

#### Trinity College Dublin

Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

#### **Coronal Mass Ejection Oscillations** INAM 2018, Birr

Shane Maloney, Betsy Speer, James Doherty, Peter Gallagher

Research Fellow Date 06/09/18



#### Outline

1. What are CMEs and how are they observed?

2. Why are CMEs / CME oscillations interesting?

**3.Analysis** 

4. Results

**5.**Conclusions

### 1. What are CMEs and how are they Observed?

- Large scale eruptions of plasma and magnetic field
- Mass ~ 10<sup>15</sup> g

- Velocity 100 3500 km/s
- Kinetic Energy ~ 10<sup>31</sup> ergs
- Magnetic flux ropes



## 2. What are CMEs and how are they Observed?

- Coronagraphs (white light)
- Thomson scattered light from the photosphere

 $I \propto n_e$ 

- Plane of sky projected
- Polarisation
  - Can infer distance from plane of sky



- CMEs are some of the most energetic events on the Sun
- CMEs are the main drivers of adverse space weather affects
   CME velocity and magnetic (B) field key factors
- Flux ropes structures present in many astrophysical systems
- Understand the details of entire flare CME system

- What is a CME oscillation?
  - semi-periodic signal in velocity-time profiles



Trinity College Dublin, The University of Dublin.

shane.maloney@tcd.ie

- What is a CME oscillation?
  - semi-periodic signal in velocity-time profiles
- What could cause CME oscillations?
  - MHD waves
    - Coronal seismology -> get an estimate of B field and other properties

$$P = \frac{2\pi}{c_A} (al)^{1/2} \quad c_A = f(B)$$
 ~220 min

Modulation of magnetic reconnection rate

## 4. Analysis

Data

- CDAW LASCO CME catalogue 1996 present (29,000 CMEs)
  - Manual point-and-click
  - Metadata and height-time

|           |          |          |          |       |     |    |       |                                        | #DETECTOR: C2+C3                                                                                                   |
|-----------|----------|----------|----------|-------|-----|----|-------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------|
|           |          |          |          |       |     |    |       |                                        | <pre>#FILTER: Orange(C2) Clear(C3)</pre>                                                                           |
|           |          |          |          |       |     |    |       |                                        | #OBSERVER: michalek                                                                                                |
|           |          |          |          |       |     |    |       |                                        | #FEAT_CODE: 1=LE                                                                                                   |
|           |          |          |          |       |     |    |       |                                        | #IMAGE_TYPE: RUNNING DIFF                                                                                          |
|           |          |          |          |       |     |    |       |                                        | #YHT_ID: 20171018.054805.p137g                                                                                     |
| #COMMENT: |          |          |          |       |     |    |       | #ORIG_HTFILE: 20171018.054805.pa137.ht |                                                                                                                    |
| ŧ         | HEIGHT   | DATE     | TIME     | ANGLE | TEL | FC | COL   | ROW                                    | #ORIG_WDFILE: 20171018.054805.pa137.wd                                                                             |
|           | 3.49 20  | 17/10/18 | 05:48:05 | 139.0 | C2  | 1  | 162.0 | 146.0                                  | #UNIVERSAL: 1                                                                                                      |
|           | 5.54 20  | 17/10/18 | 06:00:05 | 142.0 | C2  | 1  | 116.0 | 75.0                                   | #WDATA: 2.82 2017/10/18 07:24:05 346.5 C2 9 282.0 365.0<br>#WDATA: 2.93 2017/10/18 07:24:05 265.6 C2 9 374.0 244.0 |
|           | 6.78 20  | 17/10/18 | 06:06:07 | 139.1 | C3  | 1  | 220.0 | 221.0                                  | #WDATA: 2.93 2017/10/18 07:24:05 265.8 C2 9 374.0 244.0<br>#WDATA: 2.93 2017/10/18 07:24:05 266.1 C2 9 374.0 245.0 |
|           | 8.71 20  | 17/10/18 | 06:18:05 | 139.3 | C3  | 1  | 209.0 | 208.0                                  | #HALO: 1                                                                                                           |
|           | 10.51 20 | 17/10/18 | 06:30:05 | 141.2 | C3  | 1  | 201.0 | 194.0                                  | #ONSET1: 2017/10/18 05:24:03                                                                                       |
|           | 11.30 20 | 17/10/18 | 06:42:05 | 139.9 | C3  | 1  | 195.0 | 190.0                                  | #ONSET2: 2017/10/18 05:30:03                                                                                       |
|           | 13.67 20 | 17/10/18 | 06:54:06 | 135.7 | C3  | 1  | 175.0 | 180.0                                  | #ONSET2_RSUN: 1.00<br>#CEN PA: HALO                                                                                |
|           | 14.95 20 | 17/10/18 | 07:06:05 | 135.6 | C3  | 1  | 167.0 | 172.0                                  | #WIDTH: 360                                                                                                        |
|           | 17.05 20 | 17/10/18 | 07:18:06 | 135.6 | C3  | 1  | 154.0 | 159.0                                  | #SPEED: 1576                                                                                                       |
|           | 18.09 20 | 17/10/18 | 07:30:07 | 135.8 | C3  | 1  | 148.0 | 152.0                                  | #ACCEL: -44.5                                                                                                      |
|           | 20.11 20 | 17/10/18 | 07:42:06 | 134.1 | C3  | 1  | 132.0 | 143.0                                  | #FEAT_PA: 137                                                                                                      |
|           | 21.24 20 | 17/10/18 | 07:54:05 | 134.2 | C3  | 1  | 125.0 | 136.0                                  | <pre>#FEAT_QUAL: 3.0 #QUALITY INDEX: 5 (Excellent)</pre>                                                           |
|           | 22.54 20 | 17/10/18 | 08:06:05 | 133.8 | C3  | 1  | 116.0 | 129.0                                  | #REMARK:                                                                                                           |
|           | 24.64 20 | 17/10/18 | 08:18:06 | 133.5 | C3  | 1  | 102.0 | 117.0                                  | #COMMENT:                                                                                                          |
|           | 25.94 20 | 17/10/18 | 08:30:06 | 134.0 | C3  | 1  | 95.0  | 108.0                                  | # HEIGHT DATE TIME ANGLE TEL FC COL ROW                                                                            |

