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Abstract

Autonomous vehicles, or self-driving vehicles, must be able to ac-

tively perceive and understand their immediate surroundings to op-

erate safely in complex and dynamic traffic environments. However,

correctly interpreting various sensor data and constructing a coherent

world model for the traffic scene is a challenging task due to partial

and noisy measurements from the sensors and the dynamic nature of

the scene.

This thesis improves state-of-the-art moving object tracking with mul-

tiple sensors such as radars, LIDARs, and cameras for self-driving

vehicles. It proposes improved approaches for vision-based object de-

tection and multi-sensor object tracking. In addition, lane detection

results are fused in the tracking sytem to exploit contextual interplay

between lane markers and moving objects, especially moving vehicles.

Recognizing moving objects is essential to a perception system since

the semantic information of object class can be utilized not only in a

tracking system itself but also in a decison-making component. In this

thesis, we thoroughly investigate the current state-of-the-art object

detection methods and significantly improve the speed performance

of one promising method called ‘deformable part-based models.’ In

addition, we improve pedestrian and vehicle detection accuracy by

designing optimized object models for automotive applications. Fi-

nally, we achieve state-of-the-art pedestrian detection performance by

adding motion features, that we refer to as ‘inner motion features.’

Furthermore, this thesis proposes a novel moving object detection and

tracking system that uses improved motion and observation models for



active sensors (i.e., radars and LIDARs) and introduces a vision sen-

sor. This cooperative fusion enables more accurate estimation of the

kinematic properties (i.e., position and velocity) by radar and LIDAR

sensors and new estimation of the geometric (i.e., size and volume)

and semantic properties (i.e., object class) by cameras. Then, the

semantic information of an object type is utilized for several internal

sub-components of the tracking system.

Finally, we proposes a holistic approach which leverages contextual

cues to further improve the performance of our multi-sensor tracking

system. The method exploits contextual interplay between moving

objects and traffic environments such as lane markers and sidewalks.

All components proposed throughout this thesis were evaluated with

challenging real-world data. Relevant sensor data were collected from

25 minutes of driving from the Carnegie Mellon’s campus to the Pitts-

burgh’s International Airport. Our experiments show that the holis-

tic tracking approach, which integrates vision-based object detection,

lane marker detection, and multi-sensor tracking, can offer a signifi-

cant improvement over the conventional tracking system.
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Chapter 1

Introduction

Since Karl Benz introduced his first “Motorwagen” in 1885, the automotive in-

dustry has been a driving force for technological innovation and economic growth.

In 2010, it was estimated that the number of vehicles over the world had risen

to over one billion vehicles [92]. It is quite remarkable when we realize the fact

that this dazzling expansion happened in just 125 years and driving became an

essential part of our daily life. Now, in the early decades of the 21st century, the

pace of innovation is becoming more dramatic and our society is on the verge of

a new technological revolution: “self-driving” vehicles.

This chapter briefly discusses the motivation of autonomous driving technol-

ogy and its recent progress. Then, it introduces the perception problem of self-

driving vehicles, particularly, focusing on a problem of detecting and tracking

of moving objects. We discuss the main challenges involved and briefly present

our approach highlighting the contributions of the thesis. We begin in Section

1.1 and 1.2 with motivation and recent progress on autonomous driving. Section

1.3 and Section 1.4 present perception systems and currently available sensors

for self-driving vehicles, respectively. Then, Section 1.5 introduces the problem

of detecting and tracking of moving objects and discusses its main challenges.

Finally, we conclude with a discussion of the major contributions and an outline

of the structure of the dissertation in Section 1.7 and Section 1.8.
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1.1 Motivation

A self-driving or fully autonomous vehicle suggests various positive effects to

the society. First, it can improve the driving safety and save a huge number of

human lives from vehicle accidents. According to [63], there were approximately

6 million vehicle crashes in 2010 leading to 32,788 human deaths and of the 6

million crashes, 93% are attributable to human error. Secondly, self-driving cars

can save the millions of hours wasted in traffic jams because it can drive a little

bit closer together on the road by relying on machine (i.e., sensors) precision

rather than human’s. On average, American commuter spends around 250 hours

a year behind the wheel of a vehicle [107]. This time can be better used for more

creative and productive work. Thirdly, it can provide a better quality of life to

the disabled and senior citizens by offering greater mobility to them. Lastly, it

also provides economic benefits to industry by enabling longer hours of vehicle

operation because, with proper maintenance, machines never get tired. From

these contexts, we believe that self-driving vehicles are now escaping from science

fiction books and becoming a reality in the near future.

1.2 Recent Progress on Autonomous Driving

Fully autonomous driving through a busy city street has long been a dream to

the intelligent vehicle and robotics community since the invention of automo-

biles. Traffic environments, especially urban traffic scene, pose lots of challenges

in terms of perception, reasoning (i.e., decision making), and motion planning. Al-

though not there yet, impressive progress has been achieved towards autonomous

vehicles in the past few years, such as achievements from most teams that par-

ticipated in the 2007 Urban Challenge [102, 60, 71, 69, 85], the Grand Cooper-

ative Driving Challenge [91], and VisLab’s Intercontinental Autonomous Chal-

lenge [18]. Yet another impressive work would be the ‘Google Car’ project. Since

they revealed their robotic vehicles to the public for the first time [73] in 2010,

they have reported safe autonomous driving more than 300,000 miles without

a single accident under computer control [101]. With lessons from the Urban

Challenge, Carnegie Mellon University has been developing a new autonomous
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(a) CMU Boss [102] (b) Stanford Junior [71] (c) Victor Tango [85]

(d) MIT Talos [60] (e) Cornell Skynet [69] (f) KIT AnnieWay [55]

(g) Google Car [73, 101] (h) VisLab [18] (i) CMU Cadillac [109]

(j) Toyota [16] (k) Nissan [94] (l) Mercedes-Benz [26]

Figure 1.1: Current self-driving vehicles.
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vehicle based on General Motors Cadillac SRX4 [109] since 2010. This new ex-

perimental vehicle has been used as a research platform for various aspects of

autonomous driving technologies, ranging from reasoning, planning, and percep-

tion to V2V/V2I (Vehicle-to-Vehicle/Vehicle-to-Infrastructure) communication.

In addition, major automotive manufacturers, including General Motors, Ford,

Mercedes Benz, Volkswagen, Audi, Nissan, Toyota, BMW, and Volvo, are now

participating in autonomous driving efforts and actively developing their own

self-driving technology [16, 94, 26]. Figure 1.1 shows current self-driving vehicles.

1.3 Perception System for Self-Driving Vehicles

Autonomous vehicles that operate in urban environments must deal with a num-

ber of challenging perceptual problems. These include, but are not limited to,

the detection and tracking of road shapes; the detection and avoidance of static

obstacles; the detection, tracking, and prediction of other moving objects; recog-

nition of traffic signs and signals; and situational reasoning for complex urban

situations such as stop-and-go, queueing at traffic signals, merging into and out

of moving traffic, and following precedence rules at intersections. A typical con-

ceptual architecture for the perception system is shown in Figure 1.2.

Through the DARPA Urban Challenge [102], we learned that perception is one

of the difficult challenges to accomplish fully autonomous urban driving. Indeed,

the perception capability that was necessary to win the Urban Challenge, while

impressive, is insufficient for a vehicle to operate on real roads and our primary

focus has been on extending the perception system to deal with the complexity

of real urban environments. This includes detection and tracking of various types

of road participants such as different types of vehicles (e.g., sedan, SUV, bus, and

truck) and vulnerable road users (e.g., pedestrians, bicyclists, and motorcyclists),

as well as their classification. In addition, more general road structure (i.e., its

width and curvature) and traffic context (i.e., traffic light/sign and workzone

sign) estimation frameworks are also key components.
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Figure 1.2: High-level architecture for the perception system. Perception sys-
tem usually provides four main types of information to the rest of system (i.e.,
Planning and Behavior). Those are static object map, moving object list, road
structure, and traffic context.

1.4 Automotive Sensors

Sensors are essential parts of autonomous vehicles, especially for the perception

system. Due to their complementary nature, widely used current sensing modal-

ities are radar, LIDAR, and camera.

Radar is primarily used for object detection and uses radio waves to deter-

mine the 2D position and velocity of objects. Because radar uses radio waves, it

provides very reliable sensing capability even in adverse weather conditions and

at longer operation range (e.g., long-range radar). Radar is already widely used

in automotive industry for ADAS (Advanced Driver Assistance Systems) such as

ACC (Adaptive Cruise Control) or FCW (Forward Collision Warning). Bosch

LRR3 (Long-Range Radar) [1], Delphi ESR (Electronically Scanning Radar) [3]

multi-range radars, and Continental’s ARS300 LRR (Long-Range Radar) [2] are

widely used automotive grade sensors.
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Figure 1.3: Amount of information vs. cost for automotive sensors. A camera
lies in a very interesting position in this diagram: low cost and high information.

LIDAR, also known as laser rangefinder, is a remote sensing technology which

measures distance by illuminating an object with a laser and analyzing the re-

flected light. LIDAR generally provides point cloud data, sometimes together

with corresponding light intensity. In the market, there exists various types of

LIDAR sensors: single-plane vs. multi-plane or indoor vs. outdoor, etc. LIDAR

sensors have not been widely used in automotive industry mainly due to mechan-

ically spinning parts and high cost. Currently, Velodyne HDL-64E [10] is known

as the most advanced 3D LIDAR sensor and widely being used in current self-

driving vehicles (see Figure 1.1). IBEO Lux [7] is a multi-layer (e.g., four or eight

layers) LIDAR which targets at automotive applications. SICK LMS series [9]

has been widely used in robotics mostly for the SLAM (Simultaneous Localization

And Mapping) and moving object detection and tracking applications.

Cameras with computer vision algorithms have a number of benefits as well
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as challenges that must be contended with in order to be useful. On one hand,

cameras provide a high-resolution view of the scene compared to planar LIDAR

or low-resolution scanning radar. Additionally, features such as color, texture,

shape, and contours can all be extracted from vision systems which are unavailable

to those other sensors. Another practical benefit of cameras is the relatively low

cost of the sensor itself compared to LIDAR and radar. On the other hand,

because the FOV (Field Of View) of vision systems subtends a large area, objects

of interest must be extracted from potentially complex backgrounds before they

can be processed. Variations in lighting, object size, shape, and so forth mean

that vision systems may be able to recognize an object in one set of conditions but

may fail to recognize them in other situations. For instance, a well-performing

pedestrian detection algorithm at the day time might not work well at the night

time. Figure 1.3 shows the relationship between the sensing power and cost for

most representative sensors for autonomous vehicles and it can be seen that the

cameras offer high information content at relatively low cost.

1.5 Challenges for Moving Object Tracking

Distinguishing between static and moving entities and tracking moving objects

reliably from the traffic scene is one important task among the many challenging

perception problems mentioned before. As shown in Figure 1.4, urban traffic

scene poses lots of challenges in terms of moving object tracking. First, vari-

ous types of objects such as pedestrians, bicyclists, motorcyclists, and vehicles

should be tracked in real-time along with their classification. Classification of

moving objects is critical to higher layer components (i.e. behavioral module)

for intelligent reasoning. Secondly, the nature of the urban traffic scene is highly

dynamic. Moving objects appear only for a short period of time in the sensor’s

field of view. A tracking system has to initialize a track as fast as possible when

an object enters the sensor’s FOV. Finally, each sensor (with different sensing

modality) has limited capability to observe the scene so that it can only provide

noisy measurements about some aspects of the scene. A tracking system that

reasonably solves all these difficulties gives an autonomous vehicle the ability to

understand complex scenarios of urban driving.
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Figure 1.4: Sample images showing the complexity of urban (upper row) and
highway (lower row) traffic environments.

1.6 Thesis Statement

In this thesis, we investigate the problem of detecting and tracking of moving

objects for autonomous vehicles to operate safely in busy traffic environments.

This includes both urban and highway environments. To this end, we first pro-

pose a practical multi-sensor configuration for the perception system. Currently,

the majority of autonomous vehicles (e.g., Google’s self-driving car) seems to

utilize a high-definition LIDAR sensor such as Velodyne HDL-64 [10], which is

almost always installed on the roof of a vehicle. We believe that this bulky sensor

setup on the roof would be problematic when we start to regard autonomous

driving as a part of our daily life. Secondly, to compensate for the lack of such a

high-definition LIDAR, we investigate vision sensor’s capability in terms of object
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detection, tracking, and classification. This is mainly because current automo-

tive grade LIDAR sensors provide enough measurements for position and velocity

estimation of objects, but not enough for reliable recognition or classification of

objects. We believe that, as discussed in Section 1.4, multiple vision sensors to-

gether with automotive grade LIDAR sensors could replace the role of such a high

definition LIDAR sensor. Thirdly and more importantly, we propose a holistic ap-

proach for a multi-sensor, multi-object tracking system. The meaning of ‘holistic’

here is taking into account contextual information from vision algorithms (e.g.,

object classification and lane marker detection) to generate a coherent tracking

result for traffic environments. We integrate vision-based object detection, road

geometry information from lane marker detection (possibly from a prior map,

e.g., Road Network Definition File (RNDF)), and multi-sensor tracking system

in a probabilistic model and propose an efficient procedure to perform real-time

estimation with the model.

1.7 Summary of Contributions

This thesis studies the problem of detecting and tracking of moving objects for

self-driving vehicles. It makes four main contributions to this goal:

� The first contribution of this thesis is an improvement of a state-of-the-art

object detection method called ‘Deformable Part-based Models (DPM)’ [41]

in terms of speed and accuracy. This method was selected due to its superior

detection performance and the potential for real-time operation based on

our thorough investigation of the state-of-the-art object detection methods.

However, multiscale object detection is a computationally intensive task.

The lack of scale invariance property of a model used in detection requires

a detector to generate a densely sampled image pyramid (corresponding

feature pyramid) and to run its classifier on it. For example, the original

MATLAB implementation of the DPM method runs at around 1 frame per

second on a modern PC. Most recent approaches attack two aspects: either

accelerating feature computation (such as with feature approximation in

nearby scales [31]) or speeding up sliding-window classification with object
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models (such as with building a cascade classifier [40]). In this thesis, our

approach to overcome the speed challenge is two-pronged: (1) complete C

implementation of the baseline method with a multi-threading technique

based on multi-cores and (2) an algorithm to define region of interest (ROI)

based on known scene geometry. We also improve its detection accuracy by

designing object models (e.g., pedestrian and vehicle) optimized for auto-

motive applications. This effort allows us to run one model at the speed of

14 Hz with the state-of-the-art detection performance. Furthermore, for the

pedestrian case, we achieved a significant improvement on detection rate by

adding motion features (we call ‘inner motion features’ ) to the DPM.

� The second contribution is a vision-based multi-object tracking method in-

corporating a Rao-Blackwellized Particle Filter which runs a particle filter

for data association and an EKF for each object tracking. The original the-

ory for this framework was developed by Särkkä et al. and named as ‘RBM-

CDA’ [98]. We applied the algorithm to the problem of vision-based object

tracking by improving the measurement likelihood computation which takes

advantage of rich appearance information from images.

� The third contribution is an introduction of a novel sensor fusion system

which exploits high-level semantic information from vision-based object de-

tection with intermediate features from radar and LIDAR sensors. This ob-

ject class information is utilized as a key factor in several sub-components

of the tracking system such as model selection, data association, and move-

ment classification. A more appropriate tracking model (either a box model

or a point model) is selected depending on the object class information and

quality of the sensor data. In addition, when a LIDAR’s edge feature is

associated with an object being tracked with a box model, the class infor-

mation is used for pruning unnecessary interpretation of the edge feature

for vehicles. Finally, a different parameter set can be used for movement

classification based on an object type.

� The final contribution of this thesis is a holistic approach for a multi-sensor,

multi-object tracking system. With the contributions we made for the
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multi-sensor object tracking, what we want to exploit additionally are con-

textual interactions between moving objects and traffic environments. In

other words, we try to understand a moving object tracking problem in the

whole context of a traffic scene. The main context cue we investigated for

moving object tracking was a road structure, specifically road lane mark-

ers. Lane marker information from a proprietary lane detection system is

exploited to improve tracking performance of our multi-sensor tracking sys-

tem. The fusion brings two benefits to the tracking system. It not only

improves orientation estimation of moving vehicles by fusing the tangential

heading angle of the associated lane marker but also enables prediction of

future trajectories of the moving vehicles.

1.8 Outline of the Dissertation

This section gives an overview on the organization of the following chapters. We

briefly summarize each chapter.

� Chapter 2 describes the state-of-the-art in autonomous driving, vision-

based object detection and tracking, multi-sensor tracking system, and

holistic traffic scene understanding.

� Chapter 3 presents our onboard vision system based on the deformable

part-based models for real-time pedestrian, bicyclist, and vehicle detection.

We review the detection part of the original algorithm and explain how

we re-implement the algorithm for the real-time operation. This chapter

also discusses the use of motion features to improve detection performance

for pedestrians. Especially, motion occurring from each part, what we call

‘inner motion’, is exploited. In addition, a new ROI (Region Of Interest)

algorithm was proposed for further speedup for the system. Finally, the

vision system consisting of several components is evaluated qualitatively

and quantitatively.

� Chapter 4 presents a monocular vision based multi-object tracking frame-

work for autonomous vehicles based on a detection system we developed in
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Chapter 3 and a tracking method using a Rao-Blackwellized Monte Calro

Data Association (RBMCDA) algorithm. To reliably detect major traffic

participants such as vehicles, bicyclists, and pedestrians under a variety of

circumstances, corresponding deformable part-based models are designed

and trained using the system from Chapter 3. These robust object detec-

tors provide a series of measurements (i.e., bounding boxes) in the context

of recursive Bayesian filtering. Secondly, to exploit the unique characteris-

tics of objects’ motion dynamics, one of two motion models, either constant

velocity (CV) model or simplified bicycle model (SB), is selectively used

based on the object class information from the detectors. For each motion

model, an extended Kalman filter (EKF) is used to estimate the position

and velocity of an object in the vehicle coordinate frame. Finally, a single

object tracking method using an EKF is extended to that of multiple object

tracking by incorporating a Rao-Blackwellized Particle Filter which runs a

particle filter for a data association and an EKF for each object tracking.

We demonstrate the effectiveness of this tracking-by-detection framework

through a series of experiments run on a new object dataset captured from

a vehicle-mounted camera.

� Chapter 5 presents our new moving object detection and tracking system

that extends and improves our earlier system used for the 2007 DARPA

Urban Challenge. We revised our earlier motion and observation models

for active sensors (i.e., radars and LIDARs) and introduced a vision sensor.

In the new system, the vision module detects pedestrians, bicyclists, and

vehicles to generate corresponding vision targets. Our system utilizes this

visual recognition information to improve a tracking model selection, data

association, and movement classification of our earlier system. Through the

test data of actual driving, we demonstrate the improvement and perfor-

mance gain of our new tracking system.

� Chapter 6 presents a holistic approach for the moving object tracking

system we developed in Chapter 5. For lane detection, we used Mobil-

Eye’s proprietary lane detection system [8]. Following the very basic fact of

‘cars follow roads’, the idea of fusing the vehicle’s orientation estimate with
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tangential lane directions was formulated as a MAP estimation problem.

MobilEye’s lane marker detection system was qualitatively evaluated on

different scenarios. Then, the fusion with lane markers was quantitatively

evaluated using four different log sessions. Finally, trajectory prediction

module was also properly evaluated. Our experiments show that the holis-

tic approach significantly improves the estimation of vehicles orientation

and prediction of vehicles future trajectories.

� Chapter 7 summarises our approach and our key results, and provides a

discussion of the advantages and limitations of the proposed system. It also

provides some suggested directions for future research in this area.
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Chapter 2

Related Work

This chapter reviews the state-of-the-art in autonomous driving systems with

particular attention to environment perception. This includes object detection

and tracking in computer vision, and multi-sensor fusion. Section 2.1 provides a

brief history of autonomous driving technology. Section 2.2 and Section review,

respectively, the state-of-the-art in object detection and object tracking in com-

puter vision. Finally, Section 2.4 summarizes most relevant previous works in

multi-sensor fusion based object tracking in mobile robotics.

2.1 Brief History of Autonomous Driving

The whole story about the history of the development of autonomous driving

technology is beyond of the scope of this thesis. For detailed contents, we refer

the reader to the relevant Wikipedia page [6]. Here, we only summarize the main

events in autonomous driving history from a perception perspective.

In the 1980s, a pioneer Ernst Dickmanns and his team in collaboration with

Daimler successfully demonstrated the first autonomous driving based on cameras

with a Mercedes-Benz van in highway environments without traffic. This success

subsequently initiated the European Commission funded EUREKA Prometheus

Project on autonomous vehicles (1987∼1995). In 1995 the team demonstrated

semi-autonomous driving in real traffic from Munich in Germany to Odense in

Denmark at speeds up to 175 km/h, with human intervention for about 5%
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of the distance. Around the same time, the CMU Navlab team achieved 98.2%

autonomous driving with manual longitudinal control using the RALPH (Rapidly

Adapting Lateral Position Handler) system [81]. Right after that, the research

group of the Univeristy of Parma led by Alberto Broggi launched the ARGO

Project [19] and demonstrated 94% autonomous driving on a journey of 1,900

km over six days.

The 2005 DARPA Grand Challenge [100, 103] and the 2007 DARPA Urban

Challenge [102, 60, 71, 69, 85] offered researchers with unique opportunities to

improve and demonstrate autonomous driving technologies. These events were

milestones in that they provided opportunities for reevaluating the status of the

relevant technologies and for regaining the public attention on self-driving car

development. Since then, the related technologies have been significantly im-

proved. Industry and academia have reported notable achievements including:

autonomous driving of more than 300,000 miles in daily driving contexts [101],

intercontinental autonomous driving [18], a self-driving car with a stock-car ap-

pearance [109], and many more. Such developments and demonstrations increase

the possibility of self-driving cars in near future.

