SUPPLEMENTARY MATERIAL

Neogenkwanine I from the flower buds of Daphne genkwa with its stereostructure confirmation using quantum calculation profiles and antitumor evaluation

Xue-wen $\mathrm{Hou}^{\mathrm{a}}$, Shuang $\mathrm{Han}^{\mathrm{a}}$, Ying-ying Zhang ${ }^{\mathrm{a}}$, Hai-bi Su^{a}, Pin-yi Gao $^{\text {a,b }}$, Ling-zhi Li ${ }^{{ }^{*}{ }^{a}}$ and Shao-jiang Song ${ }^{*}{ }^{*}$
${ }^{a}$ School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; ${ }^{b}$ College of Pharmaceutical and Biotechnology Engineering, Institute of Functional Molecules, Shenyang University of Chemical Technology, 11 Street, Shenyang economic and Technological Development Zone, Shenyang 110142, China

CONTACT

Shao-jiang Song, Ling-zhi Li
E-mail: songsj99@163.com, lilingzhijessie@163.com.

Abstract

Neogenkwanine I (1), a new daphnane-type diterpene with 4,7-ether group, along with four known ones (2-5), were isolated from Daphne genkwa. The structure including absolute configurations of $\mathbf{1}$ was established on the basis of NMR, ${ }^{13} \mathrm{C}$-NMR and ECD calculations and CD exciton chirality analysis. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ and ECD calculations of daphnane-type diterpenes were reported here for the first time. All of the diterpenes were screened for their cytotoxic activities against MCF-7 and Hep3B cell lines. The cytotoxicity structure- activity relationship of compounds was illustrated with the absence of ortho- ester group of daphnane-type diterpenes.

KEYWORDS Daphne genkwa; daphnane-type diterpenes; ${ }^{13} \mathrm{C}-\mathrm{NMR}$ and ECD calculations; cytotoxicity; structure-activity relationship

Table of Contents

Figure S1. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $(600 \mathrm{MHz}$, Chloroform- d) of compound 1
Figure S2. ${ }^{13} \mathrm{C}$-NMR spectrum (100 MHz , Chloroform- d) of compound $\mathbf{1}$
Figure S3. HMBC spectrum (600 MHz , Chloroform- d) of compound 1
Figure S4. HSQC spectrum (600 MHz , Chloroform- d) of compound 1
Figure S5. NOESY spectrum (600 MHz , Chloroform- d) of compound 1
Figure S6. CD spectrum of compound $\mathbf{1}$
Figure S7. HRESIMS spectrum of compound 1
Figure S8. Key HMBC correlations of 1.
Figure S9. Key NOESY correlations of $\mathbf{1 .}$
Figure S10. (a) Experimental and calculated ${ }^{13} \mathrm{C}$ chemical shifts of $\left(2 S^{*}, 3 S^{*}, 4 R^{*}, 5 R^{*}\right.$, $\left.6 S^{*}, 7 R^{*}, 8 S^{*}, 9 R^{*}, 10 S^{*}, 11 R^{*}, 13 R^{*}, 14 R^{*}\right) \mathbf{- 1}$. Regression analysis of experimental versus calculated ${ }^{13} \mathrm{C}-\mathrm{NMR}$ chemical shifts of $\left(2 S^{*}, 3 S^{*}, 4 R^{*}, 5 R^{*}, 6 S^{*}, 7 R^{*}, 8 S^{*}, 9 R^{*}\right.$, $\left.10 S^{*}, 11 R^{*}, 13 R^{*}, 14 R^{*}\right)-\mathbf{1}$ at the TMS B3LYP/6-311 + G(2d,p) GIAO level. Linear fitting is shown as a line. (b) Comparison of calculated ECD spectra with the experimental spectrum of $\mathbf{1}$.
Figure S11. Correlation between experimental and calculated ${ }^{13} \mathrm{C}$ chemical shifts of

