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Abstract

The memory system is a major bottleneck in achieving high performance and energy efficiency for

various processing platforms. This thesis aims to improve memory performance and energy ef-

ficiency of data intensive applications through a two-pronged approach which combines a formal

representation framework and a hardware substrate that can efficiently reorganize data in mem-

ory.

The proposed formal framework enables representing and systematically manipulating data layout

formats, address mapping schemes, and memory access patterns through permutations to exploit

the locality and parallelism in memory. Driven by the implications from the formal framework, this

thesis presents the HAMLeT architecture for highly-concurrent, energy-efficient and low-overhead

data reorganization performed completely in memory. Although data reorganization simply relo-

cates data in memory, it is costly on conventional systems mainly due to inefficient access patterns,

limited data reuse, and roundtrip data traversal throughout the memory hierarchy. HAMLeT pur-

sues a near-data processing approach exploiting the 3D-stacked DRAM technology. Integrated in

the logic layer, interfaced directly to the local controllers, it takes advantage of the internal fine-grain

parallelism, high bandwidth and locality which are inaccessible otherwise. Its parallel streaming ar-

chitecture can extract high throughput from stringent power, area, and thermal budgets.

The thesis evaluates the efficient data reorganization capability provided by HAMLeT through sev-

eral fundamental use cases. First, it demonstrates software-transparent data reorganization per-

formed in memory to improve the memory access. A proposed hardware monitoring determines
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inefficient memory usage and issues a data reorganization to adapt an optimized data layout and

address mapping for the observed memory access patterns. This mechanism is performed trans-

parently and does not require any changes to the user software—HAMLeT handles the remapping

and its side effects completely in hardware. Second, HAMLeT provides an efficient substrate to

explicitly reorganize data in memory. This gives an ability to offload and accelerate common data

reorganization routines observed in high-performance computing libraries (e.g., matrix transpose,

scatter/gather, permutation, pack/unpack, etc.). Third, explicitly performed data reorganization en-

ables considering the data layout and address mapping as a part of the algorithm design space.

Exposing these memory characteristics to the algorithm design space creates opportunities for al-

gorithm/architecture co-design. Co-optimized computation flow, memory accesses, and data layout

lead to new algorithms that are conventionally avoided.
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Chapter 1

Introduction

1.1 Motivation

Transistors continue to shrink in size with every new generation following the Moore’s law, which

suggests doubling the number of transistors on chip every 18 months. However, transistor threshold

and supply voltages have not been scaling proportionally in the post Dennard era [43]. Future

processing platforms are heading towards an energy constrained era, where parts of the chip, known

as the dark silicon, are under-clocked or completely turned off to meet the power consumption

limitations.

In addition to the stringent on-chip energy constraints, scaling trends for the DRAM technology

and off-chip pin count do not match the transistor scaling trends, pointing towards the memory

wall problem. This problem is exacerbated in the dark silicon era by multiple cores and on-chip

accelerators sharing the main memory and demanding for more bandwidth. Memory bandwidth

becomes a limiting factor to supply data for increasing number of on-chip compute units. Further-

more, memory energy consumption is another limiter for future processing platforms. Currently a

64-byte cache line size DRAM memory access consumes around 20–35 nJ (70 pJ/bit for DDR3, 40

pJ/bit for LPDDR2) which is orders of magnitude more energy than an on-chip double-precision

1



2 1.1. Motivation

fused multiply-add operation (50 pJ in 40nm) or a 64-byte on-chip SRAM access (110 pJ for 8 KB

SRAM in 40nm) [56, 69, 77]. From a technology scaling standpoint, the DRAM memory system is

a fundamental limiting factor both in terms of energy and bandwidth for future parallel processing

platforms.

Moreover, with the emergence of the big data era, data intensive workloads require intensive mem-

ory usage. Limited data reuse, disorganized data placement, and inefficient access patterns in such

workloads put a substantial pressure on the memory system. Due to large working sets and limited

locality, these workloads require large roundtrip data movement between the processor and DRAM.

It is reported that current systems spend significant energy and time on data movement. Specifically,

for scientific, mobile and general-purpose workloads 28–40%, 35% and more than 50% of the total

system energy is spent on data movement respectively [70, 91]. Although there are various disrup-

tive memory technology developments such as 3D-stacked DRAM or wide I/O, promised energy

and bandwidth potentials can only be achieved with the efficient use of the memory system.

Exploiting the memory level locality and parallelism is the key for efficiently utilizing the DRAM

based main memories. There exists architectural mechanisms that aim to recover the lost paral-

lelism and locality through reordering memory accesses by scheduling [101], distributing accesses

by interleaving [118], or data prefetching to hide the memory latency [27]. These approaches are

mainly limited with the size of reorder queues and none of them addresses the data placement prob-

lem. Compiler based code transformations, on the other hand, are limited with data dependencies

lacking dynamic runtime information [42, 80, 112]. Data layout transformation via reorganizing

data in memory aims the inefficient memory access pattern and the disorganized data placement

issues at their origin. However, modern processing platforms lack the ability to perform efficient

data layout transformations mainly due to roundtrip data movements and bookkeeping costs for

remappings.

Moreover, the complex hierarchy of the memory is abstracted as a flat address space in the modern

programming models. Low level memory system details including data layout, address mapping,

and memory access behavior are not exposed to the users. Hence, programmers spend significant
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manual effort to optimize the algorithmic behavior of the application for an improved memory

access performance. Often times these algorithmic optimizations are specific to the platform’s ab-

stracted away memory hierarchy and architectural details, lacking portability.

Therefore, given the landscape for the future processing platforms, memory system should be a first

class design consideration to achieve high performance and energy efficiency.

1.2 Thesis Approach and Contributions

To achieve the desired first class design consideration of the memory system as a part of the high-

performance and energy-efficient processing platforms, this thesis combines a formal abstraction

framework and hardware/software mechanisms for optimizing the memory access. It focuses par-

ticularly on the following goals:

• A formal framework to represent and manipulate critical memory access optimizations through

data layout, access pattern or address mapping transformations.

• An efficient hardware substrate that allows implementing formally represented optimizations

such as changing the data layout and address mapping schemes, which are either fixed or very

difficult to change dynamically in conventional processing platforms.

• Architectural/software mechanisms that utilize the developed hardware substrate to perform

the memory access optimizations either explicitly as a part of the application, or transparently

to improve the memory system performance.

• An algorithm/architecture co-design capability which enables co-optimizing computation flow,

memory access and data layout where the memory system is exposed to the algorithm design

space through the formal framework.

To achieve these high-level goals, this thesis makes the following main contributions:
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A Formal Approach to Memory Access Optimization. From a mathematical standpoint, this

thesis makes the key observation that manipulating the memory access patterns, data organization

as well as address mapping schemes can be abstracted as permutations. The thesis demonstrates

a formal framework based on tensor (Kronecker product) algebra that allows structured manipu-

lation of permutations represented as matrices. This formal framework serves as a mathematical

language to express the memory access optimizations as set of rewrite rules. This allows integration

of these rules into an existing formula rewrite system called Spiral which enables automation [98].

Hence various implementation alternatives can be derived automatically to exploit the locality and

parallelism potentials in memory.

HAMLeT Architecture for Data Reorganization. This thesis presents the HAMLeT (Hard-

ware Accelerated Memory Layout Transform) architecture with the goal of highly-concurrent, low-

overhead and energy-efficient data reorganization performed in memory. HAMLeT architecture

is driven by implications and requirements from the permutation based mathematical framework.

Parallel architecture with multiple SRAM blocks connected via switch networks performs high

throughput local permutations. A configurable address remapping unit implements the derived

affine index transformations for data reorganizations, which allows handling the address remap-

ping completely in hardware. Memory access optimizations derived by the formal framework are

directly mapped onto the HAMLeT architecture.

HAMLeT architecture is specifically tuned for near-data processing implementation using 3D-

stacked DRAM. Integrated within 3D-stacked DRAM, behind the conventional interface, it not only

minimizes the roundtrip data transfer but also utilizes high-bandwidth through-silicon via (TSV)

based access and abundant parallelism provided by multiple layers/vaults/banks. Parallel streaming

architecture can extract high throughput via simple modifications to the logic layer, keeping the

DRAM layers unchanged. Overall, HAMLeT provides an efficient substrate for highly-concurrent,

low-overhead and energy-efficient data reorganization performed in memory.



Chapter 1. Introduction 5

Software-transparent Data Reorganization. Taking the HAMLeT architecture as a substrate

that enables very efficient data reorganizations, we demonstrate a software-transparent data reorga-

nization performed in runtime. In this operation, the memory controller determines a disorganized

data placement by monitoring the physical address stream. It uses HAMLeT to change the data lay-

out and the address mapping. Reorganized data layout leads to better utilization of memory locality

and parallelism, which improves the host processor performance. This thesis demonstrates series

of hardware/software mechanisms to perform these operations, and their side effects, efficiently in

memory.

Explicit Data Layout Transformation. As another fundamental use case, this work focuses on

offloading and accelerating common data reorganization routines observed in high-performance

computing libraries (e.g., matrix transpose, scatter/gather, permutation, pack/unpack, etc.) using

the HAMLeT architecture. This gives the ability to efficiently perform data layout and address

mapping transformations from the software, exposing these critical memory optimizations to the

programmers. Furthermore, the thesis demonstrates special software/hardware mechanisms to han-

dle the offloading and coherence management efficiently for the targeted near-data processing ar-

chitecture.

Block Data Layout FFTs: Co-optimization of Computation, Memory Access and Data Lay-

out. For certain types of problems, the separation of the computation and memory access is very

difficult due to the interdependent nature of the two. This thesis also analyzes such a problem, fast

Fourier transform (FFT), where the high-performance and energy-efficient implementations require

a co-optimization between computation, memory access and data layout. Using the tensor based

formal framework as a unifying representation, compute data flows, memory access patterns and

data layouts are co-optimized as a part of the algorithm design space, where the customized block

data layouts and their address remapping are achieved by utilizing the HAMLeT architecture.
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1.3 Thesis Organization

The rest of this dissertation is organized as follows.

First, Chapter 2 gives the background on the fundamental concepts that the thesis builds upon. It

introduces the modern memory system organization, operation and various DRAM technologies

including planar and stacked DRAMs. It further introduces the near-data processing (NDP) systems

then elaborates on 3D-stacked DRAM based NDP alternatives. Furthermore, it gives a background

on data reorganization operation and its capabilities.

Next, Chapter 3 presents the mathematical framework used to describe and manipulate critical mem-

ory system optimizations, most importantly data reorganization and address remapping. It demon-

strates various test cases that manipulate permutations for transforming data layouts, access patterns

and address mappings.

Then, Chapter 4 introduces the HAMLeT architecture for efficient data reorganization and address

remapping in memory. It demonstrates the micro-architecture of the fundamental components in

the HAMLeT, namely data reorganization unit (DRU) and address remapping unit (ARU).

Chapter 5 demonstrates two fundamental use cases for the highly-concurrent, energy-efficient and

low-overhead data reorganization performed in memory. It describes the software-transparent and

explicit operations. It also poses the critical architectural and software support required for these

modes of operations.

Next, Chapter 6 presents the system architecture and integration. It first presents the near-data pro-

cessing architecture exploiting the 3D-stacked DRAM technology. Then, focuses on host/HAMLeT

integration issues such as parallel host and HAMLeT memory accesses, in-memory coherence man-

agement, and software offload mechanisms for explicit operation.

Chapter 7 provides an experimental evaluation for the fundamental use cases of the 3D-stacked

DRAM based implementation of the HAMLeT architecture. It provides the modeling and simula-

tion details for the 3D-stacked DRAM based architecture. Then it demonstrates detailed analysis for
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improvements and overheads of the data reorganization for both explicit and transparent operation.

The evaluations are concluded by hardware synthesis results to analyze power and area cost of the

fundamental components of the HAMLeT architecture.

Then, Chapter 8 demonstrates a case where the critical details of the memory system optimizations

are considered as a part of the algorithmic optimizations. Specifically, it presents a co-optimization

of computation, memory access and data layout through block data layout FFT implementations

which exploits the dynamic data layout operation.

Finally, following the related work in Chapter 9, Chapter 10 offers conclusions and future direc-

tions.
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Chapter 2

Background

2.1 The Main Memory System

The main memory is becoming increasingly critical bottleneck in achieving high performance and

energy efficiency for various computing platforms. This problem, also known as the memory wall,

is further exacerbated in the dark silicon era by multiple cores and on-chip accelerators (such as

GPU, FPGA, ASIC cores) sharing the main memory and demanding more memory bandwidth. A

single chip heterogeneous multicore computing system is demonstrated in Figure 2.1. Even though,

emerging technologies including 3D-stacked DRAM address the main memory bottleneck by pro-

viding more bandwidth while consuming less energy, in practice, the offered high performance and

energy efficiency potentials is only achievable via the efficient use of the main memory. In this

section, a detailed description about the fundamental operation of the DRAM based main memory

systems is followed by the 3D-stacked DRAM technology.

2.1.1 DRAM Organization and Operation

DRAM is a dynamic random access memory which has been adopted as the main memory in almost

all of the computing platforms ranging from mobile, desktop, graphics processors up to supercom-

9
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Figure 2.1: A single chip heterogeneous multicore computing system.

puters. DRAM memory cell has a very simple structure—a single transistor connected to a capacitor

forms a single bit storage. This allows DRAM to achieve very high density. However, DRAM is

a volatile memory so the contents of the memory cells leak over time. They have to be refreshed

periodically to keep the stored values.

As shown in Figure 2.2, DRAM modules are divided hierarchically into (from top to bottom): ranks,

chips, banks, rows, and columns. Each rank is constructed out of multiple DRAM chips. DRAM

chips within a rank contributes to a portion of the DRAM word; they are accessed parallel in lock-

step to form a whole memory word. Each bank within a DRAM chip has a row buffer which is a

fast buffer holding the most recently accessed row (or page) in the bank. If the accessed bank and

row pair are already active, i.e. the referenced row is already in the row buffer, then a row buffer hit

occurs reducing the access latency considerably. In this case only the CAS (column address strobe)

command is sent to access a column out of the active row. On the other hand, when a different row

in the active bank is accessed, a row buffer miss occurs. In this case, the DRAM array is precharged

and the newly referenced row is activated in the row buffer, increasing the access latency and energy

consumption. Furthermore, when the accessed row buffer is not active then the DRAM array stays

precharged which is called a closed row. An access to such bank still requires the activate command

before the target row can be accessed. Therefore, to minimize the energy consumption and to

achieve the maximum bandwidth from DRAM, one must minimize the row buffer misses. In other

words, one must reference all the data from each opened row before switching to another row by
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Figure 2.2: Overview of an off-chip planar DRAM module organization.
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Figure 2.3: Locality/parallelism vs. bandwidth, power and energy tradeoffs for DDR3-1600 DRAM (1.5V,
single rank, 8 bank, x8 width) [7].

exploiting the spatial locality in the row buffer.

In addition to the row buffer locality (RBL), bank level parallelism (BLP) has a significant impact on

the DRAM bandwidth and energy utilization. Given that different banks can operate independently,

one can overlap the latencies of the row precharge and activate operations with the data transfer

on different banks. BLP enables high bandwidth utilization even if the RBL is not fully utilized

provided that the accesses are well distributed among banks. However, frequently precharging and

activating rows in different banks increase the power and total energy consumed.

Figure 2.3 demonstrates the impact of RBL/BLP on DRAM bandwidth, power and energy con-

sumption. In this experiment contiguous blocks of data are transferred from DRAM, where adjacent

blocks are perfectly distributed among different banks. Therefore, the size of the data block corre-

sponds to the number of elements referenced from an opened row. In Figure 2.3 we observe that the
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achieved bandwidth increases with RBL (i.e. size of the data blocks) and/or BLP (i.e. number of

banks to which the data blocks are distributed). If the BLP is limited (e.g. accesses are concentrated

on a single bank), then RBL must be maximized to reach the maximum bandwidth. On the other

hand, if the blocks are well distributed among banks, the maximum bandwidth can be reached with

smaller block sizes, but with the cost of additional bank precharge/activate operations. Figure 2.3

also shows the energy consumption in Joules/GByte which corresponds to the total energy spent in

transferring unit GB of data. Both BLP and RBL decrease total static energy by transferring the

same amount of data faster, yet RBL is the key to reduce the total activate/precharge energy.

Access Scheduling. DRAM memory controllers implement access scheduling to maximize the

system throughput by exploiting RBL and BLP. Considering the latency disparity of different com-

mands in the DRAM and the capability of handling multiple requests concurrently, memory access

scheduling can improve the overall performance by reordering the requests. Prioritizing the row-hit

requests, i.e. first-ready first-come-first-served (FR-FCFS) [101], batch scheduling [86] or stall-time

fair scheduling [87] are among widely adopted scheduling mechanisms. A limitation of the mem-

ory access scheduling to optimize for the system throughput is the limited size request queues of the

memory controller. Reordering capability in the memory controller is limited with the total number

of on-the-fly requests in the scheduling queues. Access scheduling does not address the inefficient

memory access issue at its origin. It only helps to reclaim some of the lost parallelism/locality by

reordering requests in a limited window.

Address Mapping. As described previously, DRAM memory modules consist of several hier-

archical units such as channels, ranks, banks, rows and columns. Hence a particular location in

the DRAM memory system is described by these coordinates. However, the main memory is ab-

stracted with a flattened linear address space. The memory controller implements an address map-

ping scheme that maps this linear physical address space into the DRAM coordinates. In other

words, the address mapping determines the DRAM coordinates, i.e. channel, rank, bank, row, col-

umn, of a memory accesses. Address mapping scheme determines how physically contiguous data,
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Figure 2.4: Various address mapping schemes including cache line interleaving (bank and channel)
and row interleaving.

from the processors abstraction, are actually laid out in the DRAM. Hence, it is an important factor

in determining the DRAM parallelism and locality utilization.

Most widely used address mapping policies include row (page) and cache line interleaving schemes.

Row interleaving scheme interleave consecutive cache lines first into a row from a bank, then inter-

leave the rows among banks and channels. Whereas, cache line interleaving scheme places consecu-

tive cache lines into consecutive banks, ranks or channels. Example address mapping schemes bank

interleaving, channel interleaving and row interleaving are shown in Figure 2.4(a), Figure 2.4(b)

and Figure 2.4(c) respectively. Row interleaving is optimized for locality hoping that sequential

accesses exhibit spatial locality where sequential locations in the address space are mapped to the

same row. Hence an application that exhibits spatial locality can enjoy row buffer hits, improving

the memory access performance. On the other hand, cache line interleaving is optimized for paral-

lelism where consecutive locations in the address space are scattered to different banks aiming to

increase the bank level parallelism. There are various hybrid approaches and sophisticated address

mapping techniques, such as permutation based interleaving [118], that aim to exploit the memory

parallelism and locality better. Moreover, application-specific efficient address mapping schemes

can be determined via profiling.
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2.1.2 3D-stacked DRAM Technology

3D-stacked IC is a broad term covering systems where multiple dies and/or wafers are stacked ver-

tically. In the 3D-stacked DRAM technology, multiple DRAM dies and/or logic die(s) are stacked

on top of each other and connected by vertical through silicon vias (TSV). TSVs allow connection

through the wafer or die substrate where the active layer of the die can communicate vertically.

Multiple such dies are connected using micro-bumps. By sidestepping the I/O pin count limitations,

dense TSV connections allow high bandwidth and low latency communication within the stack.

There are examples of 3D-stacked DRAM technology both from industry such as Micron Hybrid

Memory Cube (HMC) [94], JEDEC standard High Bandwidth Memory (HBM) [16], Tezzaron Di-

RAM [11], and from academia [49, 71].

Hybrid Memory Cube (HMC). Figure 2.5 shows the overview of the Hybrid Memory Cube

(HMC). HMC features multiple DRAM dies and a base logic die which implements control units

as well as high-speed serial communication interfaces as shown in Figure 2.6.
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It consists of multiple layers of DRAM (currently 4 to 8 DRAM layers are planned) where each

layer also has multiple banks. A vertical slice of stacked banks (or groups of two banks) form

a structure called vault. HMC 2.0 features 32 vaults. Each vault has its own independent TSV

bus and vault controller [65]. This enables each vault to operate in parallel similar to independent

channel operation in conventional DRAM based memory systems. We will refer to this operation

as inter vault parallelism.

Moreover, the TSV bus has very low latency that is much smaller than the typical tCCD (column to

column delay) values [38, 111]. This allows time sharing the TSV bus among the layers via careful

scheduling of the requests which enables parallel operation within the vault (e.g. [120]). We will

refer to this operation as intra vault parallelism.

HMC is not a JEDEC standard. Instead of the conventional DDR standard, it has a serial com-

munication interface. Serializer/deserializer (SerDes) units in the logic layer used to interface to

off-stack, implementing a packet-based network communication. Despite its complexity, this inter-

face allows direct short-reach links eliminating the need for silicon interposer. Currently 10, 12.5

and 15 Gb/s data rate lanes are planned where each link features 16 lanes and logic layer implements

4 to 8 links. 15 Gb/s lane configuration with 8 links can reach up to 480 GB/s aggregate off-stack

bandwidth.

HMC can achieve very high energy-efficiency as well compared to conventional DRAM modules.

It is reported that the overall energy efficiency is 10.48 pj/bit including DRAM access, TSV transfer

and SerDes based I/O [65]. 6.78 pj/bit accounts for the logic layer which combines the SerDes and

controller units. This is a significant improvement when compared to 70 pj/bit energy efficiency of

the DDR3 and 18-22 pj/bit energy efficiency of the GDDR5 [65, 89].

Furthermore, the base logic layer implements memory/vault controllers that schedule the DRAM

commands while obeying the timing/energy constraints. This allows less complex memory con-

troller on the host side. Data switching between vaults and I/O links is achieved by a crossbar

interconnect. Typically, these native control units do not fully occupy the logic layer and leave a

real estate that could be taken up by custom logic blocks [65]. However, the thermal and power
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Figure 2.7: AMD’s high bandwidth memory (HBM). Reprinted from [1].

constraints limit the complexity of the custom logic.

High Bandwidth Memory (HBM). As shown in Figure 2.7, High Bandwidth Memory (HBM)

integrates multiple DRAM dies and an optional logic die by using TSVs and micro-bumps. Dense

TSV connections at the base layer are directly connected to the host processor, as opposed to the

HMC system. This connection is implemented through a silicon interposer substrate. HBM is a

standardized interface adopted by JEDEC [16].

HBM features a wide interface of 128-bits per channel. In HBM, vertical stack of banks form a

channel, equivalent to a vault in HMC terminology. Each channel can operate in parallel and not

necessarily in lock-step fashion. This enables a high parallelism. Furthermore, these channels are

directly exposed to the host processor. Currently, HBM supports 8 channels per stack where each

stack supplies up to 32 GB/s of bandwidth which results in 256 GB/s per stack. Note that this

bandwidth is directly available to the host processor, in contrast to HMC where part of the total

bandwidth is spent on non-data packets over the serial network communication. Moreover, HBM

can reach 6-7 pj/bit of energy efficiency. Due to its simplicity, HBM is more energy efficient than

the HMC system which achieves around 10.5 pj/bit [65, 89].

Wide I/O. Wide I/O and Wide I/O 2 are also JEDEC compliant technologies, currently geared

towards the mobile devices. They involve a DRAM layer directly stacked on top of a processor.

This can be achieved through flip-chip, 2.5D interposer or 3D-stacked using TSV. Wide I/O uses

large amount of TSVs at lower frequency to achieve high energy efficiency. This results in the
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Table 2.1: Comparison of 3D-stacked DRAM systems Wide IO2, HBM, HMC.

Feature Wide IO 2 HBM HMC

Target system Mobile Graphics Server/Enterprise
JEDEC compliant Yes Yes No
Interface Wide parallel Wide parallel Serial SerDes
Interface width 256-512 bits 8x128 bits 4-8 links, each 16 lanes
Interface voltage 1.2 V 1.2 V 1.2 V
Data rate per pin 1066 Mbps 2000 Mbps 10-12.5-15 Gbps
Max. Bandwidth 68 GB/s 256 GB/s 320 GB/s
System integration Stacked on host Interposer High-speed links
Main shortcoming Thermal/power impact Depends on interposer Non JEDEC standard

lowest I/O power for large bandwidth.

Table 2.1 summarizes the differences and salient features of the discussed 3D-stacked DRAM tech-

nologies (HMC, HBM and Wide IO2).

Silicon Interposer Based Connection. Host memory connection technology is mainly driven by

the implemented memory interface. For example, HBM and Wide I/O technologies implement a

parallel direct connection interface. This requires high number of TSV based IO connections. A

silicon interposer based substrate used to implement the high number of IO connections between

the processor and the memory. Silicon interposer can provide high number of connections but it

requires a separate interposer layer on the main substrate. Despite its standardized JEDEC compliant

interface, interposer based connection limits the drop-in replacement flexibility. Replacing and

distributing memory modules for different host processors becomes more difficult as the connection

is tied to an interposer. Yet, direct connection from the internal TSVs to the host enables a simple

communication. An example system architecture using silicon interposer based connection is given

in Figure 2.9.

Short-reach Link Based Connection. HMC features SerDes units integrated in the logic layer

which allows serial network based interface. This technology requires high-speed link based con-

nection. Point-to-point link connection eliminates the need for silicon interposer substrate. The
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Figure 2.8: System architecture using silicon interposer based connection.
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Figure 2.9: System architecture using point-to-point SerDes based link connection.

HMC goes into a conventional package and it is integrated to the PCB (printed circuit board) where

the links directly connect it to the host. This limits its off-stack bandwidth however it enables flex-

ible drop-in replacement capability. An example system architecture using point-to-point SerDes

based link connection is shown in Figure 2.9.

2.2 Hitting the Memory and Power Walls

Following the Moore’s law which suggests doubling the transistors on chip every 18 months, im-

provements in the transistor technology scaling enables putting more compute elements on chip in

the form of processors and accelerators [84]. However, DRAM technology scaling has been lack-
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ing behind in matching the same trend which causes the well-known memory wall problem [115].

With the rapid growth of the Internet and world wide web, the big data era emerged where the

data intensive applications require intensive memory usage. Especially the common roundtrip data

movement between the processor and DRAM for the data intensive applications puts more pressure

on the memory system.

Moreover, after the Dennard scaling era, energy became the limiter of the high-performance sys-

tems. With the Dennard scaling, every processor generation implemented twice as many transistors

which are clocked almost half times faster than the previous generation while consuming the same

power. But after the Dennard scaling, doubled transistors will consume 40% more power when

clocked at the same frequency [68]. This creates the dark silicon problem where the part of the chip

is under-clocked or completely turned off to meet the power consumption limitations.

In addition to the on-chip power consumption, memory power consumption poses even more critical

problem for high-performance systems. Accessing the off-chip data is 2 to 3 orders of magnitude

more costly than on-chip access. Energy cost of a double-precision fused multiply-add operation

and a 64-bit on-chip SRAM access are estimated as around 50 pJ and 14 pJ, whereas the same

width off-chip access is more than 10 nj [56, 69, 77]. Moreover, with the transistors shrinking

every generation, wire energy becomes more critical since wire capacitance per mm remains the

same. When executing commodity data intensive workloads, modern processors spend substantial

amount of time and energy on data movement. It is reported that current systems spend 28–40%,

35% and more than 50% of the total system energy on data movement for scientific, mobile and

general-purpose workloads respectively [70, 91]. According to technology scaling trends this ratio

will increase in the future systems [69].

The given landscape of computing systems and the technology scaling trends point towards an

energy constrained computing era. In this era, the energy consumption will be dominated by the

communication costs, both on-chip and off-chip. Emergence of data intensive applications which

require intensive memory access, data movement and I/O, further aggravates the communication

energy problem. Future high-performance computing systems have to find ways to minimize the
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data movement to tackle the energy consumption limitation.

2.3 Near Data Processing

Pursuing the Von Neumann computation model, conventional processing platforms have been built

following a computation-centric model. In the computation-centric model, data is moved through-

out the memory hierarchy from disk to on-chip caches as necessary to perform arithmetic and logic

operation on the centralized host processor. This model has been sufficient for decades where the

intensive arithmetic and logic computations are much more costly than the data movement. Fur-

thermore, deep memory hierarchies and large caches help alleviate the cost of data movements by

exploiting the data locality. However, prevalent technology scaling trends point towards processing

systems where the latency and energy costs are dominated by the data movement. Furthermore,

data intensive applications that operate on large datasets require data movement across the entire

memory hierarchy which further exacerbates the communication costs.

The shift from the computation dominated processing systems to the communication dominated

systems requires a shift from the computation-centric processing model to a data-centric one. In

contrast to the computation-centric model, the data-centric processing model distributes the compu-

tation to multiple levels of the memory hierarchy. Hence, instead of moving the data to a centralized

processor, the processing is handled where the data reside using nearby processing elements. With

the near-data processing (NDP) paradigm, instead moving data throughout the system, the compute

is moved to the data. Hence, NDP paradigm can reduce the data movement costs significantly.

