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A step further from model-fitting for the assessment of the predictability of monthly temperature and precipitation

1. Abstract
“With four parameters I can fit an elephant, and with five I can make him wiggle his trunk”, ∼ John von

Neumann. This famous quote, literally possible as proved by Mayer et al. (2010), has been widely used to

question the parsimony of a model providing a good description of the available data. Still, a significant

part of the hydrological literature insists in adding parameters, trend or of other type, to models to

increase their descriptive power within the concept of geophysical time series analysis and without testing

their predictive ability. Herein, we move a step further from model-fitting and actually run in forecast

mode several automatic univariate time series models with the aim to assess the predictability of monthly

temperature and precipitation. We examine a sample of 985 monthly temperature and 1552 monthly

precipitation time series, observed at stations covering a significant part of the Earth’s surface and,

therefore, including various real-world process behaviours. All the time series are 40-years long with no

missing values. We compare the naïve based on the monthly values of the last year, ARFIMA, exponential

smoothing state space model with Box-Cox transformation, ARMA errors, Trend and Seasonal components

(BATS), simple exponential smoothing (SES), Theta and Prophet forecasting methods. Prophet is a recently

introduced model inspired by the nature of time series forecasted at Facebook and has not been applied to

hydrometeorological time series in the past, while the use of BATS, SES and Theta is rare in hydrology. The

methods are tested in performing multi-step ahead forecasts for the last 48 months of the data. The results

are summarized in global scores, while their examination by group of stations leads to 5 individual scores

for temperature and 6 for precipitation. The groups are formed according to the geographical vicinity of

the stations.

The findings suggest that all the examined models are accurate enough to be used in long-term forecasting

applications. For the total of the temperature time series the use of an ARFIMA, BATS, SES, Theta or

Prophet model, instead of the naïve method, leads in about 19-29% more accurate forecasts in terms of

root mean square error, or even in about 30-32% more accurate forecasts specifically for the temperature

time series observed in North Europe. For the total of the precipitation time series the use of all these

automatic methods leads in about 21-22% better forecasts than the use of the naïve method, while for the

geographical regions of North America, North Europe and East Asia these percentages are 26-29%, 22-

24% and 32-38% respectively. We think that the level of the forecasting accuracy can barely be improved

using other methods, as indicated by the experiments of Papacharalampous et al. (2017a).

2. Introduction

o Meaning of this quote: We should not be 

surprised by the descriptive ability of 

a model comprising a large number of 

parameters.

o Still, a significant part of the hydrological 

literature insists in adding parameters, 

trend or of other type, to models to 

increase their descriptive power within 

the concept of geophysical time series 

analysis and without testing their 

predictive ability. 

“With four parameters I can fit an elephant, 

and with five I can make him wiggle his trunk”, 

∼ John von Neumann. 

Is this quote literally possible?

o An implementation is provided by Mayer et al. 

(2010). The authors use “five complex parameters”, 

each holding a real and an imaginary part , i.e. 10 

parameters in total. The real part of the fifth 

parameter is the wiggle parameter.

o A relevant discussion and a Python code for the 

implementation of the method of Mayer et al. 

(2010), i.e. for drawing the orange elephant on the 

left, can be found at: 

https://www.johndcook.com/blog/2011/06/21/

how-to-fit-an-elephant/

Automatic univariate time series forecasting methods

s/n Abbreviated 

name

Type Handling of 

seasonality

(see bellow)

Handling of 

non-normality

(see bellow)

1 naïve naïve 1 1

2 arfima_1 AutoRegressive 

Integrated Moving 

Average (ARFIMA)

2 1

3 arfima_2 2 2

4 arfima_3 3 1

5 arfima_4 3 2

6 bats_1 exponential smoothing 

state space model with 

Box-Cox transformation, 

ARMA errors, Trend and 

Seasonal components 

(BATS)

2 1

7 bats_2 2 2

8 bats_3 3 1

9 bats_4 3 2

10 bats_5 4 1

11 bats_6 4 2

12 ses_1 Simple Exponential 

Smoothing (SES)