$$
\begin{aligned}
& \left(2 S^{*}, 3 S^{*}, 4 R^{*}, 5 R^{*}, 6 S^{*}, 7 R^{*}, 8 S^{*}, 9 R^{*}, 10 S^{*}, 11 R^{*}, 13 R^{*}, 14 R^{*}\right)-\mathbf{1} \quad \text { (a) and } \\
& \left(2 S^{*}, 3 S^{*}, 4 R^{*}, 5 R^{*}, 6 R^{*}, 7 R^{*}, 8 S^{*}, 9 R^{*}, 10 S^{*}, 11 R^{*}, 13 R^{*}, 14 R^{*}\right)-\mathbf{1}(\mathbf{b})
\end{aligned}
$$

Figure S12. Stereoviewsfor $2 S, 3 S, 4 R, 5 R, 6 \mathrm{~S}, 7 R, 8 S, 9 R, 10 S, 11 R, 13 R, 14 R$ and $2 R, 3 R$, $44 S, 5 S, 6 R, 7 S, 8 R, 9 S, 10 R, 11 S, 13 S, 14 S$ of compound 1 . Bold lines denote the electric transition dipole of the chromophores for compound 1.
Table S1. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectral data of compound 1
Table S2. Cytotoxic activities of compounds 1-5 against the Hep3B and MCF-7 cell lines.

Table S3. Conformations of $\left(2 S^{*}, 3 S^{*}, 4 R^{*}, 5 R^{*}, 6 S^{*}, 7 R^{*}, 8 S^{*}, 9 R^{*}, 10 S^{*}, 11 R^{*}, 13 R^{*}\right.$, $\left.14 R^{*}\right)-1$ were obtained after the optimization.

Table S4. Conformations of $\left(2 S^{*}, 3 S^{*}, 4 R^{*}, 5 R^{*}, 6 R^{*}, 7 R^{*}, 8 S^{*}, 9 R^{*}, 10 S^{*}, 11 R^{*}, 13 R^{*}\right.$, $\left.14 R^{*}\right)-1$ were obtained after the optimization.
Table S5. Deviations between the calculated and experimental ${ }^{13} \mathrm{C}$-NMR chemical shifts for stereoisomers $\left(2 S^{*}, 3 S^{*}, 4 R^{*}, 5 R^{*}, 6 S^{*}, 7 R^{*}, 8 S^{*}, 9 R^{*}, 10 S^{*}, 11 R^{*}\right.$, $13 R^{*}, 14 R^{*}$ and $2 S^{*}, 3 S^{*}, 4 R^{*}, 5 R^{*}, 6 R^{*}, 7 R^{*}, 8 S^{*}, 9 R^{*}, 10 S^{*}, 11 R^{*}, 13 R^{*}$,

Figure S1. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum (600 MHz , Chloroform- d) of compound 1

Figure S2. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum $(100 \mathrm{MHz}$, Chloroform- d) of compound $\mathbf{1}$

Figure S3. HMBC spectrum (600 MHz , Chloroform- d) of compound $\mathbf{1}$

Figure S4. HSQC spectrum (600 MHz , Chloroform- d) of compound $\mathbf{1}$

Figure S5. NOESY spectrum (600 MHz , Chloroform- d) of compound $\mathbf{1}$

Bio－Kine Software V4．74 Date ：2017－5－19 Time ：16：32：46
COMMENTS ：
File name ：d：l李玲芝 $44-7-3-2$－bika
File name ：d：l李珍芝4－7－3－2－．bka
Savitzky－Golay Smooth of sav－golay
Window Pointe 15
Savitzky－Golay Smoo
Window Points 15
Window Points $=15$
Polynomial Order＝3
Perivative＝0
Figure S6．CD spectrum of compound $\mathbf{1}$

Figure S7. HRESIMS spectrum of compound $\mathbf{1}$

Figure S8. Key HMBC correlations of $\mathbf{1}$.