Near data processing is not a new concept. It has been explored in variety of technology contexts

in the forms of custom compute units near on-chip/off-chip memory, I/O or disk [39, 46, 57, 60,

67, 90, 93]. Most of these NDP approaches focused on computation near main memory in the

form of processing elements and DRAM or embedded DRAM (eDRAM) integrated in the same

chip. Although, these efforts demonstrate significant improvements, NDP technology suffered in

widespread adoption. One of the main factors in this limitation is the manufacturing difficulty and



Chapter 2. Background 21

costs. DRAM and logic process technologies are optimized differently. Proposed NDP systems

either difficult and costly to manufacture, or the resulting implementations offered limited perfor-

mance.

Nevertheless, with the emergence of big-data workloads and communication-dominated processing

systems, reducing data movement becomes inevitable. Furthermore, with the technology advances

such as 3D stacked integration, NDP regained a substantial research attention [65, 76, 114, 120].

Next we will focus on NDP systems exploiting 3D-stacked integration technology to reduce the

off-chip data movements.

2.3.1 3D Stacking Based Near Data Processing

3D-stacked IC technology enables integration of multiple dies implemented in different transistor

technologies. 3D-stacked DRAM is an example for the 3D integration technology where multiple

DRAM layers and logic layer(s) are vertically integrated using the through silicon via (TSV) based

connection [16, 94]. Dense TSV based vertical connection enables very high bandwidth and low

latency internal communication, bypassing limited off-chip pins. This creates an efficient substrate

to implement near-data processing systems. There exists several alternatives for integrating NDP

accelerators near 3D-stacked DRAM that provide tradeoffs in cost, energy, complexity and perfor-

mance. Figure 2.10 demonstrates three main alternatives for 3D-stacked DRAM based NDP.

First option is to integrate the accelerator off-stack ( 1 in Figure 2.10). This is the simplest scheme

where the accelerator is external to the stack. Hence, the memory stack design is not modified.

Furthermore, the thermal impact of the accelerator on the DRAM layers is eliminated. However,

the accelerator and the memory stack communicate through external links or interposer. This limits

the bandwidth between the accelerator and the DRAM. Moreover, each access still suffer from high

energy data transfer cost.

Integration of the accelerator as a part of the memory stack (i.e. 2 and 3 in Figure 2.10) allows

utilizing the bandwidth and energy-efficiency potential of the 3D-stacked DRAM more efficiently.
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Figure 2.10: Accelerator integration to a 3D-stacked DRAM: (1) Off-stack, (2) stacked as a separate
layer, (3) integrated in the logic layer.

Integration as a separate layer ( 2 ) reduces the memory access distance to TSV based accesses.

However, the data transfer requires additional hops through the logic controller layer to access

the DRAM layers. To avoid the access through logic layer, accelerator layer can implement its own

DRAM controller interfaces. However, this further increases the complexity in the accelerator layer.

It also requires arbitration between multiple controllers in the stack.

Furthermore, integrating the accelerator as a part of the logic layer (i.e. 3 ), behind the external in-

terface, unlocks the access to internally available bandwidth and energy efficiency provided by TSV

based vertical connection. In this scheme, the accelerator directly communicates with the logic layer

memory controllers. Similar to 2 , this scheme also eliminates the external data transfer. Moreover,

it eliminates the detour on the logic layer for accesses between the DRAM and the accelerator. The

main shortcoming of this approach, however, is the limited area, power consumption and tempera-

ture budget for a custom accelerator implementation in the logic layer. As discussed, the logic layer

already includes native control units such as an interconnection fabric, memory/vault controllers,

SerDes units, etc. It is reported that these units leave a real estate to be taken up by custom logic

[94]. However, compared to a separate die, the area and power consumption headroom is more

limited.
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2.3.2 Hardware Specialization for NDP

Complete processing elements integrated in the logic layer are limited in utilizing the internal band-

width while staying within an acceptable power envelope. For example, in [97], although simple

low EPI (energy per instruction) cores are used in the logic layer, some of the SerDes units are deac-

tivated to meet the power and area budgets, sacrificing the off-chip bandwidth. In [64], it is reported

that more than 200 PIM (processing in memory) cores are required to sustain the available band-

width which exceeds the power limit for the logic layer. Furthermore, NDP with simple logic layer

configuration that meets the power and area constraints can even lead to application slowdowns

[117].

Specialized hardware units are more efficient in providing higher throughput (hence memory in-

tensity) per power consumption that is far beyond what general purpose processors can provide.

Modern general purpose processors implement mechanisms such as instruction decoding, register

renaming, out-of-order scheduling, branch prediction, prefetching, etc. that does not make actual

computation but assist the processor to increase the execution throughput. These overheads create

2 to 3 orders of magnitude energy consumption difference between a specialized ASIC and a gen-

eral purpose processor while processing the same application [62]. Hence, hardware accelerators

specialized in simple compute mechanisms can be a good fit for area and power limited near-data

processing systems.

2.4 Data Layout and Reorganization

For a simple compute mechanism candidate that can be a good fit for 3D-stacked DRAM based

NDP, we focus on data reorganization. We refer to an operation that relocates data in the memory

as data reorganization. Data reorganization is a fundamental and powerful technique to optimize

the memory access performance.

An application’s memory access performance is fundamentally determined by its algorithmic be-
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havior that generates the logical sequence of memory accesses and the data layout in memory that

determines the actually accessed physical locations. In the current modern programming model

abstractions, actual data layout and memory access behavior are not exposed to the users. Hence,

programmers spend significant manual effort to optimize the algorithmic behavior of the application

for an improved memory performance. Often times these optimizations are specific to a platform’s

memory hierarchy and architectural details. Moreover, existing mechanisms such as memory access

scheduling and compiler transformations provide limited improvements by reshaping the memory

access patterns to partially recover the underutilized memory locality and parallelism.

The underlying data layout can be the limiting factor where solely optimizing the application’s al-

gorithmic behavior or the recovery mechanisms would not be sufficient for the best memory access.

For example, if the two data elements sequentially required by an application are mapped to two

different rows in a DRAM bank, neither algorithmic optimizations nor memory access reordering

can solve the inevitable row buffer miss. Moreover, different applications or even different algo-

rithms for the same application may favour different data layouts for a better memory access. The

optimized layout for an application can also change with different architectures.

For an application which exhibits poor memory access performance (i.e. low bandwidth, low energy

efficiency, high row misses, low memory parallelism) reorganizing its data layout can improve the

memory access performance significantly. In Figure 2.11 we demonstrate a motivational example

for memory access improvement via data reorganization. We run the memory trace for the PARSEC

[32] benchmark facesim available from [14] on the USIMM DRAM simulator [35] modeling a

single channel DDR3-1600 DRAM [7] with open page policy and FR-FCFS (first-ready, first-come

first-serve) scheduling. Figure 2.11(a) demonstrates the normalized average address bit flip rate

in the memory access stream. Address bit flip rate (BFR) is determined by recording the changes

(or flips) for each DRAM address bit. The basic idea is that the highly flipping bits correspond

to frequent changes in short time which are better suited to be mapped onto bank or rank address

bits to exploit the parallelism. On the other hand, less frequently flipping bits are better suited to

be mapped onto row address bits to reduce the misses in the row buffer. The data layout for this
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Figure 2.11: (a) Normalized bit flip rate in the physical address stream, (b) simple address remap-
ping scheme and (c) row buffer miss rate reduction via the address remapping and (d) the resulting
performance improvements for 8-wide and infinite compute power systems for facesim from PARSEC.

application can be reorganized such that the high BFR bits are mapped into bank/rank region of

the DRAM address and the low BFR bits are mapped into the row region of the DRAM address.

Figure 2.11(b) shows an example remapping that changes the address mapping such that highly

flipping bits {26, 25, 19} are swapped with {15, 14, 13}. Figure 2.11(c) presents the reduction

in the row buffer miss rate where data layout is reorganized as described. Finally, Figure 2.11(d)

shows the achieved speed-up via the new mapping on an 8-wide 3.2 GHz processor. It also shows

the upper bound for performance improvement where the overall runtime is purely memory bound

such that the non-memory instructions are executed in a single cycle.

The results in Figure 2.11 show that the default data layout for an application can cause inefficient

performance where reorganizing its dataset leads to significant performance improvement. Hence,

global data layout and address mapping schemes can cause inefficient memory system utilization.
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There exists efficient address mapping schemes such as [118] that improves the memory access

performance for variety of applications. Moreover, application-specific address mapping schemes

that will lead to higher parallelism and locality can be determined.

The previous example demonstrates an architectural solution; given the fixed application behav-

ior, data reorganization improves the memory performance transparently. Data reorganization can

also be a critical building block of an applications. For example, data reorganizations appear as

an explicit operation in several scientific computing applications such as signal processing, molec-

ular dynamics simulations and linear algebra computations (e.g. matrix transpose, pack/unpack,

shuffle, data format change etc.) [12, 21, 30, 55, 58]. High performance libraries generally pro-

vide optimized implementations of these reorganization operations [5, 55]. There are several works

demonstrating reorganization of the data layout into a more efficient format to improve performance

[21, 36, 58, 92, 107, 108]. Hence, such applications can benefit from a substrate that allows efficient

data reorganization exposed to the programmer.

In addition to the ability to accelerate critical data reorganization type operations, efficient data

reorganization capability exposed to the programmer gives an ability to reconsider entire algorithms

to exploit efficient dynamic data layout computing. There are intrinsically difficult problems where

an efficient solution include the co-optimization of the algorithm behavior both in terms of compute

dataflow and memory access pattern, as well as the underlying data layout [21]. Such problems can

benefit from an ability to consider and more importantly manipulate the underlying data layout as a

part of their algorithm design space.

However, reorganizing data in the memory comes with substantial performance overheads, and

bookkeeping costs. Considering the high precision and large data sizes, significant fraction of the

dataset reside in the main memory. Therefore, ideally, most of the data reorganization operations

are memory to memory. However, on conventional systems data needs to traverse the memory hi-

erarchy and the processor, incurring large energy and latency overheads. Roundtrip data transfer

consumes the shared off-chip memory bus bandwidth which also degrades the performance of the

other applications that run on the system. Furthermore, there exists a bookkeeping cost for track-
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ing the mapping from original to reorganized locations. Conventionally this is either handled by

implementing a hardware lookup table that store the mappings from each original location to the

remapped location, or through costly OS page table updates and TLB invalidations.

NDP Approach for Data Reorganization. From a workload characteristic standpoint, data re-

organization do not require intensive arithmetic and logic computations. Furthermore, these oper-

ations are memory to memory, in other words the input data reside in the main memory and the

output data end up in the main memory in a different shape. These two fundamental characteristics

make the data reorganization a good fit for NDP.
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Chapter 3

A Formal Approach to Memory Access

Optimization

This chapter presents a mathematical framework used to describe and manipulate memory access

optimizations. Transforming data organizations, access patterns and address mappings are repre-

sented by permutations. A tensor (or Kronecker product) based mathematical framework is intro-

duced to structurally manipulate the permutations represented as matrices. This framework enables

extracting important practical implications related to the data and control flow, address mapping,

memory access behavior, and data layout. After exemplifying the key practical implications, a

formula rewrite system is introduced that enables automated restructuring of permutations.

3.1 Mathematical Framework

A permutation is defined as a rearrangement of all the members of a set to an order. It is a bijective

function from a set to itself. From a memory access optimization perspective, data layouts, memory

access patterns and address mapping schemes all correspond to a particular mapping function that

represent an order of entities. For example, data layout corresponds to the mapping of a set of data to

a physical memory space. Memory access pattern represents the order of locations that are accessed

29
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sequentially. Furthermore, address mapping is a translation function which maps virtual addresses

to physical addresses, or physical addresses to DRAM locations. Hence, data layout transformation,

access pattern reordering or address remapping can be captured by a permutation.

3.1.1 Formula Representation of Permutations

Permutations can be expressed as matrix-vector multiplication such that dout = Pn.din where Pn is

the n-by-n permutation matrix, din and dout are n-element input and output vectors. A permutation

matrix is a binary matrix where each row or column has a single non-zero element. It permutes

the input vector based on the locations of the non-zero elements. For example, a permutation ma-

trix P8, which is a special permutation L8,2 as we will see later (stride permutation), is given as

follows:

P8 = L8,2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 . . . . . . .
. . 1 . . . . .
. . . . 1 . . .
. . . . . . 1 .
. 1 . . . . . .
. . . 1 . . . .
. . . . . 1 . .
. . . . . . . 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.1)

The Kronecker (or tensor) product based formalism developed in [109] captures the structures in

the decomposition of the permutation matrices. This formalism is further extended in SPL (Signal

Processing Language) to represent fast signal processing algorithms [116]. In this thesis, the Kro-

necker product formalism serves as the language for expressing and manipulating permutations and

it is the basis of the developed mathematical framework.

The basic elements of the framework are special structured matrices and matrix operators. Before

going forward, we define these special matrices and operators.
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Special Matrices. Special structured matrices are building blocks of the formal framework. First,

n×n identity matrix In and n×n reverse identity matrix (swap permutation) Jn are given.

In =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
. . .

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Jn =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

. .
.

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Permutation matrices are another family of the important building blocks. For example the stride

permutation operation, denoted as Lnm,n or Lnm
n , takes the elements from din at stride n in a modulus

nm fashion and puts them into consecutive locations in the nm-element dout vector:

din[in+ j]→ dout[ jm+ i], for 0 ≤ i <m, 0 ≤ j < n.

An example stride permutation matrix L8,2 is previously given in (3.1). Another specific permutation

matrix is the cyclic shift matrix Cm,n which applies a circular shift of n elements in the m element

input vector:

Cm,n =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

In

Im−n

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

For example, the cyclic shift matrix C5,2 is given as:

C5,2 =

⎡
⎢
⎢
⎢
⎢
⎣

. . . 1 .

. . . . 1
1 . . . .
. 1 . . .
. . 1 . .

⎤
⎥
⎥
⎥
⎥
⎦

Finally, two basic vectors, n-element column vector of 0’s µn and n-element column vector of 1’s

νn, are given as follows.

µn =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
...

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, νn =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
...

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Matrix Operators. Product is a straightforward matrix operator given as A ⋅B = AB. Then, we
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introduce two matrix operators, direct sum (⊕) and tensor (Kronecker) product (⊗). These operators

are useful in structured combinations of the matrices.

The direct sum operator (⊕) composes two matrices into a block diagonal:

A⊕B =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

A

B

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

Tensor (Kronecker) product is a very critical matrix operator in this framework which is defined

as:

A⊗B = [ai, jB], where A = [ai, j].

Two important special cases arise when either of the matrices of the tensor product is the identity

matrix. If the left operand is the identity matrix (In⊗A), then it forms a simple block diagonal

matrix:

In⊗A = A⊕A⊕ . . .⊕A
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n times

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A
. . .

A

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

As we will see later, this operation corresponds to repetition of the small kernel or permutation over

a large dataset. On the other hand, if the right hand operand is the identity matrix (A⊗ In), then it

also produces a interesting case where each element is replicated n times:

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a b

c d

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⊗ I2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a b

a b

c d

c d

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Interpretations. The permutations created by the provided matrices and matrix operators can be

used to express a data layout, memory access pattern or an address mapping.

For example, a streaming access to n elements corresponds to the identity matrix In. On the other
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hand, Lm,k represents stride-k accesses to a group of m elements. These can be combined such that

the overall access pattern is given as Lm,k⊗In. This case represents a block-stride access pattern,

where n element burst accesses are separated by k∗n element strides.

Similarly, a permutation can express a data layout. For example, given an n×n matrix and assuming

a row-major increasing indices for the matrix elements, In2 maps the consecutive elements linearly

into the memory address space which leads to row-major data layout. However, Ln2,n maps the

consecutive elements into stride-n separated locations in the memory, which leads to column-major

data layout.

As we will see next, these matrix expressions can be restructured through formula identities rules.

3.1.2 Formula Identities

Matrix expressions discussed so far which combine provided special matrices through matrix oper-

ators are called formulas. These formulas are the basic representations in the SPL [116], so formula

and SPL expression terms are used interchangeably. Formulas essentially represent an algorithm (or

a dataflow) of a matrix that transforms the input vector. The matrices can be any linear transform

but this thesis mainly focuses on permutations.

Different formulas can correspond to the same matrix which means that they essentially perform the

same computation but with a different algorithm. This is achieved through the formula identities. A

formula identity is a mathematical identity that restructures a matrix which allows representing the

same matrix, i.e. ultimately the same computation, with different formulas, i.e. different algorithms.

A few example formula identities are given below.

An⊗Bm → (An⊗ Im)(In⊗Bm)

An⊗Bm → Lmn,n(Bm⊗An)Lmn,m

We will particularly develop formula identities to manipulate permutations expressed in SPL for

various goals. These goals include, but not limited to, optimizing memory accesses for better par-
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Figure 3.1: An example data reorganization (L8,2) on 8 elements and the corresponding address remap-
ping scheme.

allelism and locality, transforming the data layout for a particular application, changing the DRAM

address mapping and restructuring a permutation to fit the local permutations into the local mem-

ory.

Next we particularly focus on the data reorganization where the data layout transformation, address

remapping and memory access patterns are represented by permutations.

3.2 Permutation as a Data Reorganization Primitive

From a data reorganization perspective, a permutation takes an input dataset din and rearranges the

elements to produce dout such that dout = Pn.din. Here, Pn is the n-by-n permutation matrix, din and

dout are n-element input and output datasets represented as vectors.

Let’s take L8,2 as an example data reorganization. L8,2 is an 8× 8 permutation matrix, hence it

permutes 8-element input vectors. Figure 3.1(a) shows the corresponding reorganization of an 8-

element dataset according to L8,2. After the permutation reorganizes the dataset, the original ad-

dresses will hold stale data. For example an access to the location 001 will return the data c, which

originally stored data b.

As presented in Figure 3.1(b) an address remapping mechanism that forwards the input addresses
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(x) to their new locations (y) can solve this problem. Each permutation has a corresponding index

transformation that represents the address remapping for a data reorganization. Figure 3.1(b) shows

the index transformation of the permutation L8,2, given as y=Bx. This unit will forward every access

x to their new locations y via y = Bx. Following the previous example, an access to x = 001 will be

forwarded to the location y = 100 via y = Bx such that the returned data will be b as expected. This

simple example demonstrates that the index transformation can be used to remap the addresses after

a reorganization.

Permutations also capture the memory access pattern information of the data reorganization. Until

now, the discussed permutations focused only on spatial locations and did not consider the time

ordering. While reorganizing a dataset through a permutation, the sequence of the memory accesses

are generated based on the performed permutation. When performing the permutation L8
2, as shown

in Figure 3.1(a), the corresponding memory accesses for reading and writing will be sequential

and permuted order respectively. It is possible to rearrange the order of accesses again through

permutations.

Overall, permutation is an effective means of representing and manipulating data reorganization

operations. In this section our main goals are:

• Use the permutations as primitive operations to represent data reorganizations.

• Develop a systematic way of determining the index transformation for general permutation

based reorganization operations to represent the address remappings.

• Develop a formula rewrite system and restructure the permutations to optimize for memory

access patterns.

3.3 Index Transformation

Each permutation has an index transformation that transforms the indices of the input data and maps

them to the corresponding locations in the output. In the context of data reorganizations, the index
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transformation corresponds to the address remapping.

Our goal is to define a mapping function fπ that determines the corresponding index transformation

for a given permutation. Specifically, it will determine the address remapping from the original

location x to the remapped location y such that:

y = Bx+c (3.2)

Here, assuming n bit addresses, x and y are n-element bit-vectors that represent the input and

remapped addresses respectively. B is an n× n bit-matrix and c is an n-element bit-vector. In

this form, the index transformation is an affine transformation on the address bits. This thesis only

focuses on the class of permutations whose index transformations are affine functions and B is a

permutation matrix, i.e. single non-zero in each row or column. This class covers many important

practical permutations including stride permutation, bit reversal, swap permutation and their com-

binations through product, tensor product and direct sum. Hence, this class of permutations can

express many important data reorganizations such as, matrix transpose, pack/unpack, swap, shuffle,

copy/move, multidimensional data array rotation, recursively blocked data layouts, etc.

The bit representation for the index transform allows us to calculate all the remapped addresses.

A crucial implication of this property is that one can reorganize the elements within the memory

and then use the index transformation for address remapping such that the logical abstraction kept

unchanged. As we will see later, this enables data layout transformation completely in hardware

transparent to the software stack.

Stride permutation. First, we focus on the class of permutations that are constructed by combi-

nations of the stride permutations (L) with identity matrices (I) via tensor product (⊗) and matrix

multiplication (.). This class of permutations can represent a variety of important data reorga-

nization operations such as shuffle, pack/unpack, matrix transpose, multi-dimensional data array

rotation, blocked data layout, etc. For this class of permutations, the fundamental properties of fπ
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are given as follows:

fπ(L2nm,2n)→ B =Cnm,n, c = µnm (3.3)

fπ(I2n)→ B = In, c = µn (3.4)

fπ(P ⋅Q)→ B = BP ⋅BQ, c = cP+cQ (3.5)

fπ(P⊗Q)→ B = BP⊕BQ, c =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

cP

cQ

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(3.6)

For this class of permutations, the B matrix is constructed out of cyclic shifts, multiplication and

composition (direct sum) operators. Here we emphasize that the combinations of these operators

can represent "all" possible permutations on the address bits. Hence this class covers all of the data

permutations whose index transformation is also a permutation on the address bits. We will later

focus on the practical implications of these properties.

Swap permutation. We extend the reorganization operations to include different classes of per-

mutations. First, we define the swap permutation Jn as follows:

din[i]→ dout[n− i−1], for 0 ≤ i < n.

Jn is simply the In matrix with the rows in the reversed order, as previously shown in (3.1.1). Swap

permutations are especially useful to represent out-of-place transformations and swap type of oper-

ations. For example, J2⊗In can be interpreted as simply swapping the two consecutive n-element

regions in the memory. Address remapping for the swap permutation is given as follows:

fπ(J2n)→ B = In, c = νn (3.7)

Morton layout. Morton data layouts, or in general space filling curves, are based on recursive

blocking [85]. Large data sets are divided into blocks recursively until the small leaf blocks reach

to the desired size. There are various forms of Morton layouts depending on the order of blocking
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while the most commonly used one is the Z-Morton (Z2n,2m). Z-Morton layout is useful for various

scientific, high-performance and database applications [33, 92]. Z-morton layout can be represented

only by stride permutations, so the properties (3.3)-(3.6) are sufficient to represent it. However, we

present this as a specific case since its address remapping corresponds to a stride permutation on the

address bits:

fπ(Z2n,2m)→ B = Ln,2⊗Im, c = µnm (3.8)

Conditional permutations. Some applications require different permutations on separate regions

of their dataset. Also, for some cases, data reorganization is applied only on a portion of the dataset

keeping the rest unchanged. Direct sum operator (⊕) is useful to express these cases. Direct sum

operator calls for a conditional, address dependent remapping function:

fπ(Pk⊕Ql) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

fπ(Pk)→ B = BP, c = cP for 0 ≤ i < k

fπ(Ql)→ B = BQ, c = cQ for k ≤ i < k+ l
(3.9)

Here both of the B matrices, BP and BQ, are padded with the identity matrix (I) towards the most

significant bit to match the height of x (and y), i.e. address bit-width. Similarly, the c vectors, cP and

cQ, are padded with the zero vector (µ) again towards the most significant bit to match the address

bit-width.

We also define a reverse direct sum operator, ⊕̄ as follows:

P⊕̄Q =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

P

Q

⎤
⎥
⎥
⎥
⎥
⎥
⎦

and P⊕̄P⊕̄ . . .⊕̄P
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

= Jn⊗P

The index transformation for the reverse direct sum operator is given as:

fπ(Pk⊕̄Ql) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

fπ(Ql)→ B = BQ, c = cQ for 0 ≤ i < l

fπ(Pk)→ B = BP, c = cP for l ≤ i < k+ l
(3.10)

Here, similar to the direct sum, both of the B matrices, BP and BQ, are padded with the identity
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matrix (I) towards the most significant bit to match the height of x (and y), i.e. address bit-width.

However, the c vectors, cP and cQ, are padded again towards the most significant bit but with the

one vector (ν) in this case.

Example. Now let’s take a simple example data layout transform (L4,2⊗I2)⊕ (I2⊗J4) on 16 ele-

ment dataset. The dataflow representation is given in Figure 3.2 (note that the dataflow representa-

tion in Figure 3.2 is broken into two parts for demonstration purposes).

(0000) 0 

(0001) 1 

(0010) 2 

(0011) 3 

(0100) 4 

(0101) 5 

(0110) 6 

(0111) 7 
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Figure 3.2: Dataflow representation of (L4,2⊗ I2)⊕(I2⊗J4).

By using the fundamental properties of the fπ we derive the bit matrix for address remapping as

follows:

fπ((L4,2⊗I2)⊕(I2⊗J4))→

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

B = I1⊕C2,1⊕I1, c = [µ1∣µ3], for 0 ≤ i < 8

B = I1⊕I1⊕I2, c = [µ1∣µ1∣ν1], for 8 ≤ i < 16

Here we padded the B matrices with identity matrix (I1) to match their width with the height of the

address vector. Similarly we padded the c vectors with zero vector (i.e. µ1) again to match their

height with the address vector.

fπ((L4,2⊗I2)⊕(I2⊗J4))→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B = [

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

], c = [
0
0
0
0
], for 0 ≤ i < 8

B = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

], c = [
0
0
1
1
], for 8 ≤ i < 16

Now let’s test the address remapping via index transformation for the examples of accessing ele-

ments at address 3 and address 11. For an access to the address 3 (i.e. x = 0011) the index transfor-
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mation is given as:

y = Bx+c = [
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

][

0
0
1
1
]+[

0
0
0
0
] = [

0
1
0
1
] =5

Similarly, for the case where there is an access to the address 11 (i.e. x = 1011) the index transfor-

mation is given as:

y = Bx+c = [
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

][

1
0
1
1
]+[

0
0
1
1
] = [

1
0
0
0
] =8

Hence, based on the index transformations, accesses to the locations 3 and 11 are remapped to

5 and 8 respectively. An analysis of Figure 3.2 demonstrates that these remappings are indeed

correct.

Table 3.1: Summary of the address remapping rules.

fπ(L2m,2n)→ B =Cm,n, c = µm (3.11)

fπ(I2n)→ B = In, c = µn (3.12)

fπ(J2n)→ B = In, c = νn (3.13)

fπ(Z2n,2m)→ B = Ln,2⊗Im, c = µnm (3.14)

fπ(P ⋅Q)→ B = BP ⋅BQ, c = cP+cQ (3.15)

fπ(P⊗Q)→ B = BP⊕BQ, c = [
cP

cQ
] (3.16)

fπ(Pk⊕Ql)→ {
fπ(Pk) for 0 ≤ i < k
fπ(Ql) for k ≤ i < k+ l

(3.17)

fπ(Pk⊕̄Ql)→ {
fπ(Ql) for 0 ≤ i < l
fπ(Pk) for l ≤ i < k+ l

(3.18)

3.4 A Formula Rewrite System for Permutations

This section describes the key components of the SPL formula rewrite system for permutations.
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3.4.1 Permutation Rewriting

Permutations described as formulas are restructured via formula identities, as defined in Section

3.1.2. Applied formula identities change the dataflow and create a restructured algorithm while

keeping the ultimate core computation same. For example, by restructuring a permutation formula,

memory access patterns can be optimized for locality/parallelism. The proposed formula rewrite

system uses the formula identities as rewrite rules.

Table 3.2: Basic formula identities.

(AB)
T
= BT AT (3.19)

(A⊗B)
T
= AT

⊗BT (3.20)

Imn = Im⊗In (3.21)

An⊗Bm = (An⊗ Im)(In⊗Bm) (3.22)

A⊗(BC) = (A⊗B)(A⊗C) (3.23)

An⊗Bm = Lmn,n(Bm⊗An)Lmn,m (3.24)

(Lmn,m)
−1
= Lmn,n (3.25)

Table 3.3: Key permutation rewrite rules.

Lnm
n = (Lnm/k

n ⊗Ik)(Inm/k2 ⊗Lk2

k )(Im/k⊗Ln
n/k⊗Ik) (3.26)

Lnm
m = (Im/k⊗Ln

k⊗Ik)(Inm/k2 ⊗Lk2

k )(Lnm/k
m/k ⊗Ik) (3.27)

Lnk
n = (In/k⊗Lk2

k )(Ln
n/k⊗Ik) (3.28)

Lnk
k = (Ln

k⊗Ik)(In/k⊗Lk2

k ) (3.29)

Lkmn
km = (Ik⊗Lmn

m )(Lkn
k ⊗Im) (3.30)

Lkmn
n = (Lkn

n ⊗Im)(Ik⊗Lmn
n ) (3.31)

Set of the basic formula identities, or rewrite rules, are given in Table 3.2. In addition to the basic

rewrite rules, Table 3.3 provides the key formula identities that restructure the permutations. Hence,

given a permutation expressed as an SPL formula, the rewrite system uses the set of rules given in

Table 3.2 and Table 3.3 to rewrite the permutation and produce restructured algorithms. Moreover,
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it uses the set of rules given in Table 3.1 to derive the corresponding address remapping for the

permutation.

