

selected functions or models would also be biased toward the analyst’s choices.

Consequently, ensemble analysis has been introduced in recent years to alleviate

such subjectivity and dependence on model or function. Ensemble analysis can

reflect whether the categorization is determined by component dependence or cat-

egorized by constituent components. Categorization by component dependence

classifies the method in terms of dependence; specifically, whether a model or

function is dependent on another model(s) or function(s). Sequential ensemble

and independent ensemble are two main sub-types of this categorization. Sequen-

tial ensemble analysis is the output of an algorithm or a set of algorithms which

have an impact on the next algorithm(s). [103] and [104] proposed two typical

sequential ensemble approaches. In an independent ensemble, the outputs of dif-

ferent or the same algorithm(s) are independent of each other, but the final result

is aggregated from all outputs. Many approaches have adopted independent en-

semble analysis, such as the approaches of [105] and [96].

Categorization by constituent components classifies approaches as either model-

centred or data-centred. Model-centred approaches aggregate different results

given by different models. The approaches of [96] and [105] are two examples

of model-centred ensemble analysis. Data-centred ensemble analysis aggregates

the results from different parts or samples of an entire dataset. [106] used a data-

centred ensemble analysis. This data-centred method is also known as a feature
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bagging or subspace ensemble method [107]. In another example of a data-centred

ensemble method, In [108] employed a genetic approach to detect anomalies via

evaluating data behaviours in sub-spaces.

Our proposed EK method is model-based (distance-based or model-based catego-

rization) and data-centralized (ensemble categorization). It models the density of

a number of short-term period data for evaluating the abnormality of new incom-

ing stream data in the current period, in which the period is defined according to

the width of a sliding-window.

Our proposed EK method makes the following contribution:

1. It can detect anomalies under a high-frequency data stream environment

2. It overcomes the dynamically changing environment challenge of online data

stream anomaly detection

3. It is capable of capturing anomalies efficiently with around 92% to 94%

accuracy

4. It is capable of remaining at least 90% accurate under a massive volume of

data.
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4.3 Proposed Method

4.3.1 Problem formulation

A given finite data stream X = {x1, x2, x3, ..., xn} is divided in to n windows with

lengthm, denoteed asWm = {wm1 , wm2 , wm3 , ..., wmN}, where wmi = {xi, xi+1, xi+n...xi+n}(i+

n = m).The number of windows and the width of a window are constant, but the

data within windows are change dynamically over time, which is also known as

a sliding window. The principle of a sliding window has been applied in many

domains [94], and we adopte this principle in our EK method. The densities (dis-

tributions) of wmi ∈ Wm denote as θ(Wm) = {θm1 , θm2 , θm3 , ..., θmn }. Any incoming

data point xi is substituted into θ(Wm). The result of θ(Wm) is a vote vector (

where θmi ∈ θ(Wm)) is denoted as V = {v1, v2, v3, ..., vn}. For each vote vector the

EK method computes an anomaly factor(AF),described in Section 4.3.4, which is

denoted as ai ∈ A where A = {a1, a2, a3, ..., an}. Any ai ≥ K|0 ≤ K ≤ 1 is con-

sidered as an anomaly, where K is the threshold of AF depending on the problem

domain.

4.3.2 Overall description

The EK method uses an ensemble analysis based on a kernel estimator for online

anomaly detection in high-frequency data streams. It can be categorized as an in-

dependent ensemble analysis (in terms of the component independence category)
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Figure 4.1: Procedures of Ensemble Kernel

or a data-centred ensemble analysis (in terms of the constituent component cat-

egory), which uses a kernel estimator method (model-based anomaly detection).

Our proposed EK method can detect anomalies 1) under dynamic distribution

environments and high-frequency environments, 2) in real-time (online detection),

and 3) with a rapid detection time. Generally, the EK method contains following

steps (shown in Fig. 4.1):
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1. Windowing

In a finite data stream X(X = {x1, x2, x3, ..., xn}), we have n sliding windows

of size m. The n and m are two parameters to define the sliding windows,

which are denoted as Wm = {wm1 , wm2 , wm3 , ..., wmn }. The optimized m and n

are 1200 and 20. Discussion of this result is presented in Section 4.4.1.

2. Kernel function

For each window wmi , we use the kernel density estimator to compute the

density individually, denoted as θm(Wm) = {θm1 , θm2 , θm3 , ..., θmn } . For new

incoming data xi, xi is tested via a hypothesis test supported by the density

θmi . An incoming data point x is substituted into the density of a window

θmi . To compute the density value in a window, the density at x is defined

in Equation (5.1) :

θmi (wmi ) =
1

n

n∑
i=1

K(
x− xi
h

) (4.1)

where K(.) is the kernel function and xi ∈ wmi and h is a smoothing param-

eter which controls the size of the neighbourhood around xi). Detail of the

Kernel function is provided in Section 4.3.3.

3. Voting

For each window, we have a hypothesis that in the present data x is normal

(H0 : x = 0( indicating that our null hypothesis for data x is normal). If the

density of x is less than a threshold value (p-value), this hypothesis (that the

present data x is normal) can be rejected, or vice versa. Then, this window

votes 1(abnormal data) or 0(normal data).
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uniform K(u) = 1
2

triangle K(u) = (1− |u|)
Gaussian K(u) = 1√

2π
e−

1
2u2

Epanechincov K(u) = 3
4
(1− u2)

Quartic K(u) = 15
16

(1− u2)2

Triweight K(u) = 35
32

(1− u2)3

Cosine K(u) = π
4

cos(π
2
u)

Table 4.1: Details of Kernels

4. Aggregating

In the final stage, by aggregating all votes from all windows, this factor can

be used as our primary reference to detect anomalies (details are provided

in Section 4.3.4).

4.3.3 Kernel function

The kernel density estimator (KDE) [109, 110] is our core method for estimating

the density function for each window, without having to select the parameter(s).

The definition of KDE can be found in Equation (5.1). Several kernel functions

[111] are available, namely uniform, triangle, Gaussian, Epanechnikov, quartic,

triweight and Cosine(details of kernel functions are shown in Table 5.1). Although

many kernel functions are available, their impact on the final result is slight [112].

However, the bandwidth selection has an influential impact on the result. The

mean integrated squared error (MISE) [113] is the criterion used in the optimiza-

tion process to find an optimized bandwidth, and Equation (5.3) defines the MISE

which enables us to find the proper bandwidth [93, 104].

MISE(h) = E[

∫
(f ′h(x)− f(x))2dx] (4.2)
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where E[.] is the expectation value f
′(x)
h is the unknown density and f(x) is the

density estimation based on the given sample. If we use a Gaussian kernel in a

practical dataset, the bandwidth h is defined in Equation (5.4).

h = 1.06δN−
1
5 (4.3)

where δ is the mean of a given sample and N is the number of training examples.

In our experiment, we use Gaussian distribution as our kernel function.

Compared with the most frequently used density function, a histogram, KDE has

two main advantages:

1. Smoothness

The result of a histogram is not smooth, as it is represented by squared bars

or lines.

2. Options of kernel functions

A number of kernel functions are available for cases with different circum-

stances and distributions assumptions.

3. Dependence on the width of the bin

The result of a histogram is profoundly affected by the width of the bin.

4.3.4 Anomaly factor

The AF is the primary measurement of the EK. It expresses the degree of ab-

normality of a data point within a certain period. When the voting process
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Figure 4.2: Process of Online EK Anomaly Analysis

has been completed, our method computes the AF with the vote vector V =

{v1, v2, v3, ..., vn} , defined in equation (5.2):

AF =

∑N
i=1 vi
N

(4.4)

The higher the AF, the more likely the data point is to be abnormal, and vice

versa. The threshold of the AF depends on the problem domain. In cases which

require high sensitivity, the threshold is adjusted to a low level. If AF > K, the

new incoming data point is an anomaly. The threshold K is determined by the

user, where 0 < K < 1. In our experiment, K is 0.8 indicating 80% likelihood as

an anomaly.
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Algorithm 2: EK Algorithm

Data: X = x1, x2, x3, ..., xn, windowwidth = m,#windows = n, densities = θ′

Result: Anomaly factor A = a1, a2, a3, ..., an
θm ← θ′ ;
// assign short-term density vector

K ← k ;
// constant threshold, threshold set based on problem domain

while xi 6= φ do
wmn+1 ← xi; // if wmn+1 = n, updateθ
ai ← AFComputation(xi, θ,K)
// if ai ≥ K then

AnomalyPolicy(xi)
else

if size(wmn+1 6= m) then
wmn+1 ← xi
//

else
UpdateModel(θ, wmn+1)
// wmn+1 ← φ
//

end

end

end

Algorithm 3: AFComputation Algorithm

Data: xi, θ,K
Result: a
pt ← 0.0001 ;
// p-value threshold for hypothesis test

for θmi ∈ θm do
p← θmi (xi) ;
// use kernel density function in equation (5.1)

if p ≥ pt then
vi ← 0;

else
vi ← 1;

end

end

a =
∑n

i=1 vi
n

;
if a ≥ K then

a = LongtermCalibration(V, xi)
else

end
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Algorithm 4: Long-term calibration Algorithm

Data: V,x
Result: a
C ← 0.7 ;
// Calibration factor, impact of long-term calibration

pt ← 0.05 ;
p← θl(x) ;
// compute the p value of x in distribution Θ
if p ≥ pt then

for vi ∈ V do
if vi == 1 then

vi ← vi(1− c)
else

// do nothing

end

end

else
// do nothing

end

Return a←
∑n

i=1

n
;

Algorithm 5: UpdateModel Algorithm

Data: wmn+1, θ
m

Result: θ′m

θm ← θm(wmn+1);
for θmi ∈ θm do

if θmi 6= n then
θ′mi ← θm(i+1)

else
θ′mi ← θmn

end

end

4.3.5 Process of Online EK Anomaly Analysis

Fig. 4.2 shows the entire process of online EK anomaly detection for a data stream.

For each incoming data x, we use the EK to test its abnormality. If the present

x is an anomaly, long-term calibration is triggered to test the presenting data x

again. If the result of calibration is the same as the hypothesis test of the previous
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step, anomaly policies are triggered; otherwise the result is corrected by long-term

density calibration; if the present data x is not an anomaly, a model update process

is triggered to renew the density of the windows. Algorithms 2, 3, 4 and 5 show

the algorithms of the EK method.

4.4 Experiments and results

To test the performance of the EK, we conducted three groups of experiments

using UCI datasets and SHM data provided by a provincial Transport Research

Institute from China (Because of confidentiality agreements and national policy

and security issues, we do not to publish the name of the institute or the dataset).

SHM uses different technologies to monitor the health status of a structure. Online

anomaly detection in a data stream is one of the crucial components in SHM, as a

public safety measure to prevent fatalities via reporting abnormal/hazardous sit-

uations. All datasets were collected from a highway steel cable suspension bridge.

In the first group of experiments, we used the wind speed dataset to evaluate the

performance of EK method in terms of accuracy, sensitivity and specificity. In

the second group of experiments, we compared the EK with sliding-window K-

means anomaly detection for data stream, LOF, and AODDS with UCI datasets

and SHM wind speed data. In the third group of experiments, we introduced

large-volume wind speed and road surface data to test the performance of the EK

method compared with the K-means method. All datasets used were collected

from the same bridge structure.
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4.4.1 EK Evaluation experiment design and result

4.4.1.1 Experimental design and procedure

In this experiment, we evaluated our EK method in terms of accuracy, specificity

and sensitivity, which are defined in Equation ( 2.1), (2.3) and ( 2.2).