Figure S9. Key NOESY correlations of $\mathbf{1 (~} \leftrightarrow \cdots)$.

Figure S10. (a) Experimental and calculated ${ }^{13} \mathrm{C}$ chemical shifts of $\left(2 S^{*}, 3 S^{*}, 4 R^{*}, 5 R^{*}\right.$, $\left.6 S^{*}, 7 R^{*}, 8 S^{*}, 9 R^{*}, 10 S^{*}, 11 R^{*}, 13 R^{*}, 14 R^{*}\right)$-1. Regression analysis of experimental versus calculated ${ }^{13} \mathrm{C}-\mathrm{NMR}$ chemical shifts of $\left(2 S^{*}, 3 S^{*}, 4 R^{*}, 5 R^{*}, 6 S^{*}, 7 R^{*}, 8 S^{*}, 9 R^{*}\right.$, $\left.10 S^{*}, 11 R^{*}, 13 R^{*}, 14 R^{*}\right)-1$ at the TMS B3LYP/6-311 + G(2d,p) GIAO level. Linear
fitting is shown as a line. (b) Comparison of calculated ECD spectra with the experimental spectrum of $\mathbf{1}$.

Figure S11. Correlation between experimental and calculated ${ }^{13} \mathrm{C}$ chemical shifts of $\left(2 S^{*}, 3 S^{*}, 4 R^{*}, 5 R^{*}, 6 S^{*}, 7 R^{*}, 8 S^{*}, 9 R^{*}, 10 S^{*}, 11 R^{*}, 13 R^{*}, 14 R^{*}\right)-\mathbf{1}(\mathbf{a})$ and $\left(2 S^{*}, 3 S^{*}, 4 R^{*}, 5 R^{*}, 6 R^{*}, 7 R^{*}, 8 S^{*}, 9 R^{*}, 10 S^{*}, 11 R^{*}, 13 R^{*}, 14 R^{*}\right)$-1 (b)

Figure S12. Stereoviews for $2 S, 3 S, 4 R, 5 R, 6 \mathrm{~S}, 7 R, 8 S, 9 R, 10 S, 11 R, 13 R, 14 R$ and $2 R, 3 R$, $4 S, 5 S, 6 R, 7 S, 8 R, 9 S, 10 R, 11 S, 13 S, 14 S$ of compound $\mathbf{1}$. Bold lines denote the electric transition dipole of the chromophores for compound 1.

Table S1. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectral data of compound $\mathbf{1}$

Position	$\mathbf{1}^{\mathrm{a}}$	
No.	δ_{C}	$\delta_{\mathrm{H}}(J \mathrm{in} \mathrm{Hz})$
1a	34.2	$1.82(1 \mathrm{H}, \mathrm{m})$
1b		$1.21(1 \mathrm{H}, \mathrm{m})$
2	33.6	$2.23(1 \mathrm{H}, \mathrm{m})$
3	73.2	$4.14(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz})$
4	90.5	-
5	84.4	$6.27(1 \mathrm{H}, \mathrm{s})$
6	83.3	-
7	79.5	$4.29(1 \mathrm{H}, \mathrm{d}, J=3.0 \mathrm{~Hz})$
8	44.4	$2.17(1 \mathrm{H}, \mathrm{brs})$
9	73.4	-
10	49.0	$1.94(1 \mathrm{H}, \mathrm{m})$
11	36.7	$1.56(1 \mathrm{H}, \mathrm{m})$
12 a	35.8	$1.89(1 \mathrm{H}, \mathrm{m})$
12 b		$1.80(1 \mathrm{H}, \mathrm{m})$
13	75.1	-
14	72.3	$4.22(1 \mathrm{H}, \mathrm{brs})$
15	144.8	-
16	115.1	$5.14(1 \mathrm{H}, \mathrm{s}), 5.13(1 \mathrm{H}, \mathrm{s})$
17	19.3	$1.85(3 \mathrm{H}, \mathrm{s})$
18	13.9	$0.88(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz})$
19	15.7	$0.96(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz})$
20 a	64.8	$3.64(1 \mathrm{H}, \mathrm{d}, J=11.7 \mathrm{~Hz})$
20 b		$3.73(1 \mathrm{H}, \mathrm{d}, J=11.7 \mathrm{~Hz})$
1^{\prime}	167.6	-
2^{\prime}	129.3	-
$3^{\prime}, 7^{\prime}$	130.1	$8.04(2 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz})$
$4^{\prime}, 6^{\prime}$	128.8	$7.43(2 \mathrm{H}, \mathrm{m})$
5^{\prime}	133.7	$7.56(1 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz})$

