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Abstract

We propose the chemlambda artificial chemistry, whose behavior strongly suggests
that real molecules which embed Interaction Nets patterns and real chemical reac-
tions which resemble Interaction Nets graph rewrites could be a realistic path towards
molecular computers, in the sense explained in the article.

Note to the reader. This is a text version of the article [7], with only minimal edits. The
original article was part of an experiment in Open Science. The goal was to report research
which can be independently validated in the most simple way possible. It is part of a Github
repository [15]. The original article uses javascript animations which are created with the
programs from the repository. The versions history of the original article is available at this
link. In the same repository there is a library of 427 ”molecules” (graphs) [8] and demos
pages [9]. Many simulations results are available at [10]. Everything from the article and
the other cited sources, excepting the suggestion that such molecular computers can be done
with real chemicals, can be validated by using the resources provided.

The particular formatting of the article is tributary to the original [7]. Animations which
are embedded in the original are replaced with links. The references and links in the text are
left as they were and much improvement could be made concerning references pointing to
Interaction Nets [2], for example; Berry and Boudol CHAM [1] is not explicitely mentioned
here, but the initial version of this formalism, i.e. ”chemical concrete machine”[13], uses
it. The Algorithmic Chemistry of Fontana and Buss [3] [4] appears here via a link to their
research, perhaps this link is better. The same happens with the work [5] by Christoph
Flamm, for which, in the body of the article, a link to his papers page is provided. Part of
this was due to the ignorance of the author at the moment (a mathematician). A later hope
was to keep the article as is and to link it with critical public reviews, as a weaker form
of validation than, for example, an alternative Haskell implementation of chemlambda [5].
However, the main idea of the article is original, as are the self-imposed constraints, namely
to restrict to only local rewrites on graphs, regardless their interpretation as lambda terms
(or lack of such interpretation), restrict to only two algorithms of reduction (deterministic
or random), the most simple possible.

1 Introduction

”Define a molecular computer as one molecule which transforms, by random chemical re-
actions mediated by a collection of enzymes, into a predictable other molecule, such that
the output molecule can be conceived as the result of a computation encoded in the initial
molecule. ” (source: [18])

(Computation of the Ackermann(2,2)=7 with chemlambda link to js animation. See
further details about how is made. You can move the atoms by click and drag.)
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The notion of a molecular computer presented here is a model of computation based on
individual molecules in a random environment. The model proposed here satisfies the follow-
ing requirements: (a) is Turing universal (thus in principle to allow to compute anything),
(b) based on a minimal set of well chosen chemical reactions which happen randomly.

Individual molecules encode data and programs in the chemical composition. Compu-
tations are not encoded in the numbers of species in a soup (multi set) of more or less
arbitrarily chosen molecules.This is different than models of computation like the chemical
abstract machine, or those based on chemical reaction networks.

I believe we can build molecular computers. This page is a call for making them real, ei-
ther by discovering them in living organisms, or by learning how to build them from scratch.

The argumentation of this possibility goes like this:

Step 1: virtual molecular computers are possible. Based on a made up, very simple
artificial chemistry called chemlambda, this is proved theoretically [12], [13], [14]. It is shown
that chemlambda is Turing universal, that we can use some of the chemlambda molecules
to encode untyped lambda beta calculus terms (but there exist many other molecules which
do not encode lambda terms), that the reduction rules of the pure, untyped, lambda beta
calculus can be realized by the chemlambda graph rewrites (but the graph rewrites apply
as well to molecules which don’t represent lambda terms and they work in a more general
sense than only as representations of untyped lambda beta reduction rules).

Chemlambda works with molecules which are graphs made by elementary constituents
(”atoms”) and links (”bonds”) which enter in chemical reactions seen as local graph rewrites
and interpreted as chemical reactions of the molecule with a set of invisible ”enzymes”, one
enzyme per type of graph rewrite. Moreover, chemlambda does not use variables and does
not rely on evaluations of terms. Instead of passing variables and evaluations, chemlambda
uses a different strategy which is akin to signal transduction.

