Ag-Catalyzed Thiocyanofunctionalization of Terminal Alkynes to Access
Alkynylthiocyanates and α-Thiocyanoketones

Jie Yang See, Yu Zhao*
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543

Supporting Information

Table of Contents		Page
I	General information.	S2
II	General procedure for the preparation of thiocyanoalkynes 1	S3
III	Characterization data for thiocyanoalkynes 1	S3
IV	General procedure for the preparation of thiocyanoketones 2	S15
V	Characterization data for thiocyanoketones 2 \& 4	S15
VI	General procedure for preparation of 5 to 8 \& corresponding characterization data	S22
VII	 corresponding characterization data	S26
VIII	Screening Tables	S28
IX	Crystal data	S32
X	References	S35
XI	NMR spectra	S36

I. General information.

All reactions requiring anhydrous conditions were conducted by standard procedures under argonx atmosphere. Commercially available reagents were used as received. The solvents were dried over a solvent purification system from Innovative Technology. Melting points (MP) were determined on a BÜCHI B-540b melting point apparatus. ${ }^{\mathbf{1}} \mathbf{H}$ and ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR were recorded on a Bruker AMX500 (500 MHz) spectrometer. Proton and carbon chemical shifts are reported in parts per million (ppm) values downfield from TMS ($\delta 0.00$) and referenced to residual protons in NMR solvents $\left(\mathrm{CDCl}_{3}\right.$ at $\delta 7.26$, DMSO-D ${ }_{6}$ at $\delta 2.50, \mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $\delta 5.31, \mathrm{CD}_{3} \mathrm{OD}$ at $\left.\delta 3.31\right)$ or carbon signals in NMR solvent $\left(\mathrm{CDCl}_{3}\right.$ at $\delta 77.0$, DMSO- CH_{3} at $\delta 40.0, \mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $\delta 53.4, \mathrm{CD}_{3} \mathrm{OD}$ at $\delta 47.4$). High resolution mass spectra (HRMS) were obtained on a Finnigan/MAT 95XL-T spectrometer. Analytical thin layer chromatography (TLC) was performed with Merck pre-coated TLC plates, silica gel 60F-254, layer thickness 0.25 mm . Flash chroma-graphy separations were performed on Merck 60 ($0.040-0.063 \mathrm{~mm}$) mesh silica gel.

General procedure for the preparation of thiocyanoalkynes 1

Into a small 1 mL vial were loaded $\mathrm{Ag}_{2} \mathrm{O}$ ($10 \mathrm{~mol} \%$), alkyne (0.19 mmol), anhydrous THF (0.3 ml) and N -thiocyanophthalimide (1.20 equiv.). The mixture was heated to $60^{\circ} \mathrm{C}$ and allowed to stir overnight after which the product was purified directly through flash column chromatography using an ethyl acetate/hexanes eluent mixture (ratio of 1:10).

II. Characterization data for thiocyanoalkynes 1

(thiocyanatoethynyl)benzene
Physical appearance: Red oil
Yield: $27.5 \mathrm{mg}, 90 \%$ ($140.6 \mathrm{mg}, 92 \%$ for 1 mmol scale)
$\underline{{ }^{1} H} \mathbf{N M R}\left(500 \mathbf{M H z}, \mathbf{C D C l}_{3}\right): ~ \delta 7.51-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.35(\mathrm{~m}$, 2H)
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 132.6,130.6,128.8,120.8,106.6,99.7,62.3$
HRMS (APCI): calcd for $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{NS} m / z[\mathrm{M}+\mathrm{H}]: 160.0215$; found:160.0215.

1-chloro-2-(thiocyanatoethynyl)benzene

Physical appearance: Red liquid
Yield: $31.9 \mathrm{mg}, 86 \%$
$\underline{{ }^{1} \mathbf{H}} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 7.53-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.05 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.34$ (m, 1H), $7.28-7.25(\mathrm{~m}, 1 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 136.9,133.9,131.3,129.6,126.7,120.7,105.9,96.0,67.3$
HRMS (ESI): calcd for $\mathrm{C}_{9} \mathrm{H}_{5} \mathrm{ClNS} m / z[\mathrm{M}+\mathrm{H}]: 193.9826$; found:193.9831.