The size of the dataset used in this experiment was 259,200, which was collected

during December 2016 (1 Hz sampling rate). Structural experts for the Transport

Research Institute had labelled some anomalies from datasets. Because the rate

of anomalies was really low and our method could detect all these anomalies, we

introduced extra anomalies into the data to test the performance of the datasets.

We randomly injected outliers into the original dataset. The number of outliers

was controlled by the injection rate (10% in this experiment). For each data

point, we generated a random number between 0 and 1. If this random number

was greater than (1- rate), this data point was added as a random number between

5 and 10 as an outlier. During the injection process, we also labelled the altered

data points as anomalies. To prove the optimized result, we set different window

widths, namely 5-minute window(300 data points if the frequency is 1Hz), 10-

minute window, 20-minute window, 30-minute window and 60-minute window. We

also set different numbers of windows, namely 5, 10 and 20. If we had increased

the number of windows above 20, it would no longer be a short-term duration

evaluation. In our experiment, we set the AF threshold at 0.8. The p-value for

the short-term hypothesis test was 0.0001 (to reduce type-2 error under short-term

density support) and 0.05 was used for long-term calibration.
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Figure 4.3: Wind speed datasets over the time (3-day)

Figure 4.4: Accuracy

Fig.4.3 shows the scatter of our 72-hour(3-day data) wind speed dataset. We used

three different colours to represent data points over three days. From observation,

the distribution changed over time.
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Figure 4.5: Specificity

Figure 4.6: Sensitivity
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4.4.1.2 Experimental result and discussion

Fig. 4.4, 4.5 and 4.6 show the accuracy, specificity and sensitivity of the EK

method respectively. From Fig. 4.4 and 4.5 we found that with the increase

in window width and the number of windows, accuracy and specificity increased

significantly. In 4.6, we observed that with the increase in window width and

number of windows, sensitivity decreases slightly. However, if we observed the

value of sensitivity, the differences between groups are slight, because all results

are above 0.99. The performance of the EK method with regard to accuracy,

specificity and sensitivity increase to a certain point, and then remains at the

same level. In the present case, the performance remains steady when the window

width is a 20-minute window (1200 data points) with 20 windows. Consequently,

we adopted a 20-minute window width1200 data points) and 20 windows as our

optimized parameter for subsequent experiments.

To conclude, our EK method produced a superior result for SHM in terms of accu-

racy, specificity and sensitivity. Sensitivity is the most important measurement to

consider in SHM, as any type-2 error (false negative) can have a fatally detrimental

impact on both structure and public safety.

4.4.2 Comparison experiment and result

In these experiments, we compared our EK method with the method of K-means

for data streams [102], LOF [97], and AODDS [99] using UCI datasets and wind

speed datasets. We evaluated these methods in terms of accuracy and detection
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time, which was the time taken to test an incoming data point. K-means for data

stream employs a K-means clustering method (a model-based method) to detect

outliers in a data stream. The LOF, an ensemble distance-based method, measures

the density of local (nearest) neighbours to indicate the degree of abnormality. The

equations and relevant proofs can be found in [96]. The AODDS, a distance-based

method, is another data stream detection method, which computes the GDF and

local deviation factor LDF to determine an outlier. Any point which is greater

than three times the standard deviation of GDF or LDF is recognized as an outlier.

Details of the GDF and LDF can be found in [99]. The EK method, online K-

means for data streams and AODDS adopt the sliding-window principle to perform

online anomaly analysis. Consequently, we used different window widths for these

methods. Although LOF has no sliding window principle, we still implemented a

sliding window principle in this experiment for comparison. That addition did not

have a negative impact on the result; in fact, it enhanced the performance of LOF

which because it performed an anomaly analysis for a period of data in a window

rather than for the entire large dataset.

By comparisons with a distance-based method(AODDS), an ensemble distance-

based method (LOF) and a model-based method (sliding window K-means), we

observed the performance of different method categories on high-frequency data

streams.
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Figure 4.7: Wind data comparison

4.4.2.1 Experimental design and procedure

The wind speed datasets were the same as in Section 4.4.1. We chose Forest Cover,

HTTP, SMTP, Mammography, Shuttle, and Mulcross from UCI. In these experi-

ments, the AF threshold was set at 0.8; the p-value for the short-term hypothesis

test was 0.0001 (to reduce type-2 error under short-term density support) and 0.05

was used for long-term calibration.

4.4.2.2 Experimental results

In the wind speed dataset (Fig. 4.7), our EK method produced the best per-

formance of all the methods, reaching approximately 94% accuracy. From the

efficiency perspective, our EK method had the fastest reaction time, which re-

mained at almost at the same level except for 60-minute window width. The

performance of K-means and LOF methods had similar performance at around

90% accuracy. For confidentiality reasons we do not publish our SHM dataset.
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Figure 4.8: Accuracy of UCI datasets

We also compare our method using UCI datasets. Table 4.2 shows information

about the UCI datasets.

Dataset Name Size Outlier Rate
HTTP 567479 0.4%
SMTP 95156 0.03%

ForestCover 286048 0.9%
Mulcross 262144 10%

Mammography 11183 2.32%
Shuttle 49097 7%

Table 4.2: Detail of UCI datasets

Fig. 4.8 4.9 and 4.10 show the comparative results using UCI datasets. The results

show that the performance of our EK method is significantly superior to that of

the other methods, with different outlier rates in terms of accuracy, sensitivity and

specificity. Only the Mammography and Shuttle have a slightly lower accuracy

compared with the K-means method with lower accuracy. The reason for this

problem is that the Mammography and Shuttle datasets were smaller than those

of the other datasets.
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Figure 4.9: Sensitivity of UCI datasets

Figure 4.10: Specificity of UCI datasets
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Figure 4.11: Performance Comparison using large volume of wind speed data

To summarize, our EK method demonstrated stable performance with respect to

accuracy and detection time compared to the other methods in our experiment,

using the wind speed dataset. In addition, in the UCI dataset experiment, our EK

method showed significantly better performance than other methods. However,

through the UCI experiments, we found that the performance of our EK method

is affected by the size of the dataset.

4.4.3 Large volume data performance evaluation and com-

parison

Throughout the above two experiments, our EK method demonstrated stable per-

formance. To test the performance of our EK method under large-volume datasets,

we conducted experiments with massive wind speed datasets and temperature

datasets in order to observe the performance of the EK method in terms of ac-

curacy and detection time. In addition, we compared our EK method with the
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Figure 4.12: Performance Comparison using large volume of temperature data

K-means method described in Section ??. Because the K-means method showed

good performance in comparisons with remaining methods, we compared the EK

method with the K-means method in the present experiments. Fig. 4.11 and 4.12

show the result based on the volume of data. Generally, the performance of both

methods declines with the increasing volume of the dataset, but the results for

our EK method are better than those for K-means. The average of our method

remained approximately 93% accuracy, and the average detection time was around

0.00003 seconds, which was significantly less than that of the K-means method. In-

terestingly, the detection time of the K-means method decreased to around 0.00012

seconds and stabilized at around 0.00012 seconds after 40,000 data points for both

wind speed and temperature datasets.
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4.5 Limitation

Our EK method was capable of detecting anomalies with around 93% accuracy

within a reasonable detection time. Moreover, under massive volumes of data,

the EK method remained 90% accuracy and responded to anomalies within a

rapid processing interval. However, it had some limitations. Our EK method was

influenced by the size of the dataset. Specifically, our EK method showed poorer

performance on small dataset.

In future work, we intend to focus on an adaptive AF threshold definition and

on enhancing the performance of the EK method under low frequency and low

volatility environments.

4.6 Summary

Dynamically changing environments present a challenge in the online detection of

data stream anomalies. Our proposed EK method adopts a sliding window prin-

ciple and ensemble analysis to capture anomalies in data streams. We tested our

method using practical SHM data and the results showed the method to be capable

of detecting anomalies in data streams efficiently, especially in high-frequency and

high-volatility environments. Furthermore, the EK method retained above 90%

accuracy and rapid detection time even when applied to a massive data volume.

Thus, it would enable structural engineers to monitor structural health status



Chapter 4 85

in real-time. When applied to public UCI datasets, the performance of our EK

method was significantly superior to that of other methods.

The main material of this chapter has been submitted to the journal of pattern

recognition, and it has been under review by pattern recognition.
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A new online anomaly detection

method: multi-dimensional

ensemble kernel

In Chapter 4 we proposed EK method for online anomaly detection. It can detect

anomalies for a data stream in real-time efficiently. To answer the first research,

in this chapter, we extended our EK method to multi-dimensional ensemble kernel

method to detect anomalies in n dimensions. It also can answer part of the second

research problem. Our proposed method, the MEK method is capable of detect-

ing anomalies in real time for multi-dimensional data, using ensemble analysis and

kernel density estimation. To evaluate the performance of our MEK method in

terms of accuracy, specificity, and sensitivity, we used UCI standard datasets and

practical structural health monitoring (SHM) data, in which accuracy and sensi-

tivity, in particular, are significant measurements. In SHM, any type-2 error (false

86
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negative) can have a fatally detrimental impact on both structural and public

safety. The results show that the MEK method is capable of capturing anomalies

with high sensitivity and accuracy compared to other online anomaly detection

methods in both practical datasets and UCI datasets. Under a long-term and mas-

sive amount of data scenario, MEK can maintain good accuracy and sensitivity.

Our MEK method is capable of detecting anomalies from heterogeneous data such

as various SHM data. It also capable to handle data with different characteristics,

such as periodical or contextual data streams. Moreover, our proposed method

is computationally efficient with stable performance for a long-term period or a

massive amount of data scenario.

5.1 Motivation

Anomaly detection aims to capture or detect any unexpected behaviours or data

in a dataset. This technique has achieved a profound result with various applica-

tions in domains such as engineering[114], finance [115], and security[116]. Many

researchers and scientists have been contributed to anomaly detection with re-

markable results and achievements. With the increasing number of demands for

real-time information, online anomaly detection has aroused interest in research

communities. Online anomaly detection attempts to capture uncomfortable be-

haviours or data points in real time. Most traditional anomaly detection work

is based on the assumption of a static data environment or the assumption of a

static single/multi-dimensional data environment. Online anomaly detection is

unlike traditional anomaly detection: data distribution and environment change
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dynamically [117], especially for high-frequency and high-volatility data. Time

variation is a further challenge in online anomaly detection, bringing additional

uncertainties to anomaly detection. For instance, whereas a data point might be

captured as an anomaly in some traditional offline methods, it may, in fact, be

an anomaly in a specific time-segment captured by an online anomaly detection

method. Consequently, we proposed a multi-dimensional ensemble kernel (MEK)

method for detecting anomalies in various multidimensional online data. Our

MEK uses ensemble analysis and a kernel density estimator to detect anomalies

in different time periods. We apply and test our method using structural health

monitoring (SHM) data.

With tremendous developments in civil construction such as short-span or long-

span bridges, high or low buildings, railways, or mega-structural public buildings,

managing and monitoring the health status of a structure is critically important,

since any potential hazards could result in catastrophe for both public safety and

economy[118, 119]. Sensor technology provides a solution to SHM, enabling civil

engineers or related organization to monitor the health status of a building in real

time. In a SHM project, they would deploy displacement sensor (via accelerom-

eter, GPS, fibre optic sensor), strain-stress sensors(optic fibre sensors, accelerom-

eter, and piezo-electric ceramic), and load sensors (i.e. traffic load sensor, wind

load sensors). Although sensors help civil engineers to collect data for analysis,

analyzing a massive amount of structural data collected from sensors is a challenge

for civil engineers. In particular, reporting abnormal data in real-time is vital for

reducing potential risks and avoid catastrophe. Online anomaly detection for SHM
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helps civil engineers to develop a plan for the effective structural maintenance plan

or dealing with emergencies.