3.4.2 Labelled Formula

The rewriting system can be used to restructure the permutations expressed in SPL for variety of

goals in different contexts. After the rewrite operation, special labels are attached to formula con-

structs which represent the implied functionality in the implementation. In this thesis we will use

the following labels:
Ð→
(.),

←Ð
(.), ⊗̃, (.) and (.).

The label
Ð→
(.) represents a permutation corresponding to data layout and

←Ð
(.) represents the permu-

tation corresponding to the address mapping. These constructs are explicitly labelled for the cases

where the data layout is changed transparently as a part of an optimized algorithm (e.g. block layout

FFTs [21]).

Furthermore, ⊗̃ corresponds to iteration operator. It generally appears in the form of I` ⊗̃(.), where

the right hand side operand is applied ` times. Here, (.) represents a kernel that will be performed

locally, i.e. local permutation.

Finally, (.) represents a permutation that is performed through memory accesses. These constructs

generally appear as the leftmost and rightmost operands, and determine the memory access pat-

terns.

Summary. Permutations can represent memory access optimizations through transforming data

layout, access pattern or address mapping. The formal framework demonstrates set of formula

identities to manipulate the permutations expressed as formulas. These formula identities are used

as rules in a rewrite system. This enables restructuring permutations with various goals including

optimizing access patterns, transforming data layout or changing address mapping. As we will

see, the formal approach helps to automate this process through integration into an existing rewrite

system Spiral. Next, we will demonstrate the rewrite system in action through an example case
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study.

3.4.3 Case Study

In this case study, we demonstrate permutation rewriting examples for a data layout transform and

memory access pattern optimization. We assume a given application with fixed problematic memory

access pattern on a given memory system. We assume that the memory system includes a custom

hardware substrate that can perform high throughput local permutations. The goal is to demonstrate

that without changing the application, just by reorganizing the data in memory using the custom

hardware substrate, the performance and the energy efficiency of the application can be improved.

We will also show that the additional data reorganization operation itself can be performed very

efficiently by optimizing its memory access patterns.

Memory system. We assume a 3D-stacked DRAM system with the following configuration:

• 4 layers, 8 vaults, 256 TSV/vault, 1 KB DRAM pages, 8 SerDes links.

• Internal stream bandwidth: 516.9 GB/s @ 22.8 Watts (5.51 pj/bit)

• External stream bandwidth: 320.0 GB/s @ 30.7 Watts (12.0 pj/bit)

We assume that the host processor is connected to this memory using external SerDes based links

which provide 320 GB/s of maximum bandwidth. We also assume that a specialized hardware ac-

celerator for data reorganization is integrated in the memory which can perform local permutations

of up to 1 million elements where each element is a byte. This unit can sustain the maximum internal

bandwidth of 516.9 GB/s.

Application. We are given an application with fixed memory access pattern, say P. Let’s also

assume that P = L32M,4k (where M=million, k=thousand elements). When we simulate the memory

performance of P, we get:

P→ 27.2 GB/s @ 3.98 Watts (18.33 pj/bit) (external)
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We observe that the application reaches very low bandwidth utilization and energy efficiency com-

pared to the streaming case. This is mainly due to inefficient access patterns that do not utilize the

locality and parallelism of the memory system. Since, the access patterns are assumed to be fixed,

we will perform a data reorganization such that the given access patterns are a good match for the

reorganized data layout.

After reorganization. Let’s assume it is determined that R will be the reorganization permutation

where R = L32M,8k. R will reorganize the data layout of the application such that, after the reor-

ganization, the resulting access pattern will correspond to P′ = P×R where P×R = I32M. And the

memory performance after the reorganization will be:

P′→ 320.0 GB/s @ 30.73 Watts (12.01 pj/bit) (external)

With the reorganized data layout, the application can reach the bandwidth and energy efficiency of

the streaming case.

Reorganization operation. The data reorganization is performed separately to optimize the data

layout. The memory performance of the reorganization, R = L32M,8k, is simulated as:

R→ 28.3 GB/s @ 2.67 Watts (11.83 pj/bits) (internal)

We observe that the reorganization operation itself has a very poor bandwidth and energy efficiency

when implemented by definition. Although reorganized data layout provides significant improve-

ments, overhead of the data reorganization overshadows the improvements in this form.

Optimized data reorganization. Instead of directly implementing, we restructure R by using the

rewrite rule 3.26 (see Table 3.3) such that

R = L32M,8k = (L32k,8k⊗I1k)(I32 ⊗̃L1M,1k)(I4⊗L8k
8 ⊗I1k)
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In this restructured form, (.) corresponds to local permutation that needs to be performed in the

specialized hardware accelerator for data reorganization in the logic layer. We observe that the

hardware accelerator can support the required size of the local permutation L1M,1k (i.e. 1 million

elements). Furthermore, (.) corresponds to memory access permutations that are performed by

transferring data from/to DRAM layers. In this restructured form, memory access permutations

reach the maximum internal streaming bandwidth utilization:

(L32k,8k⊗I1k)→ 516.0 GB/s @ 22.7 Watts (5.51 pj/bit) (internal)

(I4⊗L8k,8⊗I1k)→ 516.0 GB/s @ 22.7 Watts (5.51 pj/bit) (internal)

Hence in this optimized form, memory access permutations can be performed at the maximum

internal bandwidth rate where the accesses are generated by the hardware accelerator in the logic

layer. We also assumed that the hardware accelerator can sustain the streaming data rate at the

maximum internal streaming bandwidth while performing the local permutation. Therefore, the data

reorganization can be performed very efficiently, i.e. at the throughput that matches the maximum

internal streaming bandwidth, minimizing the high overhead of the original version.

Summary. We demonstrated that given an application with fixed inefficient memory access patterns

on a given memory system, data layout reorganization in the memory can improve the overall per-

formance and the energy efficiency. After the reorganization, previously inefficient memory access

patterns are transformed into efficient accesses which yield high bandwidth and energy efficiency.

Furthermore, the optimized reorganization operation can be performed efficiently which amortizes

the overhead.

3.5 Practical Implications

This section discusses the important features, interpretations and the practical implications of the

developed mathematical framework.
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Unified Framework. The developed mathematical framework serves as a unified language to

express algorithms, capture the target architecture machine model, and represent optimizations

through formula rewrite rules. In the data reorganization context, it allows expressing address map-

ping, data layout, memory access pattern, control flow as well as memory system parameters and

behavior (e.g. bank/rank/vault/layer parallelism, row-buffer locality, etc.). Given these representa-

tions and constraints, it serves as an optimization substrate through formula rewriting.

Efficient Address Remapping. The properties of the fπ function given in Table 3.1 demonstrate a

structured way of deriving the index transformation, or address remapping, for a given permutation.

The index transformation captures the address remapping information for the entire dataset in a

closed form expression (i.e. y = Bx+ c). This allows calculating the remapped addresses on the

fly, instead of keeping a large lookup table or updating the corresponding page table entries via OS

calls. Furthermore, the B matrix is a permutation matrix and the c vector is a binary vector. Hence,

given an input address x, B shuffles the bits and c inverts them if necessary to produce y. Bit shuffle

and inversion can be implemented in hardware at a very low cost.

Inverse Problem. There exists an inverse fπ function that takes the index transform and derives

the corresponding data reorganization as a permutation. Hence, to achieve a particular address

remapping, it can derive the corresponding data permutation which can be optimized and performed

efficiently.

Efficient Memory Access. Set of rewrite rules given in Table 3.2 and Table 3.3 demonstrate a

structured way of restructuring memory access patterns of the permutations. Permutations can be

restructured by targeting various goals including memory parallelism and locality, which provides

an effective means of optimizing the access patterns for bandwidth utilization, latency and energy

efficiency.
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Generalization. Permutations are basic building blocks of the data reorganization operations. De-

veloped framework demonstrates a generalized way of handling the permutations. Furthermore, it

includes set of rules which allows a systematic way of combining various building blocks for gen-

eralization. Although the developed techniques are limited to permutations only, this thesis demon-

strates that they can cover a wide range of reorganization operations.

Automation. The mathematical formalism enables using the SPL domain specific language to

express the data reorganizations. Furthermore, it enables inclusion of the developed rewrite rules

into the existing rewriting system of Spiral [98]. This provides an automated approach to rewrite,

optimize and compile SPL expressions, which will be discussed next.

3.6 Spiral Based Toolchain

Spiral automatically generates high-performance hardware/software implementations for linear trans-

forms. The generated implementations are automatically tuned to a given target platform through

formula rewriting and auto-tuning. Target platforms are abstracted via so called paradigms. These

paradigms include multi-core parallelism [54], SIMD vectorization [79], streaming hardware gen-

eration [83], etc.

In this thesis, however, we view Spiral mainly as a SPL compiler and formula rewrite system. We

integrate the developed mathematical framework into the rewrite system of the Spiral and extend

it with a customized backend. Our main goals include: (i) optimize (rewrite) the reorganization

operations to exploit memory parallelism and locality and (ii) derive the address remapping for a

given reorganization.

A high level overview of the toolchain is given in Figure 3.3. Here, block 1 parses the high level

function calls to the native format (SPL). Given the native representation of the permutations in

SPL, block 2 derives the address remapping function (i.e. B and c). Finally, block 3 rewrites

the permutations to optimize for memory locality and parallelism. The optimized final form of the
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Figure 3.3: Overview the mathematical framework toolchain.

permutation specifies the local permutation, memory access permutations as well as the control flow

through labelled formula constructs as discussed previously.

Later in the thesis we will include another goal for utilizing the Spiral based toolchain; determine the

accelerator configurations. Key parameters from the labelled constructs such as, local permutation,

memory access permutation and index transformation, are packed into configuration words and

offloaded to program the HAMLeT unit in memory.



Chapter 4

HAMLeT Architecture for Data

Reorganization

The previous chapter presented a mathematical foundation to represent and optimize the memory

system performance through transforming data layout, memory access pattern and address map-

ping. Performing these optimizations dynamically on conventional processing platforms are both

difficult and costly. This chapter presents an architectural substrate to perform these optimizations,

and their side effects, very efficiently. In particular this chapter presents the HAMLeT (Hardware

Accelerated Memory Layout Transform) architecture for highly-concurrent, energy-efficient and

low-overhead data reorganization performed in memory. HAMLeT architecture is targeted for in-

tegration into a 3D-stacked DRAM, in the logic layer directly interfaced to the local controllers.

The architecture design is driven by the fundamental requirements and the implications from the

mathematical framework as well as the existing infrastructure, operation and organization of the

3D-stacked DRAM. A portion of the proposed architecture HAMLeT is presented in accompanying

publications [22, 23].

The chapter starts with the microarchitectural design of HAMLeT focusing on fundamental com-

ponents. First, Section 4.1 presents the data reorganization unit (DRU) and discusses the key com-
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Figure 4.1: Data reorganization unit (DRU).

ponents including DMA units and reconfigurable permutation memory. Then Section 4.2 presents

the address remapping unit (ARU) that handles general address remapping which is the essential

requirement for completely hardware based data reorganization. Finally, Section 4.3 demonstrates

how to leverage the formal framework developed in Chapter 3 as a toolchain for programming the

HAMLeT.

4.1 Data Reorganization Unit

Data reorganization unit (DRU) is the main component of the HAMLeT architecture. Briefly, DRU

streams data from DRAM, applies a local permutation and streams data back to DRAM in chunks.

This operation is repeated to reorganize big datasets. A high level overview of the DRU is shown

in Figure 4.1. As discussed in Chapter 3, the data reorganization is captured by two types of per-

mutations, (i) local permutations and (ii) memory access permutations. The local permutation is

performed by the reconfigurable permutation memory (RPM) highlighted in Figure 4.1. Whereas,

memory access permutations are performed by streaming data to/from DRAM with the help of spe-

cialized read/write DMA units. DMA units and RPM control units (i.e. connection and address

generators) are programmed to perform various permutations.
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4.1.1 Reconfigurable Permutation Memory

The main goal of the DRU is to permute the streaming data at the throughput that matches the

maximum internal bandwidth of the 3D-stacked DRAM. Permuting streaming data that arrives in

multiple elements per cycle is a non trivial task. The reconfigurable permutation memory (RPM) in

DRU mainly adopts the solution from [99] and extends it support runtime reconfigurability, as we

will see later.

Exploiting both parallelism and locality within the memory requires permutations both in time and

space. The DRU locally buffers and permutes data in chunks. It features w parallel SRAM banks and

w×w switch networks where w is the number of vaults (see highlighted parameters in Figure 4.1).

It can stream w words of p bits every cycle in parallel where p is the data width of the TSV bus.

Independent SRAM banks per vault utilize the inter-vault parallelism. It also exploits the intra-

vault parallelism via pipelined scheduling of the commands to the layers in the vault. In addition

to the parallel data transfer, it also exploits the DRAM row buffer locality. Each SRAM bank can

buffer multiple DRAM rows. In a reorganization operation, elements within a DRAM row can be

scattered to multiple rows, worst case being full scattering. Assuming that the DRAM row buffer

holds k elements, each SRAM is sized to hold k2 elements. This allows transferring k consecutive

elements in both read and write permutations exploiting the row buffer locality. We also employ

double buffering to maximize the throughput. Hence the SRAM buffer size is given as d = k2 where

the total storage is 2wd.

Spiral Permutation Memory. Spiral supports the automatic hardware generation for the stride

permutation family [99] as well as arbitrary permutations [82]. Specifically, [99] supports any local

permutation whose index transformation is also a permutation on the bit representation. However,

number of stages in the switch network, connection between switches, and SRAM address gener-

ation control are configured and optimized specifically for the given permutation at the hardware

compilation. Hence, when a permutation memory is generated, it is configured for the target per-

mutation which is limited in supporting different permutations at runtime.
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Assume that, we want to perform a local permutation P, where BP is the bit representation (i.e.

index transformation). The overall operation, y = BPx, can be performed in two stages, the write-

stage z =Mx and the read-stage y =N−1z, where

BP =N−1M.

Here, M determines how the streaming data is stored into the SRAMs (the write-stage), and N−1

determines how it is read out of the SRAMs into the resulting data stream. Puschel et. al. demon-

strated that M and N matrices can be further decomposed [99]. Decomposition for the write stage

is shown below.
⎛
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Here, xt and xb correspond to the stage number and where in stage respectively. In other words,

combined {xt ,xb} represents the unique number of the particular element in the permutation order.

Similarly, zt and zb represent the address in RAM and the corresponding RAM number respectively.

Thus, the addresses that each element is written/read (i.e. zt) and routing of each element to/from

RAM banks (i.e. zb) can be calculated as follows:

zt =M4xt +M3xb (4.1)

zb =M2xt +M1xb (4.2)

Analogous to the write stage, read stage (i.e. y =N−1z) is expanded as well (refer to [99] for details).

Spiral framework further processes and decomposes these sub-matrices to derive the connectiv-

ity and cost metrics. Ultimately, it derives an optimal (or partially optimal) configuration for the

permutation memory and generates its RTL hardware implementation. Hence the hardware im-

plementation is specifically generated for the given permutation and it cannot perform any other

permutation.

Runtime Reconfiguration. Our goal is to provide a substrate that can be reconfigured at runtime
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Figure 4.2: Overview of the reconfigurable permutation memory.

to perform any permutation, only constrained by the maximum supported size and streaming width.

To this end, we extend Spiral permutation memory via (i) rearrangeably non-blocking Clos network

implemented as a multistage network, and (ii) programmable switch connection and address gener-

ator. High-level overview of the reconfigurable permutation memory (RPM) is given in Figure 4.2.

Moreover, by utilizing the formal framework, we automate the derivation of the RPM configura-

tion parameters. Given a local permutation, Spiral based toolchain derives the configuration for the

RPM control units (i.e. connection and address generators). These configurations are offloaded to

program the RPM.

First, the reconfigurable permutation memory employs (i) rearrangeably non-blocking Clos net-

works as the input and output switch networks. As discussed previously, these switch networks

implement the routing between input/output ports and SRAM banks which require an all-to-all

communication to support any permutation (where the index transform is a bit permutation). For a

rearrangeably non-blocking Clos network there exists a switch configuration such that any unused

input can be routed to any unused output [31], but some of the existing routings may have to be

rearranged. In our case, however, this is not a critical problem since the switch configuration is

changed every cycle to meet the streaming data throughput.

In our solution the rearrangeably non-blocking Clos network is implemented as a multi-stage net-

work. Two examples for 8x8 rearrangeably non-blocking multi-stage switch networks are shown in

Figure 4.3. Both Benes and omega-flip (i.e. omega and omega-inverse combined) networks provide
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(a) 8x8 Benes network (b) 8x8 Omega & inverse-omega network 

Figure 4.3: Two examples for 8x8 rearrangeably non-blocking multi-stage switch networks.

all-to-all connection at a low hardware cost [31]. Such networks have 2log2(N)−1 stages where

each stage contains N/2 switches, thus total N log2(N)−N/2 switches. Asymptotic switch com-

plexity is O(N log(N)). The examples given in Figure 4.3 have 2log2(8)−1 = 5 stages where each

stage has 8/2 = 4 switches, adding up to total 5×4 = 20 switches.

Main disadvantage of using a multi-stage network is the latency. However, in the streaming permu-

tation problem, throughput is the main concern not the latency. Benes (or equivalently omega-flip)

network provides the throughput to permute the streaming data every cycle where the switch stages

are pipelined if necessary for the large streaming widths. A crossbar switch, on the other hand, can

provide strict-sense non-blocking interconnection such that any unused input can connect to any

unused output without any rearrangement on the existing connections. However, as the number of

input/output nodes increase, the hardware complexity increases dramatically. Asymptotic switch

cost is given as O(N2) for the crossbar switch. Assuming that the switch network is integrated in

a 3D-stacked DRAM system with several vaults (e.g. HMC 2.0 has 32 vaults), a crossbar switch

becomes too costly.

Secondly, the permutation memory datapath is controlled by the (ii) connection and SRAM address

generator units as shown in Figure 4.2. These units generate the required switch connection config-

uration and SRAM addresses every cycle that will route the data elements to and from the SRAM

banks. As discussed previously, given a target local permutation, Spiral infrastructure decomposes

and processes the permutation matrix to derive an optimal (or partially optimal) structure (i.e. num-

ber of network stages, switch connection, address generation scheme, etc.) for the permutation
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Figure 4.4: Permutation memory compilation flow.

memory. Then it generates an optimized but fixed hardware implementation. In our framework, we

utilize Spiral frontend only to derive the sub-matrices M1, M2, M3, M4, N1, N2, N3, N4 from M

and N matrices where BP = N−1M and BP is the bit representation of the given local permutation

P. Then, as opposed to further decomposition for the optimal hardware structure compilation, the

sub-matrices are packed and directly offloaded as-is to the RPM to configure the address/connec-

tion generators. These control units can be reconfigured to perform different permutations. Current

permutation memory synthesis flow and the proposed flow are demonstrated in Figure 4.4(a) and

Figure 4.4(b) respectively.

SRAM addressing and switch connection configuration is calculated using the submatrices (Ni and

Mi) where equations 4.1 and 4.2 demonstrate the case for the read network. Mathematically, these

calculations require two matrix-vector multiplications and one matrix addition. These operations

can be achieved very efficiently considering that the matrices are actually bit matrices. The matrix-

vector multiplications (i.e. Nix and Mix) correspond to a bit permutation of the input vector. This

is achieved by a single bit crossbar switch where the submatrices (Ni and Mi) determine the cross-

bar configuration (i.e. set of connections) to permute the input vector ({xt ,xb}). Then, an XOR

stage handles the addition of the permuted bit vectors. When these structures are put together, they

construct the address/connection generators as shown in Figure 4.5. Here, the input vectors xt and

xb when combined (i.e. {xt ,xb}) represent the number of the particular element in the permutation

order, which are tracked by specific hardware counters. As the elements progress through the RPM,
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Figure 4.5: Detailed view of the SRAM address and connection generator units.

counters are incremented and new routing/addressing is calculated for each element.

4.1.2 DMA Units

DMA units are responsible for streaming the input data from DRAM to the local permutation unit

and the locally permuted data back to DRAM (see Figure 4.1). They ensure continuous flow of

data through DRU. Besides interfacing and communication to the DRAM controllers, DMA units

perform the memory access permutations.

DRU features two distinct DMA units for read and write. RPM continuously streams data using

double buffering. Hence the read and write DMA units must stream the input/output data con-

tinuously. Outputs from the formal framework contain separate memory access permutations for

reading and writing. These permutations are mapped on the corresponding DMA unit.

DMA units generate the memory addresses based on the targeted memory access permutations.

Assuming that it performs a memory access permutation P, the sequence of the addresses are deter-

mined by the index transformation of the permutation P. As shown in Figure 4.6, DMA unit features

counters coupled with bit shuffle units (BSU) which implement the index transformation. Assum-

ing the index transformation is governed by y = Bx+c, B matrix and c vector directly configure the

BSUs in the DMA units.

A DMA unit contains multiple counters and BSUs to generate multiple addresses every cycle. Num-

ber of counter-BSU couples are determined based on the maximum number of requests DRAM sys-

tem can service. For a 3D-stacked DRAM, the number of parallel requests serviced is determined by
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Figure 4.6: DRAM address generator in a w-wide DMA unit.

the concurrency of the vaults/layers in the stack. Multiple requests are generated by stride counters

with sequential offsets as shown in Figure 4.6.

Eliminating redundant data movement. Proposed DMA unit supports transferring data for any

permutation specified by its bit representation. Following the direct implication from the permu-

tation description, permuting a dataset requires reading and writing all of its elements. However,

eventually some of the elements are written into their original locations after the reorganization.

For example, in a matrix transpose operation elements in the diagonal do not change. Though the

elements that stay at their original locations is a tiny fraction of the large matrix for the transposi-

tion, they can constitute a large fraction for some data reorganizations. To understand the details

of this let’s focus on a data reorganization where its corresponding bit permutation is given in Fig-

ure 4.7.

b1 b0 

b1 b0 

0 n-1 

Figure 4.7: Bit permutation of an example data reorganization.

Figure 4.7 demonstrates a bit permutation where only a single bit pair is swapped. When the orig-

inal and reorganized locations are the same, then the corresponding elements stay at their original

locations. Table 4.1 demonstrates the special cases for the bit permutation given in Figure 4.7 and
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Table 4.1: Original and remapped locations for the bit permutation given in Figure 4.7.

Original Remapped Same?
b1 b0 rest b1 b0 rest

0 0 x 0 0 x yes
0 1 x 1 0 x no
1 0 x 0 1 x no
1 1 x 1 1 x yes

analyzes them if the original and remapped locations are the same. We observe that half of the

dataset is remapped into their original locations. Furthermore, this can be generalized to data re-

organizations where s bits are swapped in the index transformation. Without providing a formal

proof, we state that when s bits are swapped in the index transformation, (1/2)s of the elements are

mapped into their original locations. Following the matrix transposition example, let’s assume an

2n ×2n element square matrix. Transposition of this matrix is captured by the permutation L22n,2n

whose bit permutation is given by the circular shift C2n,n where n bit pairs are swapped. Hence,

(1/2)n elements are mapped onto their original locations. In fact, the 2n diagonal elements of the

2n×2n correspond to the (1/2)n of its total elements.

This allows further optimizing the data reorganizations by eliminating these redundant data move-

ments. Especially when the reorganization is performed in-place, these redundant movements,

where the original and remapped locations are the same, can be completely eliminated. On the

other hand, for out-of-place reorganizations these redundant movements can bypass the DRU and

directly streamed into their remapped locations. DMA units detect if the bit permutation for the

data reorganization has a limited number of bit-swaps. In such cases, it eliminates (or optimizes) a

considerable portion of the data movements.

4.2 Address Remapping Unit

This section presents the address remapping unit (ARU) to perform the index transformation of

the permutation based data reorganizations. Chapter 3 demonstrates that the index transformation
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corresponds to the address remapping for a data reorganization. It also presents set of rules to sys-

tematically determine the address remapping as a closed form expression. One crucial implication

of this property is that it allows calculating the remapped address on-the-fly. This eliminates the

need for costly hardware look-up tables or OS page table updates to keep track of the data remap-

pings. Moreover, if implemented in hardware, it allows a software-transparent data reorganization

where the address remapping completely handled in hardware. The goal is to present an efficient

and scalable hardware substrate that handles the address remapping by implementing the closed

form index transformation expressions.

4.2.1 Bit Shuffle Unit

The address remapping operation (i.e. y = Bx+ c) consists of two main parts. First, the B matrix

permutes the input address bits x, then the c vector inverts the permuted bits. To support that

functionality we propose the bit shuffle unit (BSU), a single bit crossbar switch connected to an

array of XOR gates, as shown in Figure 4.8. In Section 3 we saw that B is a permutation matrix,

thus, there is only a single non-zero element per row or column. The location of the non-zero

element in each row of the matrix determines the closed switch location in the corresponding row

of the crossbar. The crossbar configuration, i.e. the set of closed switch locations, is stored in a

configuration register which can be reconfigured to change the bit mapping. After input address x

is permuted via the crossbar, XOR array inverts the bits according to the c vector to generate the

remapped address y. Hence, when configured according to a particular address remapping (B and c),

BSU will forward the input addresses to the remapped locations. Overall, this unit can implement

any address remapping where B is a bit permutation and c is a bit vector, i.e. all combinations of the

rules (3.11)–(3.16) from Table 3.1.

4.2.2 Supporting Multiple Remappings

BSU can support any address remapping globally over the entire address space. However, there are

cases where only a portion of the address space is remapped or different parts of the address space
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Figure 4.8: Bit shuffle unit (BSU).

have different remappings. Furthermore, as discussed previously there are conditional permutations

that change based on the portion of the dataset that the particular element falls into. Our goal is to

allow different address mappings, thus different data reorganizations, for different regions. A region

is a partition in the memory address space. An application can occupy multiple regions if needed.

Physically partitioned address space also allows exploiting spatial differences of the memory access

patterns.

The address remapping unit (ARU) that extends the BSU as shown in Figure 4.9 supports multiple

address remapping schemes simultaneously, including conditional permutations (3.17)–(3.18). The

configuration store keeps multiple configurations for the BSU. The configuration includes the full

state of the BSU (i.e. B and c). When an access is enqueued in the scheduling FIFOs of the memory

controller, the region bits from the address are used to index the configuration store. Then the

corresponding entry is put in the configuration register that configures the ARU for that particular

access.

The ARU can support all the remapping schemes presented in Section 3.1 via a very simple hard-

ware. The configuration store indexing and the read latency depends on the number of different

mappings supported simultaneously and the number of memory regions. As these numbers in-

crease, ARU reconfiguration latency increase as well. The ARU architecture can be restructured

to have multiple BSUs as shown in Figure 4.10. This architecture allows actively pre-configured

BSUs so that when consecutive accesses are mapped into different regions, remapped addresses can
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Figure 4.10: ARU with multiple BSUs.

be determined without reconfiguring the ARU. Furthermore, BSU reconfigurations can be sched-

uled ahead of time and the reconfiguration latency can be overlapped while active BSUs serve other

requests. Nevertheless, as we will see the evaluations in 7, for a typical implementation, the overall

latency and energy consumption of the combined configuration store indexing, BSU reconfiguration

and bit permutation is very low. Furthermore, the timing of the ARU is not on the critical path of

the memory access since typically an access spends several clock cycles in the memory controller

FIFOs waiting to be scheduled.

4.3 Configuring HAMLeT

The domain-specific architecture of the HAMLeT trades the programmability for energy efficiency.

Despite being domain-specific, it serves as a generic data reorganization engine that can be reconfig-



62 4.3. Configuring HAMLeT

Overall Permutation: Q 

Restructured: Q = W P R 

Bit representations: BW BR cW cR Bit representations: BP=N-1M 

Address remapping: 

(y = Bx + c) 

DRAM Address generation: 

(y = Bx + c) 

Submatrices: 
N4, N3, N2, N1, M4, M3, M2, M1 

Configure ARU Configure DMA Configure LPU 

Memory access  

permutations: W, R Local permutation: P 

Figure 4.11: From permutation specification to HAMLeT configuration.

ured to perform various combinations of permutations as building blocks. As presented previously,

both DRU and ARU units in the HAMLeT can be reconfigured according to the target data reorga-

nization.

Figure 4.11 summarizes the configuration flow starting from a target data reorganization expressed

as a permutation to the low-level configuration parameters that will program the main components of

the HAMLeT. Synthesis from the data reorganization to the configuration parameters is automated

using the Spiral-based toolchain that is introduced in Chapter 3. The frontend is used as described

previously to rewrite the permutations and derive index transformation. First, the data reorganization

permutation expressed as a formula in SPL and restructured. Then, formula constructs are labelled

with the implied functionality. We extend the the toolchain via a customized backend. Memory

access permutations are further processed to derive the address remapping and memory address

generation parameters. Later these parameters are offloaded to configure the ARU and DMA units.

Local permutations, on the other hand, are further decomposed to derive the connection and address

generator parameters to program the reconfigurable permutation memory.

