Supplement 3

Experiment 1 - Measures of central tendency

Peter Kamerman

11 October 2018

Contents

Import and inspect data 3
Clean data 3
Participant-level: Best measure of central tendency 3
Session information 10

In this experiment, there are two levels of correlated data:

1) Correlation at the level of the individual, with each individual tested at each stimulus intensity (the individual is the observational unit).
2) Correlation at each stimulus intensity within each individual, with each stimulus intensity being assessed several times in each individual (stimulus intensity is the observational unit).

This double layer of correlation creates problems for analysis. One solution is to remove the second layer of correlation (correlation at each stimulus intensity within each individual) by calculating a single summary measure of the repeated measurement at each stimulus intensity. But what is the best measure of location (central tendency) for these data?

Measures of central tendency provide information on what the 'average' value of a set of numbers is; a useful summary measure of a dataset. Some examples of measures of central tendency are:

1. Arithmetic mean (base : :mean)
2. Median (stats: :median)
3. Geometric mean (psych: :geometric.mean, mathematical definition below)
4. Tukey trimean (user-defined: :tri.mean, mathematical definition and function specification below)

Each measure has strengths and limitations. The arithmetic mean is best suited to symmetrical distributions, and hence asymmetrical distributions (right or left-skewed data) reduced the usefulness of the measure as a measure of central tendency. The geometric mean is equivalent to the arithmetic mean, but the additive structure is on the logarithm of the original data ${ }^{1}$. As such, the geometric mean handles skewed data better than does the arithmetic mean, particularly right-skewed data. The median is the middle element in a sorted set of numbers (the centre-point of the data), and therefore it is not influenced by extreme values. However using the median means that information about the distribution of the data is lost, and it can be biased in small samples. The fourth measure is the Tukey trimean. The Tukey trimean combines the median's emphasis on centre values with the midhinge's (average of the $25^{\text {th }}$ and

[^0]$75^{\text {th }}$ percentiles) attention to the extremes ${ }^{2}$. As such, the distribution of the data is incorporated to some extent into the measure of central tendency.

Judging the suitability of the four measures of central tendency was done by visually inspecting modified 'Raw, Descriptive, Inference (RDI)' plots [^3]. The plots included individual data points, smoothed densities, and the four measures of central tendency, but dropping the 'inference' component.

Definition of the geometric mean

The geometric mean is defined as the $\mathrm{n}^{\text {th }}$ root of the product of a set of numbers.

$$
G_{\text {mean }}=\left(\prod_{i=1}^{n} x_{i}\right)^{\frac{1}{n}}=\sqrt[n]{x_{1} x_{2} \ldots x_{n}}
$$

Where:

- $x_{i}=$ elements in a set of numbers
- $n=$ number of elements in the set

Definition of the Tukey trimean (and function)

The Tukey trimean is defined as the weighted average of the distribution's median and its two quartiles.

$$
T_{\text {mean }}=\frac{1}{2}\left(Q_{2}+\frac{Q_{1}+Q_{3}}{2}\right)
$$

Where:

- $Q_{1}=25^{\text {th }}$ percentile
- $Q_{2}=50^{\text {th }}$ percentile (median)
- $Q_{3}=75^{\text {th }}$ percentile

```
# Specify tri.mean function
tri.mean <- function(x) {
    # Calculate quantiles
    q1 <- quantile(x, probs = 0.25, na.rm = TRUE)[[1]]
    q2 <- median(x, na.rm = TRUE)
    q3 <- quantile(x, probs = 0.75, na.rm = TRUE)[[1]]
    # Calculate trimean
    tm <- (q2 + ((q1 + q3) / 2)) / 2
    # Convert to integer
    tm <- as.integer(round(tm))
    return(tm)
}
```

[^1]
Import and inspect data

```
# Import
data <- read_rds('./data-cleaned/SPARS_A.rds')
# Inspect
glimpse(data)
## Observations: 1,927
## Variables: 19
## $ PID
## $ block
## $ block_order
## $ trial_number
## $ intensity
## $ intensity_char
## $ rating
## $ rating_positive
## $ EDA
## $ age
## $ sex
## $ panas_positive
## $ panas_negative
## $ dass42_depression
## $ dass42_anxiety
## $ dass42_stress
## $ pcs_magnification
## $ pcs_rumination
## $ pcs_helplessness <dbl> 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, ...
```


Clean data

```
# Basic clean-up
data %<>%
    # Select required columns
    select(PID, block, block_order, intensity,
        intensity_char, rating, rating_positive)
```


