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Abstract

We consider functions defined on [0, L] with special jump discontinuities, and discuss two different
methods of doing calculus of variations. One method is to solve the boundary value problem in each
sub-region divided by the discontinuities, and the other method is to use Fourier series on the whole
region. We argue that the second method, though has an energy divergence problem, can lead to a
unified view of similar examples and may provide a way of studying nematic defects.

1 Examples
1.1 Example 1
Consider a function f : U → R, where U = [0, L1)∪(L1, L] with L1 being a variable, and an energy functional

F [f(x), f ′(x)] =

∫
U

(df
dx

)2
dx. (1)

The outer boundary conditions are

f(0) = f(L) = 0. (2)

The inner boundary conditions are

f(L−
1 ) = −f(L+

1 ) = −a, (3)

where L, a are fixed parameters. The question is: what is the ground state when L1 varies?
This is a special example of calculus of variations where the function space consists of functions which are

smooth except on a subset of measure zero. An illustration of the steps of doing this calculus of variations
is the following:

Let us start with the action

F [f(x), f ′(x)] =

∫
U

dx F(f(x), f ′(x)), (4)

where f(x) are those generalized functions satisfying the boundary conditions Eqs. (2) and (3). Then let
fb(x), fc(x) denote the functions f(x) with discontinuities being at L1 = b, c [i.e., fb(b

−) = −fb(b
+) =

−a, fc(c
−) = −fc(c

+) = −a], and let δfb(x), δfc(x) denote the variations on fb(x), fc(x) with δfb(b
−) =

δfb(b
+) = 0, δfc(c−) = δfc(c

+) = 0. Assume δfb(x), δfc(x) are small, and |c− b|≪ 1. Then,

0 = F [fc + δfc]− F [fb] = (F [fc + δfc]− F [fc]) + (F [fc]− F [fb]), (5)
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which is∫
U

( ∂F
∂fc

− d

dx

( ∂F
∂f ′

c

))
δfc = F [fb]− F [fc] = F (L1 = b)− F (L1 = c) =

dF

dL1

∣∣∣
L1=c

· (b− c). (6)

Note that we do not consider F [fc + δfb] because fc + δfb does not satisfy the boundary conditions thus it
is not in the function space we consider. Because b, c, and δfc are independent, so we have

(7)∂F
∂f

− d

dx

(∂F
∂f ′

)
= 0,

(8)dF

dL1
= 0.

Equations (5)-(8) implies that the small change of the functional F around a equilibrium state can be
decomposed into two parts: (1) the small change due to the change of the function f with the location of
discontinuity fixed, and (2) the small change due to the change of the locations of discontinuities.

Now let us write down the second functional derivatives

(9)
F [fc + δfc]− F [fb] = (F [fc + δfc]− F [fc]) + (F [fc]− F [fb])

= 0 +

∫
dx1

∫
dx2

δ2F
δfc(x1)δfc(x2)

δfc(x1)δfc(x2) +
1

2

d2F

dL2
1

∣∣∣
L1=c

· (b− c)2.

To make sure f is a local energy minimizer, we require both

δ2F
δf(x1)δf(x2)

≥ 0, (10)

and

d2F

dL2
1

≥ 0. (11)

Now following the above procedure, it is easy to find the ground state of Example 1. We start with the
Euler-Lagrange equation

d2f

dx2
= 0, (12)

which is satisfied on [0, L1) ∪ (L1, L]. Then we obtain its solution

f(x) =


− a

L1
x, x ∈ [0, L1),

− a
L−L1

x+ L
L−L1

a, x ∈ (L1, L].
(13)

Substitute Eq. (13) into Eq. (1), and we have the following energy landscape

F (L1) =
a2

L1
+

a2

L− L1
, (14)

and the ground state is L1 = L/2.

1.2 Example 2
Consider a similar but slightly more difficult example with the energy functional

F [f(x), f ′(x)] =

∫
U

[(df
dx

)2
+A2f2

]
dx, (15)
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where f satisfies the same boundary conditions as Eqs. (2) and (3).
Similarly, the Euler-Lagrange equation is

d2f

dx2
−A2f = 0, (16)

and its solution is

f(x) =


− a

eAL1−e−AL1
eAx + a

eAL1−e−AL1
e−Ax, x ∈ [0, L1),

a
eAL1−e2AL−AL1

eAx − a
e−2AL+AL1−e−AL1

e−Ax, x ∈ (L1, L].
(17)