To obtain a full model of computation one needs an algorithm concerning the application
of graph rewrites. The algorithm is random and uses the fact that the graph rewrites are
local (i.e. they involve only patterns with a small number of atoms and bonds, without
any concern about the global structure of the graph-molecule). Chemlambda is therefore an
asynchronous graph-rewriting automaton.

There is a github repository [15] where this model is implemented and various demos are
available [9], which show some features of the model: classical examples of lambda calculus
computations, demos about artificial life forms called ”chemlambda quines”. (How to use
the repository: the active branch of the repository is available at this link. Follow the
instruction from [15].

As an example, this javascript animation is the output of the computation which uses
the molecule sheet copy.mol. It is produced by the scripts from the repository and you use
the browser to see it. It’s an example of a computation which is not about lambda calculus,
but nevertheless it leads to a structure which is programmed in the initial simpler one. You
can move the atoms by click and drag.

Step 2: from virtual chemical reactions to real ones. The patterns which appear
in the chemlambda graph rewrites are so simple that it is highly possible that there exist
real correspondents of ”atoms”, ”ports”, ”bonds” and ”enzymes”, perhaps as simple real
chemical molecules, which enter in real chemical reactions which mimic the graph rewrites
of chemlambda. The problem is to identify those patterns in reality, by a combination of
database searches and experiments which make this project ideal for an open source bio-
hacking project, for example.

2 Chemlambda

Chemlambda s a graph-rewriting formalism with some of the moves (graph-rewrites) inspired
from lambda calculus, like for example the BETA move, which is a variant of the Wadsworth-
Lamping treatment of the beta move on syntactic trees of lambda terms. But there is a
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difference: in chemlambda there are no correct molecules (graphs).
Another resemblance is with the Alchemy of Fontana and Buss. They also propose

to look at lambda calculus as an artificial chemistry. The main difference is that while
in chemlambda application and abstraction are treated on the same par, as atoms in the
molecule, in Alchemy application is seen as a chemical reaction and abstraction is seen as a
reactive locus in a molecule, i.e. the chemical reactions in Alchemy are of the type

A+B ←→ AB

where A, B are lambda terms and AB is A applied to B. In the work of Christoph Flamm
the chemical reactions are of the type

A+B ←→, C +D

understood as a rewrite of the unconnected pattern obtained from the union of A and B. In
chemlambda the rewrites model a chemical reaction

A+ Enzyme ←→ B + Enzyme

where Enzyme is associated to the rewrite.

Chemlambda molecules. The molecules of chemlambda are graphs made by 9 elemen-
tary constituents, called A, L, FI, FO, FOE, T, Arrow, FRIN, FROUT. Every elementary
constituent is made by a main atom, represented in the demos as a big colored circle, and
some smaller atoms, called ports. A, L, FI, FO, FOE have 3 ports each, Arrow has two
ports, and T, FRIN and FROUT have one port each. They are linked by bonds, which are
of two kinds: inner, between a main atom and its ports, and outer, between ports. Each
port has a pair of types, one from the family (left, right, middle) and the other one from
the family (in,out). The outer bonds are permitted only between a pair of ports, one with
type in, the other with type out.

We use the ”mol” notation for a chemlambda molecule. The programs from the github
repository work with files with the extension .mol as inputs. Thus a molecule is represented
by a .mol file. The visualisations represent a molecule as made by coloured circles of various
radii (there is a radius ”main const” for the main atoms and the types of ports ”left”, ”right”
and ”middle” are represented by radii of circles with the same names). The colour of the
main atoms comes from the type of the atom (A, L, FI, ...) and the colour of the ports
encode the type ”in” or ”out”.