Our proposed MEK can be applied in both single or multi-dimensional anomaly

detection. In this chapter, we introduce our the MEK method and a series of

experiments evaluating the accuracy, sensitivity and specificity. Our MEK method

provides decision support for the bridge monitoring and management of anomaly

detection, enabling engineers to troubleshoot efficiently and devise maintenance

and emergency plans help relevant organizations to controls expenditure. Our

contribution to anomaly detection includes:

• MEK has a greater performance compared with other methods [120–122] in

terms of accuracy, sensitivity and specificity

• MEK is more scalable to be applied to data with different characteristics

• MEK method is more computationally efficient for heterogeneous data

5.2 Related work

Anomaly detection has been extensively studied in recent decades, with many

remarkable results. Traditional anomaly detection methods have generally devel-

oped based on the assumption of a static distribution or static data environment

and can be categorized into distance-based methods or model-based methods.

Distance-based methods have two sub-categories, global outlier and local outlier.
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A data point is detected as a global outlier if it deviates more than the thresh-

old distance R from k points. [96] is the first proposed method that employed

the global outlier to detect anomalies. [48], [49] and [50] used the summation of

data distance from neighbours to determine the anomaly. In [48], it used only one

dataset (size 10,000) showing a good performance. However, one dataset failed

to prove that this method was good for other datasets. [49] and [50] were con-

cerned with efficiency , both of them fail to use a standard dataset to prove the

performance of their method.

A local outlier is similar to a global outlier. A data point is recognised as a local

outlier if it deviates more than a threshold distance R from k the nearest neigh-

bour data points. [97] introduced the first local outlier method, the local outlier

factor(LOF). Based on the LOF, [98] developed an enhanced version for online

anomaly detection. Distance-based methods are based on the distance between

a data point and a threshold distance R to determine the abnormality. How-

ever, the threshold R is a constant threshold that not adaptive to change with a

dynamic data environment. Under the high-frequency and dynamic data environ-

ment, LOF-based method failed to select nearest neighbours in an efficient manner.

Under this scenario, continuously selecting nearest neighbours is computationally

expensive. References [123], and [124] employed other distance-based methods,

that use Euclidean distance as the key measurement to recognize anomaly. How-

ever, these two methods are for off-line anomaly detection. References [57] and

[58] improved LOF efficiency by using a clustering technique. [57] used a clus-

tering technique to find micro-clusters with lower and upper bounds. Based on
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the result, it computed LOF. AODDS [99] is a distance-based method for online

anomaly detection using both global-distance and local-distance. It computed a

global deviation factor(GDF) and a local deviation factor (LDF) for each incoming

data points. Any GDF or LDF greater than three times of the standard deviation

of LDF or GDF is recognised as an anomaly. Although AODDS has good per-

formance in online anomaly detection, the computation time for each detection is

inefficient under a high-frequency data environment.

Model-based detection is another branch of anomaly detection. It detects anoma-

lies via building model(s) from data samples. [100] is an example of an offline

model-based method that employs a clustering technique to find outliers. [95]

and [102] are two model-based online anomaly detection methods. Reference [95]

attempted to use a clustering technique to train previous data in different period

into clusters. Based on the previous clusters, new clusters were formed according

to normal data for comparison with current cluster. Anomalies were recognised

based on the similarity(distance) between the normal cluster and the current pe-

riod cluster. [102] also applied a clustering technique and adopted a sliding-window

principle to capture anomalies. These methods only considered single-dimensional

online anomaly detection.

Multi-dimensional anomaly detection detects anomalies according to various di-

mensions. Most traditional multi-dimensional anomaly detection uses offline anal-

ysis. Reference [122] proposed an unsupervised method for anomaly detection,

and it has been applied to data captured by wearable equipment. It trained

previous data to extract features of normal and abnormal activity as primitive
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discovery, then uses clustering to establish an activity structure, then used the

activity structure to develop multi-dimensional time series data to detect abnor-

mal activity. Although this method is unsupervised, its accuracy is not robust

enough to be applied in SHM. From the reported results, it had 85% accuracy in

detecting abnormalities. In [? ], a similar method uses statistical and smoothed

trajectory(SST) extracted from historical data and non-linear prediction to eval-

uate the abnormality of a data point. In [120], it used the subspace and linear

regression method to detect anomalies in multi-dimensional time series data. In

our experiments we made comparisons with references[120–122].

5.3 Proposed method : Multi-dimensional En-

semble Kernel

5.3.1 Overall

Our MEK adopts a sliding-window principle and ensemble analysis for online

multi-dimensional time series anomaly detection. For a given set of time-series

data, we use a kernel function to estimate the density of a period where the period

is defined by the size of a sliding window. In each window, an anomaly hypothesis

test is performed based on support from an individual window. By computing the

anomaly factor (AF) from different windows in one dimension, any data with a

high AF is considered an anomaly in a dimension. The multi-dimensional AF can
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be computed via averaging AFs from different dimensions. Any anomaly would

have an impact on the overall anomaly factor (OAF).

5.3.2 Problem Formulation

For multi-dimensional data D = {D1, D2, D3, ..., Dn}, where n is the number of

dimensions, in dimension Di, all dimensions share a synchronized time-stamp de-

noted as T = {t1, t2, t3, ...tn} and their data are denoted asDi = {dt1, dt2, dt3, ..., dtn}

where ti is the time-stamp. In a dimension Di, a number of windows are set for

further computation, denoted as Wd
(ti,ti+k)
i = {w1, w2, w3, ..., wn} where n ∈ R is

the number of windows and (ti, ti+k) is the time period which from ti to ti+k. The

density of Wd
(ti,ti+k)
i is denoted as Θ(W

(ti,ti+k)
di

) = {θ1
w1
, θ2
w2
, θ3
w3
, ..., θnwn

}. In each

density, we have a hypothesis test for new incoming data point in each dimension.

The results of all densities are denoted as VΘ(W
(ti,ti+k)
di

) = {vθ1 , vθ2 , vθ3 , ..., vθn},

where vθ1 ∈ (1||0). The anomaly factor (AF) of a new incoming data in Di is

denoted as adi(xdi), where adi is 0 < adi(x) < 1, adi ∈ a. A higher adi indi-

cates that new incoming data in a dimension is an anomaly, and vice versa. The

OAF indicates the overall abnormality from different dimensions, denoted as Oi.

A lower of Oi indicates a higher degree of abnormality of new incoming data,

where Oi ∈ [0, 1]. For the incoming data vector x = {xd1, xd2, xd3, ..., xdn},our

proposed method attempts to compute the OAF in an efficient manner to capture

the anomaly in various dimensions.
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Figure 5.1: Procedures of Multi-dimensional Ensemble Kernel

5.3.3 Multi-dimensional Ensemble Kernel

Our proposed method MEK method adopts ensemble analysis based on the kernel

estimator for online multi-dimensional high-frequency data. It can be categorized

as an independent ensemble analysis (in terms of the component independence

category) or a data-centred ensemble analysis (in terms of the constituent com-

ponent category). Fig.5.1 shows the procedures of our MEK. This method has

following steps:

5.3.3.1 Windowing

In this phase, we define the effective time-span of each window and the num-

ber of windows. Through our experiment, when the time-span of a window

t = 1200(secs),the number of windows (n = 20) can achieve the optimized re-

sult. Recent historical data are divided into n number of windows, and with the

incoming data, all windows would be re-divided into n windows.
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5.3.3.2 Densities estimation

For each window, we use a kernel density estimator to compute the density, which

is defined in equation (5.1).

θiwi
=

1

n

n∑
i=1

K(
xdi − xi

h
) (5.1)

where K(.) is the kernel function and xi ∈ wmi . Detail of the Kernel function is

provided in Section 5.3.4.

5.3.3.3 Anomaly hypothesis test

For an incoming data point xdi in a dimension, a hypothesis test is computed

based on support from the densities of each individual window. The H0 is that

the incoming data point xdi is normal data. If the p-value is less than the threshold

( p < α ), then this hypothesis is rejected vice verse. In other words, this incoming

data point x is recognised as an anomaly.

5.3.3.4 AF computation

Based on the result of each individual hypothesis, if a null hypothesis has been

rejected, then the vote of a window is 1, vice versa. In the equation (5.2), the

anomaly factor of an incoming data point in dimension di is computed.

AF =

∑n
i=1 VΘ(W

(ti,ti+k)
di

)

n
(5.2)
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5.3.3.5 OAF computation

After computation of the completed AFs in each dimension, the OAF is computed

based on the result according to the Equation (5.3)

OAF = 1−
∑n

i=1AFdi
n

(5.3)

The higher the OAF score, the less likely there is an anomaly.

5.3.4 Kernel Density Estimation

The kernel density estimator (KDE) is the key function for estimating the density

The KDE [109, 110] is our core method for estimating the density function for

each window, without having to select parameter(s). The definition of KDE can

be found in Equation (5.1). Several kernel functions [111] are available, namely

uniform, triangle, Gaussian, Epanechnikov, Quartic, Triweight and Cosine(details

of kernel functions shown in Table 5.1). Although many kernel functions are

uniform K(u) = 1
2

triangle K(u) = (1− |u|)
Gaussian K(u) = 1√

2π
e−

1
2u2

Epanechnikov K(u) = 3
4
(1− u2)

Quartic K(u) = 15
16

(1− u2)2

Triweight K(u) = 35
32

(1− u2)3

Cosine K(u) = π
4

cos(π
2
u)

Table 5.1: Details of Kernels

available, their impact on the final result is slight [112]. However, the bandwidth

selection has an influential impact on the result. The mean integrated squared
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error (MISE) [113] is the criterion used in the optimization process to find an

optimized bandwidth, and Equation (5.4) defines the MISE, which enables us to

find the proper bandwidth[93, 104].

MISE(h) = argmin(E[

∫
(f ′h(xdi)− f(xdi))

2dx]) (5.4)

where E[.] is the expectation value, f
′(xdi)
h is the unknown density and f(xdi) is

the density estimation based on the given sample. If we assume that the density is

close to the Gaussian distribution, the bandwidth h is defined in Equation (5.5).

h = 1.06δN−
1
5 (5.5)

where δ is the mean of a given sample and N is the number of training examples.

In our experiment, we use the Gaussian kernel as our kernel function.

Compared with the most frequently used density function, which is the histogram,

KDE has two main advantages:

1. Smoothness

The result of a histogram is not smooth, as it is represented by squared bars

or lines.

2. Options of kernel functions

Many kernel functions are available for cases with different circumstances

and distributions assumptions.

3. Dependence on the width of the bin
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The result of a histogram is profoundly affected by the width of the bin.

5.3.5 Anomaly Factor and Overall Anomaly Factor

The AF is a primary measurement of the MEK method. It states the degree of

abnormality of a data point within a certain period of a dimension. When the

voting process has been completed, our method computes the AF with the vote

vector, which is defined in equation (5.2). The higher the AF, the more likely the

data point is to be abnormal in a dimension Di, and vice versa. The threshold of

the AF depends on the problem domain. In cases which require high sensitivity,

the threshold is adjusted to a low level.

The OAF is an indicator which demonstrates the overall degree of abnormality

from n dimensions. When all AF computations from dimensions have been com-

pleted, the OAF is computed according to equation (5.3). A higher OAF indicates

that incoming data points x (x is a vector includes all dimensional data) is less

likely to be abnormal, and vice versa. In SHM problems, a higher OAF suggests

that health status of the overall structure is normal or safe at a given period.