2 1

13 ses_2 2 2

14 ses_3 3 1

15 ses_4 3 2

16 theta_1 Theta 2 3

17 theta_2 3 3

18 prophet_1 Prophet 2 3

19 prophet_2 3 3

20 prophet_3 4 3

s/n Handling of seasonality

1 Time series offset

2 Classical seasonal decomposition using the additive model of the 

decompose built-in R algorithm and subsequent addition of the 

seasonal component to the forecasts

3 Classical seasonal decomposition using the multiplicative model 

of the decompose built-in R algorithm and subsequent 

multiplication of the forecasts by the seasonal component

4 Through the forecasting algorithm

s/n Handling of non-normality

1 -

2 Box-Cox transformation through the forecasting algorithm

3 Default

Data source: Lawrimore et al. (2011)

4. Exploration of the temperature dataset

Groups of the temperature stations

Geographical region Number of stations Longitude (°) Latitude (°)

North America 410 [-140, -50] [20, 65]

North Europe 80 [-15, 40] [45, 75]

Siberia 70 [40, 175] [50, 75]

Asia (except Siberia) 259 [40, 150] [5, 50]

Oceania 36 [105, 170] [-50, -10]

5. Exploration of the precipitation dataset
Data source: Peterson and Vose (1997)

Groups of the precipitation stations

Geographical region Number of stations Longitude (°) Latitude (°)

North America 388 [-135, -60] [20, 55]

North Europe 182 [-15, 35] [50, 75]

North Africa 100 [-20, 40] [0, 20]

South Africa 120 [-20, 45] [-35, 0]

East Asia 50 [95, 135] [15, 50]

Australia 563 [110, 155] [-45, - 15]

6. Temperature: Medians of the absolute errors
Oceania

North EuropeNorth America Siberia

Asia (except Siberia)

Globe

Medians of the RMSE values (K)
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naïve 2.29 2.70 3.14 3.49 1.61 1.19

arfima_1 1.63 1.90 2.13 2.66 1.11 1.03

arfima_2 1.63 1.90 2.13 2.66 1.11 1.04

arfima_3 1.63 1.90 2.13 2.66 1.11 1.03

arfima_4 1.63 1.90 2.13 2.66 1.11 1.06

bats_1 1.62 1.92 2.13 2.66 1.11 1.01

bats_2 1.62 1.93 2.13 2.67 1.12 1.01

bats_3 1.62 1.92 2.13 2.68 1.12 1.01

bats_4 1.64 1.94 2.13 2.67 1.12 1.01

bats_5 1.84 2.21 2.16 2.84 1.26 1.07

bats_6 1.86 2.20 2.18 2.84 1.33 1.04

ses_1 1.68 1.99 2.15 2.66 1.12 1.02

ses_2 1.68 1.99 2.15 2.67 1.12 1.02

ses_3 1.68 2.00 2.15 2.67 1.12 1.02

ses_4 1.68 2.00 2.15 2.68 1.12 1.02

theta_1 1.68 1.99 2.17 2.64 1.12 1.01

theta_2 1.68 2.00 2.15 2.67 1.12 1.02

prophet_1 1.70 1.99 2.12 2.62 1.25 1.03

prophet_2 1.71 1.99 2.13 2.63 1.25 1.03

prophet_3 1.75 2.04 2.19 2.70 1.26 1.03

Medians of the NSE values
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naïve 0.91 0.90 0.79 0.93 0.95 0.90