[^0]Table S2. Cytotoxic activities of compounds 1-5 against the Hep3B and MCF-7 cell lines

Compound	$\mathrm{IC}_{50}(\mu \mathrm{M})$	
	$3 \mathrm{~B}^{\mathrm{a}}$	$\mathrm{MCF}^{\mathrm{a}}$
1	>100	>100
2	38.55 ± 2.76	19.92 ± 0.33
3	42.24 ± 1.24	7.31 ± 0.48
4	>100	>100
5	8.86 ± 0.18	17.62 ± 0.75
5-fluorouracil	18.42 ± 1.01	39.83 ± 0.56

${ }^{\mathrm{a}}$ All data were shown as means \pm SD of three independent experiments.

Table S3. Conformations of $\left(2 S^{*}, 3 S^{*}, 4 R^{*}, 5 R^{*}, 6 S^{*}, 7 R^{*}, 8 S^{*}, 9 R^{*}, 10 S^{*}, 11 R^{*}, 13 R^{*}\right.$, $\left.14 R^{*}\right)-1$ were obtained after the optimization.

$\left(6 S^{*}\right) 1$		
no.	conformer	population(\%)
$\left(6 S^{*}\right) 1-1$		0.01
(6S*)1-2		0.78

$\left(6 S^{*}\right) 1-3$		0.09
(6S*)1-4		5.13
(6S*)1-5		0.19
(6S*)1-6		0.01

$\left(6 S^{*}\right) 1-7$		19.42
(6S*) $1-8$		0.9
(6S*)1-9	28,	0.09
(6S*)1-10		0.19

$\left(6 S^{*}\right) 1-11$		6.92
(6S*)1-12		34.5
(6S*)1-13		0.9
(6S*)1-14		3.72

(6S*)1-15		3.72
(6S*)1-16		19.18
$\left(6 S^{*}\right) 1-17$		2.13
(6S*)1-18		2.13

(6S*)1-19

Table S4. Conformations of $\left(2 S^{*}, 3 S^{*}, 4 R^{*}, 5 R^{*}, 6 R^{*}, 7 R^{*}, 8 S^{*}, 9 R^{*}, 10 S^{*}, 11 R^{*}\right.$, $\left.13 R^{*}, 14 R^{*}\right)-1$ were obtained after the optimization.

$\left(6 R^{*}\right) 1$		
no.	conformer	population(\%)
(6R*)1-1		8.67

$\left(6 R^{*}\right) 1-2$		69.65
(6R**)1-3		0.99
(6R*) $1-4$		8.67
(6R**)1-5		0

(6R*)1-6		0.45
$\left(6 R^{*}\right) 1-7$,	1
(6R*)1-8		0.17
(6R*)1-9		0.05

$\left(6 R^{*}\right) 1-10$		2.89
$\left(6 R^{*}\right) 1-11$		2.99
$\left(6 R^{*}\right) 1-12$		0.73
$\left(6 R^{*}\right) 1-13$		0

$\left(6 R^{*}\right) 1-14$		0.93
$\left(6 R^{*}\right) 1-15$		0
$\left(6 R^{*}\right) 1-16$		0
$\left(6 R^{*}\right) 1-17$		0