Substitute Eq. (17) into Eq. (16), and we have the following energy landscape

F (L1) = a2A · e
AL1 + e−AL1

eAL1 − e−AL1
+ a2A · e

2AL−AL1 + eAL1

e2AL−AL1 − eAL1
(18)

and the ground state is still L1 = L/2.
Compared with Example 1, Example 2 has only a slight modification, and we find that the ground state

is unchanged but the calculation is much more involved. It is expected that for higher dimensions, more
complicated PDEs and boundaries, this method, let us call it Method (a), may be sometimes impossible to
execute. The reason is that it requires solving a boundary value problem in each sub-region. Since our goal
is focused on the states characterized by the locations of the inner boundaries (discontinuities), there should
be a method that is able to extract the information of inner boundaries without dwelling on the exact forms
of the solutions. To work in this direction, we treat all the sub-regions together as a whole, using Fourier
series as the “glue”. Let us call it Method (b).

1.3 Solving Example 1 by Method (b)
We write f as Fourier series of sine functions

f(x) =

∞∑
k=1

bk sin
kπx

L
, (19)

where bk is unknown. Then we write its first derivative as

df

dx
=

∞∑
k=1

kπbk
L

cos
kπx

L
. (20)

When written in terms of Fourier series, f(x) and f ′(x) are assigned certain values at the discontinuous
point x = L1. Here, the energy functional is still denoted by F [f(x), f ′(x)] while we should keep in mind
that f(x) and f ′(x) are expressed as Eqs. (19) and (20).

Now we want to construct an energy function of which the small change only includes the change of the
location of the discontinuity. We start by deriving the expression for bk:

On [0, L1), from Eq. (12), we have

0 =

∫ L−
1

0

d2f

dx2
sin

kπx

L
dx =

∫ L−
1

0

sin
kπx

L
d
(df
dx

)
= sin

kπL1

L
· df
dx

∣∣∣
L1

+
kπa

L
cos

kπL1

L
−
(kπ
L

)2 ∫ L−
1

0

f sin
kπx

L
dx.

(21)

Therefore,∫ L1

0

f sin
kπx

L
dx =

aL

kπ
cos

kπL1

L
+
( L

kπ

)2
sin

kπL1

L
· df
dx

∣∣∣
L−

1

. (22)
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Similarly, on (L1, L]∫ L

L+
1

f sin
kπx

L
dx =

aL

kπ
cos

kπL1

L
−
( L

kπ

)2
sin

kπL1

L
· df
dx

∣∣∣
L+

1

. (23)

Therefore,

bk =
2

L

∫ L

0

f sin
kπx

L
dx =

2

L

(∫ L−
1

0

f sin
kπx

L
dx+

∫ L

L+
1

f sin
kπx

L
dx
)

=
4a

kπ
cos

kπL1

L
+

2L

(kπ)2
B sin

kπL1

L
,

(24)

where

B =
df

dx

∣∣∣
L+

1

− df

dx

∣∣∣
L−

1

.

Note that Eq. (24) takes advantage of the fact that f is bounded and the discontinuity is on a set with
measure zero. To determine the only unknown B in the expression for bk, we use Dirichlet conditions,
specifically, the fact that f , when written in terms of Fourier series as Eq. (19), is zero at the discontinuity.
Therefore, we have

∞∑
k=1

( 4a
kπ

cos
kπL1

L
+

2L

(kπ)2
B sin

kπL1

L

)
sin

kπL1

L
= 0, (25)

and it gives

B = a
( 1

L− L1
− 1

L1

)
. (26)

Substitute Eq. (26) into Eq. (24) and then substitute Eq. (24) into Eq. (19) and (20), we have

f(x) = f1(x) + f2(x), (27)

where

f1(x) =

∞∑
k=1

4a

kπ
cos

kπL1

L
sin

kπx

L
, (28)

f2(x) =

∞∑
k=1

2L ·B
(kπ)2

sin
kπL1

L
sin

kπx

L
=

∞∑
k=1

2aL

(kπ)2

( 1

L− L1
− 1

L1

)
sin

kπL1

L
sin

kπx

L
; (29)

and

(30)

df

dx
=

∞∑
k=1

[
4a cos

kπL1

L
+

2L ·B
kπ

sin
kπL1

L

]
· 1
L
cos

kπx

L

=

∞∑
k=1

[
4a cos

kπL1

L
+

2aL

kπ

( 1

L− L1
− 1

L1

)
sin

kπL1

L

]
· 1
L
cos

kπx

L
.