arfima_1 0.95 0.95 0.91 0.96 0.98 0.93

arfima_2 0.95 0.95 0.91 0.96 0.98 0.93

arfima_3 0.95 0.95 0.91 0.96 0.98 0.93

arfima_4 0.95 0.95 0.91 0.96 0.98 0.92

bats_1 0.95 0.95 0.91 0.96 0.98 0.93

bats_2 0.95 0.95 0.91 0.96 0.98 0.93

bats_3 0.95 0.95 0.91 0.96 0.98 0.93

bats_4 0.95 0.95 0.91 0.96 0.98 0.93

bats_5 0.94 0.93 0.89 0.95 0.97 0.93

bats_6 0.94 0.93 0.89 0.95 0.97 0.93

ses_1 0.95 0.95 0.90 0.96 0.98 0.93

ses_2 0.95 0.95 0.90 0.96 0.98 0.93

ses_3 0.95 0.95 0.90 0.96 0.98 0.93

ses_4 0.95 0.95 0.90 0.96 0.98 0.93

theta_1 0.95 0.95 0.90 0.96 0.98 0.93

theta_2 0.95 0.95 0.90 0.96 0.98 0.93

prophet_1 0.95 0.95 0.91 0.96 0.97 0.93

prophet_2 0.95 0.95 0.91 0.96 0.97 0.93

prophet_3 0.95 0.95 0.90 0.96 0.97 0.93

7. Temperature: RMSE and Nash-Sutcliffe values 8. Precipitation: Medians of the absolute errors
Australia

Globe

North EuropeNorth America South Africa

East Asia

North Africa

9. Precipitation: Medians of the absolute errors
Medians of the RMSE values (mm)
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naïve 53.74 63.20 47.89 59.91 58.84 75.61 46.38

arfima_1 41.75 45.16 36.65 46.18 48.34 48.57 36.51

arfima_2 42.07 45.29 37.26 45.27 48.81 47.98 37.49

arfima_3 41.67 45.61 36.65 45.36 48.20 47.79 36.25

arfima_4 42.01 45.34 37.09 46.19 49.60 49.07 37.26

bats_1 41.88 45.78 36.59 46.02 48.85 47.56 36.21

bats_2 41.90 45.62 36.59 45.75 48.85 47.56 36.21

bats_3 41.98 46.15 36.54 45.15 48.56 48.01 36.51

bats_4 42.06 45.28 36.69 47.69 50.04 48.85 36.75

bats_5 42.39 45.80 36.78 47.50 49.99 51.71 37.28

bats_6 42.34 45.56 37.52 47.50 49.99 50.77 37.13

ses_1 41.88 45.54 36.60 45.77 48.83 48.07 36.35

ses_2 42.23 45.49 36.78 46.16 49.17 48.03 37.45

ses_3 41.79 45.90 36.30 45.17 48.40 47.87 36.16

ses_4 42.13 45.39 36.95 48.93 50.29 49.12 37.26

theta_1 42.08 46.24 36.87 46.09 48.95 47.22 36.50

theta_2 41.79 45.90 36.30 45.17 48.40 47.87 36.16

prophet_1 42.16 46.22 37.06 46.03 48.70 47.18 36.56

prophet_2 41.85 46.72 36.84 46.26 48.89 47.08 36.31

prophet_3 42.34 46.54 36.90 46.19 49.26 51.21 36.56

10. Precipitation: RMSE and Nash-Sutcliffe values
Medians of the NSE values
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naïve –0.38 –0.55 –0.45 0.54 –0.04 0.05 –0.44

arfima_1 0.15 0.10 0.12 0.69 0.29 0.49 0.04

arfima_2 0.11 0.09 0.08 0.69 0.25 0.50 –0.04

arfima_3 0.14 0.09 0.12 0.70 0.30 0.49 0.05

arfima_4 0.08 0.08 0.05 0.71 0.18 0.51 –0.04

bats_1 0.14 0.08 0.13 0.70 0.29 0.49 0.04

bats_2 0.14 0.08 0.13 0.70 0.29 0.49 0.04

bats_3 0.14 0.08 0.13 0.71 0.29 0.50 0.04

bats_4 0.11 0.10 0.11 0.69 0.18 0.52 –0.01

bats_5 0.11 0.08 0.10 0.70 0.25 0.45 0.01

bats_6 0.10 0.07 0.05 0.70 0.25 0.44 0.01

ses_1 0.14 0.09 0.12 0.70 0.30 0.49 0.04

ses_2 0.10 0.09 0.08 0.69 0.22 0.50 –0.04

ses_3 0.14 0.08 0.12 0.71 0.29 0.49 0.05

ses_4 0.09 0.09 0.05 0.68 0.16 0.51 –0.04

theta_1 0.14 0.08 0.13 0.69 0.29 0.49 0.04

theta_2 0.14 0.08 0.12 0.71 0.29 0.49 0.05

prophet_1 0.14 0.07 0.13 0.69 0.28 0.50 0.04

prophet_2 0.14 0.07 0.13 0.70 0.29 0.50 0.04

prophet_3 0.13 0.07 0.11 0.68 0.28 0.49 0.03

3. Forecasting: A step further from model-fitting 
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11. Discussion and conclusions
o The present study is available in Papacharalampous et al. (2018b).