5.3.6 Process of MEK Anomaly Analysis

Fig.5.2 shows the entire process for multi-dimensional data streams. For each

incoming data points x in all dimensions, we compute its abnormality. If the

presenting data points x are abnormal, long-term calibration is triggered to test the

presenting data x again. If the result of calibration is the same as the hypothesis
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Figure 5.2: Entire process of MEK anomaly detection

test of the previous step, anomaly policies are triggered; otherwise, the result

is corrected by long-term density calibration; if the present data points x are

not an anomaly, a model update process is triggered to renew the density of

the windows respectively. Algorithms 6, 7, 8 and 9 show the algorithms of the

MEK method for single dimension evaluation. Algorithm 6 shows the entire main

process of MEK method; Algorithm 7 is the process of testing abnormality of new

incoming data points, any anomaly revokes the long-term calibration for reducing

the false positive rate;Algorithm 8 shows the long-term calibration algorithm for

OFA; Algorithm 9 shows the process of updating models, when a number of

new incoming data points can form a new window in each dimension, the model

updating is revoked to update all the models.

5.4 Experiment and result

To test the performance of the MEK, we conducted three groups of experiments

using UCI dataset and SHM data provided by a provincial Transport Research In-

stitute from China (Because of confidentiality agreements and national policy and
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Algorithm 6: MEK Algorithm

Data: X = xd1, xd2, xd3, ..., xdn, windowwidth = m,#windows = n, densities =
θ′

Result: Overall Anomaly factor OFA = O1, O2, O3, ..., On

θm ← θ′ ;
// assign short-term density vector

K ← k ;
// constant threshold, threshold set based on problem domain

while xi 6= φ do
wmn+1 ← xi; // if wmn+1 = n, updateθ
adi ← AFComputation(xdi, θ,K)
// if ai ≥ K then

AnomalyPolicy(xi)
else

if size(wmn+1 6= m) then
wmn+1 ← xi
//

else
UpdateModel(θ, wmn+1)
// wmn+1 ← φ
//

end

end

end
if OFA(a) ≤K then

LongtermCalibration(V,x)
else

end
// Long-term calibration to review the abnormal candidates

security issues, we do not publish the full name of the institute and the dataset).

SHM uses different types of technologies to monitor the health status of a struc-

ture. Online anomaly detection in a data stream is one of the crucial components

in SHM, which as a public safety measure to prevent fatalities via reporting abnor-

mal/hazardous situations. All datasets were collected from a highway steel cable

suspended bridge. In the first group of experiments, we use UCI public dataset

to compare with other methods. In the second group of experiments, we used



Chapter 5 101

Algorithm 7: AFComputation Algorithm

Data: xi, θ,K
Result: a
pt ← 0.0001 ;
// p-value threshold for hypothesis test

for θmi ∈ θm do
p← θmi (xi) ;
// use kernel density function in equation (5.1)

if p ≥ pt then
vi ← 0;

else
vi ← 1;

end

end

a =
∑n

i=1 vi
n

;
Return a

Algorithm 8: Long-term calibration Algorithm

Data: V,x
Result: OFA
C ← 0.8 ;
// Calibration factor, impact of long-term calibration

pt ← 0.05 ;
p← θl(x) ;
// compute the p value of in each dimension Θ
if p ≥ pt then

for vi ∈ V do
if vi == 1 then

vi ← vi(1− c)
else

// do nothing

end

end

else
// do nothing

end

Return OFA←
∑n

i=1 a

n
;
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Algorithm 9: Update Model Algorithm

Data: wmn+1, θ
m

Result: θ′m

θm ← θm(wmn+1);
for θmi ∈ θm do

if θmi 6= n then
θ′mi ← θm(i+1)

else
θ′mi ← θmn

end

end

SHM datasets including wind speed, road surface temperature, and GPS to eval-

uate the MEK method’s performance compared with other methods. In these two

experiments, we compared with the multi-dimensional data cube (MDC), multi-

dimensional intrusion detection (MID) and Unsupervised clustering (UC) for with

both road surface temperature data and wind speed data. In addition, we con-

ducted the third experiment using wind speed data, road surface data, and GPS

data with different sizes from 1 million to 10 million. In this experiment, we aim

to test the performance of our MEK under the long-term scenario.

5.4.1 UCI dataset experiment

5.4.1.1 Experimental design and procedure

To test the performance of our method, we use public datasets to demonstrate

its performance compared with other methods. We choose Forest Cover, HTTP,

SMTP, Mammography, Shuttle, and Mulcross from UCI dataset collections [125].

Details of the datasets are shown in Table 5.2. These datasets had various out-

lier rates from 0.03% to 10% with different sizes. ForestCover and Shuttle have
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more dimensions than HTTP, SMTP and Mulcross datasets, which are 10 and 9

respectively. The rest of the dimension information is presented in Table 5.2.

• HTTP: The 1999 KDD cup dataset has 4 attributes(service, duration, source

bytes, destination bytes). The Original dataset has 41 attributes (34 con-

tinuous, 7 categorical), but they are reduced to 4 attributes which regarding

HTTP data. HTTP, SMTP, FTP, FTP data, and other subsets are inte-

grated into the original dataset, and only HTTP service used in our exper-

iment. The size of original dataset contains 3,925,651 records, and it has

been condensed into 567,479 records for the 1999 cup dataset.

• SMTP: The 1999 KDD cup dataset, has 4 attributes(service, duration, source

bytes, destination bytes). 1999 KDD cup dataset, has 4 attributes(service,

duration, source bytes, destination bytes). The Original dataset has 41 at-

tributes (34 continuous, 7 categorical), but they are reduced to 4 attributes

which regarding HTTP data. HTTP, SMTP, FTP, FTP data, and others

subsets are integrated into the original dataset, and only SMTP service used

in our experiment. The original dataset contains 3,925,651 records and has

been condensed into 95,156 records for the 1999 cup dataset.

• ForestCover : used for predicting forest cover type from cartographic vari-

ables. All data are collected from a study of the Roosevelt National Forest of

northern Colorado.This dataset has 54 attributes (10 quantitative variables,

4 binary wilderness areas and 40 binary soil type variables). For anomaly

detection, only 10 quantitative attributes can be used. The outlier rate is

0.9%
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• Mulcross : generated from a synthetic data generator with 4 dimensions.

• Shuttle: is a multi-class classification dataset with 9 dimensions.

By using different datasets with various outlier rate, we can observe the perfor-

mance of our MEK under different scenarios. In this experiment, the AF threshold

was set to 0.8; the p-value for the short-term hypothesis test was 0.0001 (to reduce

type-2 error under short-term density support), and 0.05 was used for long-term

calibration.

Dataset Name Size Outlier Rate Dimensions
HTTP 567479 0.4% 4
SMTP 95156 0.03% 4

ForestCover 286048 0.9% 10
Mulcross 262144 10% 4
Shuttle 49097 7% 9

Table 5.2: UCI dataset description

5.4.1.2 Result

Fig.5.3 5.4 5.5 are the results of MEK method comparing with other methods.

Our MEK method is significantly better than other methods in terms of accuracy,

sensitivity and specificity. For those low outlier rate (i.e. HTTP and SMTP),

our method can detect anomalies easily which almost achieved 100% due to its

low outlier rate. Mammography and Shuttle have worse performance in terms

of accuracy, sensitivity and specificity compared with other datasets. These two

datasets are small-size datasets with higher outlier rate. Base on this observation,

we found that the size of a dataset has an impact on the performance. In fact, our

MEK method is affected by the size of a dataset since its need enough short-term
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Figure 5.3: Accuracy

historical data to support to perform a hypothesis test. MID method is good at

detecting HTTP and SMTP anomalies since it specializes for network anomaly

detection. Other methods remain around 85% to 79% accuracy to all datasets.

However, all of these methods have a good performance on HTTP and SMTP

dataset, since its low outlier rate. Through current result, we fail to conclude that

the dimension has an impact on performance since ForestCover has a better per-

formance comparing with Shuttle, where the dimensions are 10 and 9 respectively.

5.4.2 Practical SHM dataset experiment

5.4.2.1 Experimental design and procedure

In this experiment, we evaluated our MEK method in terms of accuracy, specificity

and sensitivity using surface temperature data, wind speed data, and GPS data
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Figure 5.4: Specificity

Figure 5.5: Sensitivity
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in terms of x, y and z. The sizes of all datasets were different because sensors

had different sampling rates. We used the lowest sampling rate to synchronize

all sensors data which was 1Hz; in total the size of each dimension was 259,200.

All outliers were labelled by the Transport Institute, but there were few outliers

with the outlier rate around 0.002%. Consequently, to test the performance of our

method, we introduced anomalies into the data to increase the outlier rate. We

randomly injected outliers into the original dataset. The number of outliers was

controlled by the injection rate (10% in this experiment).For each data point, we

generated a random number between 0 and 1. If this random number was greater

than the (1-rate), this data point was added as a random number between 5 and

10 as an outlier. During the injection process, we also labelled the altered data

points as anomalies. The AF threshold in our experiment was set at 0.8. The p-

value for the short-term hypothesis test was 0.0001 (to reduce type-2 error under

short-term density support) and 0.05 was used for long-term calibration.

Before we present our result, we first look into our datasets. Fig.5.6 is the scatter

of the 3-day wind speed dataset which contains 259,200 data points, and each

colour represents data of 1-day. The sampling rate of the wind sensor is 1Hz.

Over the 3-day data, the distribution of the wind data changes over the time if

we set the duration unit to one day. Especially in the third data, the value varies

from the lowest to the highest speed.

Fig.5.7 shows the 3-day data of road surface temperature containing 5,184,000

data instances collected by temperature sensors with 25 Hz. Overall, we observe
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Figure 5.6: 3-day Wind data: blue dots represent the first day data; orange
dots represent the second day data; green dots represent the third day data

that the change of temperature is periodical within a range, and only a few outliers

can be observed.

Fig.5.6,5.7,5.8,5.9 and 5.10 present the 3-day GPS data in terms of X,Y, and Z

dimensions. The GPS data measures the displacement of the bridge in terms

of horizontal displacement(X), perpendicular displacement (Y) and vertical dis-

placement(Z). The GPS sensor rate is 10 Hz and in total there are 2,592,000 data

instances. From the Fig.5.8, we find that the displacement vibration occurred in

horizontal (X) and vertical displacement (Z) more frequently than in perpendicular

displacement(Y),and the GPS Y value fluctuates within a certain range. Fig.5.8

and Fig.5.10 demonstrate a few number of outliers.

Overall, the number of outliers is low, which the outlier rate is less than 0.0005%.
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Figure 5.7: 3-day road surface temperature data : blue dots represent the first
day data; orange dots represent the second day data; the green dots represent

the third day data

Figure 5.8: GPS X value : blue dots represent the first day data; orange dots
represent the second day data; green dots represent the third day data
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Figure 5.9: GPS Y value : blue dots represent the first day data; orange dots
represent the second day data; green dots represent the third day data

Figure 5.10: GPS Z value : blue dots represent the first day data; orange dots
represent the second day data; green dots represent the third day data
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In the previous experiment, we can see from our method that if the outlier rate is

small, it is easy to detect the anomalies. We add extra outliers into the raw data

to test the performance of our MEK method. From these scatters, we can observe

that different data has different features:

• Wind speed data : distribution is changes over the time

• Temperature data : temperature is changes periodically

• GPS data : GPS Y value is stable; anomalies occur more frequently in GPS

X and Z dimensions

5.4.2.2 Result

In this experiment, we compared our MEK method with the methods of multi-

dimensional data cube (MDC) [120], multi-dimensional intrusion (MID) detection

[121], and unsupervised clustering(UC) [122]. We evaluated these methods in

terms of accuracy, sensitivity and specificity.

Fig.5.11 shows the result of the comparison. Our method shows good perfor-

mance compared with the other methods, especially for sensitivity and specificity.