Then in order to get the energy function, we substitute Eqs. (27) and (30) into

F [f(x), f ′(x)] =

∫ L

0

(df
dx

)2
dx. (31)

Knowing that Eq. (30) can be highly oscillated, therefore in order to suppress the possible high oscillation
of the resulting energy function F (L1), we require f ′(L1) to be differentiable with respect to L1. This is due
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to our observation that this condition makes sure the “core structures” at different x = L1 for fixed N terms
truncation are almost the same, which implies that the free energy of the core will not oscillate rapidly as
L1 changes. Starting from here, a more explicit condition is derived as follows:

Truncate Eq. (30) to the Nth term and evaluate it at x = L1, we have

(32)

dfN
dx

∣∣∣
x =L1

=

N∑
k=1

[
4a cos

kπL1

L
+

2aL

kπ

( 1

L− L1
− 1

L1

)
sin

kπL1

L

]
· 1
L
cos
(kπL1

L

)

=
a

L
·
cos 2NπL1

L − cos 2(N+1)πL1

L

1− cos 2πL1

L

+
a

L
· (2N − 1)− a

2L
· (L− 2L1)

2

L1(L− L1)
,

as N → ∞. To make sure Eq. (32) is differentiable, we apply the following condition

N · L1

L
∈ Z. (33)

That implies, when N is fixed, we can use the energy functional F [fN (x), f ′
N (x)] for only finite number of

states characterized by different values of L1, and only when N → ∞ can this functional be effective for all
the states. Now we show that (33) is both a necessary and sufficient condition for f ′(L1) being differentiable:

Proof. Part I: Prove (33) is a necessary condition.
If L1/L is a rational number, then obviously we can choose an integer N1 that satisfies (33). For many

different rational values of L1/L, we can choose N to be the least common multiple of all the N1s. If L1/L
is an irrational number, then for any arbitrary small number δ1, there exists an integer N1, such that

N1 ·
L1

L
− δ1 ∈ Z. (34)

For many different irrational values of L1/L, we can choose N to be the least common multiple of all the
N1s, and each δ1 to be replace by δ/N , where δ is arbitrarily small. Therefore, (33) can be satisfied by L1/L
being any real number. Then we substitute Eq. (32) into Eq. (32), and the resulting f ′(L1) is differentiable.

Part II: Prove (33) is a sufficient condition.
Suppose

N · L1

L
−m ∈ Z, (35)

where m is fixed for all different values of L1/L, and 0 < m < 1. If m is a rational number, then we write
m as m = m1/m2, where m1, m2 ∈ Z and m2 ∤ m1. Since N is an integer, we have the following condition

m1

m2
· L

L1
∈ Z. (36)

which cannot be satisfied by some values of L1/L. The reason is similar if m is an irrational number. Now
suppose one value of L1/L is not satisfied by (36), and N · L1

L − n ∈ Z (where n ̸= m). Then L1

L + m−n
N

which is very close to L1/L satisfies (36), therefore f ′(L1) is not differentiable at this value of L1/L.

After we substitute Eqs. (27) and (30) into Eq. (31), Equation (31) becomes

F (L1) =

∞∑
k=1

(bkkπ)
2

2L
= F1(L1) + F2(L1) + F3(L1), (37)

where

F1(L1) =
1

2L
·

∞∑
k=1

(
4a cos

kπL1

L

)2
, (38)
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F2(L1) =
1

2L
·

∞∑
k=1

(2L ·B
kπ

sin
kπL1

L

)2
=

1

2L
·

∞∑
k=1

[2aL
kπ

( 1

L− L1
− 1

L1

)
sin

kπL1

L

]2
, (39)

(40)
F3(L1) =

1

L
·

∞∑
k=1

(
4a cos

kπL1

L

)
·
(2L ·B

kπ
sin

kπL1

L

)
=

1

L
·

∞∑
k=1

(
4a cos

kπL1

L

)
·
[2aL
kπ

( 1

L− L1
− 1

L1

)
sin

kπL1

L

]
.

F1 is insanely divergent, while interestingly for F2 we have

F2(L1) =
1

2L
·

∞∑
k=1

[2aL
kπ

( 1

L− L1
− 1

L1

)
sin

kπL1

L

]2
=

a2

L1
+

a2

L− L1
− 4a2

L
. (41)

We can see that Eqs. (41) and (14) are equally effective in determining the ground state. Now we should
figure out why we should cancel out F1(L1) and F3(L1).