Spiral-based toolchain enables automated synthesis of the configuration parameters from the given

data reorganization permutation. However, in order to fully integrate the HAMLeT into the exist-

ing hardware/software ecosystem, we will further extend the proposed flow and include additional
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hardware/software solutions. System-level hardware and software integration concepts will be elab-

orated later in Chapter 6.
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Chapter 5

Fundamental Use Cases

Combination of the formal framework and the HAMLeT architecture presented in previous chapters

serve as an infrastructure to perform efficient data reorganization and address remapping. This

section introduces two fundamental modes of operation that will use the developed infrastructure as

an enabling technology.

First, Section 5.1 presents the automatic mode which enables a software-transparent dynamic data

layout reorganization. In this hardware based mode, data layout is transformed physically in mem-

ory, where the whole operation and its side effects (e.g. address remapping, coherence, access

scheduling) are completely handled in hardware.

Then, Section 5.2 introduces the explicit mode where the data reorganization is explicitly offloaded

from software and accelerated by the HAMLeT in memory. This technique requires a collaboration

between the hardware, software and OS which is handled by a custom software stack.

5.1 Automatic Mode

Motivation. DRAM based memory systems are hierarchically divided into fundamental blocks.

A conventional DRAM based main memory system features multiple channels, ranks, banks, rows

65



66 5.1. Automatic Mode

and columns. This hierarchy is expanded in the modern DRAM systems with bank groups and

sub-arrays [26, 72]. Moreover, 3D-stacked DRAM systems orthogonally extend this hierarchy with

multiple layers and vaults. Memory controllers implement an address mapping policy to determine

the mapping from the physical addresses to the DRAM "coordinates". Most widely used address

mapping policies include row and cache line interleaving schemes. Row interleaving scheme in-

terleave consecutive cache lines first into same row from the same bank, then interleave the rows

among banks. Whereas, cache line interleaving scheme places consecutive cache lines into different

banks/ranks/vaults/layers. There are various hybrid approaches and sophisticated address mapping

techniques, such as permutation based interleaving [118], that aim to exploit the memory paral-

lelism and locality better. Moreover, application-specific efficient address mapping schemes can be

determined via profiling.

For conventional systems, however, memory controllers implement a global address mapping scheme

that is optimized for the common case. Yet, the best performing address mapping scheme depends

on a particular application’s data layout and memory access pattern. Moreover, even a single appli-

cation may exhibit spatially and temporally different memory access patterns. First, it can access

disjoint parts of its dataset with varying access patterns. Second, the memory access behavior can

change over time as the application progresses through different phases. Hence, global and static

address mapping can lead to underutilized memory system.

Our goal is to enable a memory system which can employ multiple different address mappings for

different regions of the address space. Further, it can change these address mappings on-the-fly,

thus, leading to a non-global and dynamic address mapping. Changing the address mapping at the

runtime requires the corresponding data to be physically reorganized in the memory to retain the

original program semantics.

Approach. We approach this problem via a combined data reorganization and address remapping

in hardware utilizing the HAMLeT architecture. As presented in Chapter 4, HAMLeT architecture

features the address remapping unit (ARU) and the data reorganization unit (DRU). ARU handles
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Figure 5.1: Virtual address to DRAM coordinates (i.e. channel, bank, row, etc.) translation stages.

the address remapping for multiple memory regions. Further, DRU is specialized for efficient per-

mutation based data reorganization. In the automatic mode of operation, the HAMLeT architecture

is driven by a hardware based memory access monitoring system that profiles the memory access

patterns of applications, and configures the ARU/DRU units for address remapping and data reorga-

nization. This enables software transparent dynamic data layout operation, where both the profiling

and the reorganization are handled in hardware.

5.1.1 Changing Address Mapping

Changing the address mapping is essentially a bit-permutation on the memory address bits. The

bit shuffle unit (BSU) in the ARU can perform all bit permutations. When the address mapping

of a memory region changes, ARU stores the corresponding BSU configuration. Given the BSU

configuration (i.e. B and c as described in Section 4.2), it can translate the original input addresses

to the remapped locations in hardware. This operation is essentially an indirection implemented

in hardware. It is completely transparent to the virtual address space—virtual to physical mapping

remain the same after the reorganization (see Figure 5.1). Hence, all the entries in the page table,

cached translations in the TLB (translation lookaside buffer), and cached copies of the reorganized

data remain valid after the reorganization.

5.1.2 Physical Data Reorganization

When the address remapping is a bit permutation, the corresponding data reorganization is also a

permutation as shown in Chapter 3. Moreover, it belongs to the class of permutations which are con-

structed out of stride permutations. DRU executes permutation based data reorganization efficiently.
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Hence, in the automatic mode, DRU is configured to perform the data reorganizations.

Data reorganization can be in-place or out-of-place. When the data is transformed in-place, only a

constant additional memory, which is smaller than the original dataset, is used. On the other hand, an

out-of-place reorganization uses an additional storage that is as large as the original dataset.

In-place permutation is a complex operation where the elements are swapped following the permu-

tation cycles. Naive algorithms either use O(n2) operations or O(n) extra storage for n element

arrays. Furthermore there are algorithms that use O(n log(n)) operations and O(log(n)) extra stor-

age, which require complex index calculations [51, 61]. Whereas, out-of-place permutation requires

an additional storage equal to the size of the dataset, i.e. O(n). But it can perform the permutation

using O(n) operations.

In the automatic mode, overhead of the data reorganization is a primary concern. Latency and

energy overheads need to be minimized to amortize the data reorganization cost. In-place algorithms

require additional read-write operations which increase the reorganization latency as well as energy

consumption. Furthermore, in-place algorithms require irregular memory accesses to individual

elements according to the permutation cycles. This destroys the locality of the memory access

patterns which causes low bandwidth and high energy consumption in the memory. Hence, out-of-

place operation is a better fit for the automatic mode to minimize the reorganization overhead by

eliminating additional memory accesses and by keeping the locality of the memory accesses.

Out-of-place operation permutes the data into a destination memory space which is disjoint from

the source space. We call this operation as move-only. If the reorganization requires the dataset to

stay at its original address span, then the reorganized data is streamed back into the source space.

We call this operation as move-back. Note that this scheme requires an extra pass over the dataset to

stream it back into its original memory space. Finally, the move-remap technique provides the best

of both worlds. In this scheme, the data is reorganized into the destination memory space. Then

instead of moving the reorganized data back into its original place, original memory region and the

destination region are remapped such that the pointer to the original memory region now points to

the destination region and vice versa. This eliminates the need for extra pass over the dataset while



Chapter 5. Fundamental Use Cases 69

src/dst src 

dst 

src/dst 
src/dst 

0x00…0 

0xff…f 

0x00…0 

0xff…f 

0x00…0 

0xff…f 

0x00…0 

0xff…f 

(a) In-place (b) Move-only (c) Move-back (d) Move-remap 

Figure 5.2: In-place and out-of-place data reorganization schemes.

keeping the data at its original memory space. These schemes are summarized in Figure 5.2.

Partitioning the memory address space into smaller regions enables a practical implementation for

these techniques. In the automatic mode, permutations across memory regions are not allowed.

Data can be permuted within each region and the regions themselves can move and swap with other

regions. In this way ARU can easily keep track of the region movements. It would be much more

costly to follow freely moving address pointers with no boundaries. The partitioning bits from the

DRAM address space is selected smartly to allow the important data permutations across different

banks, vaults and layers. Partitioning bits are selected from the mostly stationary row or column

bits in the DRAM address. Thus, permutation within a region includes data movements across

banks, vaults and layers—only the movements across certain DRAM rows are blocked. As we will

see later, automatic reorganization requires permutations that change the address mapping between

bank, vault, layer and row bits. Hence, allowing permutations only within regions does not limit the

useful data reorganizations.

5.1.3 Memory Access Monitoring

In the automatic mode, memory access stream is monitored to determine a possibly inefficient ad-

dress mapping where the memory access pattern does not match the underlying data layout, causing

underutilized memory parallelism and locality. Memory access monitoring determines the changes

in the DRAM address bits. A certain bit in the address is said to be flipped, if it is changed compared

to its previous value. Monitoring hardware records the bit-flip rates (BFR) of the address bits in the

memory access stream. A bit with high BFR implies frequent changes in short time which can be
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used to exploit parallelism. Mapping the bits with high BFR onto DRAM address bits that corre-

spond to bank, rank, vault, or layer (which we refer to parallelism bits) can improve the parallelism.

On the other hand, address bits with low BFR implies stationary behavior. Such bits are better suited

to be mapped onto DRAM row bits (i.e. locality bits) to minimize row changes, hence row buffer

misses, improving locality. Bit flip rate based memory access profiling is a rough approximation for

a better memory address mapping to exploit the parallelism and locality. Making robust decisions

about the address mapping changes using the BFR metric requires several design decisions which

are further elaborated later in Chapter 6. At this stage, the most important aspect of the memory

access monitoring is that it detects the underutilized memory system in hardware. It allows issuing

an address remapping with data reorganization to improve the memory system performance.

5.1.4 Host Application and Reorganization in Parallel

When the memory access monitoring detects an inefficient address mapping and issues the data

reorganization, the entire dataset (or a few memory regions) of the application will be physically

reorganized in memory. During the reorganization, DRU utilizes the memory bandwidth efficiently.

It achieves close to peak internal bandwidth utilization of the 3D-stacked DRAM, by using its

high throughput parallel architecture. However, data reorganization still incurs latency and energy

overhead. As we will further analyze in detail, the overhead of reorganization is amortized via the

improved memory access performance during the long runtime of the application.

When the reorganization is taking place, the application itself requires accessing the data from the

memory. To handle executing parallel host application and reorganization, we employ two main

techniques; block on reorganize (BoR) and access on reorganize (AoR).

Briefly, block on reorganize (BoR) locks the memory regions under reorganization such that only

DRU requests are serviced. Though, independent processes can still access other memory regions.

Main advantage of this method is that it enables a very fast reorganization. DRU streams the data

almost at the peak internal bandwidth utilization. Moreover, it eliminates the coherence and schedul-

ing issues since only DRU is allowed to access the data until the reorganization is finished. On the
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other hand, the host-side application is halted until the reorganization is finished.

Access on reorganize (AoR) method allows both DRU and the host processor to access the data in

memory. In this way, host-side application can make progress while the data is under reorganization.

However, this brings up a few side issues such as coherence and memory access scheduling. The

original data and the reorganized data have to be kept coherent for correctness. Moreover, accesses

from the DRU and from the host processor needs to be interleaved to provide the desired quality of

service to the host while minimizing the data reorganization duration. Later in Section 6, we further

elaborate on the proposed mechanisms to tackle these issues arise when the host application and the

reorganization are performed in parallel.

5.2 Explicit Mode

Motivation. For an application. given an address mapping scheme, data layout in the memory

is a fundamental property that determines the memory system performance (bandwidth utilization,

energy efficiency, power consumption, etc.). Address mapping schemes aim to improve memory

parallelism and locality assuming a generic behavior from the application. However, if the elements

that are sequentially needed by an application are placed into different rows of the same DRAM

bank, neither address mapping nor access scheduling mechanisms can solve the inevitable row

buffer misses. To maximize the memory parallelism and locality, data layout need to be compatible

with the application’s memory access pattern.

However, several data-intensive applications fail to utilize the available locality and parallelism due

to the inefficient memory access patterns and the disorganized data placement in the DRAM. This

leads to excessive DRAM row buffer misses and uneven distribution of the requests to the banks,

ranks or layers which yield very low bandwidth utilization and incur significant energy overhead.

Memory layout transformation via data reorganization in the memory aims the inefficient memory

access pattern and the disorganized data placement issues at their origin.

Therefore, for some applications it can be more efficient to explicitly transform the data layout
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into an optimized format before the actual computation. Several previous work report improved

performance with optimized data layouts [21, 36, 58, 92, 107, 108].

Moreover, several high-performance computing applications such as linear algebra computations,

spectral methods, signal processing, and molecular dynamics simulations require data reorganiza-

tion operations as a critical building block (e.g. matrix transpose, multidimensional dataset rotation,

pack/unpack, permute) [12, 30, 55, 58].

Although these operations simply relocate the data in the memory, they are costly on conventional

systems mainly due to inefficient access patterns, limited data reuse and roundtrip data traversal

throughout the memory hierarchy.

Approach. Near-data processing approach minimizes the data transfer between the DRAM and

the processor. We follow a two pronged approach for efficient data reorganization, which combines

(i) the DRAM-aware HAMLeT architecture integrated within 3D-stacked DRAM, and (ii) a math-

ematical framework that is used to represent and optimize the reorganization operations. Explicit

mode of operation, as opposed to the automatic mode, exposes the the HAMLeT to the user for

explicit acceleration of the data reorganization operations. In this mode, first the data reorganization

is expressed in the native language (SPL) of the Spiral based mathematical toolchain. Accompa-

nied by a custom software stack for offloading and memory management, it derives the DRU/ARU

configurations and programs the HAMLeT.

5.2.1 Spiral Based Toolchain

Explicit operation starts with the data reorganization expressed in SPL. SPL formula expressions

for certain common operations are further wrapped into high-level function interfaces. One can

express the data reorganization in the native SPL language or using the high-level wrapped function

interfaces which are later translated into SPL. Then, SPL formulas are passed to the proposed Spiral

based toolchain. Spiral is used as a compiler for the SPL. It restructures the SPL formulas using

the rewrite rules. The optimized final form of the SPL expression specifies the local permutation,
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memory access permutations as well as the control flow through labelled formula constructs. Key

parameters from these labelled constructs are packed into configuration words and offloaded to

program HAMLeT.

5.2.2 Explicit Memory Management

In the automatic mode, HAMLeT reorganizes data in memory and handles all the side effects in

hardware. However, offloading the operation from the software requires explicit communication,

synchronization and memory management. Firstly, the allocated memory region and the boundaries

for the accelerator have to be defined. The memory management software has to make sure that

the accelerator only accesses the data within allowed boundaries. A custom memory management

software specifically allocates the source and the destination memory spaces for the accelerator.

Furthermore, a specific memory space is allocated for synchronization and communication between

the host and the accelerator. Host offloads the configuration data including HAMLeT architecture

configuration, allocated memory pointers and sizes to this region. HAMLeT and the host processor

share the main memory where the actual application data sit, hence data is not offloaded. Imple-

mentation of the accelerator memory management software along with the side issues are further

elaborated in the next chapter.
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Chapter 6

System Architecture and Integration

The previous chapter demonstrated two fundamental processing models that use the developed

mathematical framework and the proposed architecture as an enabling technology. However, to

achieve a system-level integration there needs to be a few changes at the software and hardware

levels as presented in the previous chapter. This chapter presents series of hardware and software

mechanisms that assist the HAMLeT architecture to achieve a more flexible system-level integra-

tion.

The chapter starts with the design choices regarding the near-data processing architecture in Sec-

tion 6.1. It discusses accelerator placement in addition to the hardware mechanisms that assist the

HAMLeT architecture for system-level integration. Section 6.2 focuses on the issues arise when the

host and HAMLeT operate in parallel. Then Section 6.3 discusses the host architecture/software and

the near-data processing integration issues. Finally, Section 6.4 puts together all these components

and gives an overview of the proposed data reorganization system.

75
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Figure 6.1: Accelerator integration options to a 3D-stacked DRAM based system for near-data pro-
cessing: (1) Off-stack, (2) stacked as a separate layer, (3) integrated in the logic layer.

6.1 Memory Side Architecture

6.1.1 Interface and Design Space

HAMLeT architecture is designed targeting a near-data processing system where the accelerator is

integrated in the logic layer of a 3D-stacked DRAM behind the conventional interface. However,

near-data processing can be achieved using several different integration options with different prox-

imity levels between the memory and the accelerator. Taking the processor core and the DRAM

modules as different ends of the spectrum, accelerators can be integrated various places in be-

tween. These options provide design tradeoffs related with latency, bandwidth, thermal issues, and

manufacturing cost. Figure 6.1 demonstrates different integration options for near-data processing

accelerators. Note that there are also several places in the processor die itself to integrate the ac-

celerator where they share various levels of cache hierarchy, interconnect, memory controllers, etc.

However, this thesis focuses on accelerators integrated near main memory—on-chip accelerators

are not included in our taxonomy.

Off-stack. First option is the off-stack integration ( 1 in Figure 6.1). In this scheme, the ac-

celerator is a separate die communicating with the 3D-stacked DRAM via off-chip connections.

This minimizes the thermal interaction between the accelerator and the stacked DRAM. Accel-

erator dissipates the heat almost entirely through its own die surface. Moreover, the 3D-stacked
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DRAM design is kept unmodified. Eliminating customized hardware modification minimizes the

overall manufacturing cost. However, the accelerator uses the off-chip connections for communi-

cating with the DRAM. Depending on the 3D-stacked DRAM technology this connection could be

a high-speed short-reach links or an interposer substrate. Off-chip bandwidth is more limited com-

pared to the internal bandwidth provided by TSV based connections. Moreover, the limited off-chip

bandwidth which also serves to the host processor is now also shared with the accelerator. More

critically, external communication requires significant energy compared to the internal TSV based

data transfers. For HMC, SerDes based off-chip communication accounts for more than half of the

total stack energy.

Separate layer. Another integration option, stacking the accelerator as a separate layer to the

stacked DRAM, is shown as 2 in Figure 6.1. The accelerator is implemented as a separate die

which communicates with the rest of the stack using TSV based vertical connections. However, it

still needs a load/store interface that handles the DRAM communication. To handle this issue, it can

either use the base logic layer to communicate with the DRAM or implement separate memory/vault

controllers. Additional memory/vault controller units will consume extra area and power in the

accelerator layer. Furthermore, the DRAM layers will be driven multiple controllers. There needs

to be a TSV bus arbitration which allocates the TSVs to the commands coming from accelerator

layer and the base logic layer. If the accelerator layer uses the base logic layer as an interface to the

DRAM, the need for separate memory/controller in the accelerator layer disappears. In this case,

the requests coming from the accelerator layer consume TSV cycles while sending the requests/data

to the logic layer as well as receiving the data back from the logic layer. Though 2 in Figure 6.1

shows that the accelerator is stacked at the top, it could be put on top of the base logic layer. In this

case, there can be separate connections between the logic layer and the accelerator layer, possibly

using micro-bumps between these two layers. Hence, the bandwidth pressure on the TSVs due to the

communication between the accelerator and the logic layer can be relaxed. However, sandwiched

between the DRAM layers and the base logic layer, the accelerator layer will potentially suffer from

a heat dissipation issue with this approach. Furthermore, integration as a separate layer increases
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the manufacturing cost and complexity of the memory stack.

In logic layer. As demonstrated with 3 in Figure 6.1, the accelerator can be moved closer to

the memory by integrating it in the base logic layer. In this scheme, the accelerator directly com-

municates with the logic layer memory controllers. Therefore, it does not require additional data

and command transfers through the TSV bus to communicate with the logic layer. Note that both

off-stack integration and stacking the accelerator on top of the logic layer while connecting them

with separate microbumps allow direct communication between the accelerator and the logic layer.

However, these solutions require very high cost hardware modifications such as a separate dies,

microbump and interposer connections. Integration in the logic layer is much more cost effective

compared to the previous schemes, though it requires simple modifications in the logic layer. More-

over, eliminating multiple hops through the TSVs or external accesses through interposer/SerDes

links greatly improve latency, bandwidth and energy efficiency. The main shortcoming of this ap-

proach, however, is the limited area and power consumption headroom for a custom accelerator

implementation. Logic layer already includes native control units such as an interconnection fab-

ric, memory/vault controllers, SerDes units, etc. It is reported these units leave a real estate to be

taken up by custom logic [94]. However, compared to a separate die, the area and power consump-

tion headroom is more limited. This scheme is a better fit for simple accelerators with low power

consumption and area overheads.

Integrating HAMLeT. Main motivation of the HAMLeT architecture is to achieve high through-

put and bandwidth utilization using the limited area and power budget very efficiently. DRU and

ARU units are very area and energy efficient, as we will see later in detail, yet they can effec-

tively utilize the high bandwidth through a simple parallel architecture. This allows us to pursue

the option 3 for 3D-stacked DRAM based HAMLeT implementation. Figure 6.2 demonstrates the

logic layer architecture for this option. The logic layer resembles a HMC-like 3D-stacked DRAM

which features the native control units and an interconnection network that connects these control

units. Figure 6.2 also highlights the BIST (built-in self test) unit attached to the interconnect. This
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Figure 6.2: Logic layer architecture for integrating HAMLeT into the 3D-stacked DRAM.

demonstrates that heterogeneous components already exist in the logic layer which extends the fun-

damental operation of the stacked DRAM. There are other proposals that follow a similar approach

where the accelerator blocks are attached to the interconnect fabric in the logic layer [88]. When

the accelerator is attached to the interconnect which connects all the memory/vault controllers and

I/O links, it can communicate with any of the vaults via the corresponding memory controller. This

creates a flexible infrastructure for accelerators to communicate with different vaults of the DRAM

layers. However, it complicates the interconnect design significantly. For example, the HMC inter-

connect is a crossbar switch [94]—attaching more accelerators to the fabric will have a quadratically

increasing cost.

DRU unit in the HAMLeT features switch networks which allow it to route any input/output to/from

any SRAM bank. Furthermore, a rearrangeably non-blocking switch network is sufficient for the

purpose of the permutation based data reorganizations, which is much less costly than a crossbar

switch. Hence, HAMLeT is integrated even behind the interconnect, directly connected to the

memory controllers as shown in Figure 6.2. Each port of the HAMLeT has a single point-to-point

connection to a memory controller. This enables consuming high-bandwidth data transferred with

each independent vault. Necessary data exchanges are handled in the HAMLeT by the DRU.

Integration scheme given in Figure 6.2 also requires modifications to the memory controllers in
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Figure 6.3: Physical address bit-flip rate (BFR) monitoring unit for multiple memory regions.

the logic layers. Now the memory controller needs to serve for the data reorganization requests,

in addition to the the regular memory requests coming from the host processor and from the other

accelerators. Handling the host requests and the reorganization requests served in parallel efficiently

will be discussed next in Section 6.2.

6.1.2 Implementing Memory Access Monitors

As discussed in Chapter 5, in the automatic mode of operation, memory access stream of the host

applications are monitored to determine a possible inefficient address mapping where the physical

access patterns do not utilize the DRAM parallelism and locality. To determine such inefficient

DRAM address mapping cases, we inspect the change rate, or bit-flip rate (BFR) of DRAM address

bits, as introduced before. Bits with high BFR in physical address can be mapped onto parallelism

bits in the DRAM address (i.e. bank, vault, layer). On the other hand, bits with low BFR should be

mapped into the locality bits (i.e. row bits in DRAM address).

Figure 6.3 demonstrates the memory access monitoring hardware to determine the BFR in the physi-

cal address stream. The basic operation of the bit-flip monitor is to XOR the current address with the

previous reference to determine which bits are flipped. Flipped bits increment a counter that tracks

the number of changes of a particular bit. This unit counts the total number of requests in epochs. At

the end of every epoch the BFR values of every bit is normalized with the number of total accesses

to generate the bit-flip histograms. An example bit-flip histogram is given in Figure 6.4.
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Figure 6.4: An example bit-flip histogram of a memory access stream (facesim from PARSEC [32]).

There are various methods to use the BFR histograms for deciding a DRAM address remapping.

In interpreting the BFR values, our goal is to devise decision mechanisms that are robust, easily

implementable in hardware, and capture the application behaviour realistically. For that purpose,

we have a multi-step decision mechanism that uses the BFR histogram in various ways to find the

most efficient address remapping.

BFR value based. First, the decision logic implements BFR value based stuck and streaming

detectors. These are essentially per address bit comparators that check whether the BFR value is

larger or smaller than certain threshold values. If a BFR value is larger than a pre-set streaming

threshold, that bit is marked as streaming. Similarly, if the BFR value of a bit is smaller than the

stuck threshold, it is marked as stuck. Ideally a stuck bit in the physical address should be mapped

into one of the locality bits in the DRAM address. A stuck bit mapped into the parallelism part

results in underutilized parallelism. Similarly, a streaming bit in the locality part of the DRAM

address leads to excessive row buffer misses. If the streaming or stuck behavior of such bits is

consistent for a few epochs, then they are great candidates for remapping.

BFR ratio based. For some memory access patterns, there are no extremely high or low BFR

values in the physical address stream, in other words, no streaming or stuck bits. In such cases,

a BFR ratio based decision mechanism is utilized. The ratio between the highest BFR value from

the locality bits and the lowest BFR value from the parallelism bits is calculated. The BFR ratio

is compared against a pre-set threshold. If the highest BFR ratio is greater than the BFR ratio

threshold consistently for several epochs, the corresponding bit pair considered to be a candidate
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for remapping. This operation is repeated to find other bit pairs where the BFR ratio is greater than

the threshold to remap.

Both the BFR value based and BFR ratio based thresholds can be reconfigured during the runtime.

They are initialized to empirically determined values. These values can be reconfigured explicitly by

the user to a desired value when the configuration is offloaded. Furthermore, they can be adjusted

dynamically based on the average maximum and minimum BFR rates observed over a period of

time.

In both of these techniques, BFR is observed over a period of time, for several epochs, to make

a robust decision. This period can become longer to coalesce possibly multiple reorganization

into a single one. Data reorganization requires a full pass over the dataset that is reorganized.

Multiple separate data reorganizations requires multiple passes. Yet, separate reorganizations can

be combined into a single permutation (see rule 3.15) which can be implemented as a single pass

over the dataset. Therefore, issuing a reorganization is delayed for a possible coalescing if there is

another bit remap candidate being monitored but not yet observed long enough.

6.2 Handling Parallel Host Access and Reorganization

Near-data processing creates a heterogeneous computing system where the DRAM is shared be-

tween multiple processing elements. These processing elements generate memory access request

streams with very different characteristics. These characteristics include request rate (memory in-

tensity), bandwidth and latency sensitivity, parallelism and locality in the memory accesses, etc.

Memory system needs to maximize the overall throughput and provide a fair service to all of the

request sources based on these characteristics. We analyze this concept in the context of parallel

data reorganization and host memory access.

HAMLeT is integrated in the logic layer of the 3D-stacked DRAM behind the interconnect, di-

rectly interfaced to the memory/vault controllers as shown in Figure 6.2. Data reorganization re-

quests are directly submitted to the memory controller where they are buffered in a separate queue.
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Memory controller will decide which request to schedule from the regular queue and the reorga-

nization queue. To this end the main goals are; (i) extract highest overall throughput, (ii) devise

efficient mechanisms that provide a control over the bandwidth allocation to different sources, and

(iii) provide a minimum service guarantee to the host application while the data is transparently

reorganized.

6.2.1 Block on Reorganization (BoR)

The first mechanism provides the highest priority to the data reorganization requests. In the BoR

technique, when a memory region is under reorganization, all the regular memory accesses to that

region are blocked. Independent processes can still access other memory regions. This allows very

fast reorganization operation by minimizing the interference from the host memory accesses. Data

reorganization requests are highly memory intensive and regular. Regular and intensive memory

accesses efficiently exploit the parallelism and locality of the stacked DRAM layers. Hence pri-

oritizing the DRAM-friendly access patterns of the data reorganization requests greatly reduce the

latency overhead of the data reorganization. Moreover, the memory regions under reorganization are

only accessed by the HAMLeT which eliminates coherence problem. This simplifies the scheduling

algorithm and the memory controller design since it does not have to handle any coherence updates.

However, this operation stalls the host processor for a period of time. Host processor is not allowed

to access the memory while the reorganization is taking place. As we will see later, the latency of

the reorganization can be in the order of milliseconds. This overhead is comparable to a potential

page fault in the program. Nevertheless, overhead of the reorganization is amortized during the

long runtime of the application. However, this can still be problematic for latency-sensitive critical

applications.

6.2.2 Access on Reorganization (AoR)

The previous scheme, BoR, aims simplicity and maximum reorganization throughput by blocking

the host accesses when data reorganization is taking place. Whereas, AoR allows host requests
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and the reorganization requests to be serviced in parallel. Main goals of this technique are to de-

vise efficient mechanisms that provide a control over the bandwidth allocation to different sources

and extract maximum overall throughput while providing a minimum service guarantee to the host

application.

Fine-grain interleaving. First we go after a fine-grain interleaving scheme to maximize the re-

quest issue rate. Abundant parallelism available within the stacked DRAM system creates the op-

portunity to issue several requests to different banks, vaults and layers. Low-latency and high-

bandwidth vertical TSV connections create a substrate that support very high request rates. Fur-

thermore, multiple banks, vaults and layers create a parallelism that can service several requests

concurrently. A fine-grain interleaving of multiple request streams can utilize this substrate to issue

several requests both spatially and temporally.

However, the main disadvantage of this technique is that it does not preserve the locality in the

memory access streams by interleaving them at a fine granularity. As discussed previously, data re-

organization requests are highly memory intensive and regular. Furthermore, they rely on efficiently

exploiting the parallelism and the locality from the DRAM to achieve high bandwidth. Mostly ir-

regular host accesses interfere with the DRAM-friendly access patterns of the data reorganization.

This leads to excessive row buffer misses and wasted TSV cycles while waiting for the DRAM

banks to precharge and activate new rows. Hence the increased issue request rate is not necessarily

reflected as improved bandwidth utilization.