Similarly to the participants of the DARPA Urban Challenge, the Google

driver-less car [101] is equipped with a Velodyne 3D laser scanner for perception

and requires manually annotated maps at lane-level accuracy for path planning.

Furthermore, its precise localization system is based on registering depth and

reflectance measurements with respect to a 3D map, which is recorded a-priori.

2.2 Vision-Based Object Detection

Object detection in static images and videos has been one of the hottest topics

in the computer vision and pattern recognition research communities. Due to

application domains of concern in this dissertation, we mainly focus on pedestrian

and vehicle detection. In addition, we only focus on research using a monocular

camera in the visible spectrum. Thus, we omit work related to the use of infrared

cameras and stereo vision.

Pedestrian Detection: For the earlier work on this topic, please refer to

the surveys of Gavrila [46] and Li et al. [61]. For more comprehensive surveys,
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including the most recent research efforts in the field, please refer to [45], [37].

Dollár et al. [33] focuses primarily on the pedestrian detection problem and

performs an extensive evaluation of the majority of the state-of-the-art detector

algorithms. Gerónimo et al. [49] focuses on pedestrian protection systems for

advanced driver assistance systems which utilize tracking, scene geometry, and

stereo systems. We review only the important advances for pedestrian detection.

Historically, one of the first pioneering pedestrian detection efforts was the

work of Papageorgiou et al. [78] which used Haar wavelet features in combination

with a polynomial Support Vector Machine (SVM). They also introduced the first

generation pedestrian dataset, known as the ‘MIT Pedestrian Dataset’. Inspired

by their work, Viola and Jones [104] brought several important ideas into this field

including the use of a new machine learning algorithm (AdaBoost) for automatic

feature selection, the use of a cascade structure classifier for efficient detection,

and finally the use of an integral image for fast feature computation. Later,

the authors demonstrated how to incorporate space-time information into their

simple Haar-like wavelet features for moving people detection [105].

The next breakthrough in the pedestrian detection technology occurred in a

feature domain. Dalal and Triggs [27] demonstrated excellent performance in

detecting a human in a static image using dense histogram of oriented gradient

(HOG) features with linear SVM. They also introduced the second generation

pedestrian dataset, called the ‘INRIA Person Dataset.’ Currently, HOG is con-

sidered to be the most discriminative single feature and is used in nearly all

modern detectors in some form [33].

Detectors that improve upon the performance of HOG utilize either a fusion

of multiple features or part-based approaches. Wojek and Schiele [111] exploit

several combinations of multiple features such as Haar-like features, shapelets,

shape context, and HOG features. This approach is extended by Walk et al.

[106] by adding local color self-similarity and motion features. Wang et al. [108]

combined a texture descriptor based on local binary patterns (LBP) with HOG.

Recently, Dollár et al. [32] provided a simple and uniform framework for integrat-

ing multiple feature types including LUV color channels, grayscale, and gradient

magnitude quantized by orientation. That group also implemented a near real-

time [31] and real-time [30] versions of the algorithm which makes this method
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suitable for automotive applications.

Parts-based approaches have gained popularity mainly because they can han-

dle the varying appearances of pedestrians (due to clothing, pose, and occlusion)

and can provide a more flexible model for pedestrian detection. Mohan et al.

[78] take this approach to divide the human body into four parts: head, legs,

left arm, and right arm. Each part detector is trained using a polynomial SVM

whose outputs are fed into a final classifier after checking geometric plausibility.

Mikolajczyk et al. [68] model humans as assemblies of parts that are represented

by SIFT-like orientation features. Felzenszwalb et al. [41] demonstrated that

their deformable part-based model (DPM) human detector can outperform many

of existing current single-template-based detectors [105, 27, 108]. Based on a

variation of HOG features, they introduce a latent SVM formulation for training

a part-based model from overall bounding box information without part location

labels. Bar-Hillel et al. [13] introduced a new approach for learning part-based

human detection through a process called ‘feature synthesis.’

Pedestrian detection algorithms have an obvious role in automotive applica-

tions due to their potential for improving safety systems. In this case, the design

criterion for a detector might be very different as real-time operation is just as

important as high detection accuracy. Shashua et al. [88] proposed a part-based

representation in a fixed configuration for pedestrian detection. The authors used

13 overlapping parts with HOG-like features and ridge regression to learn a clas-

sifier for each part. Gavrila and Munder [47] proposed a pipeline using Chamfer

matching and several image based verification steps for a stereo camera setup.

Vehicle Detection: Sun et al. [97] provides a comprehensive survey on

the topic. Historically, according to [97], researchers in automotive field used

low-level features to detect vehicles in image streams. Such low-level features

included strong vertical edge pairs, horizontal shadow patterns cast by a leading

vehicle, and textures. However, discriminative power from these low-level fea-

tures has not been sufficient for real-world automotive applications. Similar to

research in pedestrian detection, object classification methods with more sophis-

ticated features became more widely used in the field [50, 59, 72, 99]. Han et

al. [50] applied HOG-SVM combination and Moutarde et al. [72] applied Haar-

AdaBoost combination to both vehicle and pedestrian detection. Leibe et al. [59]
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deployed a set of five single-view vehicle detectors using ‘implicit shape models ’

in combination with a real-time structure-from-motion (SfM) system. Takeuchi

et al. [99] applied ‘deformable part-based model’ [41] to vehicle detection and

combined its bounding box output with a particle filter-based tracking.

2.3 Vision-Based Object Tracking

Mathematical foundation of majority of vision-based multi-object tracking ap-

proaches is originated or, at least, inspired by the classical multi-target tracking

(MTT) theory developed for military applications [84, 14] by following its struc-

tural decomposition of the problem, i.e., dynamic models, observation models,

and data association. Among these, the issue of resolving the data association

lies at the heart of the solution for the MTT problem and, hence, many popular

methods such as Multiple Hypothesis Tracking (MHT) [84], Joint Probabilistic

Data Association (JPDA) [14], and other Sequential Monte Carlo (SMC)-based

methods [34] have been developed.

While the MTT theory is largely based on radar point tracking scenarios (i.e.,

missile or aircraft tracking), vision-based tracking introduces very interesting ad-

ditional aspects to the problem arising from the unique characteristics of vision

sensors, namely, cameras. First, a camera provides rich appearance information

in contrast to a radar sensor which usually provides a point position and velocity

measurement. Secondly, a camera provides projected 2D images of the real 3D

world, where measurements from a radar sensor are measured in the world co-

ordinate. Regarding the first issue, appearance information in images has been

largely exploited. There are vision-specific algorithms such as Mean-Shift [25]

and Lucas-Kanade [62] for object tracking, hence named as ‘visual tracking’, and

sometimes those methods are used as a measurement for observation models or

an additional clue for the data association in the context of Bayesian filtering.

In recent years, with advances of appearance-based object detection algorithms

[78, 105, 27, 41, 32], ‘tracking-by-detection’ has become a promising candidate for

multi-object tracking [47, 59, 38, 99, 22]. For the second issue, since a measure-

ment is essentially a 2D mapping of the 3D world, state variables associated with

a dynamic model can be formulated either in 3D world coordinates [47, 59, 38, 22]
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or in 2D image space [77, 99]. Here, based on these two perspectives, we sum-

marize the most relevant pervious works for multi-obejct tracking on a moving

platform.

In [47], given the detection output, Gavrila and Munder used an α-β tracker

[15] to track multiple pedestrians in the vehicle coordinates. For data association,

they used the Hungarian method [57]. Liebe et al. [59] and Ess et al. [38]

introduced a two-stage hypothesize-and-test framework in which an over-complete

set of trajectory candidates is generated from an object detector in each time step

and is pruned to a consistent subset using statistical model selection. Okuma et al.

[77] tracks a varying number of hockey players in videos using the combination of

Adaboost object detection and particle filtering, where they used Hue-Saturation-

Value (HSV) color histograms for computing measurement likelihood. Takeuchi et

al. [99] used the DPM framework (same as our approach) for detecting vehicles

and a particle filter for tracking, where they used both a probability from the

detector and intensity correlation for computing measurement likelihood.

2.4 Multi-Sensor Fusion for Object Tracking

Detection and tracking of moving objects is a core task in mobile robotics and

as well as in the field of intelligent vehicles. Due to such a critical role, this

subject has been extensively studied for the past decades. Since a comprehensive

literature survey of this topic is beyond the scope of this paper (we refer to [67, 83]

for such surveys), here we review only the earlier work on multi-sensor fusion for

moving object detection and tracking, which are relevant to our work.

The Navlab group at Carnegie Mellon University has a long history of de-

velopment of autonomous vehicles and advanced driver assistance systems. For

the Navlab 11, one of the latest developments, they proposed a high-level fusion

approach for object tracking using cameras and LIDARs [11]. In fact, our fea-

ture extraction algorithm for LIDAR is motivated by their method [67]. Another

interesting effort was the work of Stiller et al. [95], where they used radar, LI-

DAR, and stereo vision for obstacle detection and tracking. Although they did

not provide quantitative results of the system, it brought researchers’ attention

to the multi-sensor fusion approach.
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Since then, an approach of fusing LIDAR measurements with vision sensors’

outputs has gained popularity for vehicle tracking [64, 70] and pedestrian tracking

[83, 93]. Monteiro et al. [70] used a single-layer LIDAR and a monocular camera

to detect, track, and classify objects. For fast detection and tracking, a LIDAR

was used and generated regions of interest (ROIs) to a vision module. For the

classification of objects, two classifiers, a Gaussian Mixture Model (GMM) clas-

sifier for a LIDAR and an Adaboost classifier for a camera, are applied. A sum

decision rule was used to combine both outputs. Mählisch et al. [64] focused on a

‘cross-calibration’ method between these two sensors while showing vehicle track-

ing. Premebida et al. [83] used a multi-layer LIDAR and a monocular camera for

pedestrian detection. They exploited several features for each sensor measure-

ments and classification algorithms for better accuracy. Spinello and Siegwart [93]

also utilized a multi-layer LIDAR for detecting hypotheses for pedestrians and

then a vision-based pedestrian detector was applied for verification. A Bayesian

decomposed expression was used as a reasoning fusion rule.

The 2007 DARPA Urban Challenge provided researchers with a unique op-

portunity to develop and test the multi-sensor based systems [60, 71, 69]. Due to

the practical nature of the competition, high-level fusion approaches were widely

exploited. In particular, the Stanford [71] and MIT [60] teams developed a similar

object tracking system which utilized a set of LIDAR sensors as primary sensors.

Their systems first removed irrelevant measurements, such as laser scans from the

ground and from vertical structures, and then fitted geometric primitives (e.g.,

2D rectangles) to the remaining measurements to, using Bayesian filters, estimate

objects’ position, velocity, and size. Similarly, the Cornell team [69] used a Rao-

Blackwellized particle filter for moving object tracking, where a data association

problem is solved by a particle filter and a state estimation problem is solved by

an extended Kalman filter.

Most of the teams developed their own tracking systems to effectively fuse

sensor measurements in different modalities. However, due to reliability issue and

computational cost, a tracking system based on vision-sensor was not extensively

studied for the competition.
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Chapter 3

Vision-Based Object Detection

with Deformable Part Models

This chapter presents our onboard real-time object recognition system intended

for self-driving vehicles as well as for use in automotive active safety applications.

For reliable and real-time performance in challenging real world conditions, we

exploit a state-of-the-art object detection method called ‘deformable part-based

model’ (DPM) [41, 40] and significantly improve its speed and detection perfor-

mance. Section 3.1 discuss the overview and main contributions of the proposed

system. Technical review of the DPM and details of our C implementation are

described in Section 3.2. Section 3.3 presents how we add motion features into

the DPM and its performance gain is analyzed. Section 3.4 derives the Region

of Interest (ROI) computation algorithm and Section 3.5 describes experimental

results using the system. Section 3.6 concludes the chapter.

3.1 Introduction

Real-time onboard pedestrian and vehicle detection from a moving vehicle is a

challenging task, especially when using a monocular camera as the sole sensor.

Although a number of approaches have been proposed, there are still a number

of aspects of this problem that are challenging and can be considered to be as of

yet “unsolved.” That being said, the accuracy and computational performance
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of these detectors are steadily improving [78, 105, 27, 112, 41, 32].

Our efforts to overcome these difficulties of vision systems primarily focus on

a) exploiting a rich object model which considers the deformation of parts for re-

liable detection, b) developing an efficient ROI computing algorithm for real-time

detection, and c) exploiting motion features for better detection. Specifically, we

make use of the cascade version [40] of the DPM [41] introduced by Felzenszwalb

et al., which is considered as one of the most successful methods for general object

detection. Our contributions in this chapter are as follows.

The first main contribution is a C implementation of the DPM method suitable

for real-time operation. Achieving real-time detection speed is by no means trivial

especially for most of the state-of-the-art detectors which usually use a sliding

window approach. Specifically, we reimplement the original detection system

using C/C++ with parallelism techniques based on multi-cores and achieved

real-time detection rate of 14fps on an Intel Core i7 computer when one model is

applied to 640×480 images.

The second contribution is a simple, but powerful ROI computation algorithm

for increased speedup by using the known camera calibration and a vanishing

point tracker. Usually, the availability of camera information is not assumed in

general object detection applications, but for automotive applications where the

camera is mounted in a known position in the vehicle, this information can be

very useful when used with vanishing point tracking. By doing so, we are able to

not only accelerate our detection process by searching only relevant image regions,

but we are also able to improve detection accuracy by suppressing a number of

potential false positives in irrelevant image regions.

The third contribution is our approach to designing and building deformable

part-based pedestrian and vehicle models for automotive applications. We im-

prove the detection rate of the baseline detector by training multiresolution mod-

els, where a normal sized model with 8×8 cell size is built for normal distances

and a small sized model with 4×4 cell size is built for longer distances. The actual

size for each model is designed based on scene geometry analysis and these models

show a superior performance when detecting far-scale pedestrians and vehicles.

Our final contribution is a quantitative evaluation of our framework using

challenging real world datasets. First, following the same series of experiments
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Figure 3.1: Illustration of a procedure for mutiscale object detection with an
example of vehicle detection. It consists of first (a) creating a densely sampled
image pyramid, (b) computing features at each scale, (c) performing classification
at all possible locations, and finally (d) performing non-maximal suppression to
generate the final set of bounding boxes. The main computational bottlenecks
are feature computation for densely sampled image pyramid (HOG features in
our case) and sliding-window classification (cascade detection with several parts
in our case).

as in [20], we seek to identify values of key design parameters such as the optimal

number of parts for the pedestrian and vehicle models, the optimal number of

scales per octave for multiscale object detection. Second, with the insights from

the first set of experiments, we quantitatively evaluate detection performance for

each class of objects using the Caltech benchmark [33]. Lastly, we deploy the

proposed detection system on our autonomous vehicle and demonstrate active

safety functionalities (i.e., Pedestrian Collision Warning (PCW) and Forward

Collision Warning (FCW)) in real-time in real-world scenarios.

3.2 Real-Time Object Detection with DPM

This section discusses the main reasons why we chose the DPM method and

reviews its model and detection process and then describes the important details

of our implementation that were key to its fast performance.
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3.2.1 Why DPM?

We performed a broad survey of the state-of-the-art object detectors and ended

up with the methods in [108, 40, 31, 13] as candidates for our implementation. We

opted to implement a detector based on the work of Felzenszwalb et al. [41, 40]

for the following reasons. First, this method provides an elegant mechanism for

handling a wide range of intra-class variability (e.g., multiple views of a vehicle)

by having multiple submodels (so-called “components”). Furthermore, the DPM

exploits dynamic configurations of its parts which allows for a wider variation

(e.g., various poses of pedestrians) in object appearances to be accepted. The

importance of this aspect is well illustrated in a recent survey [33], where the

DPM method shows better performance than the other detectors which use even

multiple features when high-resolution of appearance of the objects is provided.

The reason turns out to be the structural richness of the DPM, which considers

the deformation of parts. Recent improvements in consumer camera technology

mean that low-cost high-resolution cameras are available for use in the automotive

domain. Secondly, this method has a well-designed learning technique called

“latent SVM” which not only can handle a large training set effectively, but also

can learn a part-based model without requiring information about exact part

labels. Finally, this approach utilizes an efficient detection mechanism called the

star-cascade algorithm [40] which makes it efficient and potentially suitable for

real-time applications.

3.2.2 Review of the DPM and Star-Cascade Algorithm

We primarily review the detection part of the model since we are interested in

applying the DPMs to real-time applications. For the training part, we refer the

readers to [41]. The DPM consists of three main parts: a root filter, part filters,

and deformation models. For example, note the vehicle model shown in Figure

3.1. A root filter is a HOG feature template designed to capture an object’s global

shape and part filters are smaller HOG feature templates trying to capture details

of object’s parts. It is important to note that these part filter’s HOG features

should be computed at twice the resolution in a feature pyramid compared to

that of root filter [41]. A deformation model associated with each part filter is a
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cost map measuring the deviation of the part from its ideal location relative to

the root.

We now describe the detection process mathematically. A DPM for an object

with n parts is defined by a (n + 2)-tuple (F0, P1, ..., Pn, b) where F0 is the root

filter, Pi is the i-th part model and b is a bias term. Each part model is defined by

a 3-tuple (Fi, vi, di) where Fi is a filter for the i-th part, vi is a two-dimensional

vector specifying coefficients of a quadratic placement of the part relative to

the root location, and di is a four-dimensional vector specifying coefficients of a

quadratic function defining a deformation cost for each possible placement of the

part relative to the anchor location. An object hypothesis specifies the location

of each filter in the model in a feature pyramid, z = (p0, ..., pn), where pi =

(xi, yi, li) specifies the position (xi, yi) and level li of the i-th filter in the feature

pyramid H. Then, the score of a hypothesis is given by the scores of each filter at

their respective locations minus a deformation cost that depends on the relative

position of each part with respect to the root, plus the bias, i.e.,

score(p0, ..., pn) =
n∑
i=0

F ′i ·φ(H, pi)−
n∑
i=1

di · φd(dxi, dyi) + b (3.1)

where F ′i denotes vectors from the i-th filter Fi and φ(H, pi) denotes vectors from

the feature pyramid at pi. (dxi, dyi) = (xi, yi) − (2(x0, y0) + vi) corresponds to

the displacement of the i-th part relative to its anchor position and φd(dx, dy) =

(dx, dy, dx2, dy2) are deformation features. With this object hypothesis definition,

an overall score for each root location is defined as:

score(p0) = max
p1,...,pn

score(p0, ..., pn) (3.2)

To detect objects in an image, we can compute this overall score for each root

location with a sliding-window method and detect objects by thresholding the

scores. Indeed, since the interaction between parts is not considered explicitly in
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the model, the score can be factored as follows.

score(p0) = F ′0 · φ(H, p0)

+
n∑
i=1

max
pi

(F ′i · φ(H, pi)− di · φd(dxi, dyi)) + b (3.3)

The detection algorithm in [41] computes this score, for each level of the feature

pyramid, by performing the cross-correlation between all part filters and the

feature map, and the generalized distance transform [42] for the max operation

in the second term of the Eq. 3.1. For the 6 parts model, for instance, this is going

to require 7 cross-correlation and 6 distance transform operations for one level and

this set of operations should be repeated for the entire feature pyramid. Although

an efficient algorithm for the generalized distance transform [42] is utilized, the

speed performance of the detection is not sufficient for real-time applications.

The star-cascade algorithm [40] increases detection speed by more than one

order of magnitude compared to its baseline [41] by building a cascade classifier

from the star-structured DPM. The basic idea is to use a subset of the parts

progressively for pruning low scoring hypotheses, rather than performing all the

operations (above mentioned) in advance. In this case, as shown in the Figure

3.1, each part simply constitutes each stage of the cascade classifier. Building

such a cascade model corresponds to finding a set of thresholds such that it can

achieve the same detection rate as the baseline detector.

3.2.3 Implementation Details

Although the star-cascade algorithm opens the possibility of its use in real-time

applications, it is still too slow to be used in real applications (i.e., takes 682ms

for the pedestrian model to process one frame on a 2.67GHz Intel Core i7 920

CPU). For this practical challenge, we have engineered this algorithm in an at-

tempt to optimize it to be the core of a real-time object detection for automo-

tive applications. To understand where our efforts would need to be applied in

the implementation of this algorithm, we profiled the performance of the orig-

inal MATLAB/C based detectors. These detectors included the voc-release3

[43] and voc-release4 [44] with a star-cascade algorithm [40]. The profiling
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Table 3.1: Profiling Results for All Implementations (Unit:ms)

Algorithm Computer I Computer II
Name Intel Core2 Duo Intel Core i7

P8800@2.66GHz 2920XM@2.5GHz
2GB RAM 16GB RAM
Matlab star- C star- Matlab star- C star-
cascade cascade cascade cascade

HOG
Feature 1145 300 840 80
Computation
Sliding
Window 560 320 300 100
Classifier
Non-Maximal
Suppression 24 10 24 5

was performed using two evaluation computers that included an Intel Core2

Duo P8800@2.66GHz with 2GB RAM, labeled computer I, and an Intel Core

i7 2920XM@2.5GHz with 16GB RAM, labeled computer II. For 640 × 480 im-

ages and 10 scales per octave, voc-release3 (1 component with 6 parts, multi-

threaded version) demonstrated a performance of 0.5 fps and voc-release4 algo-

rithm with a star-cascade algorithm (1 component with 8 parts, single-threaded

version) demonstrated a performance of 0.6 fps on computer I. The details of

the profiling result is shown in Table 3.1. As can be seen in this Table, the two

main bottlenecks are the computation of HOG features for densely sampled image

pyramids and the sliding-window classification.