Consider the following energy functional

F (y, L1) =

∫ y

0

(df
dx

)2
dx = F1(y, L1) + F2(y, L1) + F3(y, L1), (42)

where F (L,L1) = F (L1), F1(L,L1) = F1(L1), F2(L,L1) = F2(L1), and F3(L,L1) = F3(L1). After tedious
calculations, we have

(43)

F1(y, L1) =
4a2

L2
· lim
N→∞

N∑
k=1

(
y + y · cos 2kπL1

L

)
+

4a2

L2
· lim
N→∞

N∑
k1,k2=1,k1 ̸=k2,

[ L

(k1 − k2)π
cos

(k1 − k2)πL1

L
sin

(k1 − k2)πy

L

+
L

(k1 − k2)π
cos

(k1 + k2)πL1

L
sin

(k1 − k2)πy

L

]
+

4a2

L2
· lim
N→∞

N∑
k1,k2=1

[ L

(k1 + k2)π
cos

(k1 − k2)πL1

L
sin

(k1 + k2)πy

L

+
L

(k1 + k2)π
cos

(k1 + k2)πL1

L
sin

(k1 + k2)πy

L

]

=
2a2y

L2

(cos 2NπL1

L − cos 2(N+1)πL1

L

1− cos 2πL1

L

− 1
)

− 2a2

πL
·

sin πy
L

cos πL1

L − cos πy
L

+
a2

πL
·
cos (2N+1)πL1

L

sin πL1

L

ln

(
1− cos π(y−L1)

L

1− cos π(y+L1)
L

)
+

4a2y

L2

+


0 + 2a2y

L2

(
1− sin

(2N+1)πL1
L

sin
πL1
L

)
, if 0 < y < L1

4(N−1)a2

L + 2a2(L−y)
L2

(
− 1 +

sin
(2N+1)πL1

L

sin
πL1
L

)
, if L1 < y < L

= −2a2

πL
·

sin πy
L

cos πL1

L − cos πy
L

+
a2

πL

·
cos πL1

L

sin πL1

L

ln

(
1− cos π(y−L1)

L

1− cos π(y+L1)
L

)
+

4a2y

L2
+

{
0, if 0 < y < L1

4(N−1)a2

L , if L1 < y < L
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and its density profile

(44)
F1(y, L1) =

4a2

L2
+

a2

2L2

(
csc2

π(y − L1)

2L
+ cos

π(y − 3L1)

2L
− cos

π(y + L1)

2L

+ cot
πL1

L
csc2

π(y − L1)

2L
csc

π(y + L1)

2L
+ csc2

π(y + L1)

2L

)
.

From Eq. (43), we can see that condition (33) guarantees that F1(L1) is a constant even though it is infinite.
From the energy density profile Eq. (44), we can see F1(L1) consists of three parts: (a) the fictitious core free
energy caused by the discontinuity, (b) the fictitious fluctuation energy caused by the large oscillations near
the discontinuity (i.e., Gibbs phenomenon), and (c) the part of energy which is not the core or fluctuation
energy, i.e., 4a2/L.

Now let us have a more detailed comparison between Method (a) and (b) in solving Example 1:
For clarity, let us denote the function and energy in Method (a) by g and G respectively instead of f

and F , while keeping the notations in Method (b) unchanged. We observe that when the location of the
discontinuity is fixed at x = L1, the only difference between g and f is that f has an (almost) perpendicular
line at x = L1 and large oscillations near it. Let η and ξ denote these two effects respectively, thus the above
description can be summarized as

f = g + η + ξ. (45)

According to Eqs. (27)-(29), g can be decomposed as

g = (g − f2) + f2. (46)

Compare the energy functions Eqs. (14), (37)-(41) and (43), we have the following observations:
(a) g = (g − f2) + f2 contributes to the real energy G(L1), where g − f2 contributes to the part which is

independent of L1 [i.e., 4a2/L];
(b) (g− f2) + η+ ξ contributes to the energy F1(L1) which is infinitely large but also independent of L1

(and we call it the background energy);
(c) F2(L1) is identical to the energy G(L1) minus 4a2/L;
(d) F3(L1) can be seen as the interaction energy between f2 and ξ.
Among these observations, (d) needs some explanations: we can see that Eq. (40) is the interaction

energy between (g− f2)+ η+ ξ and f2; then we observe that the interaction energy between g− f2 and f2 is
zero because the first derivatives of the former is a constant, and the interaction energy between η and f2 is
zero because the former is nonzero only at x = L1, while the latter is defined on [0, L1) ∪ (L1, L], therefore
the domains are not overlapped.

The above observations explain why we can cancel F1(L1), F3(L1), as well as why F2(L1) and G(L1)
are equally effectively in determining the ground states. So far we are unable to provide more rigorous
mathematical formulas for these observations because the derivation and integration for η and ξ are bizarre
and a precise rule is unknown. However, further work needs to be done to develop these observations into
criteria that are suited for a variety of similar examples, so that we do not need lengthy calculations [which
leads to Eq. (43)] to figure out which part of the total energy needs to be canceled.