1-fluoro-2-(thiocyanatoethynyl)benzene

Physical appearance: Red oil

Yield: $21.3 \mathrm{mg}, 62 \%$
${ }^{1} \mathbf{H}$ NMR ($500 \mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 7.50-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.09(\mathrm{~m}$, 2 H)
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}$, CDCl $\left._{3}\right): \delta 163.4\left({ }^{1} J_{\mathrm{C}-\mathrm{F}}=254.90 \mathrm{~Hz}\right), 134.1,132.4\left({ }^{3} J_{\mathrm{C}-\mathrm{F}}=8.18 \mathrm{~Hz}\right)$, $124.3\left({ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.64 \mathrm{~Hz}\right), 115.9\left({ }^{2} J_{\mathrm{C}-\mathrm{F}}=20.25 \mathrm{~Hz}\right), 109.4\left({ }^{2} J_{\mathrm{C}-\mathrm{F}}=15.59 \mathrm{~Hz}\right), 105.9,93.0,67.4$ $\left({ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.39 \mathrm{~Hz}\right)$

HRMS (APCI): calcd for $\mathrm{C}_{9} \mathrm{H}_{5} \mathrm{FNS} m / z[\mathrm{M}+\mathrm{H}]: 178.0121$; found: 178.0120

1-methyl-2-(thiocyanatoethynyl)benzene
Physical appearance: Red oil
Yield: 28.4 mg , 85%
${ }^{1}$ H NMR ($\left.500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta 7.46(\mathrm{~d}, J=7.70 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{t}, J=7.70 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-$ $7.23(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=7.70 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (125 MHz, CDCl 3): $\delta 141.7,132.8,130.4,129.7,125.8,120.5,106.6,98.6,65.2$, 20.5

HRMS (APCI): calcd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{NS} m / z[\mathrm{M}+\mathrm{H}]: 174.0372$; found:174.0370.

1-methoxy-2-(thiocyanatoethynyl)benzene

Physical appearance: Orange solid

Yield: $27.2 \mathrm{mg}, 74 \%$
Melting Point: $69^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $87.45-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.37(\mathrm{~m}, 1 \mathrm{H}), 6.95-6.89(\mathrm{~m}$, $2 \mathrm{H}), 3.89$ ($\mathrm{s}, 3 \mathrm{H}$)
${ }^{13} \mathbf{C}$ NMR (125 MHz, CDCl $_{3}$): $\delta 161.2,134.5,132.0,120.6,110.9,109.9,106.7,96.3,65.3$, 55.8

HRMS (ESI): calcd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{NOS} m / z[\mathrm{M}+\mathrm{H}]: 190.0318$; found: 190.0321 .

1-chloro-3-(thiocyanatoethynyl)benzene
Physical appearance: Red oil
Yield: $18.6 \mathrm{mg}, 50 \%$
$\underline{\left.{ }^{1} \mathbf{H} \text { NMR (} \mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): ~} \delta 7.48(\mathrm{t}, J=1.70 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{t},, J=$ $7.80 \mathrm{~Hz}, 1 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 134.6,132.1,13.7,130.4,129.9,122.2,105.9,97.8,63.8$ HRMS (APCI): calcd for $\mathrm{C}_{9} \mathrm{H}_{4} \mathrm{ClNS} m / z[\mathrm{M}]: 192.9747$; found: 192.9748 .

1-bromo-3-(thiocyanatoethynyl)benzene

Physical appearance: Red oil

Yield: $15.7 \mathrm{mg}, 34 \%$
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta 7.68(\mathrm{t}, J=1.55 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.95 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}$, $J=7.90 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=7.90 \mathrm{~Hz}, 1 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 134.9,133.5,130.8,130.1,122.5,122.4,105.9,97.7,63.9$
HRMS (APCI): calcd for $\mathrm{C}_{9} \mathrm{H}_{4} \mathrm{BrNS} m / z[\mathrm{M}]: 236.9242$; found: 236.9238.

3-(thiocyanatoethynyl)benzaldehyde

Physical appearance: Red oil

Yield: $35.5 \mathrm{mg}, 85 \%$
${ }^{1} \mathbf{H}$ NMR (500 MHz, CDCl $_{3}$): $\delta 9.99(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=7.60 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}$, $J=7.50 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=7.70 \mathrm{~Hz}, 1 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 190.8,137.5,136.6,133.4,130.9,129.5,121.8,105.8,97.8$, 64.4

HRMS (ESI): calcd for $\mathrm{C}_{10} \mathrm{H}_{4} \mathrm{NOS} m / z[\mathrm{M}-\mathrm{H}]: 186.0008$; found: 186.0007.