To tackle this, we re-implemented the algorithm (originally based in MAT-

LAB/C) using C/C++ and optimized several subsystems in our previous work

[20]. Basically, we re-implemented voc-release3 [43] of the system with the

star-cascade algorithm using C/C++ and parallelized (assuming a multi-core ar-

chitecture) most of the computationally intensive functions such as HOG feature

computation and cascade detection. Our implementation follows a standard pro-

cedure for object detection as illustrated in Figure 3.1. The key details to this
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implementation are described below:

Feature computation: Given an input image, the first step of the pipeline

is to build a densely sampled image pyramid and compute the corresponding

feature pyramid. For an image pyramid, we employed the image resize function

of the OpenCV 2.0 library. For the HOG feature pyramid, which was the first

computational bottleneck, we refactored the algorithm to make use of the pthread

library. This was possible because the computational process to generate each

level of the pyramid is independent of all the others. This solution allowed us to

speed the algorithm up by one order of magnitude.

Sliding-window classification: For the voc-release3 algorithm, as dis-

cussed before, a large number of cross-correlations is the main bottleneck in prac-

tice. For this, the original method provides a parallelized correlation scheme with

a numerical linear algebra enhanced function. We ported their MEX functions

into our implementation. Also, voc-release4 with a star-cascade algorithm pro-

vides an efficient way for classification by evaluating parts in a cascaded fashion

with a sequence of thresholds. For implementation of this idea, voc-release4

uses 2(n+1) models for a model with n+1 parts, where the first n+1 models are

obtained by sequentially adding parts with simplified appearance models (PCA

version of original HOG feature) for faster computation and second n+ 1 models

are obtained by sequentially adding parts with its full feature. Our implementa-

tion is slightly different in that we just use n+ 1 cascade models with full HOG

feature for ease of implementation and we parallelize the process using pthread

library. By doing this, we achieve 2X-4X speed improvement.

Non-maximal suppression: After sliding-window classification, we usually

get multiple overlapping bounding boxes from detections in nearby locations and

scales. Non-maximal suppression (NMS) is used for eliminating those repeated

detections. Currently, two dominant NMS approaches have been widely used:

mean shift mode estimation introduced in [27] and pairwise max suppression

introduced in [41]. We implemented the pairwise max suppression scheme due to

its simplicity and efficiency.
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3.3 Motion-augmented DPM

Motion information can be very useful for object detection in videos. In partic-

ular, pedestrians are the best example for exploiting the motion cue since they

not only tend to be in motion but also they exhibit relative motion of their limbs

with respect to their center of body. Whether the motion occurs from the body

boundary or “inside the body”, it can be characteristic and discriminative, and

thus, can be used as a complementary feature along with appearance features

(e.g., HOG features in our case). The goal of this section is to investigate how to

exploit motion features to improve pedestrian detection performance.

3.3.1 Inner Motion

Thanks to its uniqueness, motion has been widely used in many areas includ-

ing detection [105, 28, 112, 106, 79], tracking [89, 113], and action recognition

[39, 108]. Depending on the origin of the motion, each method has a different

assumption and strategy to extract motion features. Thus, we want to catego-

rize motion observed in videos first and then discuss what types of motion we

are trying to extract. For this issue, we found the discussion in [79] particularly

interesting. In [79], the authors categorized image motion into three types. The

first is camera-centric motion which is the motion induced by the movement of

the camera itself with respect to the world. The second is object-centric motion

which is the motion induced by the movement of the object with respect to the

world. Finally, the part-centric motion or, what we call, ‘inner motion’ is the

motion induced by the relative movement of object parts with respect to the

center of object. Having this categorization in mind, the large body of meth-

ods [105, 80] based on background subtraction tries to deal with object-centric

and part-centric motion since the camera is stationary. Secondly, there are some

techniques which compute optical flow in an object-centric coordinate frame [36].

Those methods try to encode both camera- and part-centric motion. Finally, the

simplest approach is to directly compute motion features on raw video where all

types of motion are superimposed. Most approaches try to remove camera motion

by looking at differences of flow [28, 112, 106]. Recently, Park et al. [79] proposed

an interesting technique to remove camera- and object-centric motion while pre-
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serving the part-centric motion (i.e., inner motion). They proposed a two-stage

approach, where they first attempt to stabilize both camera- and object-centric

motion by using coarse-scale optical flow to align a sequence of images, and then

they use temporal difference to capture the part-centric motion that remains after

weak stabilization. The authors hypothesized that the majority of useful motion

information is contained in part-centric motion and verified their hypothesis with

various sets of experiments.

Following the method in [79], we also try to extract inner motion features, but

unlike the method, we want to integrate the inner motion features into the DPM

framework. We discuss how to stabilize videos to compensate both camera and

object motion using the Lucas-Kanade method [62], how to encode the motion

features, and how to integrate the inner motion features into the DPM framework

in the next subsections.

3.3.2 Weak Stabilization using Lucas-Kanade

The first step to extract motion features is to weakly stabilize input images to

remove both camera- and object-centric motion while preserving the inner motion.

The method in [79] achieves this by estimating coarse-scale optical flow to align a

sequence of frames. To compute optical flow field for the purpose, they applied the

Lucas-Kanade method with a large window radius σ which roughly corresponds

to the size of pedestrians in images (i.e., 16 to 64 pixels). By doing so, since the

window radius σ controls the scale of the flow, it can preserve fine inner motion.

We denote the computed flow field from frame It to frame It−1 as Wt,t−1. It−1,t

is the frame It−1 warped to frame It using the inverse of the flow field Wt,t−1. We

denote an image patch defined by the detection window (i.e., 64×32) from the

warped image as It−1,t. Following the practice in [79], when stabilizing across

multiple frames, we compute the global motion Wt,t−n by progressively warping

and summing pairwise flow fields.

3.3.3 Motion Feature Encoding

The second step to extract motion features is to encode motion features from the

weakly stabilized frames. Since rough camera and object motion are already re-
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moved by weak stabilization, we simply take a temporal gradient which is defined

as

Dσ = It − It−1,t (3.4)

where σ is the scale used for Lucas-Kanade method. In many scenarios, since the

amount of motion observed between consecutive two frames may be quite small,

we consider a simple approach of computing multiple frame differences between

the current frame and k = n/m other frames spaced apart temporally by m

frames from t−m to t− n. We refer to m as the frame skip and n as the frame

span.

Dσ(n,m) =


It − It−1m,t
It − It−2m,t

...

It − It−km,t

 (3.5)

Following the best result from [79], we use D16(8, 4) for all the experiments. It

is important to note that this decision should be based on the original video

frame rate. The parameters D16(8, 4) were chosen based on the fact that Caltech

Pedestrian data was recorded at 30 frames per second. As Eq. 3.5 indicates, our

temporal difference features are computed using the signed temporal gradient.

We also tried the absolute value of the temporal gradient and we found that

the signed temporal gradient performed better. Next, to add a small amount of

spatial invariance, all of the features are pooled over a c × c sized rectangular

window. To make integration with HOG features easy, the same size as static

HOG cell size (i.e., 4 × 4) was used. Finally, we applied a similar L1 block

normalization as in [79] to make motion features more robust to varying lighting

and background texture, but we applied the normalization only over the 2 × 2

spatial blocks rather than over spatio-temporal blocks.
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3.3.4 Integrating Motion into DPM

In the previous subsections, we discuss how to extract inner motion features based

on a) coarse-scale optical flow and b) feature encoding on temporal gradient of

weakly stabilized frames. Now, we explain how we integrate the inner motion

features into the DPM framework.

Let us review the score function (i.e., Eq. 3.1) for an object hypothesis in the

DPM framework. Since we are considering adding inner motion features to each

part filter as well as a root filter, it is straightforward to compute a new score

function, which is given by

score(p0, ..., pn) =
n∑
i=0

M ′
i ·φm(Hm, pi) +

n∑
i=0

F ′i · φa(Ha, pi)−
n∑
i=1

di · φd(dxi, dyi) + b (3.6)

where M ′
i denotes vectors from the i-th inner motion filter Mi and φm(Hm, pi)

denotes vectors from the motion feature pyramid at pi. Note that we assume the

same location for each part for extracting both HOG features and inner motion

features. Therefore, by augmenting motion features with HOG features, we can

train deformable part-based models using the latent SVM formulation as in [41].

In our case, we let the latent SVM training process find the best model parameters

by utilizing not only the appearance features but also the inner motion features.

3.4 ROI Computation

A multiscale object detection is a computationally intensive task. The funda-

mental reason for this is a lack of scale invariance property of a model used in

detection. This requires a detector to generate a densely sampled image pyramid

(and corresponding feature pyramid) and to run its classifier on it. Most recent

approaches attack this problem in two ways: either accelerating feature compu-

tation (such as with feature approximation for nearby scales [31]) or speeding

up sliding-window classification with object models (such as with building a cas-

cade classifier [104, 40, 31]). There is yet another interesting approach which is

orthogonal to those approaches: the use of scene geometry.
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Narrowing down search space by using constraints on the scene geometry is

another way to improve overall performance because it can not only reduce the

detection time but it can also reduce the false positive rate by only processing an

image area which is geometrically valid for object detection. Sudowe and Leibe

[96] address this issue and provide a general and practical formula for extracting

a safe search space. In this thesis, we propose a rather simple algorithm for

computing safe and efficient ROIs assisted by vanishing point tracking.

3.4.1 Geometry

Consider a typical camera configuration for automotive scenarios where an object

(vehicle in this case) lies at a certain distance (d), as shown in Figure 3.2. Here,

we use pinhole camera model and assume 1) flat ground plane and 2) parallel

optical axis to the ground plane (i.e., zero pitch angle of a camera) for ease of

formulation. However, these assumptions occasionally may not hold due to the

vehicle’s sudden ego-motion and uneven road surface. To deal with such cases, we

dynamically estimate the position of a vanishing line by tracking vanishing points

using the method in [87]. The vanishing point tracker detects vanishing points

by extracting lines from a perspective image. We believe this approach is better

than that of using lane markings to find vanishing points since one can almost

always extract numerous lines from scene structure (e.g., buildings, bridges, jersey

barriers, and curbs) while lane markings are sometimes not available.

From this setting, given the vanishing line estimated via a vanishing point

tracking, we can easily compute a pixel height (hg) from the vanishing line to the

bottom line of an object as well as a pixel height (ROIy) in the image plane for

the object. This is expressed by:

hg =
Yc × fp
d

, ROIy = hg − ht =
OH

Yc
× hg (3.7)

where Yc and OH are camera height and physical object height in meters, re-

spectively. fp is a focal length expressed in pixels and ht is defined similarly as

hg. We model variability in object sizes by assuming a maximum and minimum

size of an object OHmin, OHmax, which corresponds to the max and min size of
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Figure 3.2: Typical camera configuration for automotive scenarios. We illustrate
the algorithm with a case of vehicle detection. The yellow horizontal line repre-
sents the detected vanishing line. The green circle represents the location of the
vanishing point tracked over frames. All green lines are the ones extracted from
a perspective input image.

the ROI, ROImin and ROImax. As illustrated in Figure 3.2, this relationship

between the ROIy and hg suggests the derivation of a simple formula for finding

ROIs from an image pyramid. We discuss this derivation in the following.

3.4.2 Formulation

Let us consider a J-level image pyramid and an object model as illustrated in

Figure 3.3. We can think of the model as a root filter of the DPM. Level 0

corresponds to an input image and the following levels corresponds to downscaled

images. Note that we illustrate HOG model size to be increasing while the image
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Figure 3.3: Illustration for the variation of HOG model size for each level of an
image pyramid (left). Illustration for the search space for a level j of the image
pyramid (right).

size remains the same as we go down the feature pyramid. This representation

is chosen for better understanding of our algorithm. MHc and MWc are model

height and width in cells, respectively. MHp is model height in pixels, so it can

be expressed as MHp = CHp ×MHc where CHp is the number of pixels for one

HOG cell (usually 8). Now we want to define MHp as a function of the level since

the coverage of fixed model size changes for different pyramid levels:

MHp(j) = ∆P (j)× CHp ×MHc, j = 0, 1, ..., J (3.8)

where ∆P (j) = 2( j
λ
), a relative pixel size indicating how many pixels in the

original input image would correspond to one pixel in pyramid level j and λ is

the number of levels in an octave. Looking back at Eq. 3.7, the next quantity we

want to determine is the hg(j), i.e., how the pixel height (hg) from the vanishing

line to the bottom line of an object is expressed for a level j. In this formulation,

we want to parameterize the quantity with one more variable, k, since what we

are eventually interested is a search space in the HOG feature pyramid.

hg(j, k) = hg(0, 0)− k × CHp ×∆P (j) (3.9)

where k is an integer index indicating the order of HOG cell line beginning from

the bottom to top. In other words, the physical meaning of hg(j, k) is the pixel
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height (hg) from the vanishing line to the k-th HOG cell line in level j of the

feature pyramid. This is illustrated in the right-hand side of Figure 3.3. Finally,

the search space for the level j can be obtained from the k’s which satisfy the

following relation (starting line) and the model pixel size (i.e., MHp(j)) at that

level (end line):

MHp(j) =
OH

Yc
× hg(j, k) (3.10)

Note that all quantities except k are constants, so that computing k is trivial. Eq.

3.10 is exact but it is formulated based on several assumptions such as the road’s

evenness and the zero pitch angle of the camera, which may not be met perfectly.

Although we alleviate these conditions by continuously updating the horizontal

vanishing line, we still model variances of the vanishing line by introducing an

error margin e(j). The final equation we use is as follows:

MHp(j)×
Yc

OHmax

− eu(j) < hg(j, k) < MHp(j)×
Yc

OHmin

+ el(j) (3.11)

where eu(j) and el(j) are upper and lower error margins for level j, respectively.

With this explicit modeling of error sources and the vanishing line estimation,

our real-world experiments (details in Section 3.5-C) verify that the algorithm

generates reliable and efficient ROIs for object detection. With this ROI scheme

we achieve a 5X speed increase whereas our previous method [20] showed 3X

increase.

3.5 Experiments

To evaluate our object detection system, we analyzed its performance on vari-

ous real-world datasets. To evaluate pedestrian detection accuracy, we used the

Caltech Pedestrian Dataset [33] which is the largest publicly available pedestrian

dataset at this time. The Caltech dataset corresponds to approximately 2.3 hours

of video (640×480 resolution) captured at 30fps and is segmented into 11 sessions,

6 of which are used for training (S0∼S5) and the remaining sessions are used for

testing (S6∼S10). The dataset offers an opportunity to exploit many different

aspects of model training thanks to its large number of positive samples. For
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Table 3.2: Different sampling schemes for model training

Sampling Scheme No. of Pos. Samples LAMR (%)

All frames 65,570 56
Every 10th 6,557 56
Every 20th 3,261 55
Every 30th 2,198 54
Every 40th 1,629 55
Every 50th 1,280 56
Every 60th 1,088 58

details of the dataset and benchmark criterion, please refer to [33]. For a vehicle

detection performance evaluation, we collected a new vehicle dataset based on

the analysis of vehicle collision statistics [76]. The dataset was captured at 3fps

following the lessons in [20] and consists of three sessions (S0∼S2) for training

and two sessions (S3∼S4) for testing.

First, we performed a set of experiments to identify the key design parame-

ters of the DPM for the pedestrian and vehicle class without our ROI mechanism.

Secondly, using the insights learned from the first set of experiments, we quanti-

tatively evaluate detection performance for each class of objects using the Caltech

Benchmark with the ROI mechanism. Finally, for a qualitative real-world evalua-

tion, we deploy the detection system to our experimental vehicle and demonstrate

real-time detection for pedestrians and vehicles on a 43 minute sequence from

various complex environments. For the first and second experiments, we used

the same protocol used in [33], which upscale the input images by a factor of 2

(thus, a final resolution of 1280×960) for fair comparison. For a real deployment

of our system, however, we use the original size of images (640×480) with two

multiresolution models as detailed in Section 3.5-C.

3.5.1 Model Design Parameters

Number of Training Samples: The Caltech dataset contains approximately

2, 300 unique pedestrians out of approximately 347, 000 total instances of pedes-
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Table 3.3: Different number of parts

No. of Parts LAMR for Ped.(%) LAMR for Veh.(%)

2 58 20
3 55 19
4 55 18
5 56 18
6 54 18
7 56 18
8 56 18

trians. This high number of bounding boxes is mainly because the dataset was

recorded at 30fps. Once a pedestrian appears in the field of view, he or she tends

to be captured for at least a couple of seconds. Because of this high level of

redundancy in the sample images, we had to first determine the best sampling

scheme to obtain a statistically valid set of training images. We trained 7 mod-

els with a standard set of parameters (1 component with 6 parts) where each

model is trained with a training set (S0∼S5) consisting of images selected from

the dataset at a different sampling frequency. We trained models for each of

the following down-sampling factor: 1, 10, 20, 30, 40, 50, and 60. We ran each

model on the test set (S6∼S10) and evaluated them using the same evaluation

code provided by [33] (ver. 3.0.0). The results of these experiments are shown in

Table 3.2, where we use log-average miss rate (LAMR) to represent detector per-

formance by a single reference value. The LAMR is computed by averaging miss

rate at nine False Positives Per Image (FPPI) rates evenly spaced in log-space

in the range 10−2 to 100 according to [33]. Although there is no large difference

in performance between the settings, using every 30th training images (i.e., one

training image per one second) in this case gives us the best performance. We

decided to use this setting for the pedestrian class throughout the remainder of

our experiments. This result has implication in the generation of ground truth

data as annotating every 30th frame of a dataset is far less expensive than having

to annotate every frame. For the vehicle model, as mentioned before, we collected

the dataset at 3fps and did not perform this experiment.
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Table 3.4: Different number of scales per octave

Scales / Octave No. of Levels LAMR (%)

2 10 61
4 19 56
6 28 56
8 37 55
10 46 54
12 56 54
14 65 53

Number of Parts: The standard number of parts for the DPM is 6 for

voc-release3 [43]. However, the optimal number of parts indeed depends on the

variability of an object class and may be significantly different between classes.

Our second experiment was designed to identify the optimal number of parts

required for the pedestrian and vehicle models that would be used for the auto-

motive application. Once again, we trained 7 models with different number of

parts (2∼8) using each training set and tested them on each testing set. As shown

in Table 3.3, for the pedestrian case, using 6 parts yields the best performance

while its variance is not so large depending on the number of parts. The reason

is that most of the pedestrians (84%) in the Caltech dataset are smaller than 80

pixels in height and large number of parts does not necessarily help for better

detection in such low resolution images. Interestingly, the performance of vehicle

models shows a very low variance on the number of parts. This seems reasonable

given the fact that vehicles are basically rigid bodies and we trained a rear-view

vehicle model for our FCW application. In general, when selecting the number

of parts for voc-release3, it might be better to use smaller number of parts

for a faster detection rate. However, for the star-cascade algorithm using 6 to 8

parts seems reasonable due to the cascaded structure of its classifier. To balance

efficiency and accuracy, we decided to use 6 parts for our evaluations.

Number of Scales Per Octave: Typically, modern object detectors use two

or three octaves and sample 8-14 scales per octave for accurate detection. Since

the computational requirements for feature computation in this image pyramid
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can be significant, new methods of handling this issue must be identified. Re-

cently, Dollár et al. [31] proposed a technique to avoid constructing such a feature

pyramid by approximating feature responses at certain scales by computing fea-

ture responses at a single scale. They demonstrated that such an approximation

is accurate within an entire scale octave. While the method is applicable to our

case, here, we are interested in primarily looking at performance differences de-

pending on different number of scales and looking for a specific optimal solution

for our configuration. We tested 7 different settings and the results are shown in

Table 3.4. We found that even 4 scales per octave shows a marked improvement

over 2 scales per octave in accuracy. We decided to use 4 scales per octave as a

trade-off between accuracy and speed performance.

3.5.2 Quantitative Evaluation with Caltech Benchmark

In this subsection, we quantitatively evaluate the performance of our implemen-

tation of the DPM for both pedestrian and vehicle class using the Caltech bench-

mark. This is possible because the benchmark provides a flexible way to evaluate

detectors under various conditions on multiple datasets.

3.5.2.1 Pedestrian Detection

We used the Caltech Pedestrian Dataset for training a pedestrian model. We

trained a model using the training set sampled at every 30th frame and filtered

by a height condition (i.e., 40<h<400 pixels), resulting in 2,198 positive samples.

Note that we intentionally excluded small-sized bounding boxes (i.e., h<40 pix-

els) since our aim was training a model with 80 pixels in height. We evaluated

the performance of our implementation on the Caltech testing data. Although

the framework provides detection results from sixteen pre-trained detectors (as

of January 2012) to help provide consistent comparison with other sate-of-the-art

detectors, we intentionally selected 8 of the most relevant top-performing detec-

tors to increase the clarity of the resulting graphs. The criterion we used to select

the algorithms was detection accuracy and run-time. One exception is the “Mul-

tiFtr+Motion” algorithm, which exhibits very slow detection speed (reported as

more than 30 seconds for a 640×480 image in [33]). But we included the method
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Figure 3.4: Pedestrian and vehicle detection results using the Caltech Benchmark
in [33]: (a) Performance on unoccluded pedestrians over 80 pixels in height. (b)
Performance on unoccluded pedestrians between 30-80 pixels in height. (c) Per-
formance on pedestrians at least 50 pixels in height under no or partial occlusion.
(d) Performance on unoccluded vehicles over 80 pixels in height. (e) Performance
on unoccluded vehicles between 20-80 pixels in height. (f) Performance on vehi-
cles at least 30 pixels in height under no or partial occlusion.