Now, there is a question: Method (b) seems to be much more difficult than Method (a), so why do we
need it? Our answer is that: first, Method (a) can be awfully difficult for other examples; second, Method
(b) seems to have a much more simplified version once we have the criteria to cancel out the unwanted part
of the free energy. The simplified version of Method (b) is the following.

Step 1: Derive the expression for f with B as an unknown parameter, i.e., Eqs. (19)-(24);
Step 2: Rewrite Eq. (25) as

∞∑
k=1

4a

kπ
cos

kπL1

L
sin

kπL1

L
= −

∞∑
k=1

2L

(kπ)2
B sin

kπL1

L
sin

kπL1

L
. (47)

The LHS and RHS of Eq. (47) have the same monotonicity and zero points with respect to L1, and the first
terms of the LHS and RHS are enough to determine the monotonicity and zero points. Therefore, if we are
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only interested in finding the ground state instead of its energy value, we just focus on the first terms of
these sums. Thus, we replace Eq. (25) or (47) by

4a

π
cos

πL1

L
sin

πL1

L
= − 2L

(π)2
B sin

πL1

L
sin

πL1

L
, (48)

therefore we have

B = −2πa

L
cot

πL1

L
. (49)

Notice that Eqs. (26) and (49) have the same monotonicity and zero points.
Step 3: Knowing that Eq. (39) is the sum of a convergent sequence, we observe that the first term also

determines the monotonicity and zero points of the whole sum. Therefore, we substitute Eq. (49) into the
first term of Eq. (39), and then we have

F2(L1) =
8a2

L
cos2

πL1

L
. (50)

Interestingly, Equations (14), (39) and (50) have the same ground states, thus are equally effective for our
purpose.

By comparing Eq. (50) with Eq. (38), we observe that the largest Fourier mode of the background energy
determines the ground state, which could be a common feature for lots of similar examples, one of which is
Example 2.

1.4 Solving Example 2 by Method (b)
By the same procedure, we have

f(x) = f1(x) + f2(x), (51)

where

f1(x) =

∞∑
k=1

4kπa
L2

A2 + (kπL )2
cos

kπL1

L
sin

kπx

L
; (52)

(53)
f2(x) =

∞∑
k=1

2C

L
·

sin kπL1

L

A2 + (kπL )2
sin

kπx

L

=

∞∑
k=1

2

L
·

sin kπL1

L

A2 + (kπL )2

(
−Aa · e

AL1 + e−AL1

eAL1 − e−AL1
+Aa · e

2AL−AL1 + eAL1

e2AL−AL1 − eAL1

)
sin

kπx

L
;

and

F (L1) = F1(L1) + F2(L1) + F3(L1) + F4(L1), (54)

where

F1(L1) =
1

2L
·

∞∑
k=1

(
4a cos

kπL1

L

)2
, (55)

(56)

F2(L1) =
1

2L
·

∞∑
k=1

[
4(kπ)2a

L2

A2 + (kπL )2
cos

kπL1

L
− 4a cos

kπL1

L
+

2C

L
·
kπ · sin kπL1

L

A2 + (kπL )2

]2

=
1

2L
·

∞∑
k=1

[
4(kπ)2a

L2

A2 + (kπL )2
cos

kπL1

L
− 4a cos

kπL1

L
+

2

L

·
kπ · sin kπL1

L

A2 + (kπL )2

(
−Aa · e

AL1 + e−AL1

eAL1 − e−AL1
+Aa · e

2AL−AL1 + eAL1

e2AL−AL1 − eAL1

)]2
,
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(57)

F3(L1) =
1

L
·

∞∑
k=1

(
4a cos

kπL1

L

)
·

[
4(kπ)2a

L2

A2 + (kπL )2
cos

kπL1

L
− 4a cos

kπL1

L
+

2C

L
·
kπ · sin kπL1

L

A2 + (kπL )2

]

=
1

L
·

∞∑
k=1

(
4a cos

kπL1

L

)
·

[
4(kπ)2a

L2

A2 + (kπL )2
cos

kπL1

L
− 4a cos

kπL1

L
+

2

L

·
kπ · sin kπL1

L

A2 + (kπL )2

(
−Aa · e

AL1 + e−AL1

eAL1 − e−AL1
+Aa · e

2AL−AL1 + eAL1

e2AL−AL1 − eAL1

)]
,

(58)

F4(L1) =

∫ L

0

(A2f2)dx

= A2

∫ L

0

dx

[ ∞∑
k=1

4kπa
L2

A2 + (kπL )2
cos

kπL1

L
+

∞∑
k=1

2C

L
·

sin kπL1

L

A2 + (kπL )2

]2

= A2

∫ L

0

dx

[ ∞∑
k=1

4kπa
L2

A2 + (kπL )2
cos

kπL1

L
+

∞∑
k=1

2

L
·

sin kπL1

L

A2 + (kπL )2

(

−Aa · e
AL1 + e−AL1

eAL1 − e−AL1
+Aa · e

2AL−AL1 + eAL1

e2AL−AL1 − eAL1

)]2
.