o We suggest its reading alongside with its companion studies, i.e. Tyralis and Koutsoyiannis (2014),

Papacharalampous et al. (2017a, b, c; 2018a, c) and Tyralis and Papacharalampous (2017).

o The results indicate that all the examined models (apart from the naïve one) are accurate enough to be used in

long-term forecasting applications.

o Even the SES and Theta models, which exhibit a rather moderate performance in terms of RMSE and NSE in the

experiments of Papacharalampous et al. (2017a), here are found to be equally competitive with the ARFIMA and

BATS models, which are the most accurate in terms of RMSE and NSE in the above-mentioned study.

o This may be explained by the fact that the experiments of Papacharalampous et al. (2017a) use non-seasonal

simulated processes, with different predictability than the monthly temperature and precipitation processes.

Seasonality can be assumed to be the deterministic term of a process and its proper handling leads to a significant

improvement of the forecasts.

o Regarding the investigation of the present study on how different choices of handling seasonality and non-

normality affect the performance of the models, the results do not suggest any specific combination of choices for

the external handling of seasonality and non-normality as best.

o Nevertheless, the handling of seasonality through the BATS and Prophet models (the only models that offer this

possibility amongst the used ones) mostly leads to less accurate forecasts than the external handling, especially

for the former model.

o Admittedly, the quantitative information provided by the present study is also important, since it directly

expresses the predictability of monthly temperature and precipitation. Excluding the naïve method, the respective

RMSE values range between 1.01 K and 2.84 K for temperature, and 36.16 mm and 51.71 mm for precipitation.

o In more detail, for the total of the temperature time series the use of an ARFIMA, BATS, SES, Theta or Prophet

model, instead of the naïve method, leads to about 19-29% more accurate forecasts in terms of RMSE, or even in

about 30-32% more accurate forecasts specifically for the temperature time series observed in North Europe.

o For the total of the precipitation time series the use of all these automatic methods leads to about 21-22% better

forecasts than the use of the naïve method, while for the geographical regions of North America, North Europe

and East Asia these percentages are 26-29%, 22-24% and 32-38% respectively.

o We think that the level of the forecasting accuracy can barely be improved using other methods as the

experiments of Papacharalampous et al. (2017a) suggest.

o We investigate the predictability of monthly temperature

and precipitation, and simultaneously assess the multi-

step ahead performance of the automatic univariate time

series forecasting methods (presented on the right) by

applying the latter to the largest sample of

hydrometeorological time series ever used for such

purposes.

o This sample is composed by 985 monthly temperature

and 1552 monthly precipitation time series. All the time

series are 40-years long, spanning from 1950 to 1989,

with no missing values.

o We forecast the monthly values of each time series for

the period 1986-1989 using the time series values from

the period 1950-1985. The forecast horizon is 48

months ahead.

o For the assessment of the methods we compute the error

and absolute error at each time step of the forecast

horizon for each forecasting attempt. We further

compute the Root Mean Squared Error (RMSE) and the

Nash-Sutcliffe Efficiency (NSE) of each multi-step ahead

forecast.

o The analyses and visualizations are performed in R

Programming Language (R Core Team 2017) using the

contributed R packages devtools (Wickham and Chang

2017), forecast (Hyndman and Khandakar 2008,

Hyndman et al. 2017), fracdiff (Fraley et al. 2012), gdata

(Warnes et al. 2017), ggplot2 (Wickham 2016),

HKprocess (Tyralis 2016, Tyralis and Koutsoyiannis

2011), knitr (Xie 2014; 2015; 2017), maps (Brownrigg et

al. 2017), prophet (Taylor and Letham 2017a, b), readr

(Wickham et al. 2017) and zoo (Zeileis and Grothendieck

2005).