1-methyl-3-(thiocyanatoethynyl)benzene

Physical appearance: Red oil

Yield: $22.4 \mathrm{mg}, 67 \%$
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.33-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.25(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 138.5,132.9,131.3,129.5,128.5,120.4,106.4,99.8,61.6$, 21.1

HRMS (APCI): calcd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{NS} m / z[\mathrm{M}+\mathrm{H}]$: 174.0372; found: 174.0366.

1-methoxy-3-(thiocyanatoethynyl)benzene

Physical appearance: Red oil

Yield: 28.3 mg , 78%
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.28(\mathrm{t}, J=8.15 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=7.55 \mathrm{~Hz}, 1 \mathrm{H}), 7.01-$ 6.97 (m, 2H), 3.82 (s, 3H)
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 159.4,129.7,124.9,121.5,117.1,116.9,106.4,99.4,61.9$, 55.4

HRMS (APCI): calcd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{NOS} m / z[\mathrm{M}+\mathrm{H}]: 190.0316$; found: 190.0321.

1-nitro-4-(thiocyanatoethynyl)benzene
Physical appearance: Red solid
Yield: $23.4 \mathrm{mg}, 60 \%$
Melting Point: $92{ }^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathbf{M H z}, \mathbf{C D C l}_{3}\right): ~ \delta 8.24(\mathrm{~d}, J=8.75 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=9.05 \mathrm{~Hz}, 2 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 148.2,132.8,126.9,123.8,105.2,97.1,68.3$
HRMS (APCI): calcd for $\mathrm{C}_{9} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} \mathrm{~m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]$: 205.0066; found: 205.0068.

1-bromo-4-(thiocyanatoethynyl)benzene
Physical appearance: Orange solid
Yield: $41.1 \mathrm{mg}, 92 \%$
Melting Point: $66^{\circ} \mathrm{C}$
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.52(\mathrm{~d}, J=8.30 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=8.30 \mathrm{~Hz}, 2 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}$, CDCl $_{3}$): $\delta 133.8,132.2,125.2,119.6,106.1,98.5,63.7$
HRMS (APCI): calcd for $\mathrm{C}_{9} \mathrm{H}_{4} \mathrm{BrNS} m / z[\mathrm{M}]: 236.9242$; found: 236.9235 .

Methyl-4-(thiocyanatoethynyl)benzoate
Physical appearance: Yellow solid
Yield: $28.3 \mathrm{mg}, 70$ \%
Melting Point: $80^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta 8.03(\mathrm{~d}, J=8.20 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=8.20 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{~s}$, 3H)
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 166.2,132.1,131.5,129.8,125.1,105.9,98.6,65.4,52.6$
HRMS (APCI): calcd for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{NO}_{2} \mathrm{~S} m / z[\mathrm{M}+\mathrm{H}]$: 218.0270; found: 218.0271.

1-ethyl-4-(thiocyanatoethynyl)benzene

Physical appearance: Red oil

Yield: $32.8 \mathrm{mg}, 91 \%$
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta 7.42(\mathrm{~d}, J=8.05 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.05 \mathrm{~Hz}, 2 \mathrm{H}), 2.67(\mathrm{q}$, $J=7.60 \mathrm{~Hz}, 2 \mathrm{H}), 0.63(\mathrm{t}, J=7.60 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 147.2,132.5,128.2,117.7,106.6,99.8,61.1,28.9,15.1$
HRMS (APCI): calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{NS} m / z[\mathrm{M}+\mathrm{H}]: 188.0528$; found:188.0530.

1-(tert-butyl)-4-(thiocyanatoethynyl)benzene

Physical appearance: Red oil

Yield: $34.9 \mathrm{mg}, 84 \%$ ($137.9 \mathrm{mg}, 83 \%$ yield for 1 mmol scale)
$\underline{\left.{ }^{1} \mathbf{H} \text { NMR (} 500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): ~} 87.43(\mathrm{~d}, J=8.50 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.50 \mathrm{~Hz}, 2 \mathrm{H}), 1.32(\mathrm{~s}$, 9H)
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 154.0,132.3,125.6,117.5,106.6,99.9,61.1,35.0,31.0$
HRMS (APCI): calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NS} \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]: 216.0841$; found: 216.0834.