Similarly, F1(L1) is the background energy, F3(L1) is the fictitious interaction energy; and F2(L1) + F4(L1)
is the same as Eq. (18) up to a constant, therefore is equally effective in determining the ground state.

Similar to the last section, once we know some criteria that guide us to keep only F2(L1) and F4(L1)
with C being an unknown parameter, then the simplified calculation can be the following:

Step 1: Derive the expression for f with C as an unknown parameter, similar to Eqs. (19)-(24);
Step 2: By the fact that C is determined by f(L1) = 0, we have the following relation

(59)
∞∑

k =1

4kπa
L2

A2 + (kπL )2
cos

kπL1

L
sin

kπL1

L
= −

∞∑
k=1

2C

L
·

sin kπL1

L

A2 + (kπL )2
sin

kπL1

L
.

Keep only the first term, and we have

C = −2πa

L
cot

πL1

L
. (60)

Step 3: Substitute Eq. (60) into the first term of F2(L1) + F4(L1) as shown in Eqs. (56) and (58), and
we have

F2(L1) + F4(L1) =
8a2

L
cos2

πL1

L
. (61)

Interestingly, Equations (50) and (61) are the same, which is consistent with the fact that Example 1 and 2
have the same ground state.

1.5 Example 3
Now let us consider M discontinuities located at (L1, 0), (L1 + L2, 0), . . . , (L1 + L2 + · · · + LM , 0) with the
similar energy functional as Example 1 [i.e., Eq. (1)]. Our goal is, still, to find the ground state when
L1, L2, . . . , LM vary.
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By Method (a), we have

f(x) =



− a
L1

x, x ∈ [0, L1),

− 2a
L2

x+ 2aL1

L2
+ a, x ∈ (L1, L2),

− 2a
Li
x+ 2a

Li
(L1 + L2 + · · ·+ i−1) + a, x ∈ (L1 + · · ·+ Li−1, L1 + · · ·+ Li−1 + Li), i ≤ M,

...
− a

L−(L1+L2+···+M )x+ aL
L−(L1+L2+···+M ) , x ∈ (L1 + · · ·+ M , L].

(62)

Therefore we have the following energy landscape

F (L1, L2, . . . , LM ) =
a2

L1
+

4a2

L2
+ · · ·+ 4a2

Li
+ · · ·+ 4a2

LM
+

a2

L− (L1 + L2 + · · ·+ LM )
. (63)

To find the ground state, we solve the following equations

∂F

∂Li
= 0, i ∈ {1, 2, . . . ,M} (64)

which is written explicitly as

− 1

L2
1

+
1

[L− (L1 + L2 + · · ·+ LM )]2
= 0, (65)

− 4

L2
i

+
1

[L− (L1 + L2 + · · ·+ LM )]2
= 0, i ∈ {2, 3, . . . ,M} (66)

Therefore, the ground state is

L1 =
L

2M
,L2 = L3 = · · · = LM =

L

M
. (67)

By Method (b), we have

f(x) = f1(x) + f2(x), (68)

where

(69)f1(x) =

∞∑
k=1

[ 4a
kπ

cos
kπL1

L
+

4a

kπ
cos

kπ(L1 + L2)

L
+ · · ·+ 4a

kπ
cos

kπ(L1 + L2 + · · ·+ LM )

L

]
sin

kπx

L
,

(70)
f(x) =

∞∑
k=1

[ 2L

(kπ)2
B1 sin

kπL1

L
+

2L

(kπ)2
B2 sin

kπ(L1 + L2)

L
+ · · ·

+
2L

(kπ)2
BM sin

kπ(L1 + L2 + · · ·+ LM )

L

]
sin

kπx

L
;

and the energy function

F (L1, L2, . . . , LM ) = F1(L1, L2, . . . , LM ) + F2(L1, L2, . . . , LM ) + F3(L1, L2, . . . , LM ), (71)

where

F1(L1, L2, · · · , LM ) =

∞∑
k=1

2

L

[
2a cos

kπL1

L
+ 2a cos

kπ(L1 + L2)

L
+ · · ·+ 2a cos

kπ(L1 + L2 + · · ·+ LM )

L

]2
,

(72)
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(73)
F2(L1, L2, · · · , LM ) =

∞∑
k=1

2

L

[ L

kπ
B1 sin

kπL1

L
+

L

kπ
B2 sin

kπ(L1 + L2)

L

+ · · ·+ L

kπ
BM sin

kπ(L1 + L2 + · · ·+ LM )

L

]2
,

(74)

F3(L1, L2, · · · , LM ) =

∞∑
k=1

4

L

[
2a cos

kπL1

L
+ 2a cos

kπ(L1 + L2)

L
+ · · ·

+ 2a cos
kπ(L1 + L2 + · · ·+ LM )

L

]
·
[ L

kπ
B1 sin

kπL1

L

+
L

kπ
B2 sin

kπ(L1 + L2)

L
+ · · ·+ L

kπ
BM sin

kπ(L1 + L2 + · · ·+ LM )

L

]2
.