#VERSION=3

#DATE-OBS: 2017/10/18 #TIME-OBS: 05:48:05 #DETECTOR: C2+C3

## 4. Analysis

**Numerical Derivatives** 

 Oscillations visible in velocity-time data need numerical differentiation to calculate from observed heights and times

• Error propagation and approximation to a derivative

• Different techniques give different results

#### **4. Analysis** Numerical Derivatives



#### **4. Analysis** Fitting

• Fitting even simple oscillatory functions leads to issues  $f(x) = sin(2\pi\nu x + \phi)$ 



#### **4. Analysis** Fitting

- Objective function or minimisation landscape



- Fix phase at correct value evaluate frequency dependance
- Fix freq at correct value evaluate phase dependance

### **4. Analysis** Fitting

• Monte Carlo method - uniformly sample the initial condition space (Michalek et al. 2016)





• Monte Carlo method - uniformly sample the initial condition space (Michalek et al. 2016)





• Monte Carlo method - uniformly sample the initial condition space (Michalek et al. 2016)

• Grid Search - evaluate the initial condition on a grid





• Monte Carlo method - uniformly sample the initial condition space (Michalek et al. 2016)

• Grid Search - evaluate the initial condition on a grid

 Simulate CMEs with parameters from sampled from known distributions and compare results from the methods

$$h = h_0 + v_0 t + \frac{1}{2}a_0 t^2 - \frac{A2\pi}{P}\cos\left(\frac{2\pi t}{P} + \phi\right)$$

#### **5. Results** Simulated Data



## **5. Results** Simulated Data



# **5. Results** Simulated Data



## **5. Results** Simulated Data



#### **5. Results** Simulated Data



#### **5. Results** Simulated Data















## 6. Conclusions

- Unclear if oscillatory signatures are statistically significant.
- Grid search method seems marginally more stable and accurate.
- Chose between models -> closest  $\chi^2_R$  to 1?
- Bayesian methods
  - Marginalise unimportant parameters
  - Bayesian Information Criterion to choose model