Therefore there is a one-to-one correspondence between the mol notation and what you
see. Everything in the visualizations is coded by color, radius of the circle and, for links,
there are inner (thicker) and outer links. For reading convenience I shall use (a given pallete
of) these colours in the explanations.

The colours are: ”in col”, ”out col”, ”red col”, ”green col”, ”arrow col” and ”term col”.
The colour palette does not really matter, of course, for the chemistry (see this older intro-
duction about the molecules with a different palette).

Here is the list of nodes with the types of their ports, and the way they are written in
the mol file. The colours are as in the visualisations convention. Recall that the mol file
notation does not need colours, these are only for visualization purposes.

- (L middle.in left.out right.out), is inspired from the lambda abstraction.

- (A left.in right.in middle.out), is inspired from application operation.

- (FI left.in right.in middle.out), has no correspondent in lambda calculus, name means
”fan-in”.

- (FO middle.in left.out right.out), has no correspondent in lambda calculus, name
means ”fan-out”.

- (FOE middle.in left.out right.out), has no correspondent in lambda calculus, name
means ”extra fan-out”. Mind that in chamlambda there are two kinds of fan-out
nodes!
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- (Arrow middle.in middle.out), has no correspondent in lambda calculus, is a simple
solution for application of some of the moves. Is inspired from Louis Kauffman proposal
to use commutative polynomials for the graphical elements (where the variables of the
polynomials play the roles of the ports). Louis Kauffman used on July 3rd 2014 the
Mathematica symbolic reduction for polynomial commutative algebra in order to try
to reduce the fixed point combinator in graphic lambda calculus, thus making the first
attempt of a visualisation program for chemlambda.

- (T middle.in), called ”termination” node, is used in relation to lambda calculus in
place of variables x appearing in terms λx.A, where A does not contain x.

- (FRIN middle.out), is a ”free in” node, used for edges with a free source. (Thus, if
your mol file has a port variable ”a” which appears only once, in a port of type in,
then the main script adds ”FRIN a” to the mol file.)

- (FROUT middle.in), is a ”free out” node, used for edges with a free target. (Thus, if
your mol file has a port variable ”a” which appears only once, in a port of type out,
then the main script adds ”FROUT a” to the mol file.)

Remark that the colours and the relative size of the circles are enough to encode all the
information needed in the formalism. For example the colours of nodes and ports allows to
discern which is (L 1 2 3) and which is (FI 1 2 3).

Chemlambda graph rewrites. A shorter name is ”moves”. They should be seen as
chemical reactions involving a small part of the molecule and an invisible enzyme, one
enzyme type per move.

In the following you see the moves written in the mol convention, and also a visualization
of the moves. For each move you can CLICK on the move name to see what is happening.
You can move the atoms by click and drag.

• BETA and FAN-IN family

- BETA (or A-L) (link to js animation)

L 1 2 c
A c 4 3

←→ Arrow 1 3
Arrow 4 2

- FAN-IN (or FI-FOE) (link to js animation)

FI 1 4 c
FOE c 2 3

←→ Arrow 1 3
Arrow 4 2

• DIST family:

- FO-FOE (link to js animation)

FO 1 2 c
FOE c 3 4

←→

FI j i 2
FO k i 3
FO l j 4
FOE 1 k l

- FI-FO (link to js animation)

FI 1 4 c
FO c 2 3

←→

FO 1 i j
FI i k 2
FI j l 3
FO 4 k l
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- L-FOE (link to js animation)

L 1 2 c
FOE c 3 4

←→

FI j i 2
L k i 3
L l j 4
FOE 1 k l

- L-FO (link to js animation)

L 1 2 c
FO c 3 4

←→

FI j i 2
L k i 3
L l j 4
FOE 1 k l

- A-FOE (link to js animation)

A 1 4 c
FOE c 2 3

←→

FOE 1 i j
A i k 2
A j l 3
FOE 4 k l

- A-FO (link to js animation)