B1, B2, · · · , BM are functions of L1, L2, · · · , LM . By the Dirichlet conditions, we have

f(L1) = f(L1 + L2) = · · · = f(L1 + L2 + · · ·+ LM ) = 0, (75)

which gives

B1 =
2

L2
− 1

L1
, B2 =

2

L3
− 2

L2
, . . . , BM =

1

L− (L1 + L2 + · · ·+ LM )
− 2

LM
. (76)

The simplified calculation does not need Eq. (76). Following the same steps as described in the last two
subsections, we write Eq. (75) as Fourier series just like Eqs. (48) and (59), and we think the first N terms
determine the monotonicity and zero points of the whole series. Therefore we can let B1, B2, . . . , BM satisfy

(77)
2a cos

πL1

L
+ 2a cos

π(L1 + L2)

L
+ 2a cos

π(L1 + L2 + · · ·+ LM )

L
+ · · ·

+
L

π
B1 sin

πL1

L
+

L

π
B2 sin

π(L1 + L2)

L
+ · · ·+ L

π
BM sin

π(L1 + L2 + · · ·+ LM )

L
= 0,

2a cos
2πL1

L
+ 2a cos

2π(L1 + L2)

L
+ 2a cos

2π(L1 + L2 + · · ·+ LM )

L
+ · · ·+ L

2π
B1 sin

2πL1

L

+
L

2π
B2 sin

2π(L1 + L2)

L
+ · · ·+ L

2π
BM sin

2π(L1 + L2 + · · ·+ LM )

L
= 0,

· · · · · ·

2a cos
MπL1

L
+ 2a cos

Mπ(L1 + L2)

L
+ 2a cos

Mπ(L1 + L2 + · · ·+ LM )

L
+ · · ·+ L

Mπ
B1 sin

MπL1

L

+
L

Mπ
B2 sin

Mπ(L1 + L2)

L
+ · · ·+ L

Mπ
BM sin

Mπ(L1 + L2 + · · ·+ LM )

L
= 0.

Then F2(L1, L2, . . . , LM ) can be approximated as

(78)F2(L1, L2, . . . , LM ) =

M∑
k=1

8a2

L

[
cos

kπL1

L
+ cos

kπ(L1 + L2)

L
+ · · ·+ cos

kπ(L1 + L2 + · · ·+ LM )

L

]2
,

Thus the ground state is given by

cos
kπL1

L
+ cos

kπ(L1 + L2)

L
+ · · ·+ cos

kπ(L1 + L2 + · · ·+ LM )

L
= 0, ∀k ∈ {1, 2, . . . ,M}, (79)

and it is exactly Eq. (67). Again, by comparing Eqs. (72) and (78), we can see that the largest few Fourier
modes of the background energy determine the ground state.
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2 Implications
2.1 The 2D Nematics
In the Oseen-Frank theory for the elasticity of the nematic liquid crytal, the distortion free energy functional
is written as

(80)F =

∫
d3V

[K11

2
(∇ · n)2 + K22

2
(n · (∇× n))2 +

K33

2
(n× (∇× n))2

]
,

where n is a unit vector field, i.e., |n|= 1; and n and −n are physically equivalent. For simplicity, we
consider nematics confined in a rectangle of length L1 and width L2, and we assume n is perpendicular to
the boundary and apply one-constant approximation, i.e., K11 = K22 = K33 = K; see Refs. [1, 2, 3].

n is decomposed as

n = nxx̂+ nyŷ. (81)

Therefore the energy functional can be written as

F = K

∫ L1

0

dx

∫ L2

0

dy
[(∂nx

∂x

)2
+
(∂nx

∂y

)2
+
(∂ny

∂x

)2
+
(∂ny

∂y

)2]
, (82)

with the constraints

n2
x + n2

y = 1, (83)

and n and −n are physically equivalent [4]. Thus we have the following Euler-Lagrange Equations