Although MDC, MID and UC are time-series based multi-dimensional anomaly

detection methods, they fail to show good performance under in the high-frequency

data environment. In particular, the sensitivities of MDC and MID are low which

is dangerous in SHM problem. Any false negative is a potential risk which could

lead to a public safety issue, and as a result, high sensitivity is the first priority in

SHM problems. The expectations of MDC, MID and UC are low. For instance,
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Figure 5.11: Comparison Results using SHM datasets

if there are 100,000 data points and around 15% of the data are recognised incor-

rectly, any false negative could have a catastrophic impact on both public safety

and local economy. To guarantee the public safety, it is important to maintain a

high level of sensitivity to avoid the false negative. Our MEK method can maintain

high-level sensitivity and accuracy for detecting anomalies in multi-dimensions. In

conclusion, our method has a superior performance in terms of accuracy, sensitiv-

ity and specificity in SHM datasets. Moreover, it can handle multi-dimensional

data with different features.
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5.4.3 Long-term performance of MEK

5.4.3.1 Experiment design and procedure

To prove that our MEK method can work properly in a long-term scenario, we

conducted an experiment using very large datasets to test its performance. In this

experiment, we used wind speed data, road surface temperature and GPS data,

which contained a various number of data instances from 1,000,000 to 10,000,000

data instances, with all datasets are synchronized to one data instance per second(1

Hz sampling rate). Because the outlier rate was low at only around 0.0003%, we

introduced extra outliers into the raw datasets so that the outlier rate reached

to around 9% to 10%. The procedure of injecting outliers into raw datasets is

same as in the previous experiment which described in section 5.4.2.1. Because

the performance of our MEK method was superior to that of with other methods

in previous experiments, we only demonstrate the accuracy of MEK along with

the size of the dataset.

5.4.3.2 Result

Fig.5.12 shows the result of the long-term performance of the MEK method. With

the increasing size of datasets, the performance of MEK method declines slightly

from around 94 % accuracy to around 92% accuracy. For the smaller data sizes (1

million to 3 million), the accuracy is maintained at around 94%. From 3 million

data instances the accuracy began to decrease to around 93%. From 6 million

to 10 million data instances, the accuracy stabilised at around 92% accuracy. In
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Figure 5.12: Long-term performance of MEK

sum up, our MEK method displayed a stable and good performance under large

volume dataset scenarios over a long-term period. From the result of the long-

term experiment, our MEK could maintain the accuracy of around 93% to 92%

for long-term monitoring projects.

5.5 Limitation

Our MEK method is capable of detecting anomalies with around 93% accuracy in

the high-frequency data environment. However, it has some limitations. Currently,

the OAF is defined according to the scenario of application and background or

based on sensitivity requirements. The OAF threshold is a constant lacking the

capacity for automatic adjustment. From the above experiments, we found our

method had a poorer performance under a small-size dataset scenario.
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In future work, we intend to focus on an adaptive AF threshold definition and on

enhancing the performance of the MEK method to overcome the stated limitations.

5.6 Summary

Dynamically changing environments present a challenge in online data stream

anomaly detection. Our proposed MEK method adopts a sliding window principle

and ensemble analysis to capture anomalies in data streams. We tested our method

using public UCI datasets and practical SHM data and the results showed our

method to be capable of detecting anomalies in data streams in high-frequency and

high-volatility environments. From our experiments, we found that our method

is significantly better than other methods. Moreover, our MEK method would

enable structural engineers to monitor the structural health status in real-time.

In addition, our MEK method can maintain around 93% to 92% accuracy in

long-term monitoring. Moreover, our MEK method can handle heterogeneous and

characterized data types efficiently. There are some limitations: our MEK method

is restricted to adjusting itself automatically; its performance drops when the data

environment is characterized by small-size. These are our challenge in work that

is underway.

The main material of this chapter has been submitted to IEEE international con-

ference on data mining (ICDM 2018) , and it has been under review by ICDM

2018.
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A hybrid intelligent framework

for structural health monitoring

In the Chapter 3, 4 and 5 we proposed and develop methods for online anomaly de-

tection for SHM data. Real time anomalies detected are the rare data behavioural

patterns that are the indication of underlying structure’s operating conditions.

In practice, however, we also need a holistic method to assess the health status

of a structure based on various sensor data types behaviours. Consequently, we

are motivated to propose an integrated framework, incorporated with methods

of anomaly detection to evaluate the health status of a bridge from multiple di-

mensional perspective. Hence our hybrid intelligent framework work in Chapter

6 represents an extended linkage from chapter 3, 4 and 5 for structural health

monitoring system which should have the capability of computing a composite

health index. The composite health index is a convenient indicator for use by

bridge safety operational decision maker as a guide to judge the bridge health

116
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status. The health composite index is derived from the consensus (also known as

aggregation) algorithm’s outcome which is computed based on historical and real

time inputs from various sensor data types.

6.1 Motivation

We proposed a structural health monitoring framework that is based on the hybrid

intelligent systems to compute composite structure health index as structure health

indicator in this chapter. With our proposed health structure monitor framework,

it provides a decision-level analysis for SHM. In contrast, recent studies focus on

signal processing, mechanical modelling and computer-based systems, which are

not robust enough to provide decision-level analysis confronted with heterogeneous

data sources. Therefore, a hybrid intelligent system is required to alleviate possi-

bilities of data conflicts, lack of conciseness and incompleteness that arise from the

heterogeneous data sources to compute composite structural health index, which

is essential for risk analysis. Our proposed hybrid intelligence framework is based

on hybrid adaptive resonant theory, neural network (superior learning from dy-

namic data) and adaptive fuzzy inference (superior reasoning with dynamic fuzzy

rules derived from time series data formulated membership functions) systems.

The outcome of our proposed framework is a structural composite health index,

an aggregated index via optimally weighted variables. We implemented our frame-

work using a set of GPS and wind velocity sensors output from a real bridge to

evaluate our framework. These sensors data used in our study are collected from
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long cable-bridge. Our case study showed that our proposed intelligent data fusing

framework is capable of reporting the structural status correctly.

In addition, because the practical data collected from the real bridge, most of the

time data are normal. We used finite element model (FEM) to produce data to

test our method in order to give a benchmark to determine what level is considered

as healthy or normal.

6.2 Related work

There are many SHM methods using different techniques. Early methods em-

ployed signal processing techniques to find the abnormal signal, for example, if a

single member in a structure was damaged, the fundamental frequency would be

altered. However, this method was only able to detect whether the civil infras-

tructure was damaged. Other researcher proposed method was able to find the

damage length and location in the structure. These damage detection techniques

are all based on the frequency changes [126] [127], for example, a change in nature

fundamental frequency implies there exists one or more member of a structure had

been damaged. Therefore, these methods are vulnerable to environmental noises

easily. In addition, the damage caused by material degradation, acid corrosion,

man-made factor and etc. often fail to be detected by these methods. These

methods are only concerned with the pixel-level structural health.

Applications of heterogeneous types of sensors have been introduced to improve

the structural health monitoring. The sensor technology includes vast categories,
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such as Mircoelectromechanical System (MEMS), LIDAR, infrared thermography

and so forth. Various types of sensors form a sensor network for collecting data.

Data fusion technique is introduced to overcome problems on data aggregation due

to heterogeneous sources and characteristics of data for extracting predictive-to-

prescriptive structure health analytic. Consequently, how to design and implement

the data fusion is the critical component for SHM. There are many categories to

classify different types of data fusions. Generally, data fusion has three levels

which are pixel-level, eigen-level and decision level, each level is responsible for

different specific tasks. Recent studies have employed data fusion to monitoring

bridge structure, these studies proposed different data fusion techniques for SHM.

[128] is capable of handling mono-type sensor data, which is not adequate enough

for monitoring civil infrastructures. [129] [130] [131] [132] although have capabili-

ties of collecting heterogeneous sensor types, however, these proposed methods are

at pixel-level or eigen-level, where each has lack of delusional analytic and infor-

mation. Our proposed framework is able to deal with heterogeneous data sources

inclusive of decision-level information.

Multi-agent system (MAS) based SHM [33] system is an approach for large-scale

structure health monitoring. It deployed different agents (design and develop by

agent framework) to accomplish specific tasks. Typically, a MAS composes four

types of agents: data monitoring agents, data interpretation agents, damage di-

agnostic agents and information layer agents. Each category of the agent has its

sub-agent to execute specific tasks. The data monitoring agent is responsible to
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monitoring signals of specific locations or members in structures; data interpre-

tation agent is designated for signal processing, such as signal smoothing, peak

value extraction, denoising and so forth; damage diagnostic agent is responsible

to detect and locate the damage. The advantage of MAS is its scalability and

its effectiveness had been evaluated by [133]. Although MAS is able to handle

with large-scale structures and heterogeneous data sources, MAS lacks decisional

information to suggest the maintenance and inspection routines.

6.3 Preliminary

6.3.1 Adaptive Resonance Theory(ART) [1] [2]

It is ubiquitous that in the real world we are always facing expectations, how do

we cope with that? How do we recognize the familiar facts and absorb these famil-

iar facts to our knowledge quickly? To learn things adaptively and achieved the

balance between the adaptive and stability is important for real-time applications.

Namely, these problems are called stability-plasticity dilemma. The adaptive res-

onance theory (ART) is designated to autonomously adaptive to handle those

problems. The ART theory contributed to the self-organized neural networks.

There are many categories of neural networks, such as feed-forward neural net-

work, back-propagation neural network, these types of neural networks are called

multilayer perceptron (MLP). These different types of neural networks have differ-

ent architectures and mechanisms to learn from the data. Generally, MLP assumes

the inputs are independent to each other. Thus it is extremely sensitive to the
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input. If any new input comes to the neural network, it would often overwrite

the past learning. In our case, the sensor keeps collecting data, MLP neural net-

work is not a proper solution under this circumstance. ART self-organized neural

networks is the solution in our framework. In the real circumstances, facts are un-

predictable, ART is capable of learning things adaptively by maintaining a good

balance between adaptive and stable.

Figure 6.1: Structure of ART self-organized neural network

Fig. 6.1 shows the structure of ART self-organized neural network. It classifies

the input variables into different neurons by computing the forward weight and

feedback weight. When a new neuron is set up when failed in a vigilance test, and

the test process ends when it has no more neurons to test. If an input is greater

than the pre-defined threshold, the weights are updated according to the input.

The detail of ART self-organized neural network is introduced in Section 6.4.2.

Assumed, we can consider each different type of sensor is a variable, it could

be classified into different neurons. After the training, we can use the weights

as the parameters to leverage the relationships of different variables for further

processing. The outcomes of our proposed framework is a structure health index,



Chapter 6 122

which composites by the leveraged input variables. Therefore, ART self-organized

neural network is critically important in our proposed framework.

6.4 Hybrid intelligence system for SHM

Our proposed framework employs hybrid artificial intelligence systems which are

neural networks and fuzzy expert systems. In our framework, the neural network

is ART self-organized neural network, which is unsupervised learning. Because the

sensors are located in the severe circumstances, it is not a straightforward task to

predict the expected data. After the ART self-organized neural network training

procedure, the output would be the weighted data, which is used as the input for

the fuzzy inference system. The fuzzy inference system is the next core component

in our framework, which composites different types of data into the structure

health index. Fig. 6.2 shows the overview of our proposed framework. Generally,

there are three components which are: pre-processing, neural network and fuzzy

inference system. Neural network component and Fuzzy Inference system are

relying on the output of the previous component.

6.4.1 Pre-processing

Pre-processing component is responsible to clean and sanitize the raw data col-

lected from sensors. The main tasks include denoising and integration (may be

optional depending on sensor type). There is a vast number of denoising methods

but selecting the proper method for denoising is skilful. Wavelet denoising , for
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Figure 6.2: Hybrid intelligence Framework for SHM

instance, has been applied by many industries and studies and could be a good

candidate of choice. There are many members in wavelet family which can be used

for denoising . In our case study, based on the wavelet denoising we developed a

real-time wavelet denoising .