1-methoxy-4-(thiocyanatoethynyl)benzene

Physical appearance: Red oil

Yield: $23.6 \mathrm{mg}, 65 \%$
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta 7.45(\mathrm{~d}, J=8.75 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.75 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}$, 3 H)
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 161.5,134.7,114.4,112.7,106.9,100.0,60.6,55.5$
HRMS (APCl): calcd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{NOS} m / z[\mathrm{M}+\mathrm{H}]: 190.0321$; found:190.0321.

N, N-dimethyl-4-(thiocyanatoethynyl)aniline
Physical appearance: Black solid
Yield: $13.8 \mathrm{mg}, 36 \%$
Melting Point: $121^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta 7.38(\mathrm{~d},, J=8.75 \mathrm{~Hz}, 2 \mathrm{H}), 6.60(\mathrm{~d},, J=8.75 \mathrm{~Hz}, 2 \mathrm{H}), 3.01$ ($\mathrm{s}, 6 \mathrm{H}$)
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 151.4,134.5,111.4,107.5,106.6,101.9,59.0,40.0$
HRMS (APCI): calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{~S} m / z[\mathrm{M}+\mathrm{H}]:$ 203.0637; found: 203.0640.

1,2-dichloro-4-(thiocyanatoethynyl)benzene

Physical appearance: Red oil

Yield: $31 \mathrm{mg}, 70 \%$
$\underline{\left.{ }^{1} \mathbf{H} \text { NMR (} 500 \mathbf{M H z}, \mathbf{C D C l}_{3}\right): ~} \delta 7.58(\mathrm{~d}, J=1.90 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.40 \mathrm{~Hz}, 1 \mathrm{H}), 7.32$ (dd, $J=1.90 \mathrm{~Hz}, J=8.40 \mathrm{~Hz}, 1 \mathrm{H}$)
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 135.2,133.8,133.1,131.3,130.8,120.4,105.6,96.9,64.9$ HRMS (APCI): calcd for $\mathrm{C}_{9} \mathrm{H}_{3} \mathrm{Cl}_{2} \mathrm{NS} m / z[\mathrm{M}]: 226.9358$; found: 226.9350 .

4-methoxy-2-methyl-1-(thiocyanatoethynyl)benzene

Physical appearance: Red oil

Yield: $35.3 \mathrm{mg}, 90 \%$
${ }^{1} \mathbf{H}$ NMR (500 MHz, CDCl $\left._{3}\right): ~ \delta 7.40(\mathrm{~d}, J=8.50 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=2.50 \mathrm{~Hz}, 1 \mathrm{H}), 6.70$
(dd, $J=2.50 \mathrm{~Hz}, J=8.50 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 161.3,144.2,134.9,115.4,112.6,111.7,107.0,99.1,63.5$,

55.3, 20.8

HRMS (APCI): calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{NOS} m / z[\mathrm{M}+\mathrm{H}]$: 204.0478; found: 204.0480.

1,2-dimethoxy-4-(thiocyanatoethynyl)benzene
Physical appearance: Red solid
Yield: 28.0 mg , 66\%
Melting Point: $65^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta 7.13(\mathrm{dd}, J=1.50 \mathrm{~Hz}, J=8.15 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{~d}$, $J=8.40 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 151.3,148.8,126.7,114.9,112.5,111.0,106.8,99.9,60.4$, 56.0, 55.9

HRMS (APCl): calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{NO}_{2} \mathrm{~S} m / z[\mathrm{M}+\mathrm{H}]: 220.0427$; found: 220.0429 .

1,4-dimethyl-2-(thiocyanatoethynyl)benzene
Physical appearance: Orange oil
Yield: $26.0 \mathrm{mg}, 72 \%$
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.28(\mathrm{~s}, 1 \mathrm{H}), 7.12-7.11(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}$, CDCl $_{3}$): $\delta 138.6,135.4,133.2,131.3,129.7,120.2,106.7,98.9,64.7$, 20.7, 20.0

HRMS (APCl): calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{NS} m / z[\mathrm{M}+\mathrm{H}]$: 188.0528; found: 188.0529.