41



Figure 3.5: Qualitative detection results on the Caltech testset. The first and
second row shows correct pedestrian detections in various scenarios. The third
row shows typical false positives (indicated with red arrows).

since it is the only method which uses motion features in our list and also because

it shows the best performance in most cases.
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Figure 3.6: Qualitative detection results on the Caltech testset (More examples).

We named our implementation “LatSvm-RT” without our ROI algorithm as

in [20] and “LatSvm-RT-ROI” with the ROI algorithm. Following the naming

convention of the Caltech benchmark we described the other detectors as fol-

lows: HOG [27], HogLbp [108], MultiFtr [111], LatSvm-V2 [41], FeatSynth [13],
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FPDW [31], CrossTalk [30], MultiFtr+Motion [106]. All detectors except Multi-

Ftr+Motion [106] (which used their own dataset called ‘TUD-MP’) were trained

with the “INRIA Person Dataset [27].” Note that the LatSvm-V2 is our baseline

detector, voc-release3 and our effort in this thesis is to develop its real-time

implementation. Our implementation shows better performance compared to the

baseline mainly because we used models trained with the Caltech training set

and also the ROI algorithm.

These facts are illustrated in the results shown in Figure 3.4(a)∼3.4(c). Fol-

lowing the example in [33], we plot miss rate vs. false positives per image (FPPI)

and use the LAMR as a single comparison value for the overall performance. The

entries are ordered in the legend from the worst LAMR to the best. In general,

our detector shows very good performance. Results for near and medium scale

unoccluded pedestrians, corresponding to heights of at least 80 pixels and 30-

80 pixels, respectively, are shown in Figure 3.4(a) and Figure 3.4(b). In each

case, our detector with the ROI algorithm shows the second best and the best

performance with a LAMR of 27% and 72%, respectively. Figure 3.4(c) shows

performance on pedestrians over 50 pixels tall under no or partial occlusion. Here

our detector shows second best performance with a LAMR of 52%. Obviously,

we can see that our ROI algorithm is also contributing to better detection per-

formance. Typical qualitative results achieved on the Caltech testset are shown

in Figure 3.5 and 3.6.

3.5.2.2 Vehicle Detection

We collected a new dataset (recorded at 3fps with 1280 × 960 resolution) for

training vehicle models. We decided to record high-definition images for future

usage, but for the low-resolution purpose, we annotated fully visible (rear-view)

vehicles which are larger than 16×16 pixels for all sessions (S0∼S4). We trained

two rear view vehicle models using the training data (S0∼S2), as visualized in

Figure 3.11, one a normal size model for short- and normal-distance and the

other one a small size model for long-distance. We use 4,484 and 558 positive

samples for the normal-distance vehicle model and long-distance vehicle model,

respectively. Trucks and buses are excluded for the training although they are
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Figure 3.7: Qualitative detection results on our vehicle dataset. The first and
second row shows correct vehicle detections in various scenarios. The third row
shows typical false positives (indicated with red arrows).

labeled. We evaluated their performance on the testing data (S3∼S4). To this

end, we run both models on the entire images with (or without) the ROI algorithm
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Figure 3.8: Qualitative detection results on our vehicle dataset (More examples).

and then merge detections from both detectors. For comparison, we also trained

the standard HOG models using the DPM code of voc-release3 and applied

them with (or without) our ROI algorithm. For the evaluation, we used the

same scenarios as the pedestrian case but with different height criteria for each

46



scenario. Since detecting small vehicles (in images) is important we changed the

height criteria from 30∼80 to 20∼80 for the ‘medium scale’ scenario and from

>50 to >30 for the ’reasonable’ scenario.

As can be seen in Figure 3.4(e)∼3.4(f), our vehicle models exhibit much better

performance compared to the pedestrian case. For ‘near scale’ and ‘reasonable’

scenarios, our models show a perfect detection rate with 1 FPPI. We claim that

this is a very meaningful result since most of the false positives in this condition

come from the front view of oncoming vehicles, which might not be false positives

in our applications. Furthermore, we can verify that even the standard HOG

vehicle models also perform very well. We think that the results are reasonable

considering that vehicles are in general rigid body objects, thus, less deformable.

For vehicle models, the advantage of the ROI algorithm in terms of detection

accuracy turns out to be low compared to the pedestrian case. Typical qualitative

results achieved on our test set are shown in Figure 3.7 and 3.8.

3.5.3 Quantitative Evaluation of Performance with Inner

Motion Features

In this subsection, we quantitatively evaluate the effect of inner motion features

on pedestrian detection. For this purpose, we also used the Caltech Pedestrian

Dataset. This time, however, we followed the convention used in [79] for fair

comparison with them. We trained one-component deformable part-based model

with a size of 56 × 28 and a 4 × 4 cell size. We use the training set sampled

at every 30th frame, filtered by a height condition (i.e., 50<h<400 pixels), and

excluded occluded pedestrians, resulting in 1,458 positive samples. Note that

because of the reduced model size with 4 × 4 cell size we ran our detectors on

the original input images rather than (2×) upscaled images. This model gives us

43% log-average miss rate in the ‘reasonable’ scenario which outperforms the prior

state-of-the-art method called ‘CrossTalk’ [30] by 11%. We also point out that

this new trained DPM significantly improves its previous performance (specified

as ‘LatSVM-V2’ in Figure 3.9(c)) by 20%, which is somewhat surprising to us. For

comparison purpose, we also trained a standard HOG-SVM model [27] with the

same training set using the DPM code voc-release3 [43]. In the same scenario,
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Figure 3.9: Effect of inner motion features on pedestrian detection: (a) Per-
formance on unoccluded pedestrians over 80 pixels in height. (b) Performance
on unoccluded pedestrians between 30-80 pixels in height. (c) Performance on
pedestrians at least 50 pixels in height under no or partial occlusion.

this model shows 57% of log-average miss rate where the original method in [79]

reported 46%. We believe that this difference is due to the fact that we only

use spatial (2 × 2) block normalization where the original method uses spatial-

temporal (2× 2× 2) block normalization.

For the inner motion features, we implemented the D16(8, 4) as we explained

in section 3.3 with a set of parameters reported as the best trade-off between

time complexity and performance. We use the intensities of gray scale images

for computing the signed temporal gradient (original method used a Luminance

channel of LUV color model). We encode inner motion features after applying
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4 × 4 spatial aggregation and L1 block normalization. We trained a DPM and

HOG-SVM model with our inner motion features using the same training set we

used for the baseline models. For the HOG-SVM model case, we obtain 50% log-

average miss rate and get 7% improvement over the baseline model which shows

57% log-average miss rate in the ‘reasonable’ scenario. For the DPM case, it

shows 4% improvement from 43% to 39%. From this result, we can conclude that

the inner motion features give consistent positive effect to the overall detection

against possible textureless regions on images. Detailed results on ‘near scale’,

‘medium scale’, and ‘reasonable’ scenarios are shown in Figure 3.9(a)∼3.9(c).

3.5.4 Real-Time Onboard Evaluation

All quantitative results from the previous subsection show state-of-the-art object

detection performance in the computer vision field. However, there is a huge

performance gap between the current performance and what is required for auto-

motive safety applications. For example, for the pedestrian case, the false positive

rate should be less than 1 per 3 hours of driving with a detection rate of above

95% [88], but our result reports a 83% detection rate around 1 FPPI for a ‘near

scale’ case (see Figure 3.4(a)). Just considering only the false positive rate, as-

suming 10Hz frame rate, we will see around 108,000 false positives for 3 hours,

which is far from the requirement. Does this mean that the performance of most

of current state-of-the-art object detection systems is significantly insufficient for

real-world applications? This subsection describes our efforts to find out the

answers for this question. We integrated our object detection system into our

experimental vehicle to see how it performs in challenging real-world scenarios.

Our experimental vehicle is indeed a new research vehicle platform developed at

Carnegie Mellon University to conduct autonomous driving research [109]. While

the vehicle is designed to meet the requirements of general autonomous driving

with multiple sensors such as radar, LIDAR, and cameras, here we are focus-

ing on vision-based object detection functionalities for automotive active safety

applications.
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Figure 3.10: Our experimental vehicle and its sub-components. (a) Autonomous
Cadillac SRX [109], (b) Forward-looking camera (monocular setup), (c) Comput-
ing cluster and control console.

3.5.4.1 System Setup

The experimental vehicle is equipped with a forward-looking camera (PointGrey

FL3-GE-50S5C-C, 45° VFOV) and four mini-ITX form-factor computers (Core

2 Extreme QX9300@2.53GHz, 8GB RAM). The forward-looking camera is inter-

faced with computers via a Gigabit Ethernet (i.e., GigE). 640×480 resolution of

images are fed into all computers at 8Hz and our detection system runs on each of

two computers with a different model (i.e., pedestrian and vehicle). The vehicle

and described sub-components are shown in Figure 3.10.

Model size design: For deciding a pedestrian and vehicle model size, we

analyzed the object’s pixel height in the image plane, as a function of distance

using the Eq. 3.7 and a known camera parameter (fp=557.73). From this analysis,

we trained a 96× 40 pixel-sized model to detect pedestrians reliably up to 10m.

For the range from 10m to 20m, we trained a 48×20 pixel-sized model with HOG

cell size of 4 × 4. Similarly, we trained two vehicle models, one a 48 × 48 sized

model for normal-distance (i.e., 5m∼22m) and the other a 16 × 16 sized model

with HOG cell size of 4× 4 for long distances (i.e., 22m∼55m). We only trained

rear-view vehicle models for efficiency reasons. All models and corresponding

reasoning are shown in Figure 3.11.

Software parameters: After a large amount of unit testing, we set the

optimal parameters for each module of our detection system. For detection,

we trained DPMs with 6 parts using the voc-release3 training tool [43] and

then built cascade models from them for the star-cascade algorithm with the

modification explained in Section 3.2.3. We run a normal size model with the
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ROI method and a small size model on a pre-defined ROI. We use 4 scales per

octave (i.e., λ=4), resulting in 14 image pyramid levels for 640×480 images.

For the ROI algorithm, we use constant value 3 and 2 for all eu(j) and el(j),

respectively for implementation convenience. We also use the following defini-

tions: OHped=1.7m±0.3m and OHveh=2.0m±0.5m. For the range estimation

module, finally, we use the following parameter set a) whg=0.7, wBBH=0.15,

wBBW=0.15, OHveh=1.5m, and OWveh=1.9m for the vehicle model for short-

and normal-distance and b) whg=0.5, wBBH=0.2, wBBW=0.3, OHveh=2.0m, and

OWveh=2.0m for the vehicle model for long-distance and finally c) whg=0.7,

wBBH=0.15, wBBW=0.15, OHped=1.7m, andOWped=0.5m for the pedestrian model.

The rationale for these parameters results from data statistics analysis on our

dataset.

3.5.4.2 Range Estimation

Accurate range estimation from a detected bounding box is the most important

final step for automotive applications. With sufficiently accurate performance,

it could be used as an input into an Adaptive Cruise Control (ACC) system as

well as an input to the Forward Collision Warning (FCW) system. In general,

it is difficult to get an accurate range estimation from a monocular camera set-

ting. Usually, we can obtain a rough range estimation from Eq. 3.7 with some

assumptions (e.g., flat ground and accurate localization of bounding boxes). We

evaluated these approaches and determined that they could work reasonably well

for pedestrian models due to shorter working range but they are too error prone

for the vehicle model due to the longer distance at which the vehicles must be

detected (i.e., 55m vs. 20m) and error sensitivity from various violations of above

assumptions is too severe for distant vehicles (i.e., above 40m). To address this

problem, we propose a new formula for better range estimation which considers

a bounding box size as well as its bottom position. From the camera geome-

try illustrated in Figure 3.2, the relationship between a bounding box size (i.e.,

width or height) and distance (d) can be easily obtained. For verification of this

geometry model, we empirically analyzed a number of labeled bounding boxes of

various object classes. A case study for an SUV (Sports Utility Vehicle) class is
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d) b) 
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a) 

b) 

Figure 3.11: Plot of ROIy as a function of d (Eq. 3.7). Based on this analysis,
all models are designed and visualized here. (a) Normal-sized pedestrian model
(96 × 40 with 8 × 8 HOG cell). (b) Small-sized pedestrian model (48 × 20 with
4× 4 HOG cell). (c) Normal-sized vehicle model (48× 48 with 8× 8 HOG cell).
(d) Small-sized vehicle model (16× 16 with 4× 4 HOG cell).

shown in Figure 3.12(a) and 3.12(b). Final estimate is the convex combination

of those three separate estimates. From this, we have a new formula for a range

estimation (d):

d = whg

(
Yc × fp

hg

)
+ wBBH

(
OH × fp
BBH

)
+ wBBW

(
OW × fp
BBW

)
(3.12)

where whg , wBBH , and wBBW are weighting factors for camera geometry, height

and width of bounding box terms, respectively and whg +wBBH +wBBW = 1. OH

and OW are the physical height and the width of an object, respectively.
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gheight hBB  583.1max_

gheight hBB  308.1min_

48gh

16gh

(a) Bounding box height distribution

gwidth hBB  538.1max_

gwidth hBB  385.1min_

48gh

16gh

(b) Bounding box width distribution

Figure 3.12: Empirical distribution of bounding box sizes for an SUV case. This
statistics is calculated from 9,481 labeled bounding boxes of the SUV class. Mea-
surements for (a) height and (b) width are well fit into the geometry model. (SUV
width max : 2.0m, SUV width min : 1.8m, SUV height max : 2.0m, SUV height
min : 1.7m, Camera height : 1.3m)

Class Detection Rate (%) False Positives/hour

Pedestrian 91% 25
Vehicle 94% 14

Table 3.5: System level detection performance of the proposed system.

3.5.4.3 Detection Results

To obtain a realistic performance assessment, we drove our experimental vehicle

from the Cranberry Township to Pittsburgh international airport. This course

involves various challenging environments such as urban streets and highways

for vehicle detection and busy pedestrian zones at the airport departure area for

pedestrian detection. This test sequence corresponds to 43 minutes of daytime

driving in various places under normal weather conditions. In general, our system

shows a promising performance for pedestrian detection and a remarkable per-

formance for vehicle detection except in some extreme cases such as significant

egomotion and dynamic scene change. We manually evaluated the performance

for each model. However, for the quantitative performance evaluation, it is re-

quired to manually label each of the frames in the entire data set. Because this is
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a) 

b) 

c) 

Figure 3.13: Typical snapshots from the online operation of our on-board pedes-
trian and vehicle detection system: (a) PPS and (b) FCW on our autonomous
vehicle. (c) shows typical false positives for pedestrians (blue: pedestrians, yellow:
vehicles, labeling: (class: distance in meter).
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d) 

e) 

Figure 3.14: Typical snapshots from the online operation of our on-board pedes-
trian and vehicle detection system: (c) and (d) show pedestrian and vehicle
detection results, respectively, in various scenarios. The purple horizontal line
represents the detected vanishing line. The green circle represents the location
of the vanishing point tracked over frames. All green lines are the ones extracted
from a perspective input image.
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labor-intensive and error-prone, we evaluated the performance differently. In par-

ticular, we had human annotators, using our visualization tool, go over the data

second-by-second. Following the scheme used in [88], we counted the number of

correctly (and incorrectly) detected bounding boxes. When we evaluate detection

rate, we only consider inward moving and in-path stationary pedestrians up to

20m for pedestrian detection. For vehicle detection, we only consider vehicles on

the current, left, and right lane up to 55m with respect to the ego-vehicle. In

addition, since our vehicle models are designed specifically for Sedan and SUV

types and not for trucks and buses, we evaluated the detection performance with-

out considering truck and bus samples. The manual evaluation of our system,

as shown in the Table 3.5, indicates that we achieve 91% detection rate with 25

false positives per hour for a pedestrian case, 94% detection rate without truck

and bus samples with 14 false positives per hour for a vehicle case. We believe

that this is quite remarkable performance given the fact that it is achieved from

only a detection system, i.e., single-frame classification. It is well known that a

reasonable performance for either PCW or FCW systems can be achieved via a

system level integration of a detection system together with other sub-modules

such as tracking and multi-frame verification [49], [88]. Putting all these facts

together, we claim that the performance level of state-of-the-art object detection

system indeed is getting closer to a level of field requirement.

With this performance, we demonstrated pedestrian avoidance and forward

collision warning functionalities as shown in Figure 3.13 (a) and (b). Typical

false postives are shown in Figure 3.13 (c). The most frequent false positive for a

pedestrian class was from leading or oncoming vehicle’s boundary, which can be

alleviated by looking at the vehicle detection results or by adding motion features

[79]. For a vehicle class, rectangular-shaped road traffic signs were primary source.

Figure 3.14 (d) and (e) show typical detection results for pedestrians and vehicles

from our system, respectively. Training and test data for our vehicle model as

well as all result videos are available on our project website1.

1http://users.ece.cmu.edu/∼hyunggic/inAction.html
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3.6 Summary

This chapter presented a well-integrated on-board object detection system in-

tended for self-driving vehicles as well as for potential use in automotive active

safety applications. Besides a real-time implementation of an object detection

method, other missing pieces (i.e., ROI computation and range estimation mod-

ules) are integrated for the final consistent performance. First, we engineered

one of the top performing state-of-the-art object detection method called ‘de-

formable part-based model’ (DPM) for real-time operation. Secondly, to further

speed up the detection process we introduced a simple, but powerful ROI com-

putation algorithm assisted by a vanishing point tracking. Third, quantitative

evaluation on two object categories (i.e., pedestrians and vehicles) was conducted

using the Caltech Pedestrian Dataset as well as the vehicle dataset we collected.

Finally, with the proposed system, we qualitatively demonstrated its feasibility

for automotive applications by driving our experimental vehicle through various

challenging real-world scenarios for pedestrians and vehicles. Although the re-

sults we obtained from the qualitative evaluation still are not reaching a level

of so-called “field requirement”, we believe that our work represents meaningful

progress of on-board object detection system for autonomous vehicles.
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Chapter 4

Vision-Based Multi-Object

Tracking using a

Rao-Blackwellized Particle Filter

Previous chapter presented our onboard real-time object detection system based

on the state-of-the-art object detector called DPM. Based on reliable detection

from that system, this chapter develops a monocular vision based multi-object

tracking framework for autonomous vehicles based on a tracking method using a

Rao-Blackwellized Monte Calro Data Association (RBMCDA) algorithm. Section

4.1 provides an overview of the tracking problem of urban objects and main

contributions of the proposed system. Section 4.2 discusses how we treat the

detection results from the DPM detector as a set of measurements for object

tracking. Technical details for single object tracking and its extension to multi-

object tracking using the RBMCDA algorithm are described in Section 4.3 and

Section 4.4, respectively. We describe experimental results using the framework

in Section 4.5 and conclude in Section 4.6.

4.1 Introduction

The automotive industry is increasingly interested in adding more intelligence to

cars and trucks with the ultimate goal of developing fully autonomous automo-
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bile traffic [17, 107]. To this end one of the most important research areas to

address is that of automated perception systems that will allow the vehicle to

perceive its immediate environment and make decisions that enhance the safety

of vehicle occupants as well as the safety of persons around it [45, 63]. Although

such a perception system that can, in real time, gather enough information to

do a complete scene analysis is our ultimate goal to pursue using a multi-sensor

approach (chapter 5 and chapter 6), in this chapter, we focus on the problem of

identifying and extracting specific aspects of interest in the scene. In particular,

we are interested in the problem of detecting and tracking major traffic partici-

pants such as other vehicles as well as the class of objects called vulnerable road

users (VRUs) [45] which includes bicyclists and pedestrians.

In general, bicyclists and pedestrians are the most vulnerable of the class

of VRUs due to the lack of any real protection against collisions. Especially,

bicyclists move at speeds similar to a slow moving vehicle and, by law, must

share the road with vehicles in most urban environments [74]. This puts them

at particular risk for suffering life-threatening accidents. However, pedestrians

and bicyclists are particularly challenging for an on-board vision system to track

due to the fact that pedestrians are highly non-rigid objects and bicyclists travel

at higher speeds in close proximity to vehicles. In addition, tracking vehicles

is relatively easier than tracking pedestrians since vehicles are quite rigid-body

objects. However, tracking vehicles is also challenging because vehicles come in

many different shapes depending on their sub-categories, e.g., sedan, SUV, truck,

and bus. High variation in shape leads to difficulty in reliable object detection

and therefore, high risk of tracking failure. On top of this, the need for tracking

multiple instances of different object classes poses additional challenges to the

problem. In the case of pedestrians, up to 15 pedestrians, depending on the

complexity of the scene, can appear in the image space and need to be tracked

reliably.

To overcome these challenges of automotive vision systems, this thesis focuses

on a) building a general and powerful object detector which considers the deforma-

tion of object parts (previous chapter) and b) developing a multi-object tracking

method using a Rao-Blackwellized Particle Filter (current chapter). Specifically,

for the first part, we make use of our real-time C implementation [20, 24] of the
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Figure 4.1: System block diagram for our vision-based multi-object detection and
tracking system.

‘deformable part-based models’ (DPM) [41, 40] for reliable detection of vehicles,

pedestrians, and bicyclists. For the second part, we apply the Rao-Blackwellized

Monte Calro Data Association (RBMCDA) algorithm [98] to a vision-based multi-

object tracking problem with an Interacting Multiple Model (IMM) filter [22]. In

this chapter, we focus on the second part (i.e., tracking part) of the problem and

improve our previous work. New contributions of this chapter are as follows.