Request batching. In order to preserve the locality of the access streams request batching is per-

formed where multiple requests from each memory access stream are bundled together to form a

batch. Then batches are interleaved instead of individual requests. Within the batch boundaries

memory access locality and parallelism of the corresponding access stream is preserved. Interleav-

ing batches themselves, on the other hand, enables sharing the DRAM bandwidth among different

sources. Furthermore, the size of the batches determine the bandwidth sharing ratio between the

sources. Hence, adapting the size of the batches for different access streams provides an efficient
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Figure 6.5: Overview of the request batching with three sources.

control mechanism for allocating bandwidth to different sources.

However, course-grain interleaving with batch scheduling does not utilize the request issue rates as

efficient as fine-gain interleaving. If there are no available requests that can be scheduled at a given

time instant while serving the requests from a batch, no request is scheduled without searching the

batches from other request streams. Nevertheless, this tradeoff is beneficial to preserve the locality

and parallelism within batches.

Overview of a request batching technique is given in Figure 6.5. In our case there are two main

memory access streams; host requests and data reorganizations requests. As given in Figure 6.2,

HAMLeT is directly connected to the memory controllers in the logic layer. The memory controller

queues the reorganization requests in a separate buffer and continuously makes batches from both of

the request streams in-order. Then a batch selection unit arbitrates between the sources and forwards

the selected batch down to the memory access scheduler. The access scheduler is decoupled from

the batching and it implements an out-of-order DRAM access scheduling. Target batch sizes are

configurable. One can allocate more bandwidth to one of the sharers by increasing its target batch

size. This provides a very effective knob to adjust for the bandwidth sharing. By making sure

that the batch size for the host stays above a certain minimum, the memory controller provides a

minimum service guarantee to the host processor during data reorganization.

Note that the host request stream is not as memory intensive and regular as the reorganization

request stream. Hence, forming a batch with the targeted number of memory requests for the host

access stream can take a very long time since the the memory intensity is low. A strict request-based

batching can lead to inefficient batches. Request batching is assisted with a preemptive time-slicing
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to avoid these cases. When the batches are being formed, if the allocated time slice expires before

bundling the targeted number of requests together, the batch closes with the existing number of

requests. This leads to batches with varying number of requests within the access stream which is

also exemplified in Figure 6.5.

Overall, request batching with time slicing is a robust technique that provides a efficient control

to allocate the shared DRAM bandwidth to different request streams. Compared to the fine-grain

interleaving, there can be underutilized request issue slots when there are not enough requests in

the batch, especially for the host request batches. However, it preserves the locality and parallelism

for each individual request streams. Furthermore, by sizing the batches properly, it can provide a

minimum service guarantee to the host application while the data is transparently reorganized

6.2.3 Handling Memory Coherence

Access on reorganization (AoR) allows the data reorganization to take place while the host proces-

sor accessing the same data. This allows sharing the DRAM bandwidth for a parallel operation,

however it also creates some side effects including memory coherence problem. For the BoR oper-

ation, when the reorganization is finished, ARU handles the address remapping of the reorganized

data. Hence, it does not create any coherence problem. However, for the AoR operation, while

the reorganization is taking place such that the data is read from a source region and written into a

destination region in the reorganized form, an update from the host to the source region can create

a coherence problem.

In order to handle the coherence issue, any update (i.e. write) to the source region needs to propagate

to the target region before the reorganization is finished. Reorganized region will not be visible to

the host processor until the reorganization is completed. Hence, the synchronization point is the end

of the reorganization. Note that the updates to the other regions will not create any coherence issue

and can be committed freely.
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Coherence Merge Buffer (CMB). In addition to the regular scheduling queues, the memory

controller is modified to implement a coherence merge buffer (CMB). Incoming writes to a source

region which is under reorganization are copied into the CMB as a coherence update request. CMB

is drained to propagate the coherence update requests to the target region. A data reorganization is

considered to be completed when the data reorganization requests and the coherence update requests

in the CMB are both finished.

When a coherence update request is inserted into the CMB, first it checks if there is any existing

request in this time-ordered buffer that goes to the same target address. The final value of the

memory location is determined by the latest written value. This corresponds to a write-after-write

(WAW) situation where the initial value is overwritten by the later one. Therefore, in such cases, the

new request is enqueued while the older request in the buffer is dropped. This reduces the number

of redundant requests.

Furthermore, whenever a data reorganization request is scheduled CMB controller also checks the

CMB if there is any coherence update to the same target address waiting to be serviced that is older

than the currently scheduled reorganization request. Such coherence updates are also redundant

since the scheduled reorganization requests read the most recent copy from the source region. Such

requests are also dropped from the CMB.

CMB requests are scheduled first when there is a row-hit to an open bank, and then if the buffer

is almost full. This scheduling mechanism tries to minimize the interference between the CMB

requests and already existing host and reorganization requests. Also it keeps the CMB generally

occupied to maximize the chance of dropping the redundant coherence requests via previously de-

scribed techniques.

Multi-stage Reorganization Until now, we assumed that the data reorganization is an atomic op-

eration such that the outcome of the data reorganization is made visible via address remapping when

the entire operation is completed. Atomicity assumption simplifies handling the address remapping,

scheduling the requests and the hardware implementation. However, it has side effects on the coher-
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Figure 6.6: Handling the host memory accesses in the multi-stage reorganization scheme.

ence updates. During the data reorganization, any incoming write to the source memory region also

generates a coherence update to the destination for coherence. Due to atomicity, coherence updates

are required until the data reorganization is completely finished.

In the multi-stage reorganization the goal is to divide the memory region under reorganization into

coherence partitions. When a coherence partition is accessed by the DRU it is marked as modified.

Upon the reorganization of a coherence partition is completed, it is marked as reorganized. Modi-

fied and reorganized informations are kept in coherence partition reorganized (CPR) and coherence

partition modified (CPM) registers. Figure 6.6 demonstrates three different memory access scenar-

ios in the multi-stage reorganization. Reorganized coherence partitions (i.e. CPR=1, CPM=1) are

opened to the host access, although the entire data reorganization is incomplete. In this case ( 1 in

Figure 6.6), incoming requests from the host are forwarded via ARU to their remapped locations. In

this way, the host processor can access all the reorganized coherence partitions without generating

the additional coherence updates. Furthermore, if the host accesses a coherence partition that is

unmodified (i.e. CPR=0, CPM=0), than the access is directly transferred to the source region ( 3

in Figure 6.6). This access will not generate any coherence update since the coherence partition

has never been accessed by the DRU. If a coherence partition is modified but not reorganized (i.e.

CPR=0, CPM=1), then the access generates a coherence update which is inserted into the CMB ( 2

in Figure 6.6). Overall algorithm for determining the coherence updates and the address forward-
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// get the configuration for the region of the access
oldConfig = configStore[memAccess.region];
// check if the accessed region is under reorganization
if(oldConfig.underReorganization == true) {

// get the coherence partition for the access
coh_part = getCohPart(memAccess);
// check CPR to see if the reorganization is finished for the partition
if(CPR[coh_part] == true) // coherence partition reorganized

BSUconfig = newConfig.BSUconfig;
else if(CPM[coh_part] == false) // coherence partition unmodified

BSUconfig = oldConfig.BSUconfig;
else if(CPM[coh_part] == true) { // coherence partition modified

BSUconfig = oldConfig.BSUconfig;
CMB.insert(memAccess); // insert a coherence update

}
}
else // the accessed region is not under reorganization

BSUconfig = oldConfig.BSUconfig;

Table 6.1: Algorithm for determining the BSU configuration and coherence update for the host memory
accesses in the multi-stage reorganization scheme.

ing (i.e. BSU configuration) is summarized in Table 6.1. Multi-stage reorganization reduces the

coherence updates significantly, as we will analyze later in detail. However, CMB controller needs

to keep track of the reorganization requests and the coherence partitions. Further, ARU needs to

support the address mapping based on the coherence partitions.

6.3 Host Architecture/Software Support

For the physical data reorganization driven by the memory controller, user software and OS are kept

unchanged. In this use case, the memory controller monitors the memory accesses in the physical

domain and issues a physical data reorganization. Hence, the data reorganization only requires a

physical to physical address remapping which is completely handled by the ARU.

Physical data migration has been studied in previous work [47, 100, 107]. These approaches use

a lookup table implemented in the memory controller to store the address remappings for the data

movements. The address remapping lookup table is not scalable to support large scale and fine

grain data reorganizations. Hence, these approaches only focus on movement of OS page size data



90 6.3. Host Architecture/Software Support

chunks. Our technique can support data granularity of a single access (e.g. 32 bytes) at much lower

hardware cost since it captures the entire remapping information in a single closed form expression

which is implemented by the generic ARU.

6.3.1 Memory Management for NDP

For the explicit offload, the host architecture should provide the memory management for both cor-

rect and efficient data reorganization in memory. From a system architecture perspective, a host

processor is connected to multiple memory stacks where each stack contains HAMLeT units capa-

ble of data reorganization in memory. In such configuration, each stack is responsible for reorgani-

zation of the local data in the stack. When a data reorganization operation is offloaded, the data for

processing should reside in the local stack. Moreover, the processed data should be the most recent

copy to avoid coherence problem. Finally, it should stay in the local stack during the reorganiza-

tion. The NDP memory management system (NMM) should provide these requirements for both

correctness and efficiency. In this thesis we utilize the NMM system proposed in [59].

First, NMM should make sure that the data for processing reside in the local stack. For that purpose,

a physically contiguous memory region is allocated in the kernel. Than, NMM maps the physically

contiguous region into the virtual memory space via mmap system call. Hence, the accelerator

configuration, commands as well as data can be written from the user side to the allocated memory

space. Furthermore, the status of the accelerator and the generated results can be read from this

memory space. Hence both host and the accelerator share the same virtual address space. During

the mmap call, allocated pages are pinned into memory so that when the operation is offloaded

they will not be swapped out. Directly mapping contiguous virtual memory regions into contiguous

physical memory regions for specific data structures also have been studied in different contexts

[29].

To alleviate the accessibility from the user software, library based NMM functions are also pro-

vided. These functions include malloc, free, plan and execute. Memory allocation functions malloc

and free only allocate the memory space from the local stack corresponding to the accelerator. Ac-
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celerator descriptor, in our case the data structures for DRU and ARU configuration, is represented

by the plan. Finally, execute writes the configuration and commands to the specific command mem-

ory space via memcpy call. By using these user level memory management functions, configuration

data including HAMLeT architecture configuration, allocated source/destination memory pointers

and sizes are transferred to the memory. Host does not offload the data for processing since it

already resides in the local stack.

Avoiding Cache Flush. In [59], the host also issues a cache flush to ensure that the accelerator

accesses the most recent copy in the memory stack to avoid coherence problems. This is a neces-

sary operation for correctness in general NDP-based hardware acceleration. On the other hand, a

data reorganization only rearranges the data without using the actual values. Therefore it does not

require the most recent copy of the particular data. This implies that while data is being reorganized

in the main memory, local caches can have dirty data. Hence, the costly cache flush operation can

be avoided for the in-memory data reorganization. HAMLeT features the ARU which automatically

forwards the access to the remapped locations. Hence any read access, that is not filtered by caches,

is forwarded to the corresponding remapped location which holds the valid value of the data. Dirty

cache line write-back requests, however, can change the content of a reorganized data. These re-

quests are properly propagated to the original and/or remapped location(s) by the coherence merge

buffer (CMB) as discussed in Section 6.2.

Explicit offload for near data processing is known to be costly where cache flush is the longest oper-

ation. It writes any dirty cache line back to the main memory and invalidates the valid cache lines so

that the future references go to the main memory. Modern ISAs such as x86 provide instructions for

flushing or invalidating specific cache lines (CLFLUSH) or the entire cache hierarchy (WBINVD,

INVD) [17]. Nonetheless, searching or keeping track of the cache lines from the source and target

regions of the NDP requires additional complexity. Overall, flush and invalidate operations result

in a long latency that is on the critical path of the NDP. Furthermore, they consume bandwidth and

energy. To handle the coherence easily by avoiding the invalidate and flush operations [50] makes

the NDP memory region non-cacheable. However, in this case after the in-memory accelerator fin-



92 6.4. Putting It Together

ishes processing, the resulting data needs to be moved to a cacheable region, otherwise exploiting

the locality is sacrificed. In our case, on the other hand, costly cache flush operation is eliminated

while keeping the NDP memory regions cacheable.

Finally, for the automatic mode of operation, all the side effects of the data reorganization is handled

completely in memory via HAMLeT. However, fast out-of-place data reorganization requires a free

memory region as discussed previously. The reorganized data is first mapped to the free region.

Then, after the data reorganized, the source region is labelled as free region. Hence, the free region is

allocated once in the beginning and it is passed around transparently by the HAMLeT. NMM system

allocates the free memory region for the automatic mode of operation and passes it to HAMLeT

before it is enabled for automatic reorganization.

6.4 Putting It Together

Figure 6.7 summarizes the fundamental use cases where the discussed components are put to-

gether.

Automatic Mode. In automatic mode of operation, HAMLeT architecture is driven completely

by hardware monitors. Memory access monitors determine a possible inefficient address mapping

where the physical access patterns do not utilize the DRAM parallelism and locality. Once the

address remapping is determined by the hardware monitors, HAMLeT is directly configured by-

passing the Spiral rewrite engine. Along with the target address mapping scheme, the hardware

monitors transport the number of contiguous memory regions and their IDs to HAMLeT. Then the

DRU performs the corresponding permutation to achieve the target address mapping scheme. This

mechanism also collaborates with the NDP memory management system to ensure that it oper-

ates within allowed memory boundaries. Furthermore, proposed batch scheduling allows both host

access and reorganization take place in parallel, while multi-stage reorganization with coherence

partitioning reduces the coherence traffic in the memory.
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P:=Tensor(L(64,2),I(8));
#pragma offload …

mkl_simatcopy(r,c,x,…);

// NDP memory management
void* nmm_malloc(long size);
void nmm_free(void* addr);
plan_t nmm_plan(params...);
void nmm_execute(plan_t plan);

Figure 6.7: Overall view of the fundamental use cases: From specification to in-memory reorganiza-
tion.

Explicit Mode Explicit mode, on the other hand, is driven by the user level function calls either

using the native interface of the SPL or through high-level function wrappers. These operations are

then passed to the Spiral rewrite engine. At this stage, Spiral rewrite engine restructures SPL expres-

sions to derive local permutations, memory access patterns and index transformations. Furthermore,

it determines the corresponding hardware configuration parameters to program the HAMLeT. Then

the NDP memory management handles the explicit memory allocation and offloading the ARU/-

DRU configurations. With the help of CMB handling in-memory coherence and ARU implementing

hardware based indirection, explicit cache flush is removed from the offload operation.
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Chapter 7

Evaluation

This chapter provides an experimental evaluation for the fundamental use cases of the 3D-stacked

DRAM based implementation of the HAMLeT architecture. The chapter starts with the details re-

garding modeling and simulation of the 3D-stacked DRAM based hardware acceleration. Then, it

focuses on automatic and explicit use cases individually. In the explicit use case, software trans-

parent dynamic data reorganizations, address remapping efficiency, design space details, multi-

programmed workloads, as well as parallel data reorganization and host processor execution issues

are discussed. For the explicit use case, it focuses on accelerating commonly used data reorgani-

zation routines selected from a widely adopted HPC software library, Intel Math Kernel Library

(MKL). Explicit use case evaluations also include important design choices such as placement of

the DRU unit and overhead of the offloading from software. The evaluations are concluded by

hardware synthesis results to analyze power and area cost of the fundamental components of the

HAMLeT architecture.

95
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Table 7.1: 3D-stacked DRAM low level energy breakdown.

Parameter Value (pj/bit) Reference

DRAM access 2 - 6 [38, 65, 111]
TSV transfer 0.02 - 0.11 [13, 38, 117]
Control units 1.6 - 2.2 [6, 65]
SERDES + link 0.54 - 5.3 [44, 65, 69, 78, 96]

7.1 Experimental Procedure

7.1.1 3D-stacked DRAM Modeling

We use a custom trace-driven, command-level simulator for the 3D-stacked DRAM. It features a

simple CPU front-end similar to the USIMM DRAM simulator [35].

Unless noted otherwise, it models per-vault request queues and FR-FCFS scheduling. Low level

timing and energy parameters for DRAM and TSV are faithfully modeled using CACTI-3DD [38]

and published numbers from literature [13, 65]. Logic layer memory controller performance and

power are estimated using McPAT [6]. Finally, the SerDes units and off-chip I/O links are mod-

eled assuming a high speed short link connection [44, 78, 96]. We assume 4 pj/bit for the total

energy consumption of combined SerDes units and off-chip links at 32nm technology node. To

demonstrate the relative cost of each operation in the 3D-stacked DRAM, we summarize a typical

energy breakdown of various operations in Table 7.1. However, these values change depending on

the particular configuration of the memory.

Table 7.2 provides four memory configurations, namely high (HI), medium-high (MH), medium-

low (ML) and low (LO), that will be used in our later simulations. For each configuration, it spec-

ifies the 3D-DRAM architecture parameters, i.e. number of vaults (banks), layers, TSVs, links,

etc. It also provides aggressive and conservative model estimations for the internal bandwidth and

power consumption. These are the maximum bandwidth that the stack can reach internally when

all the vaults/banks/layers are saturated, and the power consumption at that bandwidth respectively.

The 3D-stacked DRAM simulator is driven by the low-level timing and energy estimations from
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Table 7.2: 3D-stacked DRAM configurations.

Parameter HI MH ML LO

Vault (#) 16 8 4 2
Layer (#) 8 4 4 2
Total TSV (#) 2048 2048 1024 512
Agsv. Internal BW (GB/s) 860 710 360 90
Agsv. Internal Power (W) 37 30 15 4
Agsv. Internal En. Eff. (pj/bit) 5.38 5.28 5.21 5.55
Cons. Internal BW (GB/s) 790 520 280 65
Cons. Internal Power (W) 34 23 13 3
Cons. Internal En. Eff. (pj/bit) 5.38 5.53 5.80 5.78
Link (#) 8 8 7 1
Link BW (GB/s) 60 40 40 40
External BW (GB/s) 480 320 280 40
Power (Watt) 45 30 25 4
External En. Eff. (pj/bit) 11.7 11.7 11.2 12.5

(Agsv.=Aggressive, Cons.=Conservative, En. Eff.=Energy Efficiency, BW=Bandwidth)

CACTI-3DD [38] and published numbers [13, 65]. Aggressive and conservative estimations are

based on these low-level parameters selected from the available ranges in these numbers. Further-

more, Table 7.2 provides the bandwidth available to the off-chip by the high speed links and the

overall power consumption where these links are fully saturated. DRAM page size is 1 KB for all

the configurations. The unusual DRAM page size of 1 KB is a typical value for 3D-DRAM (from

256 byte [65] to 2 KB [114] are reported). Table 7.2 shows that these configurations can reach

overall energy efficiency of 11-12 pj/bit. On the other hand, internal operation bypasses the costly

SerDes IO which both reduces the energy cost and increases the maximum reached bandwidth. This

leads to 5.2-5.8 pj/bit energy efficiency for the internal accesses based on aggressive and conserva-

tive estimations. These evaluations agree with the published numbers for HMC which can achieve

10.48 pj/bit overall energy efficiency where DRAM layers spend only 3.7 pj/bits [65]. Throughout

the thesis conservative estimations are used unless noted otherwise. Note that conservative estima-

tions are in favor of the baseline systems and disadvantageous for improvement estimations of our

solutions.
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7.2 Automatic Mode

7.2.1 Dynamic Data Reorganization Overview

First, we focus on software transparent dynamic data reorganization technique. As described in Sec-

tion 5.1 this mechanism combines data reorganization and address remapping in hardware by uti-

lizing the HAMLeT architecture integrated in 3D-stacked DRAM. HAMLeT architecture features

the address remapping unit (ARU) and the data reorganization unit (DRU). DRU is specialized for

efficient permutation based data reorganization and ARU handles the address remapping for mul-

tiple memory regions. In the automatic mode of operation, HAMLeT architecture is driven by a

hardware based memory access monitoring system that profiles memory access patterns of applica-

tions. The monitoring determines changes in consecutive DRAM addresses, or bit-flip rate (BFR)

as introduced before. Bits with high BFR in physical address should be mapped onto parallelism

bits in the DRAM address (i.e. bank, vault, layer) to improve parallelism. On the other hand, low

BFR ones should be mapped into the locality bits (i.e. row bits in DRAM address) to minimize the

row buffer misses. Once the monitoring unit determines such an address remapping, it configures

the ARU/DRU units to achieve the data reorganization and address remapping. This enables soft-

ware transparent dynamic data layout operation, where both the profiling and the reorganization are

handled in hardware.

We evaluate the memory traces publicly available from JILP Memory Scheduling Championship

[14]. This trace repository includes memory traces from PARSEC [32], SPEC CPU 2006 [63],

BioBench [25] trace suits and some undisclosed commercial workloads. For the dynamic data

reorganization experiments, we use the MH (medium high) configuration for the 3D-stacked DRAM

(see Table 7.2). Processor configuration is given in Table 7.3.

First, we focus on the effect of address remapping on the DRAM row buffer miss rate. Row buffer

hit rate evaluation does not include the statistics of the accesses coming from the DRU to reorganize

the dataset, it is only based on the host DRAM accesses. In this evaluation, we allow address

remappings with up to 3 bit pair swaps to keep the data reorganization simple. First the BFR value



Chapter 7. Evaluation 99

Table 7.3: Processor configuration.

Parameter Value

Cores 1-4 cores @ 4 GHz
ROB size 160
Issue width 4-32
Pipeline depth 10
Baseline address map row:col:layer:vault:byte
Memory bus frequency 1.0 GHz
Memory Scheduling FR-FCFS, 96-entry queue
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Figure 7.1: Row buffer miss rate reduction via physical address remapping with data reorganization.

based stuck and stream detectors are checked. If there is no BFR value based anomaly detected, then

BFR ratios are calculated where the highest BFR in locality region is divided by the lowest BFR in

the parallel region to determine the highest BFR ratio. If the highest BFR ratio is smaller than the

BFR ratio threshold, BFR ratio calculation is stopped since the highest BFR ratio is already smaller

than the threshold. If the BFR ratio is larger than the threshold, BFR ratio calculation continues

with the second largest (smallest) BFR values from locality (parallelism) bits until the BFR ratio is

smaller than the threshold or it reaches the target bit pair swap goal. The DRAM address stream

monitoring is carried out in 50k-cycle epochs. If the detected inefficient BFR behavior is consistent

for 4 epochs, a data reorganization is issued to change the address remapping. Before issuing the

reorganization, monitoring unit checks if there are any other remapping candidates that are not yet

validated for 4 epochs. In that case it delays the reorganization aiming to include that candidate in

the address remapping by consolidating them into a single data reorganization. Figure 7.1 shows the

improvement in the DRAM row buffer hit to miss ratio with the dynamic data reorganization.

Remapping frequently flipping bits from row address bits to the vault and layer address bits signif-
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Figure 7.2: Performance and energy improvements via physical address remapping with data reorga-
nization.

icantly reduces the miss rates. It also improves the parallelism by scattering the accesses to vaults

and layers more efficiently. This translates into improved performance and energy efficiency as

shown in Figure 7.2. This evaluation uses BoR (block on reorganize) mechanism where the host ac-

cesses are blocked while the data is under reorganization. We observe that more memory intensive

applications (e.g. leslie, libquantum) gain higher improvements since their performance are more

sensitive to the memory access performance. To analyze the performance improvement sensitiv-

ity to the memory intensity, we also evaluate wider issue width processor configurations (4-32) in

Figure 7.2. Wider issue width improves the instruction throughput and memory intensity. With the

increased memory intensity, we observe that workloads achieve even higher improvements both in

terms of energy and throughput.

Efficient transparent data reorganization requires several design choices including BFR threshold,

epoch length, number of memory regions, handling host accesses during reorganization, etc. Pro-

vided results for the dynamic data reorganization demonstrates an overview of the possible improve-

ments with this technique. Next, we focus on details of this mechanism and evaluate critical design

choices.

7.2.2 Address Remapping: Manual Search vs. Hardware Monitoring

There are as many address mappings as there are bit permutations. However, finding the optimal

address mapping can be very difficult. To give an overview of this problem and also the potential,

Figure 7.3 demonstrates the improvement achieved by address remapping where only a single bit
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Figure 7.3: Improvements with address remappings where only a single bit pair is swapped.

pair is swapped. Note that, the processor is 32-wide in this experiment to observe the memory im-

provements more dramatically. We observe that, there exists several schemes that can be achieved

by changing the locations of two bits in the address mapping that will lead to performance improve-

ments. However, there are more address remappings that perform much worse than the baseline row

interleaving.

BFR based address stream profiling provides an estimation for a more efficient address mapping.

This subsection evaluates the effectiveness of the the BFR based monitoring. In this evaluation,

first a subset of candidate address mappings are determined. These candidates are only a filtered

subset of the entire bit permutations as the entire design space is very large (Assuming 32-bit ad-

dresses and 64-byte cache lines, there are 26! different possible address mapping). To determine the

candidates, first the whole trace is simulated and group of bits with the highest/lowest BFR values

are determined. Furthermore, bits are paired from the high BFR and low BFR groups to create bit

pairs with high BFR ratio where the high BFR is from locality bits (DRAM row address) and low

BFR is from parallelism bits (vault, layer). Bit pairs not only include highest BFR ratio pairs but

also relatively lower BFR ratio pairs and randomly selected pairs from these groups as well. Each

address remapping is formed out of up to 6 such bit pair swaps. For each benchmark, we simulate

around 50 different address remappings following this procedure. Figure 7.4(a) demonstrates the

speedup values achieved with these address remappings.
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Figure 7.4: Comparing the best address remapping schemes that are manually searched and deter-
mined by hardware monitoring.

There is a lot of variation in the achieved improvement based on different address remapping candi-

dates as seen in Figure 7.4(a). We pick the best performing address remapping found by the manual

search procedure for each benchmark, and compare it to the automatically found address remapping

by the BFR based monitoring in Figure 7.4(b). BFR based monitoring reaches the same improve-

ment for some of the benchmarks (e.g. leslie, libqantum, facesim). For some of the benchmarks,

however, it cannot find the remappings that perform as high as the manually found ones (blacksc-

holes, ferret, comm2). And, for some benchmarks neither of them can find any useful remapping

(e.g. canneal, comm1). BFR based monitoring usually performs well if the there is a stride pattern

that increase the BFR of certain bits. For example leslie, libqantum, and facesim have relatively

regular access patterns. As long as the problematic bit mappings are determined, the potential per-

formance improvement can be mined efficiently. Interestingly, for some of the benchmarks the best

performing address remappings include the randomly formed bit pairs as well. BFR based mon-

itoring cannot capture such cases. Nevertheless, hardware monitoring that uses BFR metric can

perform on average within 5% of the manually found best remapping where maximum deviation is
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Figure 7.5: Selecting an efficient BFR ratio threshold.

20%.

7.2.3 Tuning the DRU Design Parameters

BFR Threshold. There are three main threshold values to determine a inefficient address remap-

ping. BFR value based stuck and stream detectors compare the BFR of individual bits to the thresh-

old value. Stuck and stream thresholds are set to a very large and small numbers initially. Since the

BFR values are normalized every epoch, they can take values between 1.0 and 0. Note that, to avoid

floating point arithmetic and minimize the hardware bookkeeping when calculating the statistics

they are scaled and quantized to 16-bit registers. Initially, stream and stuck thresholds are set to

within 10% of the maximum and minimum values (0.9 and 0.1). Later, these values are adjusted

based on the highest and lowest observed BFR. A bit is assigned as a stuck candidate, when its BFR

is smaller than the smallest BFR observed or smaller than the initial hard threshold (opposite for the

stream candidate).

To improve robustness, BFR ratio based profiling compares the BFR of individual bits from paral-

lelism and locality parts of the DRAM address. As described previously, the highest BFR in locality

region is divided by the lowest BFR in the parallel region to determine the highest BFR ratio. If

the highest BFR ratio is smaller that the BFR ratio threshold, then BFR ratio calculation is stopped.

If the BFR ratio is larger than the threshold, then BFR ratio calculation continues with the second

largest (smallest) BFR values from locality (parallelism) bits until the BFR ratio is smaller than the
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Figure 7.6: Selecting an efficient epoch length.

threshold or it reaches the target bit pair swap goal. Figure 7.5 demonstrates the effect of the BFR

ratio threshold to the application speedup. A small BFR ratio threshold can detect even a slight im-

balance between parallelism and locality regions of the DRAM address. If an inefficient mapping

is detected and fixed early, it greatly improves performance. However, it can select address remap-

pings too early that may not be beneficial in the long run. Towards the left side of the Figure 7.5,

we observe that there are some applications that get performance degradation with small threshold

values. A large threshold, on the other hand, improves the robustness by allowing the remappings

when the BFR ratio of a bit pair is very large. This reduces the chance of inefficient remappings

but with a very large threshold it can miss some useful remappings. Threshold values between 1.5

and 3 seem to be the sweet spot for the evaluated benchmarks. We pick a threshold of 2 aiming to

minimize early inefficient remappings while maximizing the average speedup.