Integration is another optional process to integrate the data to meet a specific

requirement. For instance, a data with 1 Hz sampling rate can be integrated into

an hourly. Generally, integration techniques are basic statistics, such as mean and

mode.

6.4.2 Neural Network

Fig. 6.3 shows the process of ART Neural Network training, which is one of the

core components in our proposed framework, it used the pre-processed data as
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input to training the neurons with the weights. Once the training has completed,

we used the weights to leverage the pre-processed data for further processing. Fig.

6.3 shows the process of the ART Neural network. At the initial stage, the weight

w is set in Equation 6.1:

Figure 6.3: Process of Self-organized neural network

w =
1

||x||+ 1
(6.1)

where x is the input variable (pattern). The v is set as 1 as default. To find the

best matching neurons, we computed a “matching score” which reflects the degree

of similarity of a data/patter. The score is defined in equation 6.2:

yj =
N∑
i=1

wijxi (6.2)
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where N is the number of input, j is the sequence number of existing neurons.

After the competition, the winner neuron is the neuron with the highest matching

score. After the finding the matching neurons, we tested is this pattern close

enough to the best matching neuron. Thus we ran a vigilance test to ensure the

neuron pattern is the matching. The vigilance test is defined in equation 6.3:

vjx

x
> ρ (6.3)

where ρ is the pre-defined vigilance factor which 0 < ρ < 1. The higher vigilance

factor, the higher accuracy of the neurons. If x passes the test, the weight w and

v are updated by Euqation 6.4 and 6.5 respectively.

wij =
vijxi

0.5 +
∑N

i=1 vijxi
(6.4)

vij = v′ijxi (6.5)

where the v′ij is the old vij containing old weight values. If the pattern fails the

test, and there is no more neurons can be used for the test, then a new neuron is

added and the weight w and v are updated after adding a new neuron. After the

training process is completed, we used the weight w to leverage the pre-processed

data to weighted data for fuzzy inference system to compute composite the health

index.
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6.4.3 Fuzzy Inference System

Fuzzy inference system is another core component in our proposed framework.

It maps the given inputs to an output using the fuzzy set theory. Conventional

logic or Boolean logic uses the sharp distinction, which differentiates thing by true

or false without any vague or imprecision. Unlike Boolean logic, fuzzy logic is

multi-valued by defining membership fuzzy sets. The fuzzy set is different from

the conventional set. Assuming we have conventions set X and x is an element in

X, which can be denoted x ∈ X. However, the fuzzy set would consider x would

be either belong to X(x ∈ X), or does not belong to X(x /∈ X. Assuming wind

velocity is over 20m/s is considering as strong wind. If a measurement is 19.9 m/s

which is classified to the non-strong wind by Boolean logic. In fuzzy logic, it would

consider as 0.99 strong wind. (If we defined 20 is the strong wind as 1)[134].

By defining fuzzy rules, we are able to build our fuzzy inference system. Generally,

there are two categories of fuzzy inference techniques which are Mammdani-style

inference and Sugeno-style inference. The difference between these two styles is the

defuzzification step. Sugeno-style inference is more computationally efficient than

Mammdani-style inference. There are 4 steps to build a fuzzy inference system :

1. Defining input variables

2. Constructing membership fuctions (fuzzy set) for each variables and the

output membership function.

3. Defining the fuzzy rules base
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4. Encoding input variables, fuzzy sets and fuzzy rules and procedures to per-

form fuzzy inference

Fuzzy inference has following 4 steps:

1. Fuzzification

Measuring the degree of crisp input form fuzzy sets for each input.

2. Rule evaluation

According to the rules to compute the rules consequent. AND operation is

equivalent to MAX operation. OR operation is equivalent to MIN operation.

3. Aggregation of rule consequent

Aggregate the rules consequents computed from the previous step to form

an aggregated fuzzy set.

4. Defuzzification The difference between Mammadani-style and Sugeno-style

is here. Mammadani-style is used to compute the centroid which is defined

in 6.6.

HealthIndex(HI) =

∑b
x=a µA(x)x∑b
x=aA(x)

(6.6)

where µA(x) is the fuzzy sets, x is consequent value.

The Sugeno-style defuzzification is different from Mammadani-style, it computes

the weighted average of consequents values from rule evaluation.
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In our framework, we used mammadani-style because it widely adopted to capture

expert knowledge. The result of the defuzification is the structure index. In ad-

dition, unlike conventional fuzzy inference system, we can define our membership

function by two options. One is conventional pre-defined membership function

according to expert knowledge, another one is the adaptive membership function,

which changes their membership function according to the maximum and mini-

mum data.

6.5 Empirical Evaluation

6.5.1 Practical data

To evaluate our framework, we used the data collected from a cable bridge with

one-month wind velocity and GPS displacement data (i.e 2,592,000 GPS and

259,200 wind speed observations) to evaluate our framework. We explain each

component in our framework by using our data.

6.5.1.1 Data pre-processing

Fig. 6.4 shows the deployment of sensors networks and networks topology. Sensors

mounted on the bridge send the data to monitor centre via optical fibre switch.

These data are stored in the data server, any workstation can retrieve the raw

data from their server. These raw data need to be pre-processed since these data

are collected from bridge directly, which contains massive noise. The sampling
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rate of GPS data is 10Hz, which collects 10 data every second. Wind velocity data

are collected every 1 minutes. Therefore, we also need to synchronize these two

datasets for further processing. In our case, we used wavelet to denoise our data

first (with sym family). After the denoising, we have to synchronize (integrate) the

data into the same time domain. Because the difference between each collected

data is small and the sampling rate is 10Hz, we used mean of each 10 data to

synchronize our GPS data.

Figure 6.4: The network topology of bridge structure health

6.5.1.2 Neural Network

Once the pre-processing data are ready, we used these data for training our ART

neural network. We set different vigilance factor to see the difference of final result.

The higher vigilance factor indicates the higher accuracy, the results are different.
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Vigilance Factor Number of Neurons Weights

0.6 2
0.032787
0.019802;

0.7 2
0.032787;
0.021505;

0.8 3
0.032787;
0.025974;
0.020619;

0.9 4

0.032787;
0.028986;
0.025974;
0.021505;

0.9 4

0.021505;
0.020619;
0.019802;
0.019417;

Table 6.1: Result of ART Neural Network

In our case study, we trained the neural network with different vigilance factor, the

higher vigilance factor the higher accuracy. It is obvious to observe that (Table

6.1) with the increase in vigilance factor, the number of neurons is increasing.

The weights of vigilance factor 0.6 and 0.7 are same, with the increase in vigilance

factor, the weight is changing. The high vigilance factor does not indicate the

more accurate model, it would result in the over-fitting problem.

6.5.1.3 Fuzzy Inference system

After leveraging the pre-defined data with weight computed by ART neuron net-

work, we used the leveraged data as input for fuzzy inference system. We only

have wind velocity and GPS data, consequently we only have two input variables.

The next step is to define the membership function. Generally, the membership

function of wind velocity is based on the expert knowledge which is Beaufort

scale.In our case, according to the Beaufort Scale we have four fuzzy sets for wind
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velocity which are: light, normal, strong and very strong. The GPS displacement

is dynamic membership function which depends on the period of GPS data, it

would be computed dynamically according to the existing data. In this case, the

membership function of GPS has 3 categories which are light, normal and strong.

We defined four fuzzy sets for output membership, which are safe (80-100), normal

(55-85), risky (20-60) and highly risky (0-30).

To perform fuzzy inference, we need fuzzy rules. In this case, the fuzzy rules we

had defined:

• If the wind is light AND GPS is light. Then the output is safe

• If the wind is normal AND GPS is light. Then the output is safe

• If the wind is strong AND GPS is light. Then the output is Normal

• If the wind is very strong AND GPS is light the then output is Risky

• If the wind is light AND GPS is normal. Then the output is safe

• If the wind is normal AND GPS is normal. Then the output is normal

• If the wind is strong AND GPS is normal. Then the output is normal

• If the wind is very strong AND GPS is normal. Then the output is risky

• If the wind is light AND GPS is strong. Then the output is risky

• If the wind is normal AND GPS is strong. Then the output is risky

• If the wind is strong and GPS is strong. Then the output is highly risky
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• If the wind is very strong and GPS is strong. Then the output is highly

risky.

6.5.1.4 Result of practical data

GPS Input Wind Input Health Index
Vigilance
Factor

Max Min Max Min Max Min

0.6 185805.5415 185805.5472 0.0065 0.5481 92.4 92.1
0.7 185805.5415 185805.5472 0.0065 0.5481 92.4 92.1
0.8 264672.8549 264672.863 0.0093 0.7808 87.4 76.1
0.9 386005.4542 386005.466 0.0136 1.1387 84.6 73.4
0.99 287400.2377 287400.2466 0.0101 0.8478 82 72.8

Table 6.2: Result of Health Index

For each vigilance factor, the scale of the membership function is adjusted accord-

ing to the weights we computed from ART neural network. All the input values

select the max and min value from that month. Because the weights of different

vigilance factors are different, the leveraged input values are different.

Figure 6.5: The network topology of bridge structure health

With the increase of vigilance factor, the index of max is approaching to 82 and

the index of min is approaching to around 71 (Fig. 6.5 and Table 6.2). Although

the difference between index of max and index of min is around 11, the overall
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result suggests the structural health is in the normal or safe range, which can be

observed from defined output fuzzy set. The structure health index computed by

our framework matched with the official bridge health report. From this perspec-

tive, our proposed structural health index is reasonably reliable. According to the

structural health index, the operator is able to make a decision to the bridge. If

the structure health index gives a risky indicator (30-60), an inspection needs to

be arranged to inspect the structure for maintenance. If the structure health index

decline to highly risky, this bridge needs to stop service for guarantying the public

safety. The operator can determine the specific actions and decisions. Although

we proposed a method to evaluate a health status of a structure, the arbitrary to

determine the degree of health status is not clear. In Section 6.5.2 we conducted

experiments to discover an arbitrary value of a SHI using simulation data.

6.5.2 Result of simulation data

It is hard to collect abnormal data from the practical bridge, so we used finite

element analysis to simulate the practical bridge structure to produce a massive

amount of data to determine the benchmark health index and the arbitrary value.

6.5.2.1 FEM model and Data

Finite element model (FEM) is the most widely used model in civil engineering

research , especially for structure analysis. To generate the simulation data from

FEM, we simulated the structure according to the practical data. We used ANSYS
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Figure 6.6: Side view and top view of real bridge structure

to build our FEM, since it equipped with comprehensive and abundant finite

element analysis tools. There are three main components that we need to model:

1. Spine Beam : In spine beam model, bridge towers and pipers are deployed

by beam element in ANSYS.

2. Deck : The deck of bridge are modelled by BEAM4 element (ANSYS tool),

which is uniaxial element equipping with tension, compression, torsion and

bending abilities.

3. Cable : Cable is modelled by LINK10 (ANSYS tool) element with tensile

stress capability.

Based on the real bridge structure parameter(Fig.6.6), we used FEM tool build a

same bridge structure which shows in Fig.6.7.

After bridge modelling, we conducted a probabilistic analysis for calculating the

bridge response, which simulates the process of sensor collecting data from a

bridge. Monte Carlo simulation (MCS) is used to simulate the uncertainty of
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Figure 6.7: 3D side view of bridge model

the environmental situation. The simulation result is considered as physical ob-

servations which collecting from the sensor. In this simulation, we only consider

three type of measurements: 1. Middle Vertical displacement (From beam) 2.