Participant-level: Best measure of central tendency

Calculate measures of central tendency

```
# Calculate participant-level centrality measures
central <- data %>%
```

```
group_by(PID, intensity_char) %>%
summarise(mean = mean(rating_positive, na.rm = TRUE),
    median = median(rating_positive, na.rm = TRUE),
    geometric_mean = psych::geometric.mean(rating_positive),
    tri_mean = tri.mean(rating_positive)) %>%
ungroup() %>%
# Change from wide to long format for plotting
gather(key = type,
    value = value,
    mean:tri_mean) %>%
# Order measurement types
mutate(type = fct_relevel(factor(type),
    'mean', 'median',
    'geometric_mean',
    'tri_mean'))
```


Plots

```
# Divide participants into batches of 6 (for better plot layout)
pid_a <- c(pasteO('IDO', 1:6))
pid_b <- c(pasteO('IDO', 7:9), 'ID10', 'ID11', 'ID12')
pid_c <- c(pasteO('ID', 13:18))
# Plot first 6 participants
p_1to6 <- data %>%
    filter(PID %in% pid_a) %>%
    # Plot
    ggplot(data = .) +
    aes(x = rating_positive,
        y = intensity_char) +
    geom_density_ridges2(scale = 1,
                                    fill = '#CCCCCC') +
    geom_point(position = position_nudge(y = 0.1),
            shape = 21,
            fill = '#FFFFFF') +
    geom_point(data = central[central$PID %in% pid_a, ],
            aes(x = value, fill = type),
            shape = 21,
            size = 3,
            alpha = 0.8,
            position = position_nudge(y = 0.6)) +
    scale_fill_manual(name = 'Centrality measure',
                        values = grey_pal,
                        labels = c('Mean', 'Median',
                            'Geometric mean',
                            'Tukey trimean')) +
    scale_x_continuous(limits = c(-5, 105),
                                    breaks = seq(from = 0, to = 100, by = 20),
                                    expand = c(0,0)) +
    labs(title = 'Participant-level density distribution of SPARS ratings at each stimulus
```

```
            subtitle = 'White points: individual data points | Grey points: measures of central
            x = 'SPARS rating [0-100, positive-corrected scale]',
            y = 'Stimulus intensity (J)') +
    facet_wrap(~PID, ncol = 3) +
    theme_bw() +
    theme(legend.position = 'top')
# Plot participants 7-12
p_7to12 <- data %>%
    # Filter participants 7-12
    filter(PID %in% pid_b) %>%
    # Plot
    ggplot(data = .) +
    aes(x = rating_positive,
        y = intensity_char) +
    geom_density_ridges2(scale = 1,
                        fill = '#CCCCCC') +
    geom_point(position = position_nudge(y = 0.1),
                shape = 21,
                fill = '#FFFFFF') +
    geom_point(data = central[central$PID %in% pid_b, ],
            aes(x = value, fill = type),
            shape = 21,
            size = 3,
            alpha = 0.8,
            position = position_nudge(y = 0.6)) +
    scale_fill_manual(name = 'Centrality measure',
                            values = grey_pal,
                        labels = c('Mean', 'Median',
                            'Geometric mean',
                            'Tukey trimean')) +
    scale_x_continuous(limits = c(-5, 105),
                                    breaks = seq(from = 0, to = 100, by = 20),
                            expand = c(0,0)) +
    labs(title = 'Participant-level density distribution of SPARS ratings at each stimulus i
        subtitle = 'White points: individual data points | Grey points: measures of central
        x = 'SPARS rating [0-100, positive-corrected scale]',
        y = 'Stimulus intensity (J)') +
    facet_wrap(~PID, ncol = 3) +
    theme_bw() +
    theme(legend.position = 'top')
# Plot participants 13-18
p_13to18 <- data %>%
    # Filter participants 13-18
    filter(PID %in% pid_c) %>%
    # Plot
    ggplot(data = .) +
    aes(x = rating_positive,
        y = intensity_char) +
    geom_density_ridges2(scale = 1,
```

```
    fill = '#CCCCCC') +
    geom_point(position = position_nudge(y = 0.1),
        shape = 21,
        fill = '#FFFFFF') +
    geom_point(data = central[central$PID %in% pid_c, ],
        aes(x = value, fill = type),
        shape = 21,
        size = 3,
        alpha = 0.8,
        position = position_nudge(y = 0.6)) +
    scale_fill_manual(name = 'Centrality measure',
        values = grey_pal,
        labels = c('Mean', 'Median',
            'Geometric mean',
            'Tukey trimean')) +
    scale_x_continuous(limits = c(-5, 105),
        breaks = seq(from = 0, to = 100, by = 20),
        expand = c(0,0)) +
    labs(title = 'Participant-level density distribution of SPARS ratings at each stimulus
        subtitle = 'White points: individual data points | Grey points: measures of central
        x = 'SPARS rating [0-100, positive-corrected scale]',
        y = 'Stimulus intensity (J)') +
    facet_wrap(~PID, ncol = 3) +
    theme_bw() +
    theme(legend.position = 'top')
# Print plots
p_1to6
```