Epoch Length. Hardware monitoring determines the statistics during every epoch and at the end

of each epoch it makes the decisions regarding changing address mapping and data layout. Epoch

based approach simplifies the hardware and makes the statistic calculation more tractable. Epoch

length needs to be long enough to capture enough statistics and to avoid frequent calculation of

histograms. However, if it is extremely long then the reorganization may not be issued in a timely

manner.

Figure 7.6 demonstrates the effect of epoch length on the overall application speedup for a set of

workloads. We observe that with the very small and very large epochs, overall speedup decreases.
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However, there is a flexibility to pick an efficient epoch length. From 20k to 100k cycle epochs

seem to provide the best performance. For our analysis, we chose 50K cycle epochs. Furthermore,

statistics are kept for 4 epochs in a moving window fashion.

Number of Memory Partitions. As described in Chapter 4 the memory address space is par-

titioned into memory regions. ARU supports implementing a different address mapping for each

partition. Having multiple memory partitions allow capturing spatial differences in memory access

patterns and data layout requirements of different applications which are mapped into different re-

gions in the memory. Moreover, even a single application exhibit varying memory access behavior

when accessing data structures that are stored in different parts of the memory. Hence, with multi-

ple independent memory partitions, the whole memory space can have different address mappings

optimized for the corresponding access patterns to individual partitions. However, as the size of the

memory partition reduces it becomes difficult to identify the data reorganizations per partition. With

smaller regions there are reduced number of overall requests to a partition. Furthermore, since data

reorganization across the partitions are constrained, improvements with data reorganization become

limited.

First, Figure 7.7 demonstrates the effect of increasing number of memory partitions on the speedup

for different workloads. Note that the improvements are normalized to the no partitioning case.

For some of the worklaods such as facesim increaseing the number of partitions does not provide
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Figure 7.8: Selecting an efficient partitioning scheme.

significant performance improvement. In general, increasing the number of partitions improve the

speedup. However, very large number of partitions decrease improvement due to the discussed

limitations. Yet, some workloads such as blackscholes, swaptions still get improved performance

with large number of partitions. Figure 7.8 demonstrates the overall average trend for these set of

workloads. Overall, partitioning with 4 to 64 memory regions provide a flexible range to implement

efficient data reorganizations.

7.2.4 Multi-program Workloads

Until now we have focused on a single program workloads. In a multi-programmed execution,

memory access streams of multiple workloads are interleaved as they share the memory and mem-

ory controllers. When memory access streams are interleaved, then the individual access patterns

are disturbed which makes the tracking the individual workloads difficult. Though the core/thread/-

workload information regarding each memory access can be propagated to the monitoring hardware,

it increases the hardware complexity and ties the data reorganization hardware to the specific host

architecture.

Instead our hardware monitoring does not distinguish if the memory access stream is coming from

a single-program workloads or a multi-program workload. In order to perform efficient data re-

organization for multi-programmed workloads it leverages two important observations. First, we

observe that when two workloads—which require different address remapping schemes for the best
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Table 7.4: Multi-programmed workloads.

Name 2-program Name 4-program

w2.01 black face w4.01 black face libq fluid
w2.02 fluid leslie w4.02 face leslie stream ferret
w2.03 freq libq w4.03 freq libq leslie stream
w2.04 stream ferret w4.04 stream ferret swapt leslie
w2.05 swapt leslie w4.05 swapt leslie swapt leslie
w2.06 libq leslie w4.06 libq leslie libq face
w2.07 libq face w4.07 libq fluid libq face
w2.08 black freq w4.08 black freq ferret swapt
w2.09 ferret swapt w4.09 ferret fluid black face
w2.10 libq fluid w4.10 libq swapt libq fluid
w2.11 leslie stream w4.11 leslie stream ferret freq

performance—are combined, then the resulting address stream generally requires a different third

address remapping scheme for the best performance. Hence, instead of trying to isolate different

workloads, optimizing for the new access stream formed by the interleave can lead to improve-

ment in the overall performance. Nonetheless, when multiple applications are executed together

their accesses are interleaved in time at a fine granularity, but their spatial characteristics are mainly

preserved. Each workload works on a separated memory space assuming there is no data sharing

between different programs. We also assume a virtual memory system similar to the one proposed

in [29] where virtually contiguous large memory spaces are directly mapped to contiguous physical

space. Hence, memory partitioning implemented in the hardware monitors can capture the spa-

tial differences in the memory access patterns of different workloads. This enables multiple address

mappings for different memory regions that correspond to different workloads to further improve the

memory performance for the multi-programmed workloads. Figure 7.9 shows the overall speedup

with memory partitioning for (a) 2-programmed and (b) 4-programmed workloads. Full list of the

workload combinations are given in Table 7.4. Overall, we observe an increased performance with

multiple partitions. In particular, 32 partitions can provide 8% and 9% performance improvements

on average for 2-programmed and 4-programmed workloads.
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Figure 7.9: Multi-programmed workloads with partitioned memory space.

7.2.5 Host Access and Data Reorganization in Parallel

Until now we assumed the BoR (block on reorganization) mechanism for performing data reorgani-

zations (see Section 6.2). In BoR, memory accesses coming from the host processor are blocked to

minimize the interference and to avoid side issues such as coherence and memory access schedul-

ing. BoR is a simple mechanism, however during the data reorganization the host processor can

observe significant slowdown. Although this slowdown is amortized in the long runtime with the

optimized memory access after the reorganization, for some latency critical applications this can be

intolerable. To tackle this issue, AoR (access on reorganization) allows host accesses and the data

reorganization accesses to be served in parallel. There are two main issues that arise in the AoR

mechanism; (i) coherence between the host and DRU accesses, and (ii) efficient scheduling of the

accesses coming from DRU and the host processor. In Section 6.2 we provide several mechanisms

to address these issues. In this section, we will evaluate the tradeoffs and effectiveness of these

mechanisms.

To support efficient AoR, memory controllers are extended with batch scheduler as discussed pre-

viously. The batch scheduler forms batches of accesses coming from the regular host queues and
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Figure 7.10: Improvements in the number of in-memory coherence updates via merging and multi-
stage reorganization schemes for different host priority levels.

the data reorganization request queues. The sizes of these batches determine the interleaving gran-

ularity, hence the allocated priority for the sources. In our evaluations we use three batching con-

figurations that will assign low, medium and high priority to the host requests. These three main

configurations are labelled with AoR (L), AoR (M) and AoR (H). As we will see later, changing

batch configuration provides a very flexible knob to allocate memory bandwidth to different sources

(i.e. host and DRU).

First we evaluate the coherence issue for the AoR mechanism. During the AoR, where a source

region is reorganized into a target region in the memory, the source serves for the host accesses until

the entire region is reorganized. Then the source addresses are remapped such that they point to the

target region by ARU. Data reorganization is an atomic operation in the sense that the reorganized

data will be available to the host when the entire reorganization is finished. Hence, in the baseline

scenario any write access to the region under reorganization will generate a coherence update in

the memory to update the data both in the source and the target partitions until the reorganization

is fully complete. These updates are handled by the coherence merge buffer (CMB) as discussed

previously. CMB merges multiple requests going to the same address. It also drops its outstanding

coherence updates, if a data reorganization request with same target address propagates from source

to target carrying the latest value. Finally, multi-stage reorganization mechanism is provided which

breaks the atomicity into smaller blocks to further alleviate the coherence updates during AoR.

Details of these mechanisms are provided in Section 6.2. Figure 7.10 provides the analysis of these
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Figure 7.11: Reorganization duration comparison for BoR and AoR. Both baseline AoR and multi-stage
reorganization mechanisms are provided.

techniques, namely merge and multi-stage, over the baseline case for the AoR. First we observe that,

as the priority of the host accesses increase (i.e. larger batches for host requests) the total number

of coherence updates increase. For the AoR (H), total number of coherence updates significantly

larger than the AoR (L). This is mainly due to the fact that when the host accesses are prioritized

reorganization takes longer to finish. Until the reorganization is completely finished, any host write

access will generate a coherence update to the target region which increases the reorganization

duration. Nevertheless, CMB provides a modest reduction in the number of coherence updates by

merging and dropping coherence updates when possible. Furthermore, multi-stage reorganization

breaks the atomicity into smaller blocks and handles the coherence updates very efficiently which

leads to a substantial drop in the total number of coherence updates (see Figure 7.10).

Handling memory access scheduling and the interference are also major components to achieve

efficient parallel host and DRU access. Figure 7.11 provides the overall duration of the data reor-

ganization for the BoR and AoR schemes. BoR gives the entire DRAM resources to the DRU by

blocking the host accesses. Hence BoR achieves the fastest data reorganization. When the host

accesses have low priority in the AoR (L) mode, AoR can achieve a performance very close to the

BoR. However, when the host has high priority, AoR scheme takes much longer than BoR due to

both coherence updates and the memory interference. Coherence updates are significantly reduced

with the multi-stage reorganization which also improves the performance of the AoR data reorga-

nization, especially in AoR (H). Furthermore, batch scheduling minimizes the interference between
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host and DRU by preserving their memory access patterns in batches. However, since DRAM band-

width is shared between the host and the DRU, the reorganization takes longer compared to the BoR.

Although it takes longer to reorganize, host accesses are serviced during the reorganization.

In order to provide more insights on BoR and AoR operation with various interleaving granularities,

we focus on the details of the host and DRU bandwidth utilization during the data reorganization.

Figure 7.12 and Figure 7.13 provide the bandwidth utilization for the benchmarks blackscholes

and facesim during the baseline execution, BoR based, and AoR based data reorganization. Both

BoR and AoR schemes start with a bandwidth utilization equal to the baseline execution. During the

beginning of the execution memory access stream is monitored for a possible address remapping and

data reorganization. This portion can be considered as a training phase. Then the hardware monitor

issues a data reorganization. For BoR scheme the entire DRAM is allocated for data reorganization,

which immediately drops the bandwidth utilization to zero as shown in instantaneous bandwidth

utilization in Figure 7.12 and Figure 7.13. Then, when the data reorganization is finished, the

memory controller starts servicing the host accesses. After the data reorganization, the host utilizes

the bandwidth much more efficiently which amortizes the cost of the data reorganization quickly.

As seen in average bandwidth utilizations both in Figure 7.12 and Figure 7.13, BoR bandwidth

utilization drops significantly during reorganization but quickly after the reorganization it crosses

the baseline bandwidth utilization.

One shortcoming of the BoR is the substantial drop in the host bandwidth during data reorgani-

zation. AoR allows host accesses to be serviced during the data reorganization. Figure 7.12 and

Figure 7.13 provide three different priority levels (low, medium and high) for the host accesses

during the data reorganization. When the host priority is high, i.e. AoR (H), the host does not expe-

rience a significant drop in the bandwidth utilization. However, in this case since the host accesses

are prioritized, data reorganization takes much longer. During the AoR operation, both DRU and

host utilize lower bandwidth compared to when they are running alone. This delays and limits the

bandwidth utilization boost. Different priorities for host/reorganization accesses allow a flexible

control to tradeoff between reorganization duration, host bandwidth drop and overall speedup. Next
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Figure 7.12: Instantaneous and average bandwidth utilization during baseline, BoR and AoR (low,
medium and high host priority) for blackscholes.
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Figure 7.13: Instantaneous and average bandwidth utilization during baseline, BoR and AoR (low,
medium and high host priority) for facesim.
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Figure 7.14: Maximum slowdown during reorganization, and the overall speedup for BoR and AoR
mechanisms.

we will provide a detailed analysis regarding the effect of AoR on the maximum observed slowdown

during the reorganization and the overall speedup.

Figure 7.14(a) provides the maximum slowdowns observed during the data reorganization phase for

various workloads. Maximum slowdown is calculated as the drop in the average throughput during

the data reorganization. BoR operation leads to the largest slowdown during data reorganization

since the host accesses are blocked. On the other hand, AoR operation allows the host accesses

to be serviced during the data reorganization which mitigates the host slowdown. As shown in

Figure 7.14(a), BoR leads to 45% slowdown on average, whereas AoR improves this up to only 10%

slowdown during the reorganization. AoR provides a minimum service guarantee (low, medium and

high) to the host processor during the data reorganization. Reduced maximum slowdown during the

reorganization implies an improved quality of service.

Overall speedup with the BoR and AoR approaches for these workloads are given in Figure 7.14(b).

We observe that on average BoR and AoR (L) performs very close to each other, both around 41%.
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Moreover, AoR (L) incurs only 33% maximum slowdown during reorganization whereas BoR has a

44% maximum slowdown. We also observe that AoR (H) improves the overall performance by 34%

on average which is only 7% less than the BoR operation. However, AoR (H) causes only a 11%

maximum slowdown during data reorganization as opposed to the 44% slowdown for BoR.

7.3 Explicit Mode

As evaluated previously, the automatic mode enables a software transparent technique to assist the

host processor by reorganizing the data during the runtime that will result in more efficient memory

access. 3D-stacked integration of the HAMLeT architecture allows a fast, energy-efficient and low-

overhead data reorganization completely in memory. The HAMLeT architecture integrated in the

3D-stacked DRAM can be utilized to reorganize data in memory via an explicit offload from soft-

ware. This section evaluates the performance of the explicitly accelerated data reorganization rou-

tines. It first focuses on common reorganization routines selected from Intel Math Kernel Library.

Then it evaluates the overhead of software offload operation. Finally, it discusses the effectiveness

the HAMLeT unit placed in memory and on chip.

7.3.1 Accelerating Common Data Reorganization Routines

First we focus on explicitly accelerated reorganization routines. The list of the reorganization bench-

marks are given in Table 7.5. These are commonly used reorganization routines selected from

the Intel Math Kernel Library (MKL) [5]. Benchmarks include in-place and out-of-place matrix

transpose, vector pack/unpack via increment, scatter/gather indexing, and vector swap with varying

stride. Dataset size for these benchmarks ranges from 4 MB to 1 GB. Stride of the accesses ranges

from 1 to 8192 elements. Data precision is 32-bit float.

As a reference, we also report the high performance implementations on CPU and GPU systems.

Multi-threaded implementations of MKL routines are compiled using Intel ICC version 14.0.3 and

run on an Intel i7-4770K (Haswell) machine using all of the cores/threads. GPUs provide substantial
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Table 7.5: Benchmark summary.

Number MKL function Description

101-108 simatcopy In-place matrix transpose
201-210 somatcopy Out-of-place matrix transpose
301-308 vs(un)packi Vector (un)pack via increment
309-316 vs(un)packv Vector (un)pack via gather
401-404 cblas_sswap Vector swap via stride

memory bandwidth which is crucial for high performance data reorganization. As a GPU reference

we use a modified version of the implementation from Nvidia [103] using CUDA 5.5 on a GTX 780

(Kepler) platform. However, due to the limited memory size of the GPU we could not run a few of

the benchmarks with large dataset sizes (≥ 1 GB).

The benchmarks in Table 7.5 are expressed in SPL and implemented on HAMLeT where the DRU

performs the data reorganization. Energy and runtime of the operations implemented on DRU is

simulated using the 3D-stacked DRAM simulator. The 3D-stacked DRAM models are based on the

conservative estimations from Table 7.2. Reported numbers also include the energy overhead of the

HAMLeT implementation in the logic layer which will be analyzed later in detail. For the CPU, we

use PAPI to measure the performance and power consumption of the processor as well as the DRAM

via Running Average Power Limit (RAPL) interface [9, 17]. Finally, the GPU power consumption

is measured on the actual board via inductive current probes using a PCI riser card. The results

comparing the CPU, GPU and DRU performance in terms of throughput and energy efficiency are

given in Figure 7.15 and Figure 7.16 respectively. Note that these results do not include the host

offload overhead neither for GPU nor for DRU–here we report the results only for the individual

platforms. We evaluate the host offload overhead for the DRU later in detail.

It is observed that the DRU integrated in the 3D-stacked DRAM can provide substantial perfor-

mance and energy efficiency improvements when compared to the optimized implementations on

the state-of-the-art CPUs and GPUs. DRU integrated in 3D-stacked DRAM benefits not only from

the eliminated off-chip roundtrip data movement and the parallel streaming data reorganization ar-

chitecture, but also from the high available bandwidth. Next, we provide further analysis to under-
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Figure 7.15: Performance of the 3D-stacked DRAM based DRU (HAMLeT) is compared to optimized
implementations on CPU and GPU.
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Figure 7.16: Energy efficiency of the 3D-stacked DRAM based is DRU (HAMLeT) compared to optimized
implementations on CPU and GPU.

stand the actual contribution provided by eliminating the roundtrip data movement and the parallel

DRU architecture.

Evaluations in Figure 7.15 and Figure 7.16 use the medium-high (MH) 3D-stacked DRAM con-

figuration. The bandwidth provided by the MH configuration (i.e. 320 GB/s external, 520 GB/s

internal) is much higher than what is available to the CPU and the GPU. We would like to evaluate

the case where the same memory bandwidth is provided both to CPU and GPU.

We scale the DRU design down to the level of CPU and GPU individually. We provide individ-

ual comparisons where the bandwidth of the 3D-stacked DRAM is very close to each individual
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Figure 7.17: DRU (HAMLeT) in LO configuration is compared to the CPU.
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Figure 7.18: DRU (HAMLeT) in ML configuration is compared to the GPU.
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platform’s bandwidth. Figure 7.17 demonstrates the case where the DRU integrated in the LO

configuration (single link, 40 GB/s external, 65 GB/s internal) is compared against the CPU (two

channels, 25.6 GB/s). Also Figure 7.18 compares the DRU integrated in the ML configuration (7

links, 280 GB/s both internal and external) with the GPU (288 GB/s). Given the same level of

bandwidth, in other words same achievable peak throughput, DRU provides 6.5x/2x better through-

put compared to CPU/GPU. Furthermore, it provides 95x/25x better energy efficiency compared to

CPU/GPU.

Note that we compare three platforms when executing only the data reorganizations. When the data

is being reorganized, other programs running in CPU/GPU will observe substantial slowdowns.

But DRU integrated in 3D-stacked DRAM enables a parallel data reorganization completely in

memory to assist the host processor. Hence, it has a minimal slowdown effect on the other programs

running in the host processor. Here, we emphasize that the 3D-stacked DRAM based DRU is not

an alternative to CPU and GPU. Instead, it can be integrated into their memory subsystem to unlock

substantially high-throughput and energy-efficient data reorganization capability.

3D-stacked DRAM technology provides a substantial bandwidth at a low power consumption. Nat-

urally, DRU is dependent on these advantageous characteristics of the 3D-stacked DRAM. However,

the uniqueness is how to exploit them. Pursuing a simple processing mechanism, data reorganiza-

tion, with specialized parallel architecture allows us to achieve high throughput using a very low

area and power consumption budget. This enables integration within the logic layer of a 3D-stacked

DRAM which unlocks the substantial internal bandwidth and energy efficient data access capa-

bilities. Furthermore, the dedicated parallel DRU architecture can utilize these capabilities very

efficiently by operating at 94-99% of the streaming bandwidth with a very low overhead hardware

as we will analyze later.

7.3.2 Near-memory vs. On-chip

Integration within the stack, behind the conventional interface, opens up the internal resources such

as abundant bandwidth and parallelism. We also evaluate the effect of moving the accelerator within
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Figure 7.19: Comparison between the accelerator in-memory and on-chip as a memory controller
based DMA.

the stack to exploit these resources. For this purpose, we compare the in-memory accelerator to a

CPU side accelerator that is integrated on-chip as a DMA engine. When the accelerator is integrated

on-chip to the memory controller as a DMA engine, it uses the limited off-chip bus facing large

latency and energy overheads. For the in-memory integration, on the other hand, DRU accesses

the memory directly from the logic layer bypassing the external interface. Figure 7.19 shows up to

2.2x throughput and 2.3x energy improvements for the in-memory accelerator compared to on-chip

DMA accelerator.

7.3.3 Offload and Reconfiguration Overhead

As discussed in Section 6.3, a custom software stack for memory management handles offloading

the processing to the HAMLeT where DRU is responsible for the data reorganization and ARU is

responsible for address remapping. A baseline offload mechanism, such as the one proposed in

[59], requires the transfer of DRU/ARU configurations to the corresponding memory region and

a cache flush operation to ensure coherence. This software mechanism is proposed for generic

near-data processing where the accelerator requires the most recent copy of the data for correct

operation. As discussed previously in Section 6.3, for the data reorganization in memory, HAMLeT

does not require the most recent copy to exist in the memory. It handles the coherence in the

memory by using series of mechanisms such as multi-stage reorganization and coherence merge

buffer (CMB). Furthermore, it allows incoherence between the host caches and the DRAM until

the dirty cache lines from the reorganized region are written back in the DRAM. Both during and
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Figure 7.20: Offload latency and energy fraction in the overall operation for baseline and coherence
optimized (using CMB) cases.

after the reorganization, CMB controller propagates the written back dirty cache lines to the correct

addresses. Once all the dirty lines are written back, host caches and the DRAM become coherent

again. For the write-through caches, on the other hand, this issue never arises.

To give a better insight about the overheads for the baseline offload mechanism and the coherence

optimized offload mechanism that uses the CMB, we focus on time and energy spent on the host

during the offload operation. For this experiment we focus on a subset of the benchmarks (101–

210) with varying dataset sizes (4 MB to 1 GB) targeting the MH configuration from Table 7.2.

Figure 7.20 provides the fraction of the latency and energy of the offload operation within the entire

data reorganization both for baseline (base) and coherence optimized (cmb) mechanisms.

For the baseline mechanism, we observe that for small datasets (< 64MB) the offload operation

takes much longer than the accelerated operation itself. For these small sizes, a large portion of

the dataset is actually stored in the host side caches which makes them more suitable for host-side

execution. Whereas, for the large datasets, the offload overhead is amortized with the long data

reorganization. Hence these large datasets can mostly benefit from the high-throughput and energy-

efficient processing. Nevertheless, flushing the caches constitutes a large portion of the overall

offload operation for the baseline mechanism. As discussed previously, for the coherence optimized

mechanism, this overhead is eliminated. Hence, even for small datasets the offload operation is very

lightweight as shown in Figure 7.20.
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7.4 Hardware Synthesis

HAMLeT architecture introduces ARU and DRU units in the logic layer of the 3D-stacked DRAM.

These units increase the hardware complexity in the logic layer. In this section we provide a hard-

ware synthesis based evaluation to analyze the area and power consumption cost of the introduced

components. First, we focus on the reconfigurable permutation memory that is at the center of the

DRU, performing the local permutations. Then, we analyze the overall area and power consump-

tion overhead in the logic layer. This section demonstrates that with a small hardware overhead,

HAMLeT can unlock substantial throughput and energy efficiency for data reorganization in mem-

ory.

7.4.1 Reconfigurable Permutation Memory

The reconfigurable permutation memory (RPM) is a generalized version of the permutation memo-

ries proposed in [99] which are used in Spiral. Spiral generated permutation memories are specif-

ically optimized for the target permutation. During the hardware compilation, Spiral determines

the optimal number of switch stages and the interconnection between them. Then it connects the

optimized address generators to the switch network. This creates a highly efficient and compact

hardware optimized for the specified problem. However, it generates a permutation memory hard-

ware per problem. Instead, with the RPM the goal is to generate permutation memory configurations

and program the hardware to perform the specified problem.

In order to support generalized streaming permutations, whose bit representations are affine trans-

formations on the bits, RPM extend the streaming permutation memories proposed in [99] via two

main approaches. First, it extends the switch stages through a rearrangeably non-blocking Clos

network implemented as a multistage Benes network. Second, it introduces programmable switch

connection and address generator units. When put together, RPM provides a reconfigurable sub-

strate that can perform any permutation whose bit representation is an affine transformation. The

maximum throughput and the maximum permutation size are limited by the target frequency, num-
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ber of ports (streaming width), and total SRAM buffer size.

Figure 7.21 evaluates the hardware cost for the local permutation unit implemented as a Spiral gen-

erated permutation memory and reconfigurable permutation memory (RPM). Note that the SRAM

buffer sizes are the same for both Spiral generated fixed permutation memory and the RPM. Hence,

the hardware cost provided in Figure 7.21 only includes the switch network and connection con-

trol units. Figure 7.21 provides different parallelism (i.e. number of ports) and permutation com-

plexities. Spiral optimizes the switch networks during the hardware compilation. Hence simple

permutations lead to simple hardware as shown in Figure 7.21. As the permutation complexity

increases, switch network and the connection control becomes more complicated which increases

the hardware complexity. However, with a modest increase in the switch network and connection

control hardware complexity, RPM can perform permutations with any complexity through a fixed

hardware.

7.4.2 Overall System

We also present hardware cost analysis for the HAMLeT implemented in 32nm technology node.

We synthesize the HDL implementation targeting a commercial 32nm standard cell library (typical

corner, 0.9V) using Synopsys Design Compiler following a standard ASIC synthesis flow. We use
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Table 7.6: HAMLeT power consumption overhead. HDL synthesis at 32nm.

HI MH ML LO

DMA 16.0 mW 11.9 mW 9.9 mW 8.9 mW
ARU 6.3 mW 3.5 mW 2.1 mW 1.4 mW
DRU (Switch + control) 22.4 mW 16.6 mW 11.2 mW 8.5 mW
DRU (SRAM) 291.9 mW 179.9 mW 89.9 mW 45.0 mW
HAMLeT TOTAL 336.5 mW 211.9 mW 113.1 mW 63.7 mW
3D-DRAM power envelope 45 W 30 W 25 W 4 W

CACTI [2], to model the SRAM blocks. Detailed ARU and DRU synthesis results for the example

HAMLeT unit integrated in MH configuration demonstrate that they can reach 238 ps and 206

ps critical path delay (i.e. > 4 GHz operation). However we chose 2 GHz clock frequency to

reduce the power consumption. Overall hardware power consumption analysis results are given in

Table 7.6.

Overall power consumption overhead ranges from 64 to 337 mW, including leakage and dynamic

power. In Table 7.6 maximum power consumptions of the 3D-stacked DRAM configurations at

their peak bandwidth utilizations are also given. Overhead coming from the HAMLeT corresponds

to only a small fraction of the power envelope of these 3D-stacked DRAM configurations.
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Co-optimizing Compute and Memory

Access

Discussions until here mainly focus on the efficient memory access only. As described in Chapter 5,

automatic mode of operation focused on transparent data reorganization agnostic to the actual com-

putation. Whereas, explicit mode transforms the data layout into an efficient format for an improved

memory access. Both of these techniques exploit the separation of concerns concept where mem-

ory accesses and the actual computation are handled independently. However, for certain types of

problems this separation is very difficult due to the interdependent nature of both entities. Achiev-

ing high-performance and energy-efficiency requires a co-optimization of the computation and the

memory access. In this chapter, we will analyze an example for such type of problem, fast Fourier

transform (FFT).

Due to the intrinsic properties of FFT, computation and memory accesses are tightly coupled to

each other. There exists several alternative algorithms to restructure the the compute flow to exploit

the parallelism, locality, regularity, or symmetry of computation stages where different alternatives

exhibit varying memory access behavior [53]. Achieving the optimal performance requires an algo-

rithmic co-optimization of the memory access and computation dataflow targeting an architectural

125
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machine model. This chapter will demonstrate an optimization framework for large size FFTs fo-

cusing on the whole algorithm including memory access and computation. Tensor algebra based

mathematical framework, which is particularly utilized in this thesis for expressing data reorganiza-

tion, address mapping, memory access patterns and data layout can also represent FFT algorithms.

Hence, we will use the proposed mathematical language as a common abstraction to capture the

compute flow and memory access optimizations focusing on FFT algorithms. The key optimiza-

tions are centered around memory access and data layout transformation. In particular, adopting a

block data layout and optimizing the dataflow of FFT algorithms for the block data layout enables

reshaping inefficient strided memory accesses.

This chapter starts with describing single/multi dimensional FFT algorithms and an abstract ma-

chine model with a two-level memory hierarchy requiring block data transfers. Then 1D, 2D, and

3D FFT algorithms optimized for block data layouts are derived mathematically. The chapter than

focuses on the automation capabilities for algorithm optimization and design space exploration.

Finally, it analyzes HAMLeT architecture for explicitly performing the required data layout trans-

formation that enables blocked data layout FFT algorithms.

8.1 Fast Fourier Transform

First we describe the fast Fourier transform (FFT) using the Kronecker product based formalism

introduced in Chapter 3. Mathematically speaking, the discrete Fourier transform (DFT) of an n-

element input vector corresponds to the matrix-vector multiplication y = DFTn x, where x and y are

n point input and output vectors respectively, and

DFTn = [ω
k`
n ]0≤k,`<n, ωn = e−2πi/n.

Computation of the DFT by direct matrix-vector multiplication requires O(n2) arithmetic operations.

Well-known fast Fourier transform (FFT) algorithms reduce the operation count to O(n logn). Using

the Kronecker product formalism in [109], an FFT algorithm can be expressed as a factorization of
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the dense DFT into product of structured sparse matrices. For example, the well-known Cooley-

Tukey FFT [41] can be expressed as

DFTnm = (DFTn⊗Im)Dnm
m (In⊗DFTm)Lnm

n . (8.1)

In (8.1), Lnm
n represents a stride permutation, In is the n×n identity matrix, and ⊗ is the Kronecker or

tensor product as we saw in Chapter 3. Finally, Dnm
m is a diagonal matrix of twiddle factors.