A 1 4 c
FO c 2 3

←→

FOE 1 i j
A i k 2
A j l 3
FOE 4 k l

• PRUNING family

- A-T and FI-T, (link to js animation)

A 1 2 3
T 3

←→ T 1
T 2

FI 1 2 3
T 3

←→ T 1
T 2

- L-T (link to js animation)

L 1 2 3
T 3

←→
T 1
T c
FRIN c

- FO2-T, FOE2-T, (link to js animation)

FO 1 2 3
T 2

←→ Arrow 1 3

FOE 1 2 3
T 2

←→ Arrow 1 3

- FO3-T, FOE3-T, (link to js animation)

FO 1 2 3
T 3

←→ Arrow 1 2

FOE 1 2 3
T 3

←→ Arrow 1 2
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• COMB move (link to js animation) and COMB cycle. For the COMB move ”M 1”
denotes any node ”M” which has (possibly among others) a out port ”1”.

M 1
Arrow 1 2

←→ M 2

The cycle is a rapid application of COMB moves, whenever there are Arrow elements
with the ”in” port connected to a port which does not belong to another Arrow.
Exemplified here (link to js animation) with a BETA move followed by a COMB
cycle which eliminates all the Arrow elements, excepting the one which has its in port
connected to its out port (so connected to another Arrow port).

The reduction algorithm. One needs to add to chemlambda a reduction model (which
says basically how to apply the moves and what to do if two or more moves attempt to
modify the same node of the graph). Any reduction model will do, with the conditions to
be:

- local (the algorithm for deciding which move to apply or which solves conflicts has to
be formulated so that it works with an input consisting of a graph with at most N
nodes and links, with N fixed a priori)

- geometrical (the result of the algorithm is the same regardless of the internal number-
ing, ordering or naming of the variables from the input)

- it has to be asynchronous (because of locality in time as well) and decentralized, in
the sense that the ”local” constraint applies also in space, so the algorithm running in
one place has to be able to solve moves and conflicts on its piece of graph based on an
a priori bounded number N of graph nodes, links and messages exchanged with other
places.

In the demos [9] there is used the most simple algorithm, called for this reason the
”stupid” one, in order to show that even so the results are interesting. This algorithm may
turn out to be less stupid than I thought, in particular because it led to this proposal of a
molecular computer.

The algorithm takes as input an initial graph, then there is a cycle where, at each step
(deterministically or randomly):

- are identified the pieces of graph where the moves apply

- moves are applied: in the deterministic version, according to a priority of moves (i.e. in
this case first identify the patterns for the move FO-FOE, then block the nodes which
involve that move, then look further for the other moves DIST which involve free nodes,
then block the nodes involved, then look for the BETA and FAN-IN moves, block the
nodes, then look for PRUNING moves, block the nodes); in the random version each
move has an asociated random coin flip, with an weight. The coin is flipped for each
proposed move and the move is applied or not, accordingly.

- at the end of the step there is a COMB cycle, which search for the application of
all COMB moves (which eliminate the Arrow elements) until there is no possibility
of applying further COMB moves (which does not mean that all Arrow elements are
eliminated)

The effect of this algorithm is equivalent, in case we start from a graph which represents
a lambda term [12] section 3, to a massively parallel reduction of the term, but one not
involving any variable passing, nor evaluation steps.

On top of this, if we restrict to graphs coming from lambda terms, one has to take care
that: (a) there is no eta reduction, it’s pure lambda beta, so ”functional” is not appropriate
to use because functions need eta reduction (b) even if the initial and final graphs (if there
is a final graph) correspond to lambda terms, typically the intermediary ones do not, see for
example the bw version of the predecessor reduction.
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Each move is seen as an interaction between a (part of a) molecule-graph with an invisible
enzyme, one enzyme per move. One can make the enzymes visible, even use them as a
resource, introduce moves between enzymes, making the whole model conservative, or even
transform the enzymes into chemlambda graphs as well, by a sort of bootstrapping. [Added:
in [11] is presented a conservative (with respect to nodes and arrows), without enzymes,
equivalent graph rewrite formalism for chemlambda.]