Participant-level density distribution of SPARS ratings at each stimulus intensity White points: individual data points | Grey points: measures of centrality

p_7to12

Participant-level density distribution of SPARS ratings at each stimulus intensity White points: individual data points | Grey points: measures of centrality

p_13to18

Participant-level density distribution of SPARS ratings at each stimulus intensity
White points: individual data points | Grey points: measures of centrality
Centrality measure \bigcirc Mean \bigcirc Median \bigcirc Geometric mean \bigcirc Tukey trimean

Conclusion

There was significant heterogeneity in the grouping of ratings within and between individuals, with a tendency for data to be left skewed (a few very low values). The heterogeneity makes selecting a measure of centrality difficult. Of the measures of centrality, the Tukey trimean and median showed the best stability across all stimulus intensities (as expected). The geometric mean performed very poorly when there was a strong left skew in the data. The arithmetic mean was similarly affected by skewed data. When there was a strong skew, the Tukey mean was pulled slightly away from the median and towards the affected tail, but otherwise the two measures yielded similar values. Given that the Tukey trimean incorporates some of the information in the distribution of the data, but is not overly affected by extreme values, we believe that the Tukey trimean should be used for 'averaging' repeated measurements within an individual, at a given stimulus intensity.

Session information

```
sessionInfo()
## R version 3.5.1 (2018-07-02)
## Platform: x86_64-apple-darwin15.6.0 (64-bit)
## Running under: macOS 10.14
##
## Matrix products: default
## BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
##
## locale:
## [1] en_GB.UTF-8/en_GB.UTF-8/en_GB.UTF-8/C/en_GB.UTF-8/en_GB.UTF-8
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] bindrcpp_0.2.2 ggridges_0.5.1 forcats_0.3.0 stringr_1.3.1
## [5] dplyr_0.7.6 purrr_0.2.5 readr_1.1.1 tidyr_0.8.1
## [9] tibble_1.4.2 ggplot2_3.0.0 tidyverse_1.2.1 magrittr_1.5
##
## loaded via a namespace (and not attached):
## [1] tidyselect_0.2.4 haven_1.1.2 lattice_0.20-35 colorspace_1.3-2
## [5] htmltools_0.3.6 yaml_2.2.0 rlang_0.2.2 pillar_1.3.0
## [9] foreign_0.8-71 glue_1.3.0 withr_2.1.2 modelr_0.1.2
## [13] readxl_1.1.0 bindr_0.1.1 plyr_1.8.4 munsell_0.5.0
## [17] gtable_0.2.0 cellranger_1.1.0 rvest_0.3.2 psych_1.8.4
## [21] evaluate_0.11 knitr_1.20 parallel_3.5.1 broom_0.5.0
## [25] Rcpp_0.12.19 scales_1.0.0 backports_1.1.2 jsonlite_1.5
## [29] mnormt_1.5-5 hms_0.4.2 digest_0.6.17 stringi_1.2.4
## [33] grid_3.5.1 rprojroot_1.3-2 cli_1.0.1 tools_3.5.1
## [37] lazyeval_0.2.1 crayon_1.3.4 pkgconfig_2.0.2
## [41] lubridate_1.7.4 assertthat_0.2.0 rmarkdown_1.10
## [45] rstudioapi_0.8 R6_2.2.2 nlme_3.1-137
xml2_1.2.0
httr_1.3.1
compiler_3.5.1
```


[^0]: ${ }^{1}$ Because the calculation of geometric mean requires values ≥ 0, rating_positive data (SPARS rating +50) were used to calculate all measures of central tendency.

[^1]: ${ }^{2}$ Weisberg, H. F. (1992). Central Tendency and Variability. Sage University. ISBN 0-8039-4007-6