Multidimensional DFTs can also be considered as simple matrix-vector multiplications, such that

y =DFTn×n×⋅⋅⋅×n x where

DFTn×n×⋅⋅⋅×n =DFTn⊗DFTn⊗ . . .⊗DFTn . (8.2)

Similar to single dimensional DFT, multidimensional DFTs can be computed efficiently using mul-

tidimensional FFT algorithms. For example the well-known row-column algorithm for 2D-DFT can

be expressed in tensor notation by using (8.2) and tensor identities [109] as

DFTn×n = (Ln2

n (In⊗DFTn)Ln2

n )(In⊗DFTn ). (8.3)

The constructs in the formulas are performed from right to left on the input data set. Abstracting the

input and output vectors as n×n arrays, firstly n point 1D-FFTs are applied to each of the n rows.

Then, taking the results generated by the first stage as inputs, n point 1D-FFTs are applied to each

of the n columns. The overall operation of (8.3) is demonstrated in Figure 8.1(a). Here, assuming

a standard row-major data layout, the first stage (row FFTs) leads to sequential accesses in main

memory, whereas the stride permutations (Ln2

n ) in the second stage (column FFTs) correspond to

stride-n accesses which is demonstrated in Figure 8.1(b).

Similarly, by using (8.2) and tensor identities in [109] the well-known 3D decomposition algorithm

for 3D-DFT can be represented as, where AM =MTAM,

DFTn×n×n = (In2 ⊗DFTn)
Ln3

n2 .(In2 ⊗DFTn)
In⊗Ln2

n .(In2 ⊗DFTn)
In3 . (8.4)
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Figure 8.1: Overview of row-column 2D-FFT computation in (8.3).

The overall operation of (8.4) is demonstrated in Figure 8.2(a). If we assume a sequential data

layout of the cube in x-y-z direction, first stage (FFTs in x) corresponds to sequential accesses to

main memory however, due to the permutation matrices In⊗Ln2

n and Ln3

n2 , second and third stages

(FFTs in y and z, respectively) require stride n and stride n2 accesses respectively (as shown in

8.2(b)).
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Figure 8.2: Overview of 3D-decomposed 3D-FFT computation in (8.4).

Until now we discussed decomposing large 2D and 3D-FFTs into small 1D-FFT computation stages

that fit in the local memory considering the described machine model. A large 1D-FFT whose data

set do not fit in local memory requires similar decomposition into smaller 1D-FFT kernels (e.g.

Cooley-Tukey decomposition in (8.1)). In (8.1), we observe the same stride permutations as the

row-column 2D-FFT algorithm. Hence, from a memory access pattern point of view, overall large

size 1D-FFTs are handled very similar to the 2D-FFT computation (see Figure 8.1).
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In summary, conventional large size FFT algorithms that use standard data layouts require strided

accesses. These strided access patterns correspond to accessing different data blocks in the main

memory. Continuously striding over data blocks does not allow amortizing the high latency cost

of the main memory accesses, which yields very low data transfer bandwidth and high energy

consumption. While there are FFT algorithms like the vector recursion [52] that ensure block

transfers, they require impractically large local storage for data block sizes dictated by the main

memory.

8.2 Machine Model

For optimizing the FFTs we target a high level abstract machine model that has three main com-

ponents: (1) Main memory and data transfer, (2) local memory, and (3) compute. Main memory,

represents the SM-size large but slow storage medium (e.g. DRAM, disk, distributed memory, etc.)

which is constructed from smaller SB-size data blocks (e.g. DRAM rows, disk pages, MPI messages,

etc.). Accessing an element from a data block within the main memory is generally associated with

an initial high latency cost (Amiss
M ). After the initial access, accessing consecutive elements from the

same data block has substantially lower latency (Ahit
M ) where Amiss

M = Ahit
M +C and C is an overhead

cost whose value depends on the particular platform. Hence the initial high latency cost of access-

ing a data block in the main memory can be best amortized by transferring the whole contiguous

chunk of elements of the accessed data block. Algorithm design thus needs to make sure data is

transferred in chunks of the native block size to minimize the overhead. In contrast, local memory,

is SL-size small buffer used for fast access to the local data (e.g. cache, scratchpad, local cluster

node, etc.). We assume that local memory can hold multiple data blocks of the main memory i.e.

SM > SL > SB. Finally, compute represents the functional units that actually process the local data

(e.g. vector unit, ALU, etc.). Various high-performance and parallel computing platforms ranging

from embedded processors up to distributed supercomputers fit into this high-level machine model.

FFT algorithms should be carefully fitted to these architectures to achieve high performance and

power/energy efficiency.
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Figure 8.3: Logical view of the dataset for tiled and cubic representation.
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8.3 Block Data Layout FFTs

Strided accesses required by the conventional FFT algorithms lead to precisely the worst-case be-

havior in main memory (Figure 8.1, Figure 8.2). Changing the spatial locality of the memory

accesses by adapting a customized block data layout in the main memory enables avoiding ineffi-

cient strided access patterns. By avoiding strided accesses and transferring large contiguous blocks

of data one can amortize the latency of the main memory accesses and often also a large energy

overhead. However, the overall dataflow of the FFT algorithm has to be restructured to map on the

block data layout memory accesses. We focus on tiled and cubic data layout schemes. The resulting

block data layout FFT algorithms will be transferring tiles or cubes of contiguous data blocks to and

from the main memory in all stages of the computation.

Tiling is basically a block data layout, where n2 element vectors are considered as n×n element ma-

trices which are divided into k×k element small tiles (Figure 8.3(a)). Then the elements within tiles

are mapped to physically contiguous locations in the main memory. When the tile size is selected to
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match the data block size in the main memory, transferring a tile corresponds to transferring a whole

contiguous data block from main memory. The access pattern is demonstrated in Figure 8.4.

As first introduced in [19], given the tiled data layout, one can compute the 2D-FFT while avoiding

strided accesses. The main idea is instead of transferring stripe of elements in row and column

direction as shown in Figure 8.1, transfer “tiles” in row and column direction (see 1 and 2 in

Figure 8.3(a)).

From a memory access pattern perspective, 2-stage Cooley-Tukey algorithm for 1D-FFT has the

same behavior as the row-column 2D-FFT algorithm as mentioned in Section 8.1. Hence the tiled

data layout can be used in computing the 1D-FFT to avoid strided accesses.

Similarly in the cubic data layout, n3 element data set is abstracted as a n× n× n element three

dimensional cube which is divided into k× k× k element smaller cubes (see Figure 8.3(b)). Then

each k×k×k element small cube is physically mapped into a contiguous data block in main memory.

Hence transferring a cube corresponds to transferring a whole data block from the main memory.

The access pattern is demonstrated in Figure 8.4.

Cubic data layout enables 3D-FFT computation without strided accesses. Similar to the 2D-FFT

scheme, the main idea is instead of transferring stripe of elements in x, y and z direction as

demonstrated in Figure 8.2, transfer “cubes” in x, y and z direction (see 1 , 2 and 3 in Figure

8.3(b)).

A custom data layout comes along with address translation scheme that maps the logical addresses

to the physical locations in the main memory. As discussed in Chapter 3, formal representation

of a custom data layout scheme is given as DFT = ((DFT)
←Ð
Q )
Ð→
P where Q = P−1. Here

←Ð
(.) and

Ð→
(.)

represent the address mapping and the data layout respectively. This representation only makes the

data layout and the address mapping constructs explicitly labelled, the overall operation is still a

natural DFT computation. Block data layouts and their address mapping schemes can be expressed

in the proposed formal framework as we will see.

In summary, large size single and multidimensional FFTs when decomposed into smaller stages
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require strided memory accesses. These FFTs can be performed while avoiding strided accesses

by using block data layouts. (i) Remembering that when each tile (cube) is mapped to a data

block in main memory, transferring tiles (cubes) in any order (i.e. 1 , 2 and 3 in Figure 8.3)

corresponds to making use of the whole data blocks. (ii) Once tiles (cubes) are transferred to on-

chip memory, they can be shuffled freely since on-chip memory does not incur any extra penalty

depending on the access patterns. Hence, by combining the two properties (i) and (ii), one can

perform the memory access pattern schemes required by multi-stage FFT algorithms efficiently.

Note that these algorithms require full row or column of tiles (cubes) to be held simultaneously in

the fast on-chip memory so that the 1D-FFTs can be done locally.

Although conceptually straightforward, capturing the details of the overall operation algorithmically

is non-trivial. The discussion above omits the complexity of the data permutations and the details of

the local computation. Formal representation in tensor notation allows capturing all the non-trivial

details of the algorithms and the machine model in the same framework. Abstracting the algorithm

and the machine model in the same framework allows detailed formula manipulations targeting the

machine model, which is crucial to achieve high performance implementations.

8.4 Formally Restructured Algorithms

In our approach, we identify set of formula identities that restructure the given FFT formula so that

it can be mapped to the data layout scheme and target machine model efficiently. The goals for

restructuring the FFT are (i) to make sure that all the permutations that correspond to main memory

accesses are restructured to transfer tiles/cubes, and (ii) to breakdown the formula constructs such

that the local permutations and local 1D-FFT computations fit in the local memory.

Rewrite Rules. Rewrite rules are set of formula identities that capture the restructuring of the FFT

algorithms. Rewrite rules only restructure the dataflow–the overall computation stays the same. We

list the necessary formula identities used in restructuring the algorithms for the tiled data layout in
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Table 8.1: Tiled mapping rewrite rules.

A → (A
←Ð
Q
)
Ð→
P , where Q = P−1 (8.5)

AB → A∣B (8.6)

In⊗An → In2(In/k ⊗̃Ik⊗An)In2 (8.7)

An⊗ In → Ln2

n (In/k ⊗̃Ik⊗An)Ln2

n (8.8)

In2 → (In/k ⊗̃Ln
k⊗Ik

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
R8.9b

)(In/k⊗Ln
n/k⊗Ik

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
R8.9a

) (8.9)

Ln2

n → (In/k ⊗̃Lnk
k

´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
R8.10b

)(Ln2/k
n/k ⊗Ik

´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
R8.10a

) (8.10)

Table 8.1. The labels on the restructured formula constructs represent the implied functionality in

the implementation.
←Ð
(.) and

Ð→
(.) represent the address translation and the data layout respectively. ∣

represents a memory fence. I` ⊗̃ corresponds to iteration operator. Finally, (.) and (.) correspond

to the local kernel (permutation or computation) and the main memory access permutation respec-

tively. These labelled formula constructs are restructured base cases, hence an FFT algorithm that

consists only of these constructs considered to be final restructured algorithm. Next we will analyze

the rewrite rules in more detail through an example.

Tiled 2D-FFT. We now apply the rewrite rules to a given 2D-DFT problem to obtain the restruc-

tured FFT. For DFTn×n, we assume the n2 element data set size (SD) do not fit in the local memory,

i.e. SM > SD > SL, hence the large DFTn×n should be decomposed into smaller DFTn stages as dis-

cussed. Further we assume that k×k tiles match the data block size SB and local memory can hold

a whole stripe of n/k tiles, i.e. SL ≥ SB×n/k. We now derive a tiled 2D-FFT targeting this machine

model. We first demonstrate the algorithm derivation steps, then focus on the structure of the final

derived algorithm.

As shown in Table 8.3, the starting point is DFTn×n. First, as shown in (8.17), DFTn×n is expanded

into smaller DFT stages by using (8.3). Then the DFT stages are separated via memory fence,

as shown in (8.18), by using the rule (8.6). Next, rules (8.7)-(8.8) make the data permutations
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Table 8.2: Cubic mapping rules. R j refers to the right hand side of ( j).

In⊗In⊗An→ In3(In2/k2 ⊗̃Ik2 ⊗An)In3 (8.11)

In⊗An⊗ In→ (In⊗Ln2

n )(In2/k2 ⊗̃Ik2 ⊗An)(In⊗Ln2

n ) (8.12)

An⊗ In⊗In→ Ln3

n (In2/k2 ⊗̃Ik2 ⊗An)Ln3

n2 (8.13)

In3 →(In/k⊗Ln
k⊗Ink)(In2/k2 ⊗̃Lnk

k2 ⊗Ik)

(In2/k2 ⊗Ln
n/k⊗Ik2)(In/k⊗Ln

n/k⊗Ln
n/k⊗Ik) = R8.14 (8.14)

In⊗Ln2

n →(In/k⊗Ln
k⊗Ink)(In2/k2 ⊗̃Lnk2

k2 (In/k⊗Lk2

k ⊗Ik))

(In/k⊗Ln2

n/k⊗Ik)(In/k⊗Ln
n/k⊗Ink) = R8.15 (8.15)

Ln3

n2 →(In/k⊗Ln
k⊗Ink)(In2/k2 ⊗̃Lnk2

k2 )

(Ln3/k
n2/k2 ⊗Ik)(In⊗Ln

k⊗In) = R8.16 (8.16)

Table 8.3: Tiled 2D-FFT algorithm derivation steps. (R9 and R10 are given in (9)-(10) in Table 8.1.)

DFTn×n = (DFTn⊗In)(In⊗DFTn) (8.17)

= (DFTn⊗In)∣(In⊗DFTn) (8.18)

= Ln2

n (In/k ⊗̃Ik⊗DFTn)Ln2

n ∣In2(In/k ⊗̃Ik⊗DFTn)In2 (8.19)

= (Ln2/k
n ⊗Ik)(In/k ⊗̃Lnk

n )(In/k ⊗̃Ik⊗DFTn)(In/k ⊗̃Lnk
k )(Ln2/k

n/k ⊗Ik) ∣

(In/k⊗Ln
k⊗Ik)(In/k ⊗̃Ln

n/k⊗Ik)(In/k ⊗̃Ik⊗DFTn)(In/k ⊗̃Ln
k⊗Ik)(In/k⊗Ln

n/k⊗Ik) (8.20)

= ((RT
8.10aRT

8.10b(In/k ⊗̃Ik⊗DFTn)R8.10bR8.10a ∣RT
8.9aRT

8.9b(In/k ⊗̃Ik⊗DFTn)R8.9bR8.9a)

←Ð
Q
)

Ð→
P
,

where P =Q−1
= In/k⊗Ln

n/k⊗Ik . (8.21)

Table 8.4: Tiled 1D-FFT algorithm derivation steps. (R9 and R10 are given in (9)-(10) in Table 8.1.)

DFTn2 = (DFTn⊗In)Dn2

n (In⊗DFTn)Ln2

n (8.22)

= (DFTn⊗In)∣Dn2

n (In⊗DFTn)Ln2

n (8.23)

= Ln2

n (In/k ⊗̃Ik⊗DFTn)Ln2

n ∣In2 Dn2

n (In/k ⊗̃Ik⊗DFTn)Ln2

n (8.24)

= ((RT
10aRT

10b(In/k ⊗̃Ik⊗DFTn)R10bR10a ∣ RT
9aRT

9bDn2

n (In/k ⊗̃Ik⊗DFTn)R10bR10a)

←Ð
Q
)

Ð→
P
,

where P =Q−1
= In/k⊗Ln

n/k⊗Ik . (8.25)
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Table 8.5: Cubic 3D-FFT algorithm derivation steps. (R14-R16 are given in (14)-(16) in Table 8.2.)

DFTn×n×n = (DFTn⊗In⊗In)(In⊗DFTn⊗In)(In⊗In⊗DFTn) (8.26)

= (DFTn⊗In⊗In)∣(In⊗DFTn⊗In)∣(In⊗In⊗DFTn) (8.27)

= Ln3

n (In2/k ⊗̃Ik2 ⊗DFTn)Ln3

n ∣(In⊗Ln2

n )(In2/k ⊗̃Ik2 ⊗DFTn)(In⊗Ln2

n )∣In3(In2/k ⊗̃Ik2 ⊗DFTn)In3

= (((In2/k2 ⊗̃Ik2 ⊗DFTn)
R16 ∣(In2/k2 ⊗̃Ik2 ⊗DFTn)

R15 ∣(In2/k2 ⊗̃Ik2 ⊗DFTn)
R14)

←Ð
Q
)

Ð→
P
,

where P = (In2/k2 ⊗Ln
n/k⊗Ik2)(In/k⊗Ln

n/k⊗Ln
n/k⊗Ik) (8.28)

explicit and label the kernel computation as shown in (8.19). Rules (8.9)-(8.10) restructure the data

permutation so that they correspond to tile transfer operations (see (8.20)). Finally, in (8.21), the

rule (8.5) defines the data layout and the corresponding address mapping. The result is given in

(8.21). Note that rewrite rules only apply formula identities. Hence, the overall operation is still the

same DFTn×n computation with a different dataflow. In (8.21), we observe that the local permutation

and computation kernel size, k×n elements, fit in the local memory. However, derived algorithm is

restricted to the problem sizes for which a whole stripe of tiles can be held simultaneously in the

local memory so that the kernels can be processed locally (remember SL ≥ SB ×n/k where SB = k2

elements). Inspection of the (8.21) shows that all of the formula constructs are labelled base cases

of the tiling rewrite rules, hence this formula corresponds to a final restructured algorithm.

We now analyze the final restructured algorithm by interpreting the Equation (8.21). Considering

the DFT computation is a matrix multiplication, the constructs in the resulting algorithm (8.21) are

performed from right to left on the input data set. First, R8.9a reads tiles, i.e. whole contiguous data

blocks, from the main memory. Then, R8.9b shuffles the local data to natural order and then 1D-

FFTs are applied to the local data. Finally, RT
8.9b re-shuffles the local data after FFT processing and

RT
8.9a writes the local data back into the main memory as tiles. These operations are executed in a

pipelined parallel way for the entire dataset which completes the first stage. The algorithm consists

of two stages separated by a memory fence (∣). Overall operation in the second stage is very similar

to the first stage except the permutations. The second stage has the permutations R8.10a−b instead of

R8.9a−b where R8.9−8.10 are given in (8.9)-(8.10).
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In addition to the tiled 2D-FFT algorithm, we use the set of formula identities (8.5)-(8.10) given in

Table 8.1 to derive optimized tiled algorithms for large 1D-FFT (see (Table 8.4)). Further, we use

formula identities (8.11)-(8.16) shown in Table 8.2 to derive 3D-FFT algorithms using cubic data

layout (see (Table 8.5)). Similar to the 2D-FFT case, rewrite rules are applied to restructure the

dataflow and the derivation steps are shown in Table 8.4 and 8.5. We provide the final optimized

algorithms in (8.21), (8.28) and (8.25) for 2D, 3D and 1D respectively.

Until here we focused only on 1D, 2D and 3D FFTs using tiled and cubic data layouts, yet the math-

ematical framework can easily be extended to higher dimensional FFTs using higher dimensional

hypercube data layouts.

8.5 Algorithm and Architecture Design Space

Formal representation in tensor notation allows capturing all the non-trivial details of the algorithms

and the machine model in the same framework. Abstracting the algorithm and the machine model

in the same framework allows detailed formula manipulations targeting the machine model. In

this section we demonstrate a design space exploration methodology for an efficient FFT hardware

accelerator implementation exploiting the formal framework.

8.5.1 Automated Design Generation via Spiral

We use Spiral [98] formula generation and optimization framework to automatically derive details of

the block data layout FFT algorithms and generate hardware implementations. Spiral uses formal

representation of FFT algorithms in tensor notation and restructures the algorithms using rewrite

rules. We included the formula identities shown in Table 8.1 and Table 8.2 into Spiral’s formula

rewriting system so that it drives the optimized algorithms automatically (e.g. (8.21), (8.28) and

(8.25)). Lastly, we build a custom backend that translates the hardware datapath formula to the full

system described in Verilog.
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Figure 8.5: Overview of the design generator tool.

The overall view of our compilation flow is shown in Figure 8.5. First, the input FFT problem is

expanded as a formula tagged with hardware parameters. At this point the formula is a high-level

generic representation that does not have explicit implications for the hardware. Then this formula

is restructured using our block data layout rewrite rules as well as selected Spiral default rules.

After this step we reach a final structured formula where each formula construct is labelled with its

targeted hardware module. Lastly, the custom backend generates the hardware components for the

labelled formula constructs in Verilog targeting the parameterized architecture shown in Figure 8.6.

In addition to the inferred hardware structures, the backend generates necessary wrappers, glue logic

and configuration files that will interconnect all the modules and configure the full system.

8.5.2 Formula to Hardware

The architecture that we target (shown in Figure 8.6) is highly parameterized and scalable which

can be configured for the given problem/platform parameters.

DRAM Controllers. In Figure 8.6, without the loss of generality, we provide a dual channel

architecture featuring two DRAM controllers. Throughout the computation, one of the DRAM

controllers is used for reading the inputs and the other one is for writing the outputs to DRAM in
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Figure 8.6: Overall view of the targeted architecture.

parallel. When a stage is completed, the two DRAM controllers switch their read/write roles for

the next stage repeatedly until the computation is finished. Note that dual channel architecture is an

abstraction of the actual underlying hardware, multiple DRAM channels can be bundled together or

a single DRAM channel can be split into two to fit in this abstraction.

Depending on the optimizations that are used, a memory mapping scheme is represented in the

generated hardware formula. The RTL generator translates this representation and configures the

address mapping module in the DRAM controller (see Figure 8.6).

Local Memories. DRAM-optimized algorithms used in this work require holding multiple tiles

(cubes) on-chip at once to apply data permutation and 1D-FFT on the local data. Local memories

are local fast buffers constructed from SRAM and connection networks serving for that require-

ment. Considering that multiple elements arriving each cycle, these data shuffle operations become

non-trivial to achieve by using minimal storage and by avoiding bank conflicts. Our tool first labels

the formula constructs that correspond to these local data shuffle permutations. Then the formal rep-

resentation of the permutation along with the hardware directives is used to automatically generate

permutation blocks based on the techniques described in [82].

Local memories also construct the interface between the FFT core and the DRAM controller and

allow the decoupling between the two. We employ double-buffering technique in the local memo-

ries. Hence, the computation and data transfer operations are overlapped to maximize the system
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throughput.

FFT Core. We generate the streaming 1D-FFT core automatically using [83]. Control over the

FFT core parameters (radix r, streaming width w) allows us to adjust the computation throughput

according to the data transfer bandwidth to create balanced designs.

1D-FFT algorithm for large problem sizes requires a separate twiddle multiplication step when

decomposed as discussed in Section 8.1. The FFT core is augmented by a separate twiddle factor

multiplication unit for that case as shown in Figure 8.6.

8.5.3 Design Space Parameters

There are several ways of architecting a system to achieve a given goal of performance or power

efficiency for a given FFT problem and hardware resources. Control over the adjustable design

parameters allows walking within the space of various design possibilities. Some of the important

design parameters can be categorized as follows:

• Throughput: FFT radix (r), streaming width (w), frequency ( f ).

• Bandwidth: Type of tiling (2D, 3D), tile size (T )

• Algorithm: Algorithmic choices provided by Spiral (A)

In addition to the adjustable design parameters, there are also given problem and platform con-

straints:

• Problem: FFT type (1D, 2D, 3D), size (n), precision (p)

• Platform: DRAM banks (b), row buffer size (R), max bandwidth (B), max power (P), max

on-chip SRAM (S)

As we will see, exploring such a design space constructed by the given problem/platform constraints

and design parameters is extremely difficult considering the relations between them and the costs
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associated with adjusting every parameter. An automated design generation and exploration is es-

sential to cover this wide design space and decide the most efficient parameters.

8.6 Experimental Results

8.6.1 Machine Model Based Evaluation

Algorithms derived in this work can be implemented in hardware or software on various platforms

since we target a generic machine model. However, for machine model based evaluations we use

hardware implementations on an Altera DE4 FPGA platform. DE4 FPGA platform comes with two

channels of total 2 GB DDR2-800 DRAM which corresponds to the main memory considering the

machine model described previously, so SM = 2 GB. DRAM rows are the data blocks in the main

memory and the DRAM row buffer size is 8 KB so SB = 8 KB. Strided accesses to different data

blocks (i.e. DRAM rows) yield 1.16 GB/s DRAM data transfer bandwidth whereas transferring

contiguous DRAM row buffer size data chunks results in 11.87 GB/s bandwidth out of given 12.8

GB/s theoretical peak. We have measured the penalty of non-contiguous access to a different data

block as approximately, Amiss
M −Ahit

M =C = 20 clock cycles at 200 MHz. DE4 further provides 2.53

MB of on-chip SRAM which we consider as the local memory, hence SL = 2.53 MB. Finally,

floating point units correspond to the compute element in the machine model. For example, a single

precision 4K×4K 2D-FFT has a total data set of SD = 128 MB where n = 4096. Further we need

32×32 single precision complex valued element tiles to match the SB = 8 KB, so k = 32. This overall

configuration fits in the described machine model assumptions, i.e. SM > SD > SL ≥ SB×n/k.

Our evaluation results are summarized in Table 8.6. We report performance in Gflop/s, which is

calculated as 5n log2(n)/t for DFTn where t is the total runtime, thus higher is better. In Table 8.6,

we provide (i) bandwidth bounded theoretical peak performance for Altera DE4 where we assume

zero latency but limited bandwidth DRAM and infinitely fast on-chip processing (hence it is cal-

culated as the total Flops divided by the time it takes to transfer the entire data at the peak DRAM

bandwidth), (ii) actual results from Spiral generated block data layout implementations on Altera
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Table 8.6: Performance results from Altera DE4. (GF = GFLOPS, TP = Theoretical peak)

FFT Prec. TP Perf (% of TP) Model (Error)
[bits] [GF] [GF] [GF]

256×256 32 32 23.2 (72.6%) 23.1 (-0.4%)
512×512 32 36 29.2 (81.2%) 29.3 (+0.2%)
1k×1k 32 40 34.4 (86.0%) 34.7 (+0.9%)
2k×2k 32 44 38.3 (87.2%) 39.5 (+3.1%)
4k×4k 32 48 42.1 (87.7%) 43.8 (+4.2%)

256×256 64 16 12.4 (77.9%) 12.5 (+0.4%)
512×512 64 18 14.9 (83.2%) 15.1 (+0.8%)
1k×1k 64 20 17.1 (86.0%) 17.4 (+1.1%)
2k×2k 64 22 19.2 (87.4%) 19.5 (+1.4%)

128×128×128 32 28 23.4 (83.6%) 23.6 (+1.2%)
256×256×256 32 32 26.8 (84.0%) 27.2 (+1.3%)
512×512×512 32 36 30.3 (84.2%) 30.7 (+1.3%)

64k 32 32 23.3 (72.7%) 23.7 (+2.1%)
256k 32 36 29.2 (81.2%) 29.7 (+1.6%)
1M 32 40 34.4 (86.1%) 34.9 (+1.4%)
4M 32 44 38.4 (87.2%) 39.6 (+3.2%)
16M 32 48 42.1 (87.7%) 43.8 (+4.1%)

DE4, and finally (iii) a realistic peak performance estimated by our model where we include DRAM

latency cost and bounded on-chip processing. Implementations generated by Spiral always transfer

contiguous data blocks from main memory (i.e. whole DRAM rows). Optimized use of the DRAM

row buffer leads to efficient DRAM bandwidth utilization, hence Spiral generated implementations

reach on average 83% of the theoretical peak performance and 97.5% of the realistic peak perfor-

mance.

Performance Model Verification. We will use the realistic peak performance estimations as our

performance model in the design space explorations. Given the platform and FFT problem parame-

ters, the model gives performance estimations. When we take the Altera DE4 as the target platform,

the estimations for 1D, 2D and 3D FFTs are given in Table 8.6. When the performance estimations

and the actual hardware results are compared, the error is found to be less than %4.25 for the designs

that are generated and implemented on DE4.
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8.6.2 Design Space Exploration

Experimental Setup. Before going into the details of design space exploration we first explain

our experimental methodology. We use Spiral to generate designs for a given problem. Given

the FFT problem and hardware parameters, our tool generates the HDL as well as simulation and

synthesis scripts. Then, we synthesize the generated HDL targeting a commercial 32nm standard

cell library using Synopsis Design Compiler following the standard ASIC synthesis flow. In addition

to the standard ASIC synthesis flow, for non-HDL components, we use tools such as: CACTI 6.5

for on-chip RAMs and ROMs [2], McPAT for DRAM memory controllers [6], and DesignWare

for single and double precision floating point units [3]. We target both off-chip DDR3-DRAM and

3D-stacked DRAM as main memory. For off-chip DRAM we use DRAMSim2 [102] and Micron

Power Calculator [8] to estimate DRAM performance and power consumption. For the 3D-stacked

DRAM model we use CACTI-3DD [38]. Lastly, for the overall performance estimation, we use a

custom performance model backed up by cycle-accurate simulation. All of the tools are integrated

resulting in an automatic push-button end-to-end design generation and exploration tool.

Exploration. First, we present an example design space for a selected 2D-FFT hardware imple-

mentation using 3D-stacked DRAM. In this scheme, a 2D-FFT accelerator hardware is stacked as

a separate layer in the 3D-stacked DRAM. Given problem parameters are 8192×8192 point com-

plex single-precision (2×32−bits per complex word) 2D-FFT, and the platform parameters are 4

layer, 8 banks per layer, 512 TSVs, 8192 bit row buffer (Nstack = 4, Nbank = 8, NTSV = 512, R = 1KB)

fine-grain rank-level 3D-stacked DRAM. Further we set S = 8MB and P = 40W.