9-(thiocyanatoethynyl)phenanthrene
Physical appearance: Yellow solid
Yield: $12.9 \mathrm{mg}, 25 \%$
Melting Point: $121^{\circ} \mathrm{C}$
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): ~ \delta 8.75-8.61(\mathrm{~m}, 2 \mathrm{H}), 8.28-8.27(\mathrm{~m}, 1 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{H}), 7.86$ (d, $J=7.40 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.69(\mathrm{~m}, 3 \mathrm{H}), 7.63(\mathrm{t}, J=7.20 \mathrm{~Hz}, 1 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 134.6,131.1,130.6,130.5,130.1,129.0,128.7,127.6,127.5$, 127.3, 126.3, 122.9, 122.7, 117.1, 106.4, 98.3, 65.9

HRMS (APCI): calcd for $\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{NS} m / z[\mathrm{M}+\mathrm{H}]: 260.0528$; found: 260.0519 .

3-(thiocyanatoethynyl)thiophene
Physical appearance: Black oil
Yield: $24.9 \mathrm{mg}, 79 \%$
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta 7.67(\mathrm{~d}, J=3.00 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{dd}, J=3.10 \mathrm{~Hz}, J=5.0 \mathrm{~Hz}$, 1H), 7.17 (d, $J=5.00 \mathrm{~Hz}, 1 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 133.0,129.9,126.1,119.8,106.4,94.8,62.0$
HRMS (APCl): calcd for $\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NS}_{2} \mathrm{~m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]$: 165.9780; found: 165.9777 .

1-(thiocyanatoethynyl)cyclohex-1-ene
Physical appearance: Red oil

Yield: 30.0 mg , 96%
$\underline{{ }^{1} \mathbf{H} \text { NMR (} 500 \mathrm{MHz}, \text { CDCl }_{3} \text {): } \delta 6.34-6.32(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.11(\mathrm{~m}, 4 \mathrm{H}), 1.67-1.59(\mathrm{~m}, ~}$ 4H)
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 140.9,119.7,107.1,101.6,58.9,28.4,26.0,22.1,21.2$
HRMS (ESI): calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{NS} m / z[\mathrm{M}+\mathrm{H}]$: 164.0521; found 164.0511;

(thiocyanatoethynyl)cyclohexane

Physical appearance: Yellow oil

Yield: $11.4 \mathrm{mg}, 36 \%$
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta 2.56-2.52(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.67(\mathrm{~m}$, $2 \mathrm{H}), 1.66-1.44(\mathrm{~m}, 3 \mathrm{H}), 1.37-1.29(\mathrm{~m}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 107.5,105.9,52.4,31.6,30.4,25.6,24.6$
HRMS (APCI): calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{NS} m / z[\mathrm{M}+\mathrm{H}]: 166.0685$; found: 166.0682.

1-thiocyanatododec-1-yne

Physical appearance: Yellow oil

Yield: $26.5 \mathrm{mg}, 62 \%$
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 2.35(\mathrm{t}, J=7.10 \mathrm{~Hz}, 2 \mathrm{H}), 1.57-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.35$
(m, 2H), 1.27 (s, 12H), $0.87(\mathrm{t}, J=7.10 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (125 MHz, $\mathbf{C D C l}_{3}$): $\delta 107.4,102.5,52.3,31.8 .29 .5,29.4,29.3,29.0,28.8,27.8$, 22.7, 20.1, 14.1

HRMS (APCI): calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{NS} m / z[\mathrm{M}+\mathrm{H}]:$ 224.1467; found: 224.1468.

(4-thiocyanatobut-3-yn-1-yl)benzene

Physical appearance: Yellow oil

Yield: $17.6 \mathrm{mg}, 49 \%$
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}$, CDCl $_{3}$): $\delta 7.34-7.31(\mathrm{t}, J=7.40 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=7.40 \mathrm{~Hz}, 1 \mathrm{H})$
$7.20(\mathrm{~d}, J=7.40 \mathrm{~Hz}, 2 \mathrm{H}), 2.87(\mathrm{t}, J=7.35 \mathrm{~Hz}, 2 \mathrm{H}), 2.66(\mathrm{t}, J=7.35 \mathrm{~Hz}, 2 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 139.5,128.6,128.3,126.7,106.9,101.4,53.6,34.0,22.2$
HRMS (APCl): calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{NS} m / z[\mathrm{M}+\mathrm{H}]: 188.0526$; found: 188.0528 .