Axle stress of Middle span (From deck) 3. Cable textile stress (From cable). In

total, we sampled 10,000 data point from each type of measurement.

6.5.2.2 Structural health index computation

All the data generated from the FEM simulation have the same process with the

second and third steps in our proposed framework. The fuzzy rules are defined

according to the distribution of each type of measurement. The principle of rules

definition includes:

• If one of mid displacement, cable stress or beam stress is ‘low’, the health

index (HI) is ‘safe’
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• If one of mid displacement, cable stress or beam stress is ‘average’, the HI is

‘normal’

• If one of mid displacement, cable stress or beam stress is ‘high’, the HI is

‘risky’

• If all of measurements are ‘low’, then HI is ‘safe’

• If all of measurements are ‘average’, then HI is ‘normal’

• If all of measurements are ‘high’, then HI is ‘risky’

6.5.2.3 Result of simulation data

Fig.6.8 shows the distribution of HI with 100,000 data point of each type of mea-

surement. From Fig. 6.8 demonstrates that most of the cases the HI is ranging

from 0.60 to 0.8, which contains 99,871 cases with approximate 99% proportion.

This result indicates that under most of the scenarios, the health structural is

‘normal’ and ‘safe’. This result is also similar to practical data, where most HI

are above 70 under ‘normal’ or ‘safe’ status. Consequently, we defined any health

index above 70 is considered as a normal status of a structure.

6.6 Summary

Our proposed hybrid intelligence structure health monitoring framework is able to

provide a real-time monitoring with a decision-level suggestion. It employed ART

neural network for handling with quick changing circumstances and dynamic fuzzy
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Figure 6.8: Health index of simulation data

inference system helps to tune the membership function adaptively. Through the

bridge case study, we evaluated our framework is reliable. In addition, our result

is consistent with official bridge health report. Unlike convention SHM systems,

it capable to handle with heterogeneous data and decision-level suggestions by us-

ing the structure health index as an indicator. According to this structure health

index, effective maintenance and inspection can be planned and arranged. In addi-

tion, we also use FEM to simulate a massive amount of data to set the benchmark

health index at 70. The main material of this chapter has been published in IEEE

international conference on industrial electronics and applications (ICIEA 2016).

• Publication : D.Sun, V.Lee and Y. Lu, “An intelligent data fusion framework

for structural health monitoring”, proceeding of International Conference on

Industrial Electronics and Applications (ICIEA) ERA Rank A Conference,

June 2016, Hefei. Proceeding of IEEE ICIEA pp.49-54.



Chapter 7

Conclusion and future work

With the tremendous development of machine learning and data mining techniques

in the recent decades, civil engineers have attempted to apply these techniques to

SHM. Current SHM deploys various types of sensors on a structure, which generate

a massive amount of data each day. Extracting valuable information can help

civil engineers to identify risky cases of a structure. Online analysis of anomaly

detection or heterogeneous data analysis helps them to evaluate the health status

of a structure based on the sensor data.

This PhD project was aimed to solve the problem of online anomaly detection and

heterogeneous data analysis for SHM. I proposed method which has been verified

with extensive empirical evaluation using public UCI datasets and practical SHM

datasets.

138
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7.1 Contribution

In this thesis, I propose four methods to solve the two research question (in Chapter

1). In this context, I have made following contributions :

1. A proposed sample entropy gradient method for comparing the similarity

between two time-series data. It can be used for anomaly detection and

measuring similarity of two time-series datasets (Research Question 1)

2. A proposed ensemble kernel (EK) for online high-frequency data anomaly de-

tection. It detects anomalies for a single dimensional data stream efficiently

with a stable performance. (Research Question 1)

3. A proposed multi-dimensional ensemble kernel method for online high-frequency

data anomaly detection. It detects anomalies for the multi-dimensional data

stream with a stable performance. (Research Question 1 and 2)

4. A proposed structural health monitoring evaluation method using the neural

network and fuzzy inference system. It introduces the health index(HI) as a

health status indicator of a structure.

To answer the first research question, I proposes SEG, EK and MEK methods.

SEG method is a similarity comparison based method, which computes the dis-

tance between the incoming data with benchmark data to identify anomalies. To

achieve a good result, SEG relies on a good quality benchmark dataset. Conse-

quently, I propose EK mefthod to overcome this problem. EM method applied
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ensemble analysis, kernel density estimator and sliding windows to detect anoma-

lies for high-frequency SHM data. EK can maintain a stable performance for

high-frequency SHM data. However, EK method is only used for single-dimension

anomaly detection, I extended EK to MEK to used on multi-dimension anomaly

detection. Except to analyze abnormal data, how to analyse heterogeneous data

to support decision making for MEK is also important. MEK can be used for het-

erogeneous data analysis because the OFA indicates the overall health status of

a structure. However, OFA is extremely sensitive, any abnormal behaviour could

result in a low OFA score. Hybrid intelligence system is an alternative solution to

analyzing heterogeneous data. It gives a health index of a structure to indicate the

health status of a structure. It is an easy-understand index to help civil engineers

to develop effective maintenance plans and disaster plans.

7.2 Future work

Based on this project, there are some possible potential directions :

1. Reinforcement learning (RL) is also a potential method for heterogeneous

SHM data analysis. To apply RL to SHM, we could treat each sensor as an

object with a number of states. By connecting all the states, a Markov chain

for SHM can be formed. Based on this Markov chain I could try different

RL algorithm to see the effectiveness of RL.

2. There are many algorithms in RL, I can try different RL algorithms to SHM

data to compare the performance of them. Moreover, we can also compare
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RL on SHM with our hybrid intelligence system to investigate which algo-

rithm is more effective on SHM problems.

3. The recurrent neural network is also an extensively used method for natural

language process problems. It specialized in processing sequence to sequence

data. Most of SHM data are time-series data, which is a type of sequence-

to-sequence data. We can investigate the effectiveness of RNN for SHM.

4. My current project concentrated on prediction and health status evaluation.

Applying new machine learning and data mining technique on damage de-

tection and damage localization of SHM is also an interesting area. Applying

conventional neural network on damage detection can help civil engineers to

detect damage to a structure.
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Appendix A

Appendix A presents the detail of financial case study using main international

stock market indices. Computing the similarity between stock market indices

using SEGs sheds light on a country’s share market trend, which is an important

indicator of the country’s economic status. The use of SEG avoids the need for

prior knowledge of tolerance parameter setting. Consequently, the SEG based

approach is more scalable and can be more relevant to more application domains

where the domain-specific knowledge needed to set tolerance parameters is not

easily accessible.

The study also contributes to practice in terms of predictive/trend information

regarding individual and institutional investment communities that is not readily

available in the CSE-based approach. The case study results assist long-term

investors to make informed decisions on which stock markets to follow for each

period. For more risk-seeking short-term investors, intra-period gradients can be

142
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regarded as an alternative benchmark for long-term and short-term moving average

trading indicators.

I used NASDAQ (US), ASX (Australia), Nikkei (Japan), and SSE(China, Shang-

hai) indices. Before analyses of the stock markets, we present some general de-

scriptive statistics (Table A.1) and we calculated return of investment on stock

market indices for each period. In this study we had two categories of comparison:

Markets of developed countries vs. markets of developed countries and markets

of developed countries vs. markets of developing counties. For the markets of

developed countries vs. developed countries, we compared:

1. NASDAQ (the U.S.) vs. ASX (Australia, AU)

2. NASDAQ vs. Nikkei (Japan, JP)

For the markets of developed countries vs. markets of developing countries, we

compare:

1. SSE(China, CN) vs. Nikkei

2. SSE vs. NASDAQ

A.1 Data

All finance data were downloaded from Yahoo Finance from March 1, 2000 to

September 1, 2015. The share market indices were the ASX, the NASDAQ, the
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2000-2005 2005-2010 2010-2015

US

Mean 1767.7655 1678.4605 2982.673749
Std. Dev. 884.5083 237.68674 825.0104527
Median 1462.33 1701.35 2745.594971

Skewness 1.6036745 -0.3389005 0.486650265
Kurtosis 1.4316458 -0.1381977 -1.02718499

ROI -182.14% 17.28% 55.43%

AU

Mean 3305.7746 4962.0811 4891.673185
Std. Dev. 3305.7746 4962.0811 4891.673185
Median 3293.8999 4905.3999 4836.5

Skewness 1.0685965 0.1510853 0.124857388
Kurtosis 1.885322 -0.7476011 -1.10991605

ROI 23.84% 10.70% 8.04%

JP

Mean 11731.658 13383.284 12540.52507
Std. Dev. 2733.3931 3114.9897 3660.303776
Median 11069.01 13500.46 10836.63965

Skewness 1.1896763 -0.2071418 0.67490437
Kurtosis 1.108512 -1.2395513 -0.75692183

ROI -70.46% -15.81% 44.00%

CN

Mean 1660.6365 2588.5378 2589.475144
Std. Dev. 261.13985 1256.1459 597.9855436
Median 1608.51 2419.78 2389.37

Skewness 0.4978542 0.7431734 1.80502304
Kurtosis -0.8067264 -0.2155683 3.580943959

ROI -30.25% 57.79% 2.49%

Table A.1: International stock indices descriptive statistics

Nikkei, and the SSE. Share market index datasets include many data types, such

as open, close, volume, highest, lowest, and adjusted close. In this study, we used

only the closing price over the given period.

A.2 Financial analysis

Figure A.1 shows the entropy gradients of the NASDAQ and the ASX indices. It

is evident that the ASX index is correlated with the NASDAQ index, especially

over the first six sequences (the first 180 trading days); sequence 21 to sequence 34
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Figure A.1: NASDAQ SEG and AXS SEG

and sequence 74 to 85 are also highly correlated. From the political perspective,

Australia is an ally of the U.S., sharing information and interacting closely [135].

Also, branches of many international corporations are located in Australia. Ref-

erence [136] provides a detailed report of corporations financed by the U.S. From

this report, JP Morgan Chase and Citibank were two major investors in some of

Australia’s largest corporations including the banking, mining, and retailing sec-

tors and so forth. These two corporations accounted for at least 11% of the shares

of those companies (details can be found in the report). In banking industry es-

pecially, JPMorgan Chase and Citibank held at least 30% of the shares of four of

the most important Australian banks (Commonwealth, National Australia Bank,

Westpac, and ANZ). Thus the U.S. has a tremendous impact on the Australian fi-

nancial market. Consequently, the ASX index correlates with the NASDAQ index

over many periods. Fig.A.1 demonstrates the Euclidean distance between the ASX
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index entropy gradient and the NASDAQ index entropy gradient as well by the

grey bar chart. The gradient distance reflects that the difference between the two

entropy gradients was small, ranging from 0.0011 to 0.02. Most of the distances

between these two entropy gradients are around 0.01. Fig. A.5 (which shows the

summary of Five-year entropy gradient Euclidean distances) shows that Australia

had the smallest distance from the U.S. (except in the first period). Thus, we can

conclude that the ASX is correlated with the NASDAQ over this period.

Figure A.2 shows the Nikkei and the NASDAQ entropy gradients. Generally, in

Fig. A.2, these two indices are not highly correlated, but they do correlate in

some periods. Reference [137] study indicated that there was no evidence to prove

that the Japanese financial market index was independent of the U.S. financial

market. These two entropy gradients show less correlation than Australian and

the U.S. index. From [137], reference [138] concluded that the U.S. capital has

drifted away since October of 1987, which is also reflected by the lower correlation

between the two markets from 2000. In some periods, however, some correlations

exist, such as sequence 42 to 47 and sequence 79 to 86, where the entropy gradients

are consistent. But those correlations last only for short periods. Fig. A.5 shows

the distance between these two entropy gradients. Overall, the entropy gradient

distance (Fig.A.2) displays a large fluctuation over this period. In the sequence 37

to 105 the fluctuation is relatively large. Moreover, from Figure 5 we can observe

that the distance between Japan and the U.S. is relatively large.