$\left(6 R^{*}\right) 1-18$		0.22
(6R*)1-19		0
(6R*)1-20		2.58

Table S5. Deviations between the calculated and experimental ${ }^{13} \mathrm{C}$ NMR chemical shifts for stereoisomers $\left(2 S^{*}, 3 S^{*}, 4 R^{*}, 5 R^{*}, 6 S^{*}, 7 R^{*}, 8 S^{*}, 9 R^{*}, 10 S^{*}, 11 R^{*}, 13 R^{*}, 14 R^{*}\right.$ and $\left.2 S^{*}, 3 S^{*}, 4 R^{*}, 5 R^{*}, 6 R^{*}, 7 R^{*}, 8 S^{*}, 9 R^{*}, 10 S^{*}, 11 R^{*}, 13 R^{*}, 14 R^{*}\right)$ of 1

EXL	$6 S^{*}$				$6 R^{*}$			
	calc.	scal.calc.	$\Delta \delta$	$\|\Delta \delta\|$	calc.	scal.calc.	$\Delta \delta$	$\|\Delta \delta\|$
13.9	8.7	12.3	-1.6	1.6	9.1	12.6	-1.3	1.3
15.7	10.9	14.6	-1.1	1.1	11.4	15.0	-0.7	0.7
19.3	13.6	17.5	-1.8	1.8	13.7	17.5	-1.8	1.8
33.6	28.3	33.4	-0.2	0.2	28.3	33.3	-0.3	0.3
34.2	29.0	34.2	0.0	0.0	29.2	34.2	0.0	0.0
35.8	30.2	35.5	-0.3	0.3	29.7	34.7	-1.1	1.1
36.7	31.0	36.3	-0.4	0.4	30.6	35.8	-0.9	0.9
44.4	41.5	47.6	3.2	3.2	42.8	48.9	4.5	4.5
49.0	44.5	50.9	1.9	1.9	43.9	50.1	1.1	1.1
64.8	58.0	65.4	0.6	0.6	56.4	63.6	-1.2	1.2
72.3	60.4	68.0	-4.3	4.3	60.1	67.5	-4.8	4.8
73.2	65.3	73.3	0.1	0.1	64.3	72.1	-1.1	1.1

73.4	66.6	74.7	1.3	1.3	66.7	74.6	1.2	1.2
75.1	68.2	76.4	1.3	1.3	69.9	78.1	3.0	3.0
79.5	73.2	81.8	2.3	2.3	71.4	79.7	0.2	0.2
83.3	75.3	84.1	0.8	0.8	78.0	86.8	3.5	3.5
84.4	76.5	85.3	0.9	0.9	78.7	87.6	3.2	3.2
90.5	84.2	93.7	3.2	3.2	84.5	93.8	3.3	3.3
115.1	101.4	112.2	-2.9	2.9	101.1	111.7	-3.4	3.4
128.8	114.8	126.7	-2.1	2.1	114.9	126.6	-2.2	2.2
128.8	115.1	127.0	-1.8	1.8	115.1	126.8	-2.0	2.0
129.3	116.0	127.9	-1.4	1.4	115.7	127.5	-1.8	1.8
130.1	117.1	129.2	-0.9	0.9	117.2	129.1	-1.0	1.0
130.1	117.9	130.0	-0.1	0.1	117.7	129.6	-0.5	0.5
133.7	120.0	132.3	-1.4	1.4	120.1	132.2	-1.5	1.5
144.8	136.6	150.2	5.4	5.4	137.8	151.3	6.5	6.5
167.6	151.9	166.8	-0.8	0.8	151.8	166.4	-1.2	1.2
			AveDev	1.6			AveDev	2.0
			MaxDev	5.4			MaxDev	6.5
			R^{2}	0.9978		R^{2}	0.9966	

[^0]: ${ }^{\mathrm{al}} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(100 \mathrm{MHz})$ in CDCl_{3}.