The first contribution is that given three major object models (i.e., vehicle,

pedestrian, and bicyclist) trained, we exploit the unique characteristics of each

object’s motion. Clearly, each of the three objects has its own motion kinematics

and constraints. For example, a pedestrian can move in any directions whereas the

motions of a vehicle or bicycle is confined by non-holonomic constraint. Therefore,

we choose two motion models: a constant velocity (CV) model [15] for pedestri-

ans and a simplified bicycle model [54] for vehicles and bicyclists. Given the

object semantic information from the detectors, a corresponding motion model is

selectively chosen. For each motion model, an extended Kalman filter (EKF) is

used to estimate the position and orientation of an object in the vehicle coordi-

nates, hence 3D localization is possible via a proper uncertainty propagation (see

Section 4.3).

The second contribution is the extension of the single object tracking method

to that of multi-object tracking by incorporating a Rao-Blackwellized Particle

Filter which runs a particle filter for data association and an EKF for each object

tracking. The original theory for this framework was developed by Särkkä et

al. and named as ‘RBMCDA’ [98]. We applied the algorithm to the problem of

vision-based object tracking by improving the measurement likelihood computa-

tion which takes advantage of the rich appearance information in images.

The final contribution of this chapter is a quantitative evaluation of our track-

ing framework using a challenging real world dataset. We collected new urban
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object (e.g., vehicle, pedestrian, and bicyclist) datasets based on the accident

statistics [74, 75]. For each object class, tracking performance for single object

was analyzed in terms of position and velocity estimation accuracy and the per-

formance of data association algorithm was evaluated qualitatively on multiple

video sequences. Figure 4.1 shows a system block diagram of our design.

4.2 DPM as a Virtual Sensor

Multi-object tracking from a moving vehicle is generally a challenging task es-

pecially when using a single video camera as its sole sensor. Given a sequence

of images, continuous and reliable object detection is challenging due to several

facts including, for example, that a pedestrian can exhibit large amount of artic-

ulation, a bicycle can present dramatic appearance changes according to camera

viewpoint, and finally, vehicles can display high intra-class variability (e.g., sedan

vs. truck). The common solution for the problem of bicycle and vehicle cases is

to build multiple view-based detectors to overcome dramatic appearance changes

and the problem of a pedestrian case can be addressed by training a part-based

model. Rather than trying to capture a global pattern of an object with one

global template, part-based models focus on parts of an object and, in conse-

quence, provide more flexible and robust representations.

The physical sensor we are using is a monocular video camera which generates

a sequence of images at a certain rate. At the arrival of a new image from

the camera, our object detectors are applied and generate a set of bounding

boxes if there are objects of interest. Thus, from a tracking perspective, the

object detectors are considered as virtual sensors which generate a sequence of

measurements. The measurement set at time step k can be expressed by:

Ok = [d1,d2, ...,dn] (4.1)

di = [u v w h c]T i = 1, ..., n

where di indicates a detected bounding box (u, v, w, h, c), where (u, v)T is the

center of the bottom line (shown as a red and green dot in Figure 4.2) and

(w, h)T are the width and height of the bounding box. c indicates a category of
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the detected object. This measurement set is fed into the update process of a

Bayesian filter.

4.3 Single Object Tracking

With a set of measurements (i.e., bounding boxes) from our object detector,

a well-defined tracking framework should be used to fuse the information from

an object’s motion model and real measurements. Because the DPM detector

is a time demanding module, we are interested in incorporating an algorithm

with lower complexity and providing some indication about its uncertainty for

tracking. For this reason, we chose to apply an extended Kalman filter (EKF) to

our framework. Specifically, we employ two motion models to better describe the

motion of a detected object. In addition, as a measurement model, a standard

pinhole camera model is linearized with a flat ground assumption and used in the

EKF update process. As shown in Figure 4.2, core idea of our tracking method

is that we assume an object can be seen as a point mass moving on the x − z
plane in the vehicle coordinates. Another key fact is that we track the relative

motion of objects in the vehicle coordinate system and thus, state variables are

defined in the same coordinate system. We discuss technical details of both a

motion model set and a measurement model in the next subsections.

4.3.1 Motion Models

As discussed in Section 4.1, some object classes such as bicycles and vehicles have

their own unique kinematics. Thus, at a first glance, it seems natural to use an

object’s kinematics to model the real motion of the object accurately. However,

it becomes a fuzzy situation once we consider the fact that the measurement in

our case is a rough bounding box in the image space. From the sequence of these

measurements, estimating all state variables (e.g., yaw angle and yaw rate) of a

complex model might be challenging. We have carried out a comprehensive set

of experiments to find the best solution for this issue. From our previous work,

we have learned that a bicycle can be seen as a moving mass and can be tracked

reasonably well using a constant velocity model in [21] and then exploited a more
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Figure 4.2: Illustration of our vision-based single object tracking process.

complicated motion model based on simplified bicycle kinematics and improved

tracking performance by fusing the information from the two motion models [22].

For this purpose, we used a well-known Interacting Multiple Model (IMM) filter.

In this work, we no longer use the IMM filter for fusion of two motion models,

instead, we use a suitable motion model for each class of objects. Specifically,

we employ a constant velocity (CV) model [15] for pedestrians and a simplified

bicycle (SB) model [54] for vehicles and bicyclists. Since both motion models

belong to a class of point models and a 2D bounding box in the image space is

used as a measurement, we chose to use a midpoint of the bottom line of the 2D

bounding box as the representative point. Based on a flat ground assumption,

the point can move according to its dynamics only in the ground plane (i.e., x−z
plane).

First, in a CV model, the state of this moving point at time step k is expressed

as:

xk = [xk zk ẋk żk]
T (4.2)

and the continuous-time state equation for this CV model [15] can be modeled
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as a linear, time-invariant system:

ẋ(t) =


0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

x(t) +


0

0

1

1

w(t) (4.3)

where w(t) is a continuous-time white Gaussian noise process with a power spec-

tral density Qcv. A discrete model of this state-space equation is used for the

Kalman filter.

Secondly, in a SB model, the state of the moving point is expressed by:

xk = [xk zk ψk vk ωk ak]
T (4.4)

where ψk, vk, ωk, and ak are the yaw angle, forward velocity, yaw rate, and

acceleration, respectively. The orientation of the forward velocity and acceleration

vectors are defined with respect to the yaw angle [20]. The continuous-time state

equation for this SB model [54] assuming a constant acceleration and constant

yaw rate is given by:

ẋ(t) =



v cos(ψ)

v sin(ψ)

ω

a

0

0


(4.5)

A discrete model of this state-space equation can be obtained by integration of

the upper differential equation over one sampling period T and expressed by:

x̂k|k−1 = f [x̂k−1|k−1]

= x̂k−1|k−1 +

∫ T

0

ẋ(τ)dτ (4.6)
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The expression
∫ T
0

ẋ(τ)dτ in Equation 4.6 is represented in matrix form as:

v+aT
ω
SW + a

ω2CW − v
ω

sin(ψ)− a
ω2 cos(ψ)

−v+aT
ω
CW + a

ω2SW + v
ω

cos(ψ)− a
ω2 sin(ψ)

ωT

aT

0

0


(4.7)

where SW = sin(ψ + ωT ) and CW = cos(ψ + ωT ). The noise covariance matrix

Qsb of this discrete-time process can be computed using the direct discrete method

[15] as ΓDQcD
TΓT where the noise gain matrix Γ is the Jacobian of Equation

4.6, Qc is the noise covariance matrix for the continuous-time process, and D is

a mapping matrix.

4.3.2 Measurement Model

Since a measurement is a set of bounding boxes in the image space and the track-

ing process itself is executed in the state-space (i.e., in the vehicle coordinate), a

measurement model should be able to map the state variable xk into its measure-

ment space (i.e., in the image coordinate). To facilitate this mapping, we use only

one representative point on the bounding box, which is the center (i.e., (u, v)T )

of the bottom line of a 2D bounding box as the measurement. The measurement

at time step k in the context of EKF can be expressed by:

zk = [uk vk]
T (4.8)

Then, in general, the nonlinear mapping of the state space into the measurement

space is given by:

zk = h(xk, k) + vk (4.9)

where vk is the measurement noise at time step k and can be determined by

analyzing the statistics of detection results empirically. The nonlinear mapping
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of the state space into the measurement space of the video camera is given by a

perspective projection equation:

 uk

vk

1

 =

 fu 0 uc

0 fv vc

0 0 1


 R | t



xk

0

zk

1



=

 P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34



xk

0

zk

1

 (4.10)

where fu and fv are the focal lengths in pixels in terms of u and v direction,

respectively, and (uc, vc) is the optical center of a camera. R is a rotation matrix

and t is a translation vector for extrinsic parameters. The parameters Pij are the

corresponding entries of the final perspective projection matrix. Note that we

use a flat ground assumption (i.e., yk = 0). Then the measurement function h is

expressed by: [
P11xk + P13zk + P14

P31xk + P33zk + P34

,
P21xk + P23zk + P24

P31xk + P33zk + P34

]T
(4.11)

Corresponding Jacobian, i.e.,
(
∂h
∂x

)
should be properly computed and used in the

EKF update process.

We also need to compute its inverse function and a corresponding covariance

matrix to initialize a new track with a detected 2D bounding box. Given a

measurement of [uk vk]
T we can obtain [xk zk]

T by solving the linear system

A [xk zk]
T = b with:

A =

[
ukP31 − P11 ukP33 − P13

vkP31 − P21 vkP33 − P23

]
, b =

[
P14 − ukP34

P24 − vkP34

]
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The covariance of [xk zk]
T can be approximated using error propagation [48]:

Σ(xk,zk) = J diag(σ2
u, σ

2
v) JT (4.12)

where the Jacobian J is given by:

J =

[
∂

∂u
A−1b

∂

∂v
A−1b

]
(4.13)

with ∂(A−1b) = A−1(∂b− ∂AA−1b) [48].

4.4 Extension to Multi-Object Tracking using

RBMCDA Algorithm

In the vision-based single object tracking method discussed in the previous sec-

tion, we assumed correct data association between a measurement and an already

initialized track. This method can be extended to a multiple object tracking

framework by incorporating a proper data association technique. In this the-

sis, we attempt to achieve the goal by using a Rao-Blackwellized Particle Filter

(RBPF) [34, 86]. Since we have multiple measurements and no information about

how many objects exist at a certain time step, the scope of the problem is quite

broad, including solving a data association problem, estimating the number of

objects, and tracking each object. The RBPF framework provides a mathemat-

ical tool to handle this daunting task. The core idea of the RBPF is to break

down a large state estimation problem into two smaller problems, one that can

be solved by an analytical solution and the other one that can be solved by a

particle filter, hence providing better results than what could be obtained from

a pure particle filter solution.

Särkkä et al. [98] applied an RBPF framework to a multi-target tracking

problem and named their algorithm Rao-Blackwellized Monte Carlo Data Asso-

ciation (RBMCDA). The algorithm relies on a Bayesian factorization to separate

the posterior into two parts: 1) an estimation of the number of objects and data

association problem and 2) a single target tracking problem. The RBPF solves
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the first problem via a particle filter and then, with known number of objects

and data associations, tracks each object using an optimal filter such as EKF and

IMM filter. Although they showed promising performance on multiple synthetic

datasets, its performance on real sensor systems, especially on vision systems,

was not fully demonstrated. Therefore, in this work, we apply the algorithm to

our vision-based multi-object tracking problem. Next, we briefly describe the

problem formulation and how we applied the RBMCDA algorithm.

4.4.1 Problem Statement

The goal of multi-target tracking (MTT) problem is to estimate the state of

targets given all the measurements obtained so far. In other words, we want to

compute the posterior distribution p(xk|z1:k) recursively. In our case, xk contains

the state variables of T objects, i.e., xk = [xk,1, ...,xk,T ]T and z1:k denotes all

the measurements up to time step k, i.e., z1:k = {z1, z2, ..., zk}. This MTT

problem inherently contains other sub-problems such as data association and

estimation of target’s initialization and termination. The goal of data association

and target’s birth and death estimation is, respectively, to find out the correct

correspondences between current tracks and incoming new measurements and to

detect new target’s initialization and old target’s termination. Considering those

issues explicitly as latent variables λk, the whole problem can be formulated by

the following decomposition of the posterior:

p(xk, λk|z1:k) = p(xk|z1:k, λk)p(λk|z1:k) (4.14)

where λk denotes the latent variable which contains the visibility indicator ek and

the data association indicator ck at the time step k, i.e., λk = {ek, ck}. It is im-

portant to understand that this factorization is always true, but only applicable

to a problem when there is certain structure within the state variables. In this

case, for example, the state variable is a mixture of state variables of T objects,

a data association indicator that indicates which measurement corresponds to

which track, and a visibility indicator which controls target’s initialization and

termination. Once the second term in the right hand side of Eq. 4.14 is deter-

mined, the first term can be easily solved by our single object tracking method
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described in the previous section. The RBMCDA algorithm solves the second

term using a particle filter by analyzing only one measurement at a time assum-

ing that at most one target can terminate at any time step. In addition, we

reduce the complexity of the problem one step further to take advantage of the

fact that our virtual sensor is a vision-based detector. Since the DPM object

detector usually provides very accurate measurements (in terms of detection rate

and bounding box localization), we can avoid target’s birth and death estimation

sub-problems from the whole problem. Instead, we initialize a track whenever we

have a new measurement which could not be associated to one of existing tracks,

and verify the track after M consecutive measurements, and terminate a track if

there is no longer valid measurements for the track for N consecutive time steps.

Therefore, the latent variable in our case would be, simply, λk = ck.

4.4.2 Particle Filter for Data Association

Using a particle filter, the quantity we want to compute now is the distribution

of p(ck|z1:k), i.e., the probability of the current data association indicator, which

has value ck = 0 for clutter and ck = j for target j ∈ {1, ...T}, given all the

measurements up to time step k. Note that we treat each measurement received

at time step k sequentially not jointly. Then, conditioned on the data associations

ck the targets will remain independent during tracking. Due to this operational

property of the RBPF, computation can be simplified in such a way that an

individual target can be processed separately in each particle. The RBMCDA

algorithm consists of a set of N particles, where each of particle i at time step k

is defined as:

{c(i)k−m+1:k,m
(i)
k,1,P

(i)
k,1, ...,m

(i)
k,j,P

(i)
k,j, ...,m

(i)
k,T ,P

(i)
k,T , w

(i)
k } (4.15)

where c
(i)
k−m+1:k are the data association indicators of time steps k −m+ 1, ..., k,

with which an mth order Markov model can be constructed as a data association

prior model. m
(i)
k,j,P

(i)
k,j are the mean and covariance of the target j, and they are

conditioned on the data association history c
(i)
1:k. w

(i)
k is the importance weight of

the particle. With this definition, the particle filter for data association updates

as follows [98]:
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1. Sample a new association from the optimal importance distribution:

c
(i)
k ∼ p(c

(i)
k |z1:k, c

(i)
1:k−1). (4.16)

2. Calculate new unnormalized weights as

w
∗(i)
k ∝ w

∗(i)
k−1

×
p(zk|c(i)k , z1:k−1, c

(i)
1:k−1)p(c

(i)
k |c

(i)
1:k−1)

p(c
(i)
k |z1:k, c

(i)
1:k−1)

(4.17)

3. Normalize the weights to sum to unity as

w
(i)
k =

w
∗(i)
k∑N

j=1(w
∗(i)
k )2

(4.18)

4. Estimate the effective number of particles as

neff ≈
1∑N

j=1(w
(i)
k )2

(4.19)

If the effective number of particles is less than a predefined threshold, per-

form resampling. This is why this version of a particle filter is also known

as the Sequential Importance Resampling (SIR) filter [86].

To implement the above SIR filter, three main ingredients in Equation 4.17

should be constructed for each particle i:

� The predictive probability p(ck|c(i)1:k−1) which gives the prior probability of

the data association given the old data associations. Since we use mth order

Markov model, that would be p(ck|c(i)k−m:k−1) in our case.

� The measurement likelihood p(zk|ck, z1:k−1, c
(i)
1:k−1) which gives the likelihood

of a measurement conditioned on all previous measurements, previous data

associations and the current data association. Whereas the RBMCDA algo-

rithm suggested using the Kalman filter measurement likelihood evaluation
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based on a geometric clue, in this work, we make use of an image-based

appearance cue as well as a geometric cue from a bounding box. Our mea-

surement likelihood is given by

p(zk|ck, z1:k−1, c
(i)
1:k−1)

=

{
1/V if ck = 0

Γ(dk,dj) if ck = j
(4.20)

with a definition of Γ(dk,dj)(
1− box(dk) ∩ box(dj)

box(dk) ∪ box(dj)

)
× (1− xcorr(dk,dj)) (4.21)

where dk and dj are two object detections (defined in Equation 4.8) associ-

ated to the measurements of zk and j’s target, respectively. box(·) represents

the bounding box that belongs to a detected object and xcorr(·, ·) returns

the maximum of the normalized cross-correlation of two detections.

� The optimal importance distribution p(ck|z1:k, c
(i)
1:k−1) is very important for

the efficiency of a SIR filter. The posterior distribution of ck can be calcu-

lated using Bayes’ rule:

p(ck|z1:k, c
(i)
1:k−1)

∝ p(zk|ck, z1:k−1, c
(i)
1:k−1)p(ck|c

(i)
k−m:k−1) (4.22)

Note that we already computed the second and third terms in the equation.

Therefore we can sample from the optimal importance distribution directly.

4.5 Experiments

We quantitatively evaluated our vision-based multi-object tracking system using

various challenging real world datasets. To train three major object models, we

collected a large amount of video data of pedestrians, bicyclists, and vehicles

based on the accident statistics [74, 75]. As for the object tracking evaluation

in a real application context, we collected six additional video sequences. To
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(a) Pedestrian model (b) Two-component vehicle (c) Two-component bicyclist

Figure 4.3: Visualization of three major object models trained from our new
urban datasets. For each model, the first, second, and third columns represent a
root filter and part filters, and a deformation model, respectively.

evaluate tracking performance of the single object tracking method, first three

video sequences (i.e., ‘Seq1’∼‘Seq3’, recorded at 13fps with 320×240) of a bicyclist

case were analyzed in terms of position estimation. The reason we take bicyclist

class is that bicyclists are particularly challenging for an onboard vision system

to track due to the fact that they are as unprotected as pedestrians but travel at

higher speeds in very close proximity to vehicles. In addition, there are three video

sequences, one for each object class, for multi-object scenarios. Some important

statistics of the video sequences are summarized in Table 4.1.

4.5.1 Training DPMs for Urban Environments

Pedestrian: We used Caltech Pedestrian Dataset [33] to train a pedestrian

model. The Caltech dataset corresponds to approximately 2.3 hours of video

(640×480 resolution) captured at 30fps and is segmented into 11 sessions, 6 of

which are used for training (S0∼S5) and the rest sessions are used for testing

(S6∼S10). We trained a model using the training set sampled at every 30th

frame and filtered by a height condition (i.e., 40<h<400 pixels), resulting in

2,198 positive samples.

Bicyclist: We collected a new bicyclist dataset (captured at 3fps with 1280×960

resolution) in various places and weather conditions. It consists of two training

sets (S0∼S1) and two testing sets (S2∼S3), each with one or two short video

sequence files. Considering the bicycle accident statistics [53], most of samples

correspond to rear view and side view of samples of bicyclists. We trained two-

component bicyclist models using 2,845 and 427 positive samples for rear and
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side view, respectively.

Vehicle: We also collected a new vehicle dataset (captured at 3fps with

1280×960 resolution) in various places and weather conditions. It consists of

three training sets (S0∼S2) and two testing sets (S3∼S4), each with one or two

short video sequence files. Since we target Forward Collision Warning (FCW)

application, most of samples corresponds to rear view samples of vehicles such as

sedan, SUV, truck, and bus. The dataset was very carefully collected based on

our investigation about vehicle accident statistics [75]. We trained two rear view

vehicle models using the training data (S0∼S2), one for sedan and SUV sub-class

and one for bus and truck sub-class. We use 10,320 and 689 positive samples for

the sedan-SUV vehicle model and truck-bus vehicle model, respectively. Through

experiments, we found that those combinations offer a good trade-off between

detection accuracy and running time. All trained models are displayed in Figure

4.3(a)∼4.3(c).

4.5.2 Single Object Tracking Evaluation

For the performance of single object tracking, as partially shown in Figure 4.4(a)∼
4.4(f), the proposed EKF based tracking method successfully tracks a bicyclist

except for the case in which the bicyclist is shown beyond the effective (or work-

ing) distance of the DPM detector, which is around 10m for the setting (i.e.,

320×240 resolution). In ‘Seq. 1’, a bicyclist approaches to the ego-vehicle (sta-

tionary) and quickly turns right to avoid the vehicle. In ‘Seq. 2’, a bicyclist

comes across the road from right to left while the ego-vehicle moves forward. In

‘Seq. 3’, a bicyclist comes across the road in front of the ego-vehicle (stationary)

and makes a turn toward the vehicle so that the left side and frontal view of the

bicyclist are seen and tracked.

