Trinity College Dublin
Coláiste na Tríonóide, Baile Átha Cliath
The University of Dublin

Coronal Mass Ejection Oscillations

INAM 2018, Birr

Shane Maloney, Betsy Speer, James Doherty, Peter Gallagher
Research Fellow
Date 06/09/18

Outline

1.What are CMEs and how are they observed?
2.Why are CMEs / CME oscillations interesting?
3.Analysis
4. Results
5.Conclusions

1. What are CMEs and how are they Observed?

- Large scale eruptions of plasma and magnetic field
- Mass ${ }^{\sim}{ }^{1015} \mathrm{~g}$
- Velocity 100-3500 km/s
- Kinetic Energy ~ 10^{31} ergs
- Magnetic flux ropes

2. What are CMEs and how are they Observed?

- Coronagraphs (white light)
- Thomson scattered light from the photosphere

$$
I \propto n_{e}
$$

- Plane of sky projected
- Polarisation
- Can infer distance from plane of sky

3. Why are CMEs / CME oscillations interesting?

- CMEs are some of the most energetic events on the Sun
- CMEs are the main drivers of adverse space weather affects
- CME velocity and magnetic (B) field key factors
- Flux ropes structures present in many astrophysical systems
- Understand the details of entire flare CME system

3. Why are CMEs / CME oscillations interesting?

- What is a CME oscillation?
- semi-periodic signal in velocity-time profiles

3. Why are CMEs / CME oscillations interesting?

Krall et al. (2001)

3. Why are CMEs / CME oscillations interesting?

- What is a CME oscillation?
- semi-periodic signal in velocity-time profiles
- What could cause CME oscillations?
- MHD waves
- Coronal seismology -> get an estimate of B field and other properties

$$
P=\frac{2 \pi}{c_{A}}(a l)^{1 / 2} \quad c_{A}=f(B) \quad \sim 220 \mathrm{~min}
$$

- Modulation of magnetic reconnection rate

4. Analysis

Data

- CDAW LASCO CME catalogue 1996 - present (29,000 CMEs)

- Manual point-and-click
- Metadata and height-time

4. Analysis

Numerical Derivatives

- Oscillations visible in velocity-time data need numerical differentiation to calculate from observed heights and times
- Error propagation and approximation to a derivative
- Different techniques give different results

4. Analysis

Numerical Derivatives

4. Analysis

Fitting

- Fitting even simple oscillatory functions leads to issues

$$
f(x)=\sin (2 \pi \nu x+\phi)
$$

4. Analysis

Fitting

- Objective function or minimisation landscape

- Fix phase at correct value evaluate frequency dependance
- Fix freq at correct value evaluate phase dependance

4. Analysis

Fitting

- Monte Carlo method - uniformly sample the initial condition space (Michalek et al. 2016)

4. Analysis

Fitting

- Monte Carlo method - uniformly sample the initial condition space (Michalek et al. 2016)

4. Analysis

Fitting

- Monte Carlo method - uniformly sample the initial condition space (Michalek et al. 2016)
- Grid Search - evaluate the initial condition on a grid

4. Analysis

Fitting

- Monte Carlo method - uniformly sample the initial condition space (Michalek et al. 2016)
- Grid Search - evaluate the initial condition on a grid
- Simulate CMEs with parameters from sampled from known distributions and compare results from the methods

$$
h=h_{0}+v_{0} t+\frac{1}{2} a_{0} t^{2}-\frac{A 2 \pi}{P} \cos \left(\frac{2 \pi t}{P}+\phi\right)
$$

5. Results

Simulated Data

5. Results

Simulated Data

Simulated CME

5. Results

Simulated Data

Phase Distributions

5. Results

LASCO CME Catalogue

5. Results

LASCO CME Catalogue

Phase Distributions

6. Conclusions

- Unclear if oscillatory signatures are statistically significant.
- Grid search method seems marginally more stable and accurate.
- Chose between models -> closest χ_{R}^{2} to 1 ?
- Bayesian methods
- Marginalise unimportant parameters
- Bayesian Information Criterion to choose model