∂2nx

∂x2
+

∂2nx

∂y2
+
[(∂nx

∂x

)
+
(∂nx

∂y

)
+
(∂ny

∂x

)
+
(∂ny

∂y

)]
nx = 0, (84)

∂2ny

∂x2
+

∂2ny

∂y2
+
[(∂nx

∂x

)
+
(∂nx

∂y

)
+
(∂ny

∂x

)
+
(∂ny

∂y

)]
ny = 0. (85)

together with the boundary conditions

nx(0, y) = −1, (86)

nx(L1, y) = 1, (87)
nx(x, 0) = 0, (88)
nx(x, L2) = 0, (89)
ny(0, y) = 0, (90)
ny(L1, y) = 0, (91)
ny(x, 0) = −1, (92)
ny(x, L2) = 1. (93)

The intriguing part about Eqs. (84) and (85) is that, on one hand, they are nonlinear PDEs; on the other
hand, they cannot be satisfied in the whole region due to the boundary conditions (84)-(85). The regions
where Eqs. (84) and (85) are not satisfied are characterized by |n|= 0; and for convenience, we call them
singularities. In 2D nematics, they are usually points, and we call them defect cores. We define their winding
numbers according to the rotation of vector fields around them, which can be integer or half integer. For
our example, if there is a defect core with winding number being a half integer, there must be a line-shaped
singularity connecting it to another defect core with half-integer winding number; see Refs. [1].

To study equilibrium defect structure, we may choose a special coordinate system with its coordinate
singularity coinciding with the defect core, and then solve Euler-Lagrange equations written in terms of these
coordinates subject to boundary conditions. It works best if the region is infinite with no boundary and the
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coordinate system is easy, which our example may not satisfy. However, we can use this technique to study
the local structure of the defect core, and the procedure is the following:

Parametrize the vector field n as

n = cos θ(ρ, ϕ)x̂+ sin θ(ρ, ϕ)ŷ, (94)

which satisfies Eqs. (84) and (85) in the polar coordinates

∂2θ

∂ρ2
+

1

ρ

∂θ

∂ρ
+

1

ρ2
∂2θ

∂ϕ2
= 0. (95)

To determine n in the vicinity of defect core, we expand θ(ρ, ϕ) as

θ(ρ, ϕ) = θ0(ϕ) + ρθ1(ϕ) + ρ2θ2(ϕ) + . . . , (96)

assuming ρ is small. Then substitute Eq. (96) into Eq. (95), and we have the equation for θ0(ϕ)

∂2θ0
∂ϕ2

= 0. (97)

The solution is

θ0 = mϕ+D, (98)

where D is a constant, and m is an integer or half-integer. Equation (98) describes a local property: n is
symmetric near the defect core, independent of its location. This local property is similar to our Examples
1-3, therefore we may use the same techniques developed in the last section.

Let us consider the winding numbers of the defect cores to be 1 or −1, then nx(x, y) and ny(x, y) can be
written as

(99)
nx =

∞∑
j1=1

cj1,0 sin
j1πx

L1
+

∞∑
j1,k1=1

cj1,k1
sin

j1πx

L1
cos

k1πy

L2

=

∞∑
k1=1

e0,k1 sin
k1πy

L2
+

∞∑
j1,k1=1

ej1,k1 cos
j1πx

L1
sin

k1πy

L2
,

(100)
ny =

∞∑
j2=1

dj2,0 sin
j2πx

L1
+

∞∑
j2,k2=1

dj2,k2
sin

j2πx

L1
cos

k2πy

L2

=

∞∑
k2=1

f0,k2
sin

k2πy

L2
+

∞∑
j2,k2=1

fj2,k2
cos

j2πx

L1
sin

k2πy

L2
.

Then following the similar procedure as Eqs. (21)-(24), we can derive a finite set of algebraic equations
that are able to represent different number and locations of defect cores. However, since there are infinite
number of cj,k, dj,k, ej,k and fj,k which are also coupled to each other, we are not sure of how we can use our
simplified calculation of Method (b) [as shown in Eqs. (47)-(50), (59)-(61) and (77)-(79)]. We guess, based on
the conclusion made in the last section, that the largest few Fourier modes of the background energy (which
we need to derive) determine the number and locations of the defect cores. This may be visualized as the
following: imagine a single sine function with the zeros representing the defect cores; then add another sine
function with much smaller amplitude and different frequency, and we can observe the change of locations
of these zeros; then if we increase the amplitude of the added function, the number of zeros will eventually
change.

3 Conclusions
We experimented with two methods of calculus of variations on three one-dimensional examples. The method
of Fourier series has shown that the dominant Fourier modes of the background energy determine the ground
states. That may imply a way of determining the ground state of nematic defects in confined geometry.
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