More detailed analyses for each sequence are provided by plotting filtered

state variables of the tracker at each time step. In our case, that would be the

positions in x and z coordinates of the bicyclist. For instance, Figure 4.4 (d)∼(f)

show bird-eye views of the bicyclist position estimation in x and z coordinates for

the ‘Seq1’∼‘Seq3’, respectively. We also have listed the root mean square errors

(RMSE) of position estimates in the last column in Table 4.1.
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(a) Moving longitudinally (b) Moving laterally (c) Making a sharp turn

x [m] 

z 
[m

] 

(d) Position estimation result
for ‘Seq1’

x [m] 

z 
[m

] 

(e) Position estimation result
for ‘Seq2’

x [m] 

z 
[m

] 

(f) Position estimation re-
sult for ‘Seq3’

Figure 4.4: Performance analysis on single object tracking. (a), (b), and (c) show
typical raw detections obtained by our bicyclist detector and (d), (e), and (f)
show the estimated path trajectory of the tracked bicyclists, respectively. The
ellipses represent the 1, 2, 3-sigma confidence regions for the position estimate.

Table 4.1: Details of single bicycle tracking result.

Seq. No. Ego-vehicle Bicyclist RMSE(m)

‘Seq1’ stationary longitudinally 1.17
‘Seq2’ moving laterally 4.34
‘Seq3’ stationary sharp turn 2.35

4.5.3 Multi-Object Tracking Evaluation

For multi-object tracking, the RBMCDA algorithm applied to vision-based sce-

narios shows very promising performance. We applied the multi-object tracker

on two challenging data sets, one for pedestrians and the other one for vehicles.

Details on the test sequences are shown in the Table 4.2. In both cases, the

tracker successfully tracks multiple pedestrians and vehicles reliably against a

large amount of motion of the ego-vehicle and target objects.

In the ‘Seq4’ case shown in Figure 4.5, the tracker can track three pedestrians

on the sidewalk distance up to 26m. As the ego-vehicle approaches to a crosswalk,

the tracker starts to track two pedestrians trying to walk across the crosswalk.
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frame 44 frame 85 

frame 191 frame 347 

frame 435 frame 487 

Figure 4.5: Qualitative multi-object tracking results on the Caltech test set.

Thanks to the image appearance features as well as geometic features used for

data association, the RBMCDA algorithm can track the further pedestrians well

even when there is quite amount of occlusion. The second row of Figure 4.5 shows

this result. Finally, the thrid row of the figure shows how the tracker can quickly

catch up the previous tracks when tracked pedestrians are completely occluded

by a passing car for a short period of time (i.e., one or two seconds).

In the ‘Seq5’ case shown in Figure 4.6, the tracker can easily track multiple

vehicles on the road. Selected tracking result images are also shown in the first
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frame 6 frame 35 

frame 121 frame 347 

frame 935 frame 967 

Figure 4.6: Qualitative multi-object tracking results on our vehicle data set.

and second rows in Figure 4.6. In the thrid row, our tracker manages to track a

leading vehicle despite significant turning motion and dynamic viewpoint changes

of the vehicle.

4.6 Summary

This chapter presented a vision-based multi-object tracking method for autonomous

vehicles using a deformable part-based models (DPMs) and the Rao-Blackwellized

Monte Carlo Data Association (RBMCDA) algorithm. To robustly detect three
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Table 4.2: Details of multi-object sequences used in the evaluation.

Seq. No. Resolution Frame No. No. of Objects

‘Seq4 (ped.)’ 640×480 492 8
‘Seq5 (vehicle)’ 1280×960 1,015 5

major urban objects, we used one of the most successful state-of-the-art object

detectors [41, 40]. This robust object detector provides a series of measurements

(i.e., bounding boxes) to the tracking framework. We defined two different mo-

tion models to describe the kinematics of objects. For each motion model, an

extended Kalman filter (EKF) is used to estimate the position and velocity of an

object in the vehicle coordinate system. Finally, we show how we extend our sin-

gle object tracking method to allow it to track multiple objects by incorporating

a Rao-Blackwellized Particle Filter to solve the data association problem. This

complementary approach allows our system to effectively track an urban object

even when it changes orientation (and thus appearance) in the image. We have

shown several experiments that illustrate the effectiveness of each component of

the proposed method.
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Chapter 5

Multi-Sensor Fusion for Moving

Object Tracking

This chapter presents our new moving object detection and tracking system that

extends and improves our earlier system used for the 2007 DARPA Urban Chal-

lenge. The new system uses revised motion and observation models for active

sensors (i.e., radars and LIDARs) and introduces a vision sensor. In the new sys-

tem, the vision system we developed in Chapter 3 detects pedestrians, bicyclists,

and vehicles to generate corresponding vision targets. The new tracking system

utilizes this visual recognition information to improve a tracking model selection,

data association, and movement classification of our earlier system. Section 5.1

discuss the overview and main contributions of the proposed system. Section 5.2

and Section 5.3 detail the configuration and calibration of multiple sensors in

different modalities, respectively. Section 5.4 discusses the characteristics of each

sensing modality. Section 5.5 describes interactions between our vision sensor

based object detection system and active sensor based object tracking system.

Section 5.6 discusses the experimental results and the findings. Section 5.7 sum-

marizes this chapter.
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5.1 Introduction

The 2005 DARPA Grand Challenge and the 2007 DARPA Urban Challenge of-

fered researchers with unique opportunities to demonstrate the state-of-the-art

in the autonomous driving technologies [102, 60, 71, 69, 85]. These events were

milestones in that they provided opportunities of reevaluating the status of the

relevant technologies and of regaining the public attention on self-driving car de-

velopment. Since then, the relevant technologies have advanced significantly. In-

dustry and academia have reported notable achievements including: autonomous

driving more than 300,000 miles in daily driving contexts [101], intercontinental

autonomous driving [18], a self-driving car with a stock-car appearance [109], and

many more. Such developments and demonstrations have increased possibility of

self-driving cars in near future.

After the DARPA Urban Challenge, Carnegie Mellon University started a new

effort to advance the findings of the DARPA Urban Challenge and developed a

new autonomous vehicle [109] to fill the gap between the experimental robotic ve-

hicles and consumer cars. Among these efforts, this chapter details our perception

system, particularly, a new moving objects detection and tracking system. The

Urban Challenge was held in a simplified, urban driving setup where restricted

vehicle interactions occurred and no pedestrians, bicyclists, motorcyclists, traffic

lights, GPS dropouts appeared. However, to be deployed in real-world driving

environments, autonomous driving vehicles must be capable of safely interacting

with nearby pedestrians and vehicles. The prerequisite to safe interactions with

nearby objects is reliable detection and tracking of moving objects.

To this end, we first propose a practical multi-sensor configuration for the

perception system. Currently, majority of autonomous vehicles (e.g., Google’s

self-driving car) seems to utilize a high definition LIDAR sensor such as Velodyne

HDL-64 [10], which is almost always installed on the roof of a vehicle. We believe

that this bulky sensor setup on the roof would be problematic when we start to

regard autonomous driving as a part of our daily life.

Secondly, to compensate for the lack of such a high definition LIDAR, we

investigate vision sensor’s capability in terms of object detection, tracking, and

classification. This is mainly because knowledge of moving objects’ classes (e.g.,
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car, pedestrian, bicyclists, etc.) is greatly helpful to reliably track them and

derive a better inference about driving contexts and current automotive grade

LIDAR sensors provide enough measurements for position and velocity estimation

of objects, but not enough for reliable recognition or classification of objects. We

believe that, as discussed in Section 1.4, multiple vision sensors together with

automotive grade LIDAR sensors could replace the role of such a high definition

LIDAR sensor.

Finally, we exploit high-level semantic information from vision-based object

detection with intermediate features from radar and LIDAR sensors. This ob-

ject class information is utilized as a key factor in several sub-components of the

tracking system such as model selection, data association, and movement classifi-

cation. A more appropriate tracking model (either a box model or a point model)

is selected depending on the object class information and quality of the sensor

data. In addition, when a LIDAR’s edge feature is associated to an object being

tracked with a box model, the class information is used for pruning unnecessary

enumerations of interpretation of the edge feature for vehicles. In addition, a

customized parameter set can be used for movement classification based on an

object type.

5.2 Multi-Sensor Setup

The underlying ideas of our sensor configuration are to 1) minimize any potential

alterations of a vehicle’s original appearance, 2) completely cover the area around

the vehicle within a certain range, and 3) utilize existing, off-the-shelf and stock-

car grade sensors. Based on these guidelines and prior experiences, a new sensing

system was built as shown [109] in Figure 5.1 (a). All sensors are seamlessly

integrated into the vehicle chassis and their appearance is indistinguishable from

outside. In particular, the vehicle is equipped with six radars, six LIDARs, and

two cameras. A radar is paired with a LIDAR. This was done to maximize the re-

liability and range of measurements. With the current sensor layout, any objects

within 200 meters will be projected onto the sensing coverage and any objects

within 60 meters or so will be seen by at least two different types of sensors (i.e.,

radar and LIDAR, or radar and camera). Figure 5.1 (b) illustrates measurements
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Camera 
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LIDAR 
RADAR 
GPS2 

RADAR 

LIDAR 

RADAR 
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Wheel Speed Sensor RADAR 
LIDAR 

Figure 5.1: CMU’s new autonomous vehicle and its sensor configuration. (a)
CMU’s new autonomous vehicle is designed to minimize alterations of a stock-
car appearance while installing multiple sensors to maximize the sensing coverage.
(b) Visualization of LIDAR measurement. LIDAR scans acquired from individual
sensors are depicted in different color. (c) A horizontal field of view (HFOV) of
sensing coverage, emphasizing the coverage around the vehicle.

from all six LIDAR sensors. For the vision sensors’ setup, a camera is installed, in

a forward-looking manner, inside the front window, next to the rear-view mirror

and another is installed at the rear bumper to provide the front and back side of

perspective images. The third camera is a thermal camera that captures scenes in

infrared spectrum to perceive objects in challenging driving conditions, such as at

night and in fog. Table 5.1 details the types and specifications of the sensors. All

these sensors are stock-car grade and readily available on the market. Figure 5.1

(c) depicts the blind spots. Due to the integration of multiple wide-FOV sensors

the blind spots are small enough that no vehicle will be overlooked.

5.3 Sensor Calibration

All 14 sensors listed in Table 5.1 are carefully calibrated with respect to the host

vehicle’s coordinate system. Each sensor coordinate system as well as the vehicle

coordinate system are defined as shown in Figure 5.2, i.e.:

� Camera: x = right, y = down, z = forward

� LIDAR: x = forward, y = left, z = up

� Radar: x = forward, y = left, z = up
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Table 5.1: Installed sensors specifications and their primary usages.

Sensor HFOV (°) MaxRange (m) Update Tracking
Name (Type) /Resolution Rate (Hz) Features

IBEO LUX [7] 85∼110 200 12.5/25/50 edge target
(LIDAR)

Bosch LRR3 [1] 30 250 12.5 point target
(Radar)

Delphi ESR [3] 90 (near) 60 (near) 20 point target
(Radar) 20 (far) 174 (far)
Flea3 [4] 45 2448×2048 8 vision target
Camera
FLIR [5] 36 640×480 24 vision target
Camera

� Vehicle: x = forward, y = right, z = down

Note that the origin of the vehicle coordinate system lies at the center of

the rear axle of the host vehicle, which is the location where the IMU (Inertial

Measurement Unit) of the high performance localization system [109] exists.

5.3.1 Synchronization

All six IBEO LUX sensors are synchronized using the external triggering signal

from the synchronization unit provided from the sensor manufacturer [7] so that

synchronized universal scan data from the six LIDARs can be obtained. Un-

fortunately, other sensors (i.e., six radars and two cameras) do not have such a

hardware synchronization device so that essentially there is some timing differ-

ence between (possibly) all sensors. However, the localization information from

the GPS/IMU system updates at 100Hz, and this issue can be addressed by

registering all sensor data according to their timestamps.
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Figure 5.2: (a) Definition of sensor coordinate systems as well as the vehicle
coordinate system. (b) The mounting location of sensors on the vehicles.

5.3.2 Camera and IBEO LUX Calibration

For the intrinsic parameters (K) of the forward-looking camera, we used the

Caltech calibration toolbox [114]. With this information, the projection of a 3D

point in the camera coordinates x = (x, y, z, 1)T into a point y = (u, v, 1) in the

image is given by

y = Kx (5.1)
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For the extrinsic parameters of the camera, we found the relative spatial rela-

tionship between the camera and the IBEO LUX (Tcam
ibeo ) mounted on the roof

using the method proposed in [58]. With this information, now we can project

3D points in the IBEO LUX sensor coordinates xibeo = (x, y, z, 1)T into the image

by

y = K Tcam
ibeo xibeo (5.2)

5.4 Sensor Characterization

Once measurements from any sensors are delivered to the tracking system, they

are treated similarly as units of measurements, but represented differently based

on their sensing modalities. This section discusses the characteristics of each

sensing modality.

5.4.1 Radar

A radar provides 2-dimensional position and velocity of an object. It usually

reaches objects at relatively farther distances (e.g., more than 200 meters) from a

host vehicle and offers a direct velocity measurement (using Doppler shift effect).

We represent radar measurements at time step k as

oRk = {r1, r2, ..., rp} (5.3)

ri = [x y ẋ ẏ]T i = 1, ..., p

where ri is a point position and velocity measurement with respect to the radar

sensor coordinate and p is the number of radar measurements at time step k. As

shown in Figure 5.3, the uniform information regardless of distances is a unique

feature of radar sensors.

5.4.2 LIDAR

By contrast, measurements from LIDAR sensors provide a varying density of

3-dimensional point cloud depending on distances. Mostly these point measure-
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Distance 
Sensor   

Measurements 
No. of Pts 

in LIDAR 

Pixel size of  

car in image 

20m 50 58 x 58 

40m 20 32 x 32 

60m 8 20 x 20 

80m 4 14 x 14 

Figure 5.3: Example images show raw sensor data as a function of distances.

ments are dense enough to partially or completely delineate the shape of objects.

In our case (i.e., IBEO LUX), as shown in Figure 5.3, this distance corresponds

to around 40 m. Note that the actual formation of point clouds and their cov-

erages of objects’ shapes are dependent upon various factors, e.g., field of view

(FOV), angular resolutions, line of sight between that sensor and an object. A

high-density measurement comes with additional processing cost because it is nec-

essary to pre-process (e.g., segmentation or feature extraction, like line segments

or corners) point clouds to make them attached to objects to track. For example,
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to keep tracking the vehicle right front of a car, one needs to know which of point

clouds are parts of the vehicle (i.e., segmentation) and to represent that clustered

point cloud as a computational form (i.e., feature extraction – representing the

set of clustered points as a line).

For representing LIDAR measurements, we treat six, four-plane LIDARs as

one homogeneous sensor, analyze their measurements using built-in segmentation

and extract features, like line segments or junctions of lines (“L”) shape [67].

LIDAR measurements at time step k are expressed by:

oLk = {l1, l2, ..., lq} (5.4)

li = [x y ψ ẋ ẏ w l]T i = 1, ..., q

where li consists of the position of the center of the box (fitted by the feature),

orientation (ψ), velocity, width (w), and length (l) of the box. In fact, w is

computed as max(OW, e1), where OW is the canonical width of that object class

and e1 is the actual measured length of a short edge of the feature. The same

idea applies to l. q is the number of LIDAR measurements at time step k.

5.4.3 Camera

Lastly, cameras provide high-definition snapshots of scenes. While rich informa-

tion in the image frames makes vision data interesting, determining what features

to extract and how to interpret them for detection and tracking of moving (or

even static) objects is still an active research topic. In this thesis, we exploit the

object category detection to effectively utilize visual information. In Chapter 3,

we developed a real-time onboard vision system that aims to identify pedestrians,

bicyclists, and vehicles. For sensor fusion purpose, we represent the detected ob-

jects using bounding boxes and treat them as measurements from vision sensors.

Then camera measurements at time step k is expressed by:

oCk = [c1, c2, ..., cr] (5.5)

ci = [x1 y1 x2 y2 c]T i = 1, ..., r

86



a) b) 

c) d) 

Figure 5.4: Example images show raw sensor data and extracted features as
measurements. (a) An input scene. (b) Raw data from six radars. The data
are used as features (called ‘point target’) for tracking directly. (c) Raw scan
data from six LIDARs. “L” shaped features (called ‘edge target’) are extracted
for tracking. (d) Bounding boxes from the vehicle detection system are used as
features (called ‘vision target’) for tracking.

where (x1, y1) and (x2, y2) are the coordinates of the left-top and right-bottom

point of a bounding box in the image space, respectively and c indicates an

object class (i.e., pedestrian, bicyclist, or vehicle). r is the number of bounding

box measurements at time step k.

In summary, we represent measurements from different sensors differently

based on individual sensors’ acquisition principles and operating characteristics,

but treat them in a common way to facilitate the information fusion process. Our

tracking system takes measurements from three different types sensors at time

step k as:

ok = {oRk , oLk , oCk } (5.6)
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In practice, these measurements are asynchronously acquired by each sensor and

are timestamped to be published on the data communication channel. Figure 5.4

shows an example of those sensor data and corresponding extracted features.

5.5 Multi-Sensor Fusion

It is a challenge to seamlessly fuse measurements from 14 sensors and to generate

tracking results consistent over time. To effectively address such a challenge, we

extended, based on lessons learned from participation of several autonomous vehi-

cle competitions, our earlier tracking system [29] and introduced new methods to

effectively tackle real-world perception problems occurring in urban autonomous

driving. Figure 5.5 shows a diagram that describes our new tracking system.

Our system consists of two parts: sensor and fusion layer. By taking care of

hardware specific operations, the sensor layer offers a separation between actual

sensing hardware and specific tasks regarding detection and tracking of objects.

By this way, the tasks at the fusion layer can be developed without knowing the

details about the lower-level’s sensing mechanisms. Each sensor reader acquires

raw sensor data and extracts features (e.g., lines or corners), if any, and publishes

them in a shared communication channel. A task at a higher-level, fusion layer,

can pick up these features from the channel for its purpose. For example, based

on lower-level’s features, e.g., point or polygonal shapes, we execute point or box

models to track the feature over time. For the underlying rationale of such a

tracking architecture, we refer readers to [29].

5.5.1 Sensor Fusion with Kalman filters

To fuse sensor’s measurements to accurately detect and consistently track neigh-

boring objects, we applied an Extended Kalman Filter (EKF). The (extended)

Kalman filter has a number of features which make it ideal for dealing with

complex multi-sensor fusion problems. In particular, the explicit description of

motion and observation models allows a wide variety of different sensor modalities

to be incorporated within the filter. In addition, the consistent use of statistical

measures of uncertainty makes it possible to quantitatively evaluate the role each
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Figure 5.5: A diagram of our tracking system. Our system is mainly comprised of
two layers: a sensor and a fusion layer. We enhance and improve the architecture
of our earlier tracking system [29] by adding a vision sensor.

sensor plays in the context of overall system performance.

To effectively apply this filter to our setup, we employ the sequential-sensor

method [35] that treats observations from individual sensors independently and

sequentially feeds them to the EKF’s estimation process. We choose such a

method to sequentially process multiple, heterogeneous measurements arriving in

an asynchronous order.
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5.5.2 Tracking Models

This work aims at developing a tracker that, using multiple sensors in different

modalities, reliably tracking pedestrians, bicyclists, and vehicles. To effectively

handle the constraints and characteristics of target objects’ motions, we use two

motion models: a point model (MP ) and a 3D box model (MB). In particular,

we expanded our earlier, 2-dimensional box model [29] to 3-dimensional one,

to realistically represent the detected objects. For the three different sensing

modalities, we devise three observation models: radar (OR), LIDAR (OL), and

camera (OC) observation model.

M : {MP ,MB} (5.7)

O : {OR,OL,OC}

Motion Models: Each of three moving objects of interest (i.e., pedestri-

ans, bicyclists, and vehicles) has its own motion kinematics and constraints. For

example, a pedestrian can move in any directions whereas the motions of a ve-

hicle or a bicyclist is confined by non-holonomic constraints. To estimate these

motions, we use two motion models: a point model and a 3D box model. For

the point model, we assume an object moves with a constant acceleration [15].

We represent the state of the moving point at time step k by its 2-dimensional

coordinates, velocities, and accelerations:

xk = [xk yk ẋk ẏk ẍk ÿk]
T (5.8)

and the discrete-time state equation for this point model is given by [15]:

xk+1 =



1 0 T 0 T 2/2 0

0 1 0 T 0 T 2/2

0 0 1 0 T 0

0 0 0 1 0 T

0 0 0 0 1 0

0 0 0 0 0 1


xk +



1/2T 2

1/2T 2

T

T

1

1


qk (5.9)
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where T is a sampling period and qk is a scalar-valued discrete-time process noise.

Secondly, our 3D box model is a simplified bicycle model (SB) [54] with its

estimated 3D cuboid. The state of a 3D box model is represented by

xk = [xk yk ψk vk ωk ak wk lk hk]
T (5.10)

where (x, y), ψ, v, ω, and a are the position of the center of the box, yaw angle,

velocity, yaw rate, and acceleration. The yaw angle defines the orientation of

the velocity and acceleration vectors. The volume of a 3D box is defined by its

components, width, w, length, l, and height, h. For the state propagation, an

approximated version of the SB model (Equation 4.6) is used.

xk+1 = xk +



(vk + 1
2
akT ) cos(ψk)T

(vk + 1
2
akT ) sin(ψk)T

ωkT

akT

0

0


+



0

0

0

0

T

T


qk (5.11)

where T is a sampling period and qk is a scalar-valued discrete-time process noise.

Since the propagation of the state is a nonlinear function, corresponding Jacobian,

i.e., ( ∂f
∂x

) should be computed to get the final form of linearized propagations,

which is given by:

1 0 −vk sin(ψk)T − 1
2
ak sin(ψk)T

2 cos(ψk)T 0 1
2

cos(ψk)T
2

0 1 vk cos(ψk)T + 1
2
ak cos(ψk)T

2 sin(ψk)T 0 1
2

sin(ψk)T
2

0 0 1 0 T 0

0 0 0 1 0 T

0 0 0 0 1 0

0 0 0 0 0 1


(5.12)

Observation Models: We devise three different observation models for each

of three different sensing modalities: OR, OL, and OC .