References

[1] Berry, Gérard, Boudol, Gérard, The chemical abstract machine (1992),Theoretical
Computer Science 96, 1, p. 217 - 248

[2] Lafont, Yves, Interaction nets (1990). Proceedings of the 17th ACMSIGPLAN-SIGACT
Symposium on Principles of Programming Lan-guages. ACM: 95108

[3] W. Fontana and L. W. Buss, What would be conserved if ‘the tape were played twice’?
Proc. Natl. Acad. Sci. USA, 91, 757-761 (1994)

[4] W. Fontana and L. W. Buss ’The Arrival of the Fittest’: Toward a Theory of Biological
Organization Bull. Math. Biol., 56, 1-64 (1994)

[5] Martin Mann, Heinz Ekker, Christoph Flamm The Graph Grammar Library - a generic
framework for chemical graph rewrite systems. In: Proceedings of the International
Conference on Model Transformation (ICMT 2013), D. Varro and K. Duddy and G.
Kappel (eds), Springer-Verlag Berlin Heidelberg, LNCS 7909, pp. 52-53, (2013). (doi)

[6] King, J. , The Chemlambda-hask repository Chemlambda-hask repository

[7] M. Buliga, Molecular computers (2015),
http://chorasimilarity.github.io/chemlambda-gui/dynamic/molecular.html

[8] M. Buliga, The library of chemlambda molecules (2016)
https://github.com/chorasimilarity/chemlambda-gui/tree/gh-pages/dynamic/mol

[9] M. Buliga, The chemlambda project demos,
http://chorasimilarity.github.io/chemlambda-gui/index.html

[10] M. Buliga, The chemlambda collection of simulations (2017), Figshare (doi)

[11] M. Buliga, Chemlambda strings (2018), Figshare (doi)

[12] M. Buliga, Graphic lambda calculus. Complex Systems 22, 4 (2013), 311-360 (journal)
(arXiv)

[13] M. Buliga, Chemical concrete machine. Figshare (doi), (arXiv)

[14] M. Buliga, L.H. Kauffman, Chemlambda, universality and self-multiplication. Presented
at ALIFE-14. MIT Press (arXiv)

[15] M. Buliga, Chemlambda repository

[16] M. Buliga, L.H. Kauffman, GLC actors, artificial chemical connectomes, topological
issues and knots. (arXiv)

[17] M. Buliga, Zipper logic. Figshare (doi) (arXiv)

[18] M. Buliga, Build a molecular computer. Journal of Brief Ideas, 2015. (doi)

7

http://dx.doi.org/10.1007/978-3-642-38883-5_5
https://github.com/synergistics/chemlambda-hask
http://chorasimilarity.github.io/chemlambda-gui/dynamic/molecular.html
https://github.com/chorasimilarity/chemlambda-gui/tree/gh-pages/dynamic/mol
http://chorasimilarity.github.io/chemlambda-gui/index.html
https://doi.org/10.6084/m9.figshare.4747390.v1
https://doi.org/10.6084/m9.figshare.5751318.v1
http://www.complex-systems.com/abstracts/v22_i04_a01.html
http://arxiv.org/abs/1305.5786
http://dx.doi.org/10.6084/m9.figshare.830457
https://arxiv.org/abs/1309.6914
https://www.mitpressjournals.org/doi/pdf/10.1162/978-0-262-32621-6-ch079
https://arxiv.org/abs/1403.8046
https://github.com/chorasimilarity/chemlambda-gui/blob/gh-pages/dynamic/README.md
https://arxiv.org/abs/1312.4333
https://dx.doi.org/10.6084/m9.figshare.1032660
https://arxiv.org/abs/1405.6095
https://beta.briefideas.org/ideas/ae644667a7badd7899570fb530016c7b

	Introduction
	Chemlambda