Figures A.3 illustrates the entropy gradient and Euclidean distance between China’s
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Figure A.2: NASDAQ SEG and Nikkei SEG

SSE index and the U.S. NASDAQ index. Overall, it is difficult to observe any cor-

relation between these two indices. However, a few correlations can be found

between the two entropy gradients (Figure A.3), from sequence 11 to sequence 13,

sequence 16 to 18, sequence 73 to sequence 76, and so forth. These correlations

last for only a short time. Reference [139] showed that the U.S. financial market

had a low influence on China’s financial market, an observation that is reflected

by our approach as well. In Fig. A.3, we can observe that the entropy gradient

distance ranges from 0.005 to 0.025, and most of the distances remain around 0.01

to 0.015. Overall, the distance between the two markets showed a large fluctua-

tion over this 15 year period, which also implies less correlation over the period.

Figure 5 also reflects that the 5-year-period distance is large, indicating a weak

correlation over this period.

Figures A.4 depicts the China and Japan entropy gradients and their entropy
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Figure A.3: SSE SEG and NASDAQ SEG

gradient distances, respectively. Overall, it is difficult to observe any correlations

between the SSE and the Nikkei indices. Some short-term correlations can be

discovered from Figure 8, including sequence 10 to 17, sequence 59 to 60, sequence

86 to 91, and sequence 114 to 119. Reference [140] investigated the relationships

between stock markets of Asia. The finding was that Japan’s stock market had

a profound impact on Asian markets, including those of Australia, China, Hong

Kong, Malaysia, New Zealand, and Singapore. From Fig. A.4, the distance of

entropy gradient fluctuates over the time-series, ranging from 0.0005 to 0.024.

We also calculated the general SEG Euclidean distance of each 5-year period (Fig.

A.5). It is evident that the values of the period 2005 to 2010 are the lowest. Dur-

ing that period of the global financial crisis (GFC) involved most stock markets,

especially those of the European Union and the U.S.. This can be considered a

detrimental factor resulting in the lowest entropy gradient distances among all
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Figure A.4: SSE SEG and Nikkei SEG

countries. According to the summary in Fig. A.5, the distance between the SSE

and Nikkei financial markets were lowest in the first two periods. Therefore, we

can conclude there was a cor-relation between the Chinese and Japanese stock

markets.

In general, from Figures A.1, A.2 and A.3 we find an interesting trend from se-

quence 82 to 85, showing an ‘M’-shaped fluctuation. This period was in 2008,

coinciding with the GFC that had a detrimental impact on international stock

markets. These sequences can be relevant to that period since they matched with

the time-series, but it is also observed that there is no ‘M’-shaped trend in com-

parisons with the SSE over the same period. Because the U.S. stock market was

most influential in international finance, other developed countries were involved

in this crisis, as reflected by our approach in sequence 82 to 85. According to

Table A.1, in the 2005-2010 period NASDAQ had the lowest means during these
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Figure A.5: 5-year SEG Euclidean Distance

15 years, since it experienced the GFC in 2008. This financial crisis also affected

other countries, which can be indicated by the standard deviation. If, however, we

observe the sequence 82 to 85 of entropy gradient of the SSP and the NASDAQ,

the ‘M’ shape is not obvious. This is because China suffered less impact from

the GFC [26]. Although the financial market did not have a great impact that

does not indicate that the economic impact was slight. A study indicates that

export volume declined dramatically after the GFC [140]. Therefore, from this

comparison, we are able to declare that our SEG measure can detect correlations

between two time-series datasets.

Fig. A.5 provides a summary of the 5-year entropy gradient distances among

different countries. The Euclidean distances in the second period are the lowest

among these three periods, and are influenced by the GFC in 2008. In the first

two periods, China vs. Japan showed the lowest Euclidean distance, implying a

strong correlation between these two markets. Australia had a strong correlation
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with the U.S. from the second to the third period. The financial markets of Japan

and China show less correlation than the other two markets during these periods.

A.3 Comparison of SEG with 30-day-trend

We compare SEG with 30-day-trend to investigate the trend consistency between

them. 30-day-trend is one of financial trading indicator used in short-term in-

vestment. In this case, we use the linear regression to calculate the trend of each

30-trading-day. By computing the Euclidean distance between SEG and 30-day-

trend, we can observe whether these two methods showing a consistent trend.

Fig.A.6 shows the result of SEG vs. 30-day-trend of each country. The average

of the Euclidean distance of NASDAQ, ASX, Nikkei and SSE are 0.45, 0.50, 0.45

and 0.31 respectively. Overall visualization suggests that in the Figure A.6a, b,

c, and d, their approximate overall 30-day-trends are essentially consistent with

corresponding SEGs. There are, however, some differences between these two

measures occurred with large magnitude fluctuations. For instance, in Fig. A.6a,

from sequence 1 to 11, 30-day-trend displays a larger fluctuation during that time,

whereas SEG describes a more gentle fluctuation. This difference in fluctuations,

due to probably spurious signal in data, has caused the increase of the Euclidean

distance. The difference between 30-day-trend and SEG measures is due to their

different calculations. 30-day-trend is computed by linear regression of 30-day

closing index, whereas SEG is computed by the gradient of two entropies. Hence

we can infer that trends described by 30-day-trend and SEG are basically consis-

tent. In other words, our proposed SEG can be used as another financial trading
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Figure A.6: 30-day-trend and SEG

indicator for short-term stock market investment decision making over a specified

period.

A.4 SSE and SEG comparison

To investigate the difference between CSE and SEG, we conducted an experiment

incorporating international stock market data. All results are shown in Fig. A.7.

Each 60trading-days is considered a time unit. Interestingly, if we compare CSE

with SEG, asynchrony detected by CSE may be reflected as a highly correlated

entropy gradient in SEG figures. For instance, in Fig.A.7, sequence 2 to 4 indicates
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Figure A.7: CSE and SEG Euclidean Distance

high CSE values, and sequence 2 to 4 in Fig. A.1 shows a high correlation between

the ASX and NASDAQ indices. Sub-figures A.7b, c, and d all display the same

phenomena in comparison with sub-figures with Figure 1, 2 and 3. The cause

of these phenomena is the different calculation procedures. CSE can identify the

difference sensitively, because its aim is to measure similarity and asynchrony. On

the other hand, SEG measures the difference of gradients between two entropies

of two sequences.

The different computation procedures between CSE and SEG-based computation

of similarity lead to multiple interpretations of CSE results. One of the reason

is that the two measures are calculated by different procedures, and especially

CSE is affected by high volatility of sequences. To investigate this contradiction,
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Figure A.8: CSE and Sequence Volatility

we compute the volatility (some details are provided in Fig. A.8 and are further

explained later) of the sequences to prove that volatility is the cause of the high

dissimilarity between the two datasets, but it does not prove that the datasets are

uncorrelated. If a sequence has a high CSE value and the data volatility is high,

we can conclude that the high CSE is caused by the high volatility of a sequence

rather than being contradictory.

Fig. A.8 shows the result. From the Fig. A.8a, b, c, and d, we find the high

degree of CSE has a high volatility value. In Fig. A.8c, for instance, sequence 11

to 16, which has a high degree of CSE with high volatility. Fig. A.8a, b reveal

the same situation. Therefore, we can conclude that volatility affects the values

of CSE. In our experiments, we investigated the contradiction between CSE and

SEG. Our results led to the conclusion that the high CSE value is caused by the
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high volatility of the sequences. On the other hand, our results also prove that a

high dissimilarity value does not indicate a low correlation between two time-series

datasets. In other words, over a particular period, two time-series data may be

dissimilar, but that does not imply a lack of correlation.

A.5 Summary

The SEG-based method avoids the need to use a tolerance parameter, allowing the

method to be adapted to various cases. Moreover, it allows comparison of time-

series datasets/signals for specified time segments with quantified correlations, en-

abling us to observe correlations over different time segments. Our international

share market study demonstrated that the method could identify correlations be-

tween two time-series datasets/signals validated through previous financial studies.

As shown in previous financial studies, the U.S. had the greatest influence on the

international stock market [91]. We also compared CSE and SEG. From that com-

parison, we found that high volatility affects the result of CSE, whereas SEG was

able to detect correlations under the same circumstances. At present, the SEG can

only analyses correlations between two time-series datasets/signals. Prediction of

future trends or correlations based on current observations remains a problem. We

intend to undertake further study to develop a predictive model.
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crack damage detection using convolutional neural networks. Computer-

Aided Civil and Infrastructure Engineering, 32(5):361–378, 2017.

[46] Mathieu Dumoulin. Real-time anomaly detection streaming microservices

with h2o and mapr – part 2: Modeling. URL https://mapr.com/blog/

real-time-anomaly-detection-2/. [Online; accessed April 27, 2018].

https://mapr.com/blog/real-time-anomaly-detection-2/
https://mapr.com/blog/real-time-anomaly-detection-2/


References 163

[47] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection:

A survey. ACM computing surveys (CSUR), 41(3):15, 2009.

[48] Eleazar Eskin, Andrew Arnold, Michael Prerau, Leonid Portnoy, and Sal

Stolfo. A geometric framework for unsupervised anomaly detection. In

Applications of data mining in computer security, pages 77–101. Springer,

2002.

[49] Fabrizio Angiulli and Clara Pizzuti. Fast outlier detection in high dimen-

sional spaces. In European Conference on Principles of Data Mining and

Knowledge Discovery, pages 15–27. Springer, 2002.

[50] Ji Zhang and Hai Wang. Detecting outlying subspaces for high-dimensional

data: the new task, algorithms, and performance. Knowledge and informa-

tion systems, 10(3):333–355, 2006.

[51] Edwin M Knox and Raymond T Ng. Algorithms for mining distancebased

outliers in large datasets. In Proceedings of the International Conference on

Very Large Data Bases, pages 392–403. Citeseer, 1998.

[52] Edwin M Knorr and Raymond T Ng. Finding intensional knowledge of

distance-based outliers. In VLDB, volume 99, pages 211–222, 1999.

[53] Edwin M Knorr, Raymond T Ng, and Vladimir Tucakov. Distance-based

outliers: algorithms and applications. The VLDB Journal—The Interna-

tional Journal on Very Large Data Bases, 8(3-4):237–253, 2000.



References 164

[54] Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. Efficient algo-

rithms for mining outliers from large data sets. In ACM Sigmod Record,

volume 29, pages 427–438. ACM, 2000.

[55] Mingxi Wu and Christopher Jermaine. Outlier detection by sampling with

accuracy guarantees. In Proceedings of the 12th ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 767–772. ACM,

2006.

[56] Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander.

Lof: identifying density-based local outliers. In ACM sigmod record, vol-

ume 29, pages 93–104. ACM, 2000.

[57] Wen Jin, Anthony KH Tung, and Jiawei Han. Mining top-n local outliers in

large databases. In Proceedings of the seventh ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 293–298. ACM,

2001.

[58] Anny Lai-mei Chiu and Ada Wai-chee Fu. Enhancements on local outlier

detection. In Database Engineering and Applications Symposium, 2003. Pro-

ceedings. Seventh International, pages 298–307. IEEE, 2003.

[59] Ville Hautamaki, Ismo Karkkainen, and Pasi Franti. Outlier detection using

k-nearest neighbour graph. In Pattern Recognition, 2004. ICPR 2004. Pro-

ceedings of the 17th International Conference on, volume 3, pages 430–433.

IEEE, 2004.



References 165
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