The radar observation model (OR) aims at modeling observations about a
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point target. It is designed to process direct position and velocity measurements.

The LIDAR observation model (OL) is primarily used to model a box target.

This is a nonlinear mapping of the state space into the LIDAR’s measurement

space. 

x

y

ψ

ẋ

ẏ

w

l


=



x(k)

y(k)

ψ(k)

v(k) cos(ψ(k))

v(k) sin(ψ(k))

w(k)

l(k)


+ v(k) (5.13)

where v(k) is the measurement noise at time step k. To make this noise realistic,

one needs to analyze a collected, labeled LIDAR data set to derive its statistics

such as covariance matrix. Our LIDAR observation model OL is derived to sup-

port both the point motion model MP and the 3D box model MB. For example,

when OL is used for MP , only the position measurement is used to update the

state, where the position corresponds to the center of the edge that is closer to

the host vehicle.

The last observation in our system is the camera observation model (OC).

The camera observation model is primarily used to deal with bounding box mea-

surements in the image plane. However, due to depth ambiguity, we do not use

such bounding box detections to update motion estimation, but use the detec-

tion results to estimate the width and the height of an object and determines

objects’ classes. Accordingly, OC cannot be used for a new object initialization

or termination. If the data association between image frames is correctly done,

it is straightforward to compute the relationship between a pixel height y2− y1

(width x2 − x1) and a physical height h(k) (width w(k)), based on the camera

geometry: y2 − y1 ≈ h(k)fp/d, where fp is the focal length expressed in pixels

and d is a distance which we can estimate in a precise manner via radars and

LIDARs. Based on this, we define the camera observation model (OC) for a box
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model (MB) as [
x2− x1

y2− y1

]
=

[
w(k)fp/d

h(k)fp/d

]
+ v(k) (5.14)

Note that the OC can support only the MB since a MP model does not have the

concept of shape.

5.5.3 Data Association

It is critical to associate the current measurements with the earlier state vari-

ables, to optimally estimate the state of tracking objects. This section details the

improvement we made on our previous data association algorithm [29] for radar

and LIDAR sensors by utilizing our new camera observation model.

5.5.3.1 Camera

Firstly, to associate camera observations (we call vision targets) over frames, we

project the center of the predicted moving object hypotheses, represented by

either a point or a box model, onto the next image frame under the pinhole

camera model. After the projection, we search for the nearest neighbor that

minimizes the distance between the projected point and the center of the bottom

line of the detected bounding boxes. Figure 5.6 (a) illustrates this search. Once

such an association is successfully made, the camera observation and its object

classification is instantiated using equation 5.14. For the box model, its volume

is also associated as well as its object class membership. For a point model, the

observation are instantiated only with its class membership.

5.5.3.2 Radar

For data association of radar observations (we call point targets), a set of possible

point targets is generated from the predicted moving object hypotheses. Since

radars are usually poor in determining a lateral position of an object, when a

tracked object is modeled as a 3D box model, we generate multiple points along

the contour of the box model. If an object is tracked through a point model, we
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Figure 5.6: Illustration of data association methods for each sensor. (a) Camera,
(b) LIDAR, and (c) Radar.
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generate a single point. The association between the predicted and the actual

measurement is made by the nearest-neighbor approach. Figure 5.6 (c) illustrates

such a radar measurement association.

5.5.3.3 LIDAR

For the association of LIDAR observations (we call edge targets), we generate,

based on the predicted moving object hypotheses, a set of possible alignments of

edge targets. There are four alignments for a box model and one for each point

model. The left side of Figure 5.6 (b) illustrates such an alignment generation.

Similar to the camera measurement association, the extracted edge targets are

associated to the closest predicted one that minimizes the distance of the corner

points. If an extracted edge target is associated to a predicted box model, all

possible interpretations of the edge target as the box model are generated as

illustrated in the right side of Figure 5.6 (b). Among the interpretations, one

that has the maximum overlap with the predicted box is chosen to generate

the observation. In practice, however, we found that considering all possible

interpretations of an edge target occasionally fails to correctly match edge targets.

To improve our earlier association method, we utilize the vision target. For

example, when our vision object detector returns a highest response of a vehi-

cle’s rear view, we ignore irrelevant alignment (e.g., side-view alignments of edge

targets). For example, in Figure 5.6(b), the alignments, (3), (4), and (6) are hy-

potheses about a vehicle’s side-view and hence are ignored when the vision target

casts a vote for a vehicle’s rear-view.

5.5.4 Movement Classification

Knowing whether a detected object has non-zero motion is important to opti-

mally estimate the state of a tracking object. This is particularly true for urban

driving scenarios where there is frequent stop-and-go traffic, queuing at traffic sig-

nals, abnormal vehicle interactions, and so forth. In principle, a tracking system

should be able to track trajectories of any moving objects around the host-vehicle.

However, it is challenging to reliably track an object that was moving and now

temporarily stops, but is going to move in the near future. To track such irreg-
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ular temporal patterns, it is necessary to keep a record about series of motions

as well as determining whether an object is in motion. To implement this idea,

our previous system [29] introduced two movement flags about 1) the movement

history, i.e., observed moving and not observed moving and 2) the movement

state, i.e., moving and not moving. The flag moving is set when the tracking

system decides the object is currently in motion. The flag observed moving is

set when the tracking system determines that the position of a tracked object

has significantly changed. For the classification of the current movement state,

the direct movement observations from radars was used. Since LIDARs do not

provide a direct movement confirmation, the statistical test which compares an

objects estimated velocity with a threshold vmin was used. For the classification

of the movement history state, the distance traveled is computed from the last

time stamp that the object has been classified as not observed moving. Then this

distance is compared with a threshold, dtraveled. In practice, it is very hard to set

up a single set of parameters that works well for different object class. For ex-

ample, parameters optimized for vehicles do not work well for pedestrians. Thus,

during the development phase, we empirically found multiple sets of parameters

that work optimally for each object class.

5.6 Experiments

To evaluate the performance of our new multi-sensor, object tracking system,

we drove our robotic vehicle and collected data (i.e., images, radar points, and

LIDAR scans) in about a 25-minute driving. The route is comprised of a mix

of streets and inter-city highways between Carnegie Mellon University’s campus

and Pittsburgh international airport. The distance is about 20miles. We first

describe the system setup for the detection and tracking system and then discuss

the evaluation results.

5.6.1 System Setup

Our tracking system runs on a computing cluster that consists of four mini-ITX,

form-factor computers (i.e., Core 2 Extreme QX9300@2.53GHz, 8GB RAM).
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Figure 5.7: Our experimental vehicle and its sub-components. (a) Autonomous
Cadillac SRX [109], (b) Display and control console, (c) Computing cluster.

Each of the sensors generates its measurements at its own operating cycle (See

Table 5.1). Software modules read measurements from individual sensors and

publish them through an inter-process communication channel. While doing so,

measurements acquired at a local coordinate system are converted into the host-

vehicle’s global coordinate system. The sensors’ poses are calibrated with respect

to the host vehicle’s coordinates system. Those reader tasks also perform a pre-

processing of raw measurements to produce features (e.g., “L” shape from a point

cloud) for object detector or tracker. Our tracking system is designed to run at

100Hz on a single machine on the computing cluster. In practice, however, the

operating cycle varies based on the number of features. A typical latency, for

example, is around 100ms in highways and around 200ms in urban environ-

ments. The maximum latency is fixed to 300ms. The vehicle and described

sub-components are shown in Figure 5.7.

For the LIDAR observation model, we used widths and lengths of three

objects: OWped=1m, OLped=1m, OWbike=1m, OLbike=1.7m, and OWveh=2m,

OLveh=5m. For the object management system, we begin to track an object

when three consecutive measurements of that object are verified and stop to track

the object when no observations are available for 400ms. For the movement clas-

sification, we used vped min=0.5m/s, vbike min=1.0m/s, and vveh min=2.0m/s for

moving classification and dped traveled=1m, dbike traveled=2m, and dveh traveled=4m

for observed moving classification.

A vision sensor is installed in a forward-looking manner and acquires image

frames of 640×480 at 8Hz. Those acquired images are fed to the system over

a Gigabit Ethernet interface. To detect three objects (i.e., pedestrians, bicy-
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Figure 5.8: Pixel height in image space as a function of distance d from the
camera. Based on this analysis, all models are designed and visualized here. (a)
Normal-sized pedestrian/bicyclist model (72×32 with 8×8 HOG cell). (b) Small-
sized pedestrian/bicyclist model (36× 16 with 4× 4 HOG cell). (c) Normal-sized
vehicle model (48×48 with 8×8 HOG cell). (d) Small-sized vehicle model (16×16
with 4× 4 HOG cell).

clists, and vehicles) from images, we used the real-time implementation [20] of

the deformable part-based models [41] and produce corresponding vision targets.

To accurately determine the dimensions of objects’ models, we computed those

objects’ pixel height with respect to the distance to our vehicle. From this anal-

ysis, we found that the dimension, 72 × 32, is appropriate to detect pedestri-

ans/bicyclists, reliably up to 13m. For the range between 13m and 26m, we

trained a 36 × 16 pixel-sized model with a HOG cell size of 4× 4. Similarly, we

trained two rear-view vehicle models, one a 48× 48 sized model for the range up

to 22m and the other a 16× 16 sized model with a HOG cell size of 4× 4 for the

range between 22m and 55m. Figure 5.8 shows actual objects’ models based on

the distance to the vehicle.
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Figure 5.9: Screenshot of our evaluation tool [66]

5.6.2 Data Collection and Evaluation Methodology

For the quantitative performance evaluation, it is required to manually label each

of the frames in the entire data set. Because this is labor-intensive and error-

prone, we evaluate the performance differently. In particular, we had human

annotators, using our evaluation tool [66] as shown in Figure 5.9, go over the

tracking results second-by-second. While doing so, they counted the number

of correctly (and incorrectly) tracked objects. Objects being considered for the

evaluation include vehicles in a 150m radius of the host vehicle and pedestri-

ans/bicyclists up to 20m on our vehicle’s path.

5.6.3 Tracking Results

Overall, our tracking system showed a good performance on the entire data. For

example, when a vehicle is more than 150m away from our vehicle, the tracker

begins to track the vehicle with a point model, and is able to switch the point

model to a 3D box model when the tracked vehicle is less than 40m from the

host vehicle. This is a desirable feature for other modules (e.g., a motion plan-
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Table 5.2: Quantitative evaluation of our multi-sensor tracking system.
Total Seconds - Session1: 900sec, Session2: 600sec.
Total Objects - Session1: 1,762, Session2: 1,371

Dataset Vsion Correctly Falsely TPR (%) False Positive
Section Fusion Tracked Tracked Per Minute

Session 1 w/ 1,585 183 89.9 12.2
(w/o RNDF) w/o 1,466 208 83.2 13.9

Session 2 w/ 1,285 57 93.7 5.7
(w/ RNDF) w/o 1,238 79 90.3 7.9

ner) of self-driving vehicles because a host vehicle should know the exact (or

approximately close) dimension of a moving object as the objects gets closer to

the host vehicle. Figure 5.10 shows some examples of object tracking. a) and b)

show pedestrian and bicyclist tracking results. From these examples, we found

that our movement classification worked well to effectively track slow-moving and

stop-and-go objects. For the case of c), LIDAR targets were reflected by walls of

a tunnel. Because of this, our tracker tracked “ghost” targets with a point model.

Despite this, because a vision target was available and associated with the target,

our tracker was able to track the target with a 3D box, instead of tracking them

with the point model. The cases between d) and h) in Figure 5.11 show some

examples of vehicle tracking result on city roads and highways.

We investigated if the tracking performance is improved when a topological

map is given. We also studied how much the performance was improved when

the vision target is incorporated. Table 5.2 summarizes the experimental results.

In short, the detection rate was 93.7% with 5.7 false positives per minute. All

result videos for the entire route are available on our project website1.

1http://users.ece.cmu.edu/∼hyunggic/multiSensorFusion.html
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a) 

b) 

c) 

d) 

Real target Mirroring 

target 

Figure 5.10: Typical tracking results for the qualitative evaluation. Tracking of
a pedestrian (a) and a bicyclist (b), which was enabled by the vision recognition
system. (c) Mirroring target issue (see text for the detail). (d) Tracking of a
vehicle at far distance.
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e) 

f) 

g) 

h) h) 

Figure 5.11: Typical tracking results for the qualitative evaluation (More exam-
ples). (e)∼(h) Vehicle tracking results in various situations.
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5.7 Summary

This chapter presented our new moving object detection and tracking system.

To improve our earlier system, we re-designed sensor-configuration and installed

multiple of radar and LIDAR pairs and two vision sensors. To seamlessly in-

corporate measurements in different modalities, we revised the previous motion

and measurement models and introduced new models for vision measurements.

In particular, by using vision’s object class and shape information, our tracking

system effectively switched between two motion models (i.e., a point and a 3D

box models) based on objects’ distances to our vehicle. The newly introduced

vision targets were also useful to improve the performance of data association

and movement classification for measurements from active sensors. Through the

test using the data log of actual driving, we demonstrated the improvement and

performance gain of our new tracking system.
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Chapter 6

Toward a Holistic Approach to

Moving Object Tracking

In this chapter, we describe a holistic approach which leverages contextual cues to

further improve the performance of the multi-sensor tracking system presented

in the previous chapter. As we learned that the semantic information from a

vision recognition system can lead to better tracking performance, we posit that

other traffic context cues such as lane markers and sidewalks detected can be

exploited to improve the quality of object tracking. We verified this idea by

integrating a lane marker detection system with our multi-sensor tracking system

and demonstrating better orientation estimation of moving vehicles and better

prediction of objects’ future trajectories (corresponding to a few seconds) guided

by the heading direction of the lane maker. Section 6.1 discusses the motivation

for this approach and reviews related prior works. Section 6.2 describes how

we design a model which captures contextual interplay between lane markers

and moving objects. Section 6.3 details how we integrate lane marker detection

results with the multi-sensor tracking system for better orientation and future

trajectory estimation. Section 6.4 discusses the experimental results and Section

6.5 concludes this chapter.
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Figure 6.1: Contextual interactions between moving objects and traffic environ-
ments. Observe the relationship between a lane markers (l) and moving objects
(o), especially vehicles. This relationship leads us to a simple and efficient prob-
abilistic model for the traffic scene in an intuitive way.

6.1 Introduction

Traffic scene understanding requires estimating many different aspects of the

scene. This includes, but not is limited to, estimating road geometry (e.g., lane

width and curvature), detecting and tracking of moving objects, and recognizing

traffic signs and lights. For the last few decades, each of these problems has been

studied in isolation. Although impressive progress has been achieved in each

domain, the idea of combining these tasks together in a way that improves the

performance of each of them has not yet been fully exploited. For example, as

can be inferred from Figure 6.1, knowledge about the road geometry from a lane
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marker detection system can be used as a priori information for vehicle’s heading

direction, and knowledge about the location of a sidewalk can be exploited for

better pedestrian tracking, and information about traffic light state (i.e., red light

or green light) can be also utilized for better vehicle tracking, and many more

such scenarios.

This approach is indeed motivated by the use of vision sensors because cameras

can provide a high-resolution view of the scene, which can be used for extracting

different types of context cues, while a planar LIDAR or low-resolution scanning

radar sensor is primarily used for just object detection and tracking as they can-

not provide sufficient resolution to estimate the scene context. Therefore, this line

of research for solving several vision sub-tasks jointly (also known as the problem

of “holistic scene understanding”) became a hot research topic in computer vision

[52, 51, 38] only recently. In [52], Hoiem et al. proposed a simple framework for

synergistic integration of multiple vision algorithms by using feature maps (called

‘intrinsic images’) as an interface. They validated their framework by combining

the sub-tasks of surface orientations, occlusion boundaries, object detection, and

depth. Heitz et al. proposed CCMs (Cascaded Classification Models) [51] for a

mechanism of combining models for holistic scene understanding. Main idea is

having repeated instantiations of the classifiers, where their input/output vari-

ables are connected in a cascade structure. They demonstrated the effectiveness

of their framework by combining the sub-tasks of scene categorization, object de-

tection, image segmentation, and 3D reconstruction. In [38], Ess et al. proposed

an approach which jointly estimates camera position, stereo depth, object detec-

tion, and tracking for multi-person tracking applications. They used a graphical

model to capture the interplay among those components. However, unfortunately,

those frameworks are not directly applicable to our multi-sensor fusion context

mainly because their main goal is a holistic fusion for only vision tasks and more

importantly, none of them was operating in real-time (i.e., takes several seconds

to perform all necessary processing for a single frame on a modern PC). More

recently, due to potential benefits of those approaches, many researchers in the

intelligent vehicle community have tried similar approaches to real-time vehicle

perception applications. For example, [82, 90] integrated a vision-based lane de-

tection system and a vehicle detection system. Whereas Ponsa et al. [82] utilized
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lane marker detection results to increase the accuracy of vehicle detection and

also to reduce the processing time, Sivaraman et al. [90] exploited interplays

between lane detection and vehicle detection so that each task can benefit from

the results of other tasks. The work of Weigel et al. [110], which is quite similar

to our approach, fused vehicle tracking using a LIDAR (i.e., IBEO LUX) with

lane marking detection using a monocular camera.

In this chapter, we pursue a very efficient approach which utilizes contextual

cues to further improve the performance of our multi-sensor tracking system.

With all the contributions we made for the multi-sensor object tracking, what we

want to exploit additionally are contextual interactions between moving objects

and traffic environments. While the majority of classical approaches for object

tracking try to estimate only the kinematic properties (e.g., position and veloc-

ity) of objects from sensor’s measurements, our new approach tries to improve

the tracking performance by exploiting their relationship with the traffic scene

context. In other word, we try to understand a moving object tracking problem

in a whole context of traffic scene. The main context cue we want to investigate

for moving object tracking is a road structure, specifically road lane markers. As

shown in Figure 6.1, detection of lane markers can be utilized for constraining

the orientations of moving vehicles to physically consistent ones with a heading

direction of the lane marker detected near the tracked vehicles. Note that al-

though our current work focuses on using contextual information provided by

lane marker detection, similar approaches are possible for integrating sidewalk

detection, traffic light detection, etc. In the next section, we discuss how to

formulate the relationship in a formal way.

6.2 Problem Formulation

We use a simple probabilistic model to capture the interaction between mov-

ing vehicles and lane markers. Obviously, there are bi-directional interactions

between the two, i.e., vehicle tracking results can be also exploited for better

lane marker detection, but we want to use lane markers for constraining vehicle’s

orientation estimation in this work. Further making the simplifying assumption

that there is no interaction between moving vehicles leads to multiple instances
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Figure 6.2: Graphical model for the problem formulation. This simple probabilis-
tic model captures the relationship between moving vehicles (oi) and lane marker
detections (li). Shaded nodes indicate observable variables whereas the unshaded
nodes indicate hidden variables.

(i.e., number of tracked vehicles) of a simple graphical model [56] as shown in

Figure 6.2. We use the standard notation in a graphical model for repetition of

the contained parts for the number of times specified at bottom right corner. For

each graphical model, o indicates an orientation of a tracked vehicle and ll and lr

indicates tangential direction of left and right lane markers, respectively.

To improve the estimate of an orientation of a tracked vehicle, we formulate

it as a MAP (Maximum A Posteriori probability) estimation problem. Let us

suppose that ll and lr are two i.i.d. (independent and identically distributed)

random variables with N(o, σ2
l ). We treat the orientation estimate of the tracked

vehicle as a prior distribution of o, which is given by N(o0, σ
2
o). Then, our goal

is to find the MAP estimate of o, which can be formulated as:

ôMAP (l) = arg max
o
p(l|o)p(o)

= arg max
o

1√
2πσo

exp

(
−1

2

(
o− o0
σo

)2
)

2∏
i=1

1√
2πσl

exp

(
−1

2

(
li − o
σl

)2
)

(6.1)
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After taking the log to the expression, above optimization is equivalent to mini-

mizing the following function of o:

2∑
i=1

(
li − o
σl

)2

+

(
o− o0
σo

)2

(6.2)

The MAP estimator for o can be analytically derived and is given by

ôMAP =
2σ2

o

2σ2
o + σ2

l

(
1

2

2∑
i=1

li

)
+

σ2
l

2σ2
o + σ2

l

o0 (6.3)

which turns out to be a linear interpolation between the estimate of an orienta-

tion of the vehicle and the sample mean of the lane markers direction estimates,

inversely weighted by their respective variances. Thanks to a simple structure

of the problem formulation, this MAP estimation for all moving vehicles can be

carried out in real-time inside our multi-sensor tracking system.

6.3 Integration with Lane Detection

To run the MAP estimation in the previous section, lane markers on the road

should be first detected reliably. Since our goal is to improve the performance

of moving object tracking rather than developing a new lane marker detection

system, we make use of a commercial lane detection system [8]. In this section, we

discuss the functional overview of a lane detection system and how we integrate

the lane detection system with our multi-sensor tracking system.

6.3.1 Lane Detection

Since the problem of lane detection is a crucial component for Advanced Driver

Assistance Systems (ADAS) [17], it has been an active field of research for the last

two decades and considerable progress has been made in the last few years. For

detailed surveys of the topic, we refer the readers to [65, 12]. Although specific

algorithms for each module are different, most lane detection systems follow the

“generic system” architecture presented in [12]. According to the authors, a
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typical functional decomposition for lane marker detection systems is: image

pre-processing, feature extraction, lane model fitting, temporal integration, and

finding image to world correspondence. The first step in the pipeline is image

pre-processing. There are several operations which can be applied to the image

before feature extraction to reduce clutter and enhance the quality of features.