Problem and platform parameters are the basic inputs to the generator. Spiral handles the algorith-

mic design choices (A) and prunes the algorithms which are determined to be suboptimal at the

formula level. Then, for the given input configuration, it generates several hardware instances vary-

ing the design space parameters. A subset of the design space is shown in Figure 8.7 in terms of

performance (GFLOPS) and power consumption (Watt) for various streaming width (w = 2,4,8,16),

frequency ( f = 0.4GHz→ 2GHz), radix (r = 2) and tile size (T = 0.125×→ 2× row buffer size) pa-
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Figure 8.7: Design space exploration for 2D-FFT with 3D-stacked DRAM. Isolines represent the con-
stant power efficiency in Gflops/W (see labels).

rameters.

Figure 8.7 also provides isolines for constant power efficiency, in other words achieved performance

per consumed power (GFLOPS/Watt). We observe that there are multiple design points on the

constant power efficiency lines, which suggests that the same power efficiency can be achieved with

different parameter combinations. There are also several suboptimal designs that are behind the

pareto frontier. Hence, it is not obvious which parameter combinations will yield the most efficient

system at the design time. This highlights the complexity of the design space.

To further elaborate on the design space tradeoffs, we first illustrate the effects of the tile size in

tiled FFT algorithms on the performance and power efficiency for different system configurations

in Figure 8.8 (see Table 8.7 for memory configurations). (i) DRAM and (ii) on-chip resources are

two main components of the overall system: (i) Increasing the tile size improves the spatial locality

in DRAM accesses through efficient use of the row buffer. Efficient use of the row buffer leads

to minimal activate/precharge operations which improve the bandwidth utilization and energy effi-

ciency in DRAM, and consequently improve overall system performance and energy efficiency. (ii)

On the other hand, from the on-chip resources viewpoint, local memory needs to be large enough

to hold larger tiles which increases power consumption. Additionally, larger local memory needs to
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Figure 8.8: Effect of tile size on performance and power efficiency for off-chip and 3D-stacked DRAM
systems. (Rest of the parameters are fixed.)

be filled and emptied in the beginning and at the end of the overall computation pipeline which de-

crease the performance. Conflicting tradeoffs in determining the tile size construct an optimization

problem.

Moreover, different platform and problem configurations have different optimization curves. For

example, power consumption of smaller problem size configurations are heavily dominated by the

DRAM power consumption hence it is more desirable to improve the DRAM power consumption

with larger tiles. Whereas larger problem size configurations prefer smaller tile sizes to save the on-

chip power consumption (see Figure 8.8). Different platform configurations can also have different

tradeoff relations. For example, BLP (bank-level parallelism) allows overlapping row buffer miss

delays with data transfer on different banks. Therefore one can maximize the performance even if
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Figure 8.9: Frequency (f) and streaming width (w) effects on power and performance for various prob-
lem/platform configurations (fixed tile size). Parameter combinations for the best design (GFLOPS/W)
are labelled.

the RBL is not fully utilized, with the extra energy cost of activate/precharge operations in DRAM

(see Figure 8.8(a)). However, in 3D-stacked DRAM, banks within a rank contributes additively to

the aggregate bandwidth exploiting the high bandwidth TSV bus as discussed previously. Therefore,

unlike off-chip DRAMs, low RBL utilization (i.e. small tiles) reduces the performance significantly

as shown in Figure 8.8(b).

Determining the memory subsystem configuration, particularly tile size in our case, is a key com-

ponent in achieving high performance and energy efficiency, but computation configuration poses a

great importance as well to achieve a balanced design. In a balanced design, computation throughput

needs to match the estimated bandwidth utilization. One can pick different parameter combinations

that will achieve the same throughput matching the given DRAM bandwidth. In Figure 8.9, given

a fixed fixed tile size and platform/problem parameters (i.e. fixed DRAM bandwidth), we demon-

strate design instances with various frequency and streaming width parameters. As highlighted in

Figure 8.9 the most efficient parameter combinations show variations for different problem/platform

configurations.
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Table 8.7: Main memory configurations.

Name Configuration (off-chip DRAM) Max BW
Chan/Bank/R[Kb]/width/Type [GB/s]

conf-A 8 / 8 / 64 / x8 / DDR3-1600 102.4
conf-B 8 / 8 / 64 / x8 / DDR3-1333 85.36
conf-C 8 / 8 / 64 / x8 / DDR3-800 51.2

Name Configuration (3D-stacked DRAM) Max BW
Nstack/Nbank/NTSV/R[Kb]/Tech[nm] [GB/s]

conf-D 4 / 8 / 256 / 8 / 32 178.2
conf-E 4 / 8 / 512 / 8 / 32 305.3
conf-F 4 / 8 / 512 / 8 / 45 246.7
conf-G 4 / 8 / 256 / 32 / 32 229.5

Finding the best system configuration given the problem/platform constraints establishes an opti-

mization problem. Simply chasing the highest performance or lowest power consumption is not

sufficient to get the most efficient system. As it is shown in Figure 8.8 and Figure 8.9, careful study

of the design space is necessary to understand the tradeoffs. It is difficult to determine the crossover

points where one of the dependent parameters becomes more favorable to the others and there is

no structured way of finding the best parameter combinations. This highlights the importance of

an automatic design generation and exploration system–it would be extremely difficult to complete

such design exploration by hand.

Pareto-optimal Designs. We automatically generate pareto-optimal DRAM-optimized implemen-

tations and evaluate their performance and energy/power efficiency for the main memory as well as

for the overall system. Our experiments include various main memory configurations which are

shown in Table 8.7. Firstly, the overall system performance and power efficiency comparison of the

naive baseline and the DRAM optimized implementations for 1D, 2D and 3D-FFTs of various sizes

with regular off-chip DDR3 DRAMs and 3D-stacked DRAMs are demonstrated in Figure 8.10.

DRAM-optimized implementations are generated by Spiral for the given problem and platform pa-

rameters. The same on-chip hardware resources and the same memory configurations are provided

both for the baseline and the DRAM-optimized implementations. However, baseline implementa-
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Figure 8.10: Overall system performance and power efficiency comparison between naive and DRAM-
optimized implementations for 1D, 2D and 3D FFTs using memory configurations conf-A and conf-D
respectively.

tions have naive unoptimized DRAM access patterns in contrast to DRAM friendly access patterns

of the optimized implementations. Further, DRAM-optimized implementations are “pareto opti-

mal" such that they are specifically fitted to the target platform for the best performance per power

(i.e. GFLOPS/Watt) by the design generator tool. Although the best designs in terms of power

efficiency vary depending on the problem and platform configurations as shown in Figure 8.10,

generated DRAM-optimized designs can achieve up to 6.5x and 6x improvements in overall sys-

tem performance and power efficiency respectively over naive baseline implementations. Also, to

provide a point of reference, modern GPUs and CPUs can achieve only a few GFLOPS/W for the

problem sizes that we are concerned with [19, 40]. For example, cuFFT 5.0 on the recent Nvidia

K20X reaches approximately 2.2 GFLOPS/W where machine peak is 16.8 GFLOPS/W [15]. On

the other hand, our DRAM-optimized hardware accelerators achieve up to nearly 50 GFLOPS/W

(see Figure 8.10).

Improvements particularly in the main memory is the core of our framework. In Figure 8.11, pairs
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Figure 8.11: DRAM energy and bandwidth utilization for naive (nai) and DRAM-optimized (opt) imple-
mentations of selected FFTs and memory configurations.

of bars compare DRAM-optimized (opt) and naive baseline (nai) implementations for various mem-

ory configurations (see Table 8.7). The results show that the DRAM-optimized accelerators for 1D,

2D and 3D FFTs can achieve up to 7.9x higher bandwidth utilization and 5.5x lower energy con-

sumption in main memory for off-chip DRAM, and up to 40x higher bandwidth utilization and 4.9x

lower energy consumption in main memory for 3D-stacked DRAM. Due to their vulnerability to the

strided access patterns, 3D-stacked DRAMs achieve better improvement through optimized access

patterns. Another interesting point is that the generated 1D, 2D and 3D FFT designs have very sim-

ilar efficient tiled access patterns which allow them to achieve a bandwidth and energy efficiency

near theoretical maximum. Consequently, in Figure 8.11 we observe that optimized implementation

for different FFTs with the same memory configuration reach almost the same DRAM bandwidth

and energy consumption.

In Figure 8.11, the bars representing DRAM energy consumption are broken into segments as re-

fresh, read/write, activate/precharge and static energy consumption. An important observation is
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that the activate/precharge energy is significantly reduced, almost eliminated, compared to the base-

line. Effective usage of DRAM row buffer in our DRAM-optimized implementation leads to very

low row buffer miss rate which significantly reduces the total activate/precharge energy consump-

tion. As expected, read/write energy stays the same since the same amount of data is read/written

in both naive and optimized implementations. DRAM-optimized systems have higher bandwidth

utilization which allows them to finish the data transfer quicker, saving total refresh and static en-

ergy consumption. There is also notable reduction in the refresh and static energy consumption.

Therefore, in summary, effective usage of DRAM row buffer not only directly reduces the acti-

vate/precharge energy and improves achieved maximum bandwidth, but also reduces the total static

and refresh energy by transferring the same amount of data faster.

8.6.3 Explicit Data Reorganization

Discussions and evaluations demonstrate best performance and energy efficiency can only be achieved

by a co-design framework where memory access, compute dataflow and hardware datapath are co-

optimized for a target architecture model. In this co-optimization framework, efficient memory

access is an essential part where the block data layout is the key to unlock optimized implemen-

tations. Until here, we focused on the improvements that can be achieved with the optimized data

layout. In this section, we will evaluate the overhead of such data layout transformation. In partic-

ular we will demonstrate efficient data layout transformations achieved by HAMLeT integrated in

3D-stacked DRAM.

Figure 8.12 and Figure 8.13 demonstrate the data reorganization overhead for transforming the

row-major data layout into tiled and cubic data layouts for 2D and 3D FFTs respectively. Baseline

implementations use row-column algorithms where the datapath is directly mapped onto the target

3D-stacked architecture model. Optimized implementations, on the other hand, are selected from

pareto-optimal design points which employ a blocked data layout algorithm. Optimized implemen-

tation latency and energy consumption is broken down to demonstrate the overhead of the explicit

data reorganization handled by HAMLeT in the logic layer. We observe that, especially for large
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Figure 8.12: Overall latency and DRAM energy improvement with data reorganization for 2D FFT using
HAMLeT in the logic layer.
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Figure 8.13: Overall latency and DRAM energy improvement with data reorganization for 3D FFT using
HAMLeT in the logic layer.

problems both the energy and latency overhead of data reorganization is amortized with optimized

memory accesses.
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Related Work

9.1 Planar Near Data Processing

Integrating processing elements near memory have been studied in the past under various technol-

ogy contexts with different proximities between processing elements and the memory.

PIM and DIVA. Both PIM (processing in memory) [57] and DIVA (data intensive architecture)

[48] make the observation that the data movement between the processing elements and the mem-

ory becomes a critical bottleneck. PIM architecture integrates a serial bit processor interfaced at the

output path of an SRAM block. The processor executes simple ALU and data movement commands

in SIMD fashion. DIVA builds upon the PIM idea to create a scalable system that features multi-

ple PIM units. DIVA targets DRAM based memory, however its prototype is manufactured using

SRAMs. DIVA includes caches, support for virtual address translation, pipelined control units as

well as scalar/vector ALUs. This architecture allows it to target both simple and complex irregular

applications ranging from matrix transpose to database query.

Active-pages, IRAM and FlexRAM. IRAM [93], FlexRAM [67] and active-pages [90] mainly

focus on planar DRAM based near data computing. Berkeley IRAM (intelligent RAM) project seeks

151
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a technology in which both the processor and the DRAM can be implemented together. The goal

is to tackle the Von Neumann bottleneck via tightly integrated DRAM and processor on the same

die. Vector IRAM (V-IRAM) combines DRAM with a vector processor integrated on the same chip

targeting 0.13 µm technology [74]. FlexRAM [67], on the other hand, is mainly motivated by the

general purpose computing near DRAM. Proposed architecture features processing arrays finely

interleaved with DRAM macros. Overall system features both plain DRAM and NDP DRAM

which are utilized based on the application. Finally, active-pages [90] features reconfigurable logic

elements integrated near DRAM. An active Page consists of a page of data and a set of associated

functions which can operate upon that data.

Main limitation of the planar NDP approaches are manufacturing costs and resulting performances.

These approaches target implementing processing elements and the DRAM cells using the same

technology. Due to different process technologies of DRAM and logic, it requires advanced fabri-

cation technologies to integrate DRAM and logic on the same die. Nevertheless, the performance

of the logic elements fabricated in DRAM technology will be much more limited compared to the

conventional ones. On the other hand, DRAM implemented on-chip, such as embedded DRAM

(eDRAM) [28], is limited with the memory capacity.

9.2 3D-stacking Based NDP

Recent 3D stacking technology integrates different process technologies of DRAM and custom logic

[16, 65, 94] as separate dies using vertical TSV connection. This enables heterogeneous dies closely

integrated where the logic elements are implemented highly efficient conventional transistor process

technology and DRAM dies are implemented in the DRAM process technology. This technology

gives a rise to the NDP concepts that has been proposed decades ago but suffered mainly from

manufacturing difficulties, quality, and cost.

3D-stacking technology is an attractive option for variety of NDP architectures [20, 22, 23, 50, 59,

64, 71, 76, 88, 97, 114, 117, 120]. These architectures can be divided into two main categories
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general purpose processing (e.g. [50, 64, 76, 88, 97, 114, 117]) and application-specific approaches

(e.g. [20, 22, 23, 59, 120]).

General Purpose. General purpose processing is mainly achieved by programmable CPU [64,

76, 97, 114], vector processors [88] and GPU units [117]. There are also proposals that target

reconfigurable logic integrated on top of DRAM via vertical TSVs [50]. These approaches require a

separate layer to implement the area and power hungry programmable processors [50, 71, 76, 114].

On the other hand, area and power budget in the logic layer is extremely limited to implement

general purpose processors [64, 88, 97, 117]

[117] reports that due to limited compute capability in 3D-stacked DRAM based NDP, workloads

with high compute intensity and low memory intensity can even get slowdowns with NDP. Further-

more, [64] demonstrates that in order to utilize the available bandwidth provided by 3D-stacked

DRAM, more than 200 PIM processing elements are required which exceeds the TDP power con-

sumption constraint. To tackle the power consumption and thermal impact constraints [97] fea-

tures low-EPI programmable processors architected as many-core. Further, to stay in the original

power envelope it disables some of the SerDes links sacrificing the off-stack communication band-

width.

Domain-Specific. Domain specific hardware is more effective in providing high throughput from

the limited area and power budget. However, the scope of the domain-specific hardware is limited

compared to programmable processors. There are several work integrating specialized hardware

with 3D-stacked DRAM [20, 22, 23, 59, 120]. Most these approaches focus on separate accelerator

dies for accelerating data-intensive applications including FFTs, synthetic aperture radar imaging

and sparse matrix computations [20, 59, 120]. Separate die for the accelerator relaxes the area

consumption constraints and minimizes the possible thermal hotspots. However, integration in the

logic layer unlocks accessing the peak internal bandwidth [22, 23].
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9.3 Software Based Data Layout Transformation

Compiler Based. There exists extensive compiler based program transformation frameworks aim-

ing to optimize data locality [66, 80, 112, 113]. Frameworks focusing on loop transformations

provide several methods to restructure the loop nests to exploit data locality and parallelism better

[80, 112, 113]. Solely, loop transformation based optimizations are limited with the data depen-

dencies. [66] extends the loop transformation (permutation, tiling) with data layout optimizations.

Proposed algorithm transforms the loop nests and changes the memory layouts of multidimensional

arrays in a unified framework where data layout transformation does not impose any data depen-

dencies. A limitation of the static compiler based approach is that it does not capture the dynamic

runtime information (ambiguous memory dependence problem).

GPU-centric. Furthermore, there exists GPU-centric data layout transformation frameworks [36,

108]. Memory coalescing, combining multiple memory accesses into a single transaction, is key

for efficient processing with GPUs. Dymaxion and DL ([36, 108]) provide APIs for data index

transformation mechanism that allows users to reorganize the layout of data structures such that

they are optimized for localized, contiguous access. In this way they aim to coalesce thread accesses

efficiently. Given a PCIe connected GPU with high bandwidth graphics memory on the device, this

framework can overlap the data layout transformation with slow data transfer over PCIe in a software

pipelined manner.

9.4 Hardware Assisted Data Reorganization

There are various proposals for hardware assisted data migration for better data placement [47, 100,

105, 107]. Main idea is to migrate or reorganize the data in the memory system to exploit the

locality or tradeoffs between different memory technologies efficiently. [47, 100, 105] focuses on

migrating data in a heterogeneous memory systems such PCM+DRAM or DRAM+3D-DRAM. But

[107] focuses reorganization within memory to exploit the row buffer efficiently. These techniques
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rely on the memory controller for hardware based memory access monitoring through counters. For

example, [107] keeps counters for various pages which facilitates hashing to keep track of several

pages. [105] keeps competing counters.

A key problem in hardware based migration is that it chagnes the physical location of the data which

invalidates the current virtual to physical mapping in the page table or TLB. To handle this problem,

these techniques either employ a hardware based indirection mechanism or update the page table

entries via OS calls. Hardware based indirection is implemented via lookup tables that store the

original and the remapped locations of the data. Address translation look-up table is not scalable to

support large scale and fine grain data reorganizations. To increase the data migration granularity,

[107] proposes micro-pages, i.e. smaller pages than the conventional OS pages. Furthermore, [100]

keeps the lookup table small and updates the OS page tables periodically, or when the lookup table

become full. This thesis focuses on permutation based data movement schemes where the address

translation is calculated on-the-fly. This enables very fine-grain data movements (e.g. cache line

level). Furthermore, it also features a lookup table based solution to enable multiple translations

for different partitions in the memory. This creates a flexible hardware substrate that can handle

fine-grain data reorganizations at a low-cost.

There exists specialized hardware solutions for data movement and reorganizations [22, 23, 45, 104,

119]. In [104, 119] authors focus on bulk copy and movement operations. [119] targets a DMA-like

on-chip copy engine to accelerate the data movement in server platforms. On the other hand, [104]

brings the bulk copy operations closer to the memory by modifying the internal structure of the

DRAM. Moreover, [34] provides a hardware based indirection in the memory controller through

address remapping. Address remapping without physical relocation can consolidate accesses via

indirection but it does not solve the fundamental data placement problem. FPGA based data reor-

ganiztion engines are studied in the previous work as well [45]. Hardware accelerators still suffer

from memory latency, though data reorganization operations are ideally memory-to-memory such

that the roundtrip data movement between the CPU and DRAM can be eliminated. This thesis,

along with accompanying publications [22, 23], proposes data reorganization accelerator integrated
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in 3D-stacked DRAM to minimize the roundtrip latency.

9.5 Kronecker Product Formalism for Hardware Design

The tensor (Kronecker) formula language used in this thesis has been previously used in various con-

texts to describe transform algorithms. These include FFT hardware algoirthms [83] and software

based optimized implementations targeting multicores [54], SIMD vector units [79] and distributed

memory architectures [37]. This tensor formula language is the basis for the SPL language and the

Spiral project [98, 116].

From the hardware design perspective, [81, 82, 83, 99] demonstrates a compilation and optimization

framework from mathematical representation to a hardware datapath. This framework takes high

level hardware descriptions expressed as formulas, automatically generates an algorithm then maps

the algorithm to a datapath. It uses the tensor based formula language aiming to capture the hardware

datapath reuse.

Furthermore, [19, 20, 21, 24] uses the formal tensor framework to capture the memory accesses and

data layout. [21, 24] extends the mathematical framework to efficiently optimize the memory access

patterns by using block data layouts. [20] uses the formal framework to explore the tradeoffs in the

design space of DRAM-optimized hardware implementations.

Specifically, [82, 99] demonstrate hardware implementations for streaming permutations facilitating

the tensor based formal framework. However, this thesis considers the permutations as the basic

building blocks for data reorganizations. The work presented in this thesis (as partly shown in [23])

is first to utilize the permutations and tensor formula language to manipulate data reorganizations

for efficient DRAM access and in-memory hardware based operation.
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Conclusions and Future Directions

This thesis presents a formal framework that expresses key memory optimizations such as trans-

forming data layout, reordering memory access pattern and changing address mapping through per-

mutations. Permutations represented as matrices are systematically restructured to derive various

implementation alternatives exploiting parallelism and locality in memory.

Driven by the implications from the formal framework, this thesis presents the HAMLeT architec-

ture for highly-concurrent, energy-efficient and low-overhead data reorganization performed com-

pletely in memory. Memory access optimizations derived by the formal framework are directly

mapped onto the HAMLeT architecture. HAMLeT pursues a near-data processing approach exploit-

ing the 3D-stacked DRAM technology. Parallel streaming architecture can extract high throughput

via simple modifications to the logic layer keeping the DRAM layers unchanged.

Enabled by the efficient dynamic data reorganization capability, this thesis demonstrates solutions

for the conflict between memory access patterns and data layouts through several fundamental use

cases. Data reorganization in memory provides an efficient substrate to improve memory system

performance transparently. Explicit operation, on the other hand, gives an ability to offload and

accelerate common data reorganization routines. Explicit data reorganization exposes the key mem-

ory characteristics to the algorithm design space and creates opportunities for algorithm/architecture

157
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co-design.

10.1 Future Directions

The ideas presented in this thesis are preliminary and open up many new questions. There needs to

be further investigation in the following directions:

10.1.1 Data Reorganization for Irregular Applications

We make the key observation that permutations can represent memory access optimizations such as

transforming data layouts, changing address mapping or reordering the access patterns. Although

the range of operations include variety of useful data reorganizations as demonstrated in this thesis,

there needs to be more investigation for irregular applications. As demonstrated, dynamic data reor-

ganization can improve the memory access performance for general purpose workloads. However,

this improvement is much less when compared to explicitly optimized regular applications such as

MKL routines or FFTs. There exists applications that exhibit certain levels of regularity despite

having a complex dataflow. For example, stencil computation, convolutions and wavefront propa-

gation type of workloads which suffer from inefficient memory system performance can be good

candidates that worth further investigation.

10.1.2 General Purpose NDP

Data reorganization in-memory is a special case for near-data processing (NDP). This thesis pro-

vides hardware/software mechanisms to handle the system integration issues that relies on several

features of the data reorganizations. Reorganization does not require the actual values, it only relo-

cates the data to improve the memory performance when it is accessed. Hence it gives flexibilities

to handle the coherence. Furthermore, address remapping for permutation based data reorgani-

zations are handled in hardware which eases the virtual memory integration. However, general
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purpose near-data processing requires a tighter integration to the host processors shared memory

system.

Cache Coherence. First, NDP implementations needs to ensure that the operated data is a valid

most recent copy. To achieve that, NDP can be treated as a cache coherent processor integrated

in the system. Hence, the memory accesses are handled by the memory management unit (MMU)

which requires directory access, page translations, coherence update/invalidations. Depending on

the type of workloads this can create significant coherence traffic to flush the dirty copies of the

data from on-chip caches to the memory. For a highly irregular dataset, this can involve several

associative look-ups to clean up the cache. If the application’s entire dataset is relatively small

where a large portion fits in the caches, NDP can even degrade the overall performance due to

coherence traffic.

In our analysis, we provided a software-issued cache flush mechanism as a baseline. This mecha-

nism can be improved such that the operands of the NDP that exist in the caches are flushed if dirty

and invalidated if valid. For a simple dataset this can improve the overall coherence traffic. There

are other hybrid hardware/software approaches that should be investigated further to enable efficient

coherent NDP.

Virtual Memory. Operating on large contiguous memory spaces can be handled relatively easily.

Providing a large contiguously allocated physical memory space to the NDP through base address

and total allocated size can be sufficient for regular workloads. NDP implementation can be treated

as a memory mapped I/O device. NDP and host processor can communicate through a pre-allocated

memory region. However, pointer chasing or indirect gather/scatter type of applications require

a virtual to physical address translation very frequently. This can be achieved via hardware page

walkers and TLBs implemented at NDP side. This also brings the issue of page-fault handling at

NDP side. NDP can also be handled through an IOMMU mechanism. There are certain advantages

and disadvantages of these approaches that needs to be researched.
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Figure 10.1: Graph traversal progress in breadth first search.

10.1.3 Graph Traversal in 3D-stacked DRAM

Graphs are fundamental data representations that have been used extensively in various domains.

Exploring large graphs efficiently is a challenging task due to irregular memory access patterns,

limited data reuse and long chain of pointer chasing issues. Cache-based memory hierarchies and

prefetchers in modern processors cannot successfully address these problems. Furthermore, the

traversal throughput is mainly limited by the memory bandwidth [73]. As a part of this thesis

we also present a preliminary work on graph query operations via DRAM-optimized hardware

accelerators within 3D-stacked DRAM. Abundant internal parallelism and high bandwidth within

the 3D-stacked DRAM enables efficient, fast, and parallel traversal. Large number of nodes are

traversed utilizing high internal bandwidth, only a fraction of the nodes are filtered and transferred

via slow off-chip bus. Further, the roundtrip data movement between the memory and the processor

due to the long chain of pointer chasing is minimized via in-memory traversal.

Analysis of Graph Query Operations. There is a great variety of graph applications but graph

processing algorithms are mainly divided into two groups [75]: graph computation and graph

queries. Graph computation involves vertex centric computation of the whole graph typically sev-

eral iterations (e.g. belief propagation, matrix factorization, community detection). Graph queries,

however, are reduction operations where only a fraction of the vertices and/or edges are filtered (e.g.

search, shortest path, connected component). Hence graph query can be a potential candidate for

near memory acceleration.
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Figure 10.2: Architectural overview of the traversal engine.

For graph data structures, traversal is the fundamental operation that enables structured exploration

and manipulation of the dataset. Graph traversal is the fundamental building block for various graph

algorithms such as connected component analysis, A*, shortest path, centrality calculation, breadth

first search [18, 95, 106]. Graph traversal efficiency, in terms of traversed edges per second (TEPS),

is an important metric that is used to rank supercomputers [4]. Hence, graph traversal operations

can be considered as the fundamental primitive for the hardware acceleration.

Architectural Design of a Traversal Engine. Graph traversal by nature consists of series of sim-

ple operations: fetch node(s), decode and determine the next node(s), request next node(s). As the

traversal progresses, several child nodes are discovered (e.g. BFS) which allows an embarrassingly

parallel search (see Figure 10.1). Therefore multiple branches of the graph can be traversed concur-

rently. Overall architecture includes multiple traversal engines (TE) to exploit the concurrency and

increase the traversal throughput (see Figure 10.2).

Each traversal engine (TE) features queues for incoming nodes and outgoing requests (i.e. response

and request queues). These queues are orchestrated by a global scheduling unit that can issue the

operations to the TEs and to the DRAM layers to maximize the bandwidth utilization and traversal

throughput. Data structure information is be offloaded to the TEs such that when a node is fetched,

TEs determine the payload, attribute, and next node pointers. Each TE also features a decision logic
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that checks if a predefined condition is met to stop or continue the traversal. The overall architecture

is shown in Figure 10.2.

Our main goal is to utilize the internal bandwidth and parallelism of a 3D-stacked DRAM. To

exploit the inter-vault parallelism of independent TSV buses, overall architecture features per-vault

scheduling queues. Crossbar switch in the logic layer is utilized if a request in a queue will be sched-

uled to a different vault. Further the scheduling unit exploits the intra-vault parallelism of multiple

vertically stacked banks through carefully scheduling the requests generated by multiple TEs to dif-

ferent layers. Since the locality of the requests are limited, various DRAM scheduling policies can

be explored (e.g. closed page) to achieve the best performance and energy efficiency.

Graph Storage Format and Mapping to the Architecture. Storage format and layout of the

graph is critical for traversal performance and energy efficiency. A potential storage format as

discussed in [110] is to separate the structural information from the payload data. Structural infor-

mation, or connectivity information, stores the node IDs, source/sink relations, some attributes and

the pointers to the payload. Often the structural information, several hub nodes or hot sub-graphs of

large graphs can be stored in-memory which enables in-memory graph exploration. Separating the

structure information is also useful since graph queries are mostly structural such that they do not

need payload access (e.g. count the number of reachable nodes to a certain depth, find the highly

connected nodes, find the shortest path between two nodes etc.).

Although graph traversals exhibit limited spatial locality, the temporal locality can be exploited via

specialized stacked memory hierarchies. We will explore mapping the frequently used structure

information to SRAM, cache, and eDRAM based memory hierarchy options.

Future Work. As a first step, mapping efficient BFS, SSSP and CC algorithms to the developed

parallel architecture with the specialized memory hierarchy can be evaluated through real world

graph examples such as social networks, WWW, communication networks [10].

High performance and energy efficient exploration of the large graphs using DRAM-optimized hard-
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ware accelerators within 3D-stacked DRAM will potentially create opportunities for in-memory

traversal of in-memory graph databases.
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