Obstacle (i.e., vehicles and pedestrians) regions can be identified and removed.

Shadows can be significantly suppressed using a preprocessing transformation

applied to the entire image. Over and under exposure situations can be accounted

for by image normalization or by actively controlling the camera exposure. Next,

various features are extracted from the image to support lane detection. For lane

detection, evidence for lane markers is collected. In the third step in the pipeline,

a lane hypothesis is formed by fitting a lane model to the evidence gathered.

And next, the lane hypothesis from the current frame is reconciled with lane

hypotheses from the previous frame and with global positioning system (GPS)

information, if available. Finally, image to world correspondence module provides

mapping between image and ground coordinates, using assumptions about the

ground structure and camera parameters.

6.3.2 Fusion with Lane Detection

The MobilEye lane detection system [8] we used for this work provides a list of

parameters for geometric models of detected lanes as a final output. The lane

model which is used in the system is a commonly used approximate model of the

clothoid, given as follows:

Ll(x) = c3x
3 + c2x

2 + c1x+ c0l

Lr(x) = c3x
3 + c2x

2 + c1x+ c0r (6.4)

The basic description of the used variables is given in Table 6.1 and Figure 6.3

illustrates this lane model defined on the vehicle coordinate system. The Mobil-

Eye lane detection system usually detects as many as possible lanes including the

“ego lane” (defined as the lane the ego-vehicle currently drives on). It usually

detects three lanes, left, right adjacent lanes and the ego lane. To fuse these
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Figure 6.3: Illustration of lane association method for each vehicle target.

lane marker detection results with the current tracks of moving vehicles using the

MAP estimator we described in the previous section, each tracked vehicle should

be associated with a valid detected lane and then tangential heading angles should

be extracted from the left and right lane markers. The tangential heading an-

gles (i.e., ll and lr) together with associated variances are used as measurements

for the MAP estimator. Next, we explain how we find a lane association to an

existing vehicle target.

Let us suppose that an autonomous vehicle is driving on a road with three

lanes as shown in Figure 6.3. First, given the parametric models of four lane
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Variable Meaning

Ll, Lr Left and right lane markers
x Longitudinal distance
c3 Derivative of curvature
c2 Curvature
c1 Lane heading angle

c0l, c0r Left and right offset

Table 6.1: Variables used for the lane marker model and their meaning

markers (so, we have three lanes), a set of waypoints along the each lane marker

are generated at distance intervals of span of 0.25m. Since our tracking performs

in the global coordinate system, the coordinates of the waypoints should also be

converted into the global coordinate system using the pose of the ego-vehicle.

Two lane (marker) associations (i.e., left and right lane marker) can be found by

finding a waypoint (on each lane marker) that has the minimum distance to the

center point of the tracked vehicle. We treat the closest two waypoints to the

tracked vehicle as waypoints associated to that vehicle. Finally, the tangential

heading angles at the associated waypoints are easily computed by taking gradient

of the curve at that point, i.e., L′(x) = tanα = 3c3x
2 + 2c2x + c1. Furthermore,

the lane markers associated to the vehicle target can be utilized to predict a future

trajectory of the vehicle reliably. By predicting the vehicle’s trajectory guided

by the associated lane markers rather than using its current velocity (i.e., point

model) or orientation (i.e., box model) state information, reliable prediction to

a few seconds ahead (depending on the view range of the lane marker) can be

achieved.

6.4 Experiments

To evaluate the performance of our new fusion module with the lane marker

detection system, we collected new multi-sensor data (i.e., images, radar points,

and LIDAR scans) similar to the data we used in the previous chapter. This

new data set was collected during a 44-minute drive from Cranberry Township
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Session 1 

Session 2 

Session 3 

Session 4 

Figure 6.4: Route for the evaluation. Four different straight road segments
(Session1∼Session4) were specified for a quantitative evaluation of orientation
estimation.

to Pittsburgh international airport as shown in Figure 6.4. It also contains lane

marker detection results from the MobilEye lane detection system [8]. We discuss

the evaluation results of performance gain from the fusion with the lane marker

detection system.

6.4.1 Qualitative Evaluation of Lane Detection System

Since the lane marker detection system we used in this work is a commercial

system widely used in the automotive area, we did not perform a quantitative

analysis on its performance. Instead, after we integrated the lane detection system

into our vehicle platform (runs at 10Hz), we evaluated its performance qualita-

tively. In the absence of dense traffic, the system usually can detect all existing

lane markers reliably as shown in Figure 6.5 (a)∼(c) and 6.6 (d). Typical max-
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a) 

b) 

c) 

Figure 6.5: Qualitative evaluation of the lane marker detection system.

imum view range is around 90m in that case. However, if there is dense traffic

(i.e., moving vehicles), the number of detected lane markers are reduced accord-

ingly and view range distance is significantly reduced depending on the distance

of a leading vehicle. This case is shown in Figure 6.6 (e). The system also pro-
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d) 

e) 

f) 

Figure 6.6: Qualitative evaluation of the lane marker detection system (More
examples).

vides a measure for the quality of lane estimation. When the system experiences

some exceptional conditions such as over exposure due to the strong sun glare

as shown in Figure 6.6 (f), a confidence probability of the lane estimation goes
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Table 6.2: Quantitative evaluation on orientation estimation (Unit: degree).

Dataset Mean Std. Dev. Mean Std. Dev.
Section w/o Lane w/o Lane w/ Lane w/ Lane

Session 1 2.02 0.63 0.12 0.09
(140 sec)
Session 2 1.87 0.57 0.10 0.075
(60 sec)

Session 3 1.91 0.87 0.14 0.11
(75 sec)

Session 4 2.45 0.92 0.17 0.13
(130 sec)

down below to 0.5 (shown as a yellow circle under the ego-vehicle, otherwise it

is a green circle), indicating that the output of the lane detection system is no

longer reliable.

6.4.2 Evaluation of Orientation Estimation

As discussed in Section 6.3, the main goal of integrating the lane detection sys-

tem is to improve the orientation estimation of moving vehicles. Since we do

not have a ground truth mechanism for each tracked vehicle, it is quite chal-

lenging to evaluate the performance gain of the fusion module. To achieve the

goal, we devised a somewhat special evaluation methodology. We chose to utilize

the vehicle state information of the ego-vehicle for the ground truth since our

localization system relies on highly accurate GPS/IMU system [109]. However,

the ego-vehicle’s state information is not the same as that of the tracked vehicles.

Thus, we carefully selected four different “straight” road segments (specified by

the red ellipses in Figure 6.4) so that we can use the orientation of the ego-vehicle

as a ground truth for leading vehicles. Although selected road segments are not

perfectly straight lines, we verified from the experiments that the errors from

that fact are negligible compared to the estimation errors. For a quantitative

evaluation, we considered only the tracked vehicle on the ego-lane and recorded

orientation estimates of the tracked vehicle. Table 6.2 shows the mean absolute
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a) 

b) 

Figure 6.7: Qualitative evaluation of vehicle orientation estimation. (a) Case of
correct orientation estimation. (b) Case of incorrect orientation estimation. In
each case, the upper (lower) figure shows a result without (with) lane marker
fusion.

117



c) 

d) 

Figure 6.8: Qualitative evaluation of vehicle orientation estimation. (c) and (d)
show more cases of incorrect orientation estimation.

error and standard deviation of the orientation error over each session with or

without the fusion of lane markers. As shown, our fusion module with lane mark-
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ers significantly reduces the estimation error. In addition, we looked into the

worst orientation estimation errors for both cases, which might be important for

our applications. The worst case orientation errors are 12.45 and 2.86 degree for

without and with fusion, respectively. Typical results with or without the fusion

module are shown in Figure 6.7. In many cases, since the multi-sensor tracking

system tracks moving vehicles very well, its orientation estimates for the vehicles

are also quite accurate, so we do not see a large discrepancy frequently as shown

in Figure 6.7 (a). But, in some cases, the tracking system produces quite large

errors on the orientation estimation where our holistic fusion module kicks in.

Such examples are shown in Figure 6.7 (b) and 6.8 (c) and (d). In the case of (b)

and (c), an SUV on the left lane overtook the ego-vehicle quickly and the tracker

produced wrong orientation estimates for a short period of time, but with the

fusion, the estimation was properly corrected. In (d), since the leading vehicle

was too far away from the ego-vehicle, the tracker mis-estimated its orientation,

but with the fusion, it could be fixed easily.

6.4.3 Evaluation on Trajectory Prediction

The additional benefit of our holistic approach exploiting lane marker detection

for moving vehicle tracking is that we can actually predict future trajectories of

tracked vehicles based on the detected lane markers as discussed in the previous

section. First, along the lane marker, a set of waypoints is generated and then

tangential heading direction on each waypoint is used for better prediction of

the moving vehicle. Since we are interested in the scenarios where a couple of

vehicles drive in front of the ego-vehicle, typical view range of the lane detection

system was roughly around 60m. Thus, a usual prediction window is one or two

seconds. Some typical results are shown in Figure 6.9 and 6.10. In (a), without

lane marker fusion, trajectory prediction was incorrect since it is based on the

current velocity of the target vehicle. With fusion, however, the prediction was

smooth and correct. In (b), interestingly, the orientation estimation was correct,

but since the road was curvy, the prediction based on lane markers was more

accurate. More similar examples are shown in (c) and (d).
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6.5 Summary

This chapter presented a holistic approach for the moving object tracking system

we developed in Chapter 5. For lane detection, we used MobilEye’s proprietary

lane detection system [8]. Following the very basic fact of ‘cars follow roads’, the

idea of fusing the vehicle’s orientation estimate with tangential lane directions

was formulated as a MAP estimation problem. MobilEye’s lane marker detection

system was qualitatively evaluated on different scenarios. Then, the fusion with

lane markers was quantitatively evaluated using four log sessions. Finally, trajec-

tory prediction module was also properly evaluated. Our experiments show that

the holistic approach significantly improves the estimation of vehicles orientation

and prediction of vehicles future trajectories.
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a) 

b) 

Figure 6.9: Qualitative evaluation on vehicle trajectory prediction. In each case,
the upper (lower) figure shows a result without (with) lane marker fusion.
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c) 

d) 

Figure 6.10: Qualitative evaluation on vehicle trajectory prediction (More exam-
ples).
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Chapter 7

Conclusions and Perspectives

This thesis has described a multi-sensor fusion system for the problem of detect-

ing and tracking of moving objects in highway and urban traffic environments.

The proposed tracking system integrates the vision-based object detection sys-

tem [21, 22, 20], active sensor-based (e.g., radars and LIDARs) tracking system

[29, 23], and fusion with a lane marker detection system [8] to generate a com-

posite model of moving objects. In contrast to the majority of tracking systems

used in current self-driving vehicles [102, 71, 60, 101, 16], we quantitatively in-

vestigated vision-based object category detection to increase the recognition ca-

pability for various urban objects such as pedestrians, bicyclists, and vehicles.

This semantic information from the vision system brings new synergistic benefits

to the active sensor-based tracking, where the information is exploited to im-

prove performance of the key components of the tracking system such as model

selection, data association, and movement classification. Furthermore, the vision-

based lane marker detection system [8] is also integrated to improve orientation

estimation of moving vehicles and to enable more reliable prediction of vehicles’

future trajectories. Although it is still at a primitive level of “holistic scene under-

standing” approach, our fusion method with lane detection enables a self-driving

vehicle to track nearby moving objects consistently without compromising its

real-time performance. Through the test using the challenging data log collected

from our autonomous vehicle [109], we have demonstrated the improvement and

performance gain of the proposed tracking system.
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7.1 Key Contributions

� Improvement of the DPM. In this thesis, we significantly improved the

speed performance of ‘deformable part-based models.’ [41, 40] by exploiting

parallelism based on multi-cores and known scene geometry. In addition,

we significantly improved pedestrian and vehicle detection accuracy by de-

signing more optimized object models for automotive applications. This

effort allowed us to run one-component pedestrian model at the speed of

14 Hz (two-component bicyclist model at the speed of 8 Hz) on our au-

tonomous vehicle. We also studied the part-centric motion of pedestrians

which we defined as ‘inner motion’. The inner motion feature together with

the appearance feature (i.e., HOG features in our case) lead to the state-

of-the-art pedestrian detection performance (39% log-average miss rate in

the ’reasonable’ scenario, see Section 3.5 for details).

� Data association for multi-object tracking. We studied a new data

association algorithm for multi-object tracking. It incorporates a Rao-

Blackwellized Particle Filter which runs a particle filter for data associa-

tion and an EKF for each object tracking. We applied the algorithm to

the problem of vision-based object tracking by improving the measurement

likelihood computation which takes advantage of rich appearance informa-

tion from images. Our experiments on three different urban objects show

its superior tracking performance.

� Multi-sensor fusion system. The culmination of this thesis is a novel

sensor fusion system which exploits high-level semantic information from

vision-based object detection with intermediate features from radar and

LIDAR sensors. This object class information is utilized as a key factor

in several sub-components of the tracking system such as model selection,

data association, and movement classification. A more appropriate tracking

model (either a box model or a point model) is selected depending on the

object class information and quality of the sensor data. In addition, when a

LIDAR’s edge feature is associated with an object being tracked with a box

model, the class information is used for pruning unnecessary interpretation
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of the edge feature for vehicles. Finally, a different parameter set can be

used for movement classification based on an object type.

� Fusion with lane marker detection. Lane marker information from a

proprietary lane marker detection system is exploited to improve tracking

performance of our multi-sensor tracking system. The fusion brings two

benefits to the tracking system. It not only improves orientation estimation

of moving vehicles by fusing the tangential heading angle of the associated

lane marker but also enables the prediction of future trajectories of the

moving vehicles.

7.2 Limitations

The proposed fusion system has some limitations. A few of these are intrinsic

limitations and others are practical limitations due to limited computation power,

sparse measurements and limited coverage of sensors. This section presents some

of these limitations and the next section provides a discussion of the future work.

� Lack of capability in the DPM to deal with multiple models is the first

intrinsic limitation. Even though the DPM is equipped with deformable

parts and view-based representation (so called “components”) for the intra-

class variation, its expression power for general objects is still limited (e.g.,

distinguishing between an adult pedestrian and a sitting child). The main

practical issue of the DPM is its high computational cost. Although we

demonstrated real-time performance (i.e., 14 Hz with a pedestrian model)

of the DPM detector on a modern PC, it still requires significant speed

improvement because such a detection system needs to run multiple models

of different object categories (e.g., pedestrians, bicyclists, motorcyclists,

dogs, strollers, and possibly many more). In addition, the detection system

should be able to operate in real-time on an automotive-grade embedded

system eventually.

� Regarding to the multi-sensor fusion system, different sensors produce dif-

ferent kinds of misinterpretations of measurements and erroneous detec-

tions, so called ‘sensor artifacts’. These artifacts pose lots of challenges to
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reliable moving object tracking. For example, a manhole cover in the middle

of a road appears as a strong obstacle to radar sensors, and curbs, vegeta-

tion, and guardrails at road boundaries are frequently picked up as strong

measurements to LIDAR sensors. It is well-known that vision-based object

detection suffers from intermittent false positives. Some of these artifacts

are suppressed by the proposed multi-sensor fusion approach (e.g., manhole

cover detection suppressed by LIDAR measurements or mirroring LIDAR

target suppressed by vision detections as discussed in Chapter 5.6), but

some artifacts still remain, causing either false tracking or tracking failures.

� Our holistic approach between the multi-sensor tracking system and lane

marker detection system is not mutually beneficial. Since the lane de-

tection system we used is a proprietary system, we could not access the

internal algorithms for the lane detection system. Thus, interaction was

uni-directional, utilizing the lane markers in the tracking system to im-

prove the orientation estimation of tracked vehicles. Indeed, results from

the tracking system, i.e., the moving object list, can be utilized to improve

performance of the lane detection algorithm conceptually.

7.3 Future Work

As future work, it would be interesting to further explore the idea of holistic

scene understanding. In this thesis, we exploited the interplay between moving

objects and lane markers on the roads, but we believe that there is a broader

range of background cues to support this approach, resulting in mutual benefits.

For example, as discussed briefly in the introduction of Chapter 6, a sidewalk can

be utilized for better pedestrian tracking and traffic lights also can be exploited

for better velocity estimation of slow moving vehicles. In addition, a vision-based

vehicle detection task can exploit lane marker detection results to reduce the

search space and traffic sign recognition results can be utilized for better vehicle

tracking. These contextual interactions for holistic approach are listed in Table

7.1. This line of research has potential for autonomous vehicles to have a higher-

level reasoning capability to support contextual inferences.
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Contextual Cues Challenges

Vehilce tracking and lane markers Investigated in this study
Pedestrian tracking and sidewalk Unexpected pedestrian movement,

e.g., jaywalking
Traffic light and slow moving vehicles Efficient model switching

Vehicle detection and lane markers Model derivation
Vehicle tracking and traffic signs Relationship identification

Table 7.1: More examples of contextual cues and the possible challenges for
integration.

It is also worth investigating a hardware implementation of the DPM object

detector to deploy the system in some real automotive settings. As we analyzed

in Chapter 3, two significant computational bottlenecks for the detection pipeline

are a) HOG feature computation and b) a number of cross-correlations. Since

these two main functions take up the majority of the needed computation, we

can achieve the goal relatively easily by implementing only these two functions

using contemporary FPGAs (Field-Programmable Gate Array).
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Appendix A. Data Sets

One of the important goal of this thesis is to implement a robust visual recognition

system for urban traffic objects such as pedestrians, bicyclists, motorcyclists,

and vehicles. To build such a robust vision-based object recognition system,

all object models should be trained on appropriate data sets wihch reflect real

characteristics of the real environments. For this purpose, we collected a large

amount of object data including object categories of bicyclist, motorcyclists, and

vehicles. For pedestrians, we used the Caltech Pedestrian data set since it is one

of the largest pedestrian data sets as of this publication. For a statistics analysis

for the Caltech Pedestrian data set, we refer the reader to [33]. This appendix

describes the data set we collected for our evaluation and implementation.

.1 Bicycle Data Set

For bicycle detection, we collected a new bicycle dataset in various places and

weather conditions. The collection scenarios are based on the analysis of bicycle

collision statistics [53]. The dataset was captured at 3fps following the lessons in

[20] and consists of two sessions (S0∼S1) for training and two sessions (S2∼S3)

for testing, each with 1 or 2 video files and associated annotation files. Due to

our purpose, most of samples corresponds to rear view and side view of samples

of bicyclist. Figure 1 and 2 shows some sample images with and without ground

truth bounding boxes, respectively. In Figure 3, the left pie chart shows the

distribution of the portion of bicycle samples for each viewpoint and right-hand

side figure shows the distribution of bottom lines of all (i.e., 4,284) bounding

boxes. The number of bounding boxes for each viewpoint is shown in Table 2.

128



Figure 1: Some sample images from the bicycle data set.

Figure 2: Some sample images with ground truth bounding boxes.
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Figure 3: Distribution of bicycle samples (left) and distribution of bottom lines
of all bounding boxes (right).

Profile No. of Bounding Boxes

Rear 2,845
Front 553
Right 129
Left 298

Table 2: Bounding box distribution.

.2 Motorcycle Data Set

The motorcyclist DPM was designed and trained especially for automotive active

safety applications such as FCW (Forward Collision Warning). For this goal,

we collected motorcycle data set in various places. The dataset was captured

at 3fps and consists of one training session (S0) and one testing session (S1).

Same as the bicycle data set, most of samples corresponds to rear view samples

of motorcycles. Figure 4 and 5 shows some sample images with and without

ground truth bounding boxes, respectively. In Figure 6, the left pie chart shows

the distribution of the portion of motorcycle samples for each viewpoint and

right-hand side figure shows the distribution of bottom lines of all (i.e., 5,276)

bounding boxes. The number of bounding boxes for each viewpoint is shown in
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Figure 4: Some sample images from the motorcycle data set.

Figure 5: Some sample images with ground truth bounding boxes.

Table 3.
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Figure 6: Distribution of motorcycle samples (left) and distribution of bottom
lines of all bounding boxes (right).

Profile No. of Bounding Boxes

Rear 4,927
Front 85
Right 3
Left 27

Table 3: Bounding box distribution.

.3 Vehicle Data Set

For vehicle detection, we collected a new vehicle dataset based on the analysis

of vehicle collision statistics [76]. It consists of three training sessions (S0∼S2)

and two testing sessions (S3∼S4), each with 1 or 2 video clips and associated

annotation files. Due to our purpose, most of samples corresponds to rear view

samples of vehicles such as sedn, SUV (Sports Utility Vehicle), truck and bus.

Figure 7 and 8 shows some sample images with and without ground truth bound-

ing boxes, respectively. In Figure 9, the left pie chart shows the distribution of

the portion of vehicle samples for each sub-type and right-hand side figure shows
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Figure 7: Some sample images from the vehicle data set.

the distribution of bottom lines of all (i.e., 14,453) vehicle bounding boxes. The

number of bounding boxes for each vehicle sub-type is shown in Table 4.

Vehicle sub-type No. of Bounding Boxes

Sedan Rear 5,976
SUV Rear 4,344
Truck Rear 390
Bus Rear 299

Table 4: Bounding box distribution for each vehicle sub-type.
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Figure 8: Some sample images with ground truth bounding boxes.

Figure 9: Distribution of vehicle sub-type samples (left) and distribution of bot-
tom lines of all bounding boxes (right).
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