III. General procedure for preparation of thiocyanoketones 2

In a 1.0 mL vial were loaded the reagents in the following sequence: silver triflate (7.0 mg , $15.0 \mathrm{~mol} \%$), 1,4-dioxane (0.30 mL), alkyne (0.19 mmol) and $20 u \mathrm{~L}$ of a methanol:water mixture prepared in 9:1 ratio. The mixture was heated to $65^{\circ} \mathrm{C}$ for 7 h and then cooled to room temperature. Sodium gold tetrachloride dehydrate ($3.0 \mathrm{~mol} \%$) was added and the mixture was allowed to stir at room temperature for 10 mins. Finally, N-thiocyanosuccinimide (2.0 equiv.) was added and the mixture continued to stir for 2 hours during which reaction completion was monitored through TLC. The product was purified by flash column chromatography using ethyl acetate/ hexanes as the eluent (ratio of 1:5).

IV. Characterization data for thiocyanoketones $\mathbf{2} \& 4$

1-phenyl-2-thiocyanatoethan-1-one
Physical appearance: Red solid
Yield: $25.5 \mathrm{mg}, 75 \%$ yield
Melting Point: $66.3^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.94(\mathrm{~d}, J=7.40 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{t}, J=7.55 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}$, $J=7.75 \mathrm{~Hz}, 2 \mathrm{H}), 4.74(\mathrm{~s}, 2 \mathrm{H})$

HRMS (APCI): calcd for $\mathrm{C}_{6} \mathrm{H} 8 \mathrm{NOS} m / z[\mathrm{M}+\mathrm{H}]: 178.0321$; found: 178.0323.

1-(2-methoxyphenyl)-2-thiocyanatoethan-1-one
Physical appearance: Pale yellow solid
Yield: $23.1 \mathrm{mg}, 58 \%$ yield
Melting Point: $90.3{ }^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR (500 MHz, CDCl $\left.{ }_{3}\right): ~ \delta 7.94-7.92(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.08-7.02(\mathrm{~m}, 2 \mathrm{H})$, 4.71 ($\mathrm{s}, 2 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (125 MHz, CDCl3): $\delta 191.3,159.6,136.0,131.4,123.7,121.3,112.8,111.8,55.8$, 47.6

HRMS (APCI): calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{NO}_{2} \mathrm{~S} \mathrm{~m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]:$ 208.0427; found: 208.0424.

1-(3-methoxyphenyl)-2-thiocyanatoethan-1-one
Physical appearance: Pale yellow solid
Yield: $29.5 \mathrm{mg}, 74 \%$ yield
Melting Point: $81.6^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 7.49-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.19(\mathrm{~m}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 2 \mathrm{H}), 3.87$
(s, 3H)
${ }^{13} \mathbf{C}$ NMR (125 MHz, CDCl ${ }_{3}$): $\delta 190.7,160.2,135.2,130.2,121.3,121.0,112.6,111.8,55.6$, 43.0

HRMS (APCI): calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{NO}_{2} \mathrm{~S} m / z[\mathrm{M}+\mathrm{H}]:$ 208.0427; found: 208.0426.

2-thiocyanato-1-(m-tolyl)ethan-1-one
Physical appearance: Yellow solid

Yield: $28.6 \mathrm{mg}, 78 \%$ yield
Melting Point: $78.4^{\circ} \mathrm{C}$
$\underline{{ }^{1} \mathbf{H} \operatorname{NMR}\left(500 \mathbf{M H z}, \mathbf{C D C l}_{3}\right): ~} \delta 7.75-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=7.70 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=$ $7.70 \mathrm{~Hz}, 1 \mathrm{H}), 4.73$ (s, 2H), 2.43 ($\mathrm{s}, 3 \mathrm{H}$)
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 190.9,139.2,135.6,133.9,129.0,128.9,125.7,111.9,43.1$, 21.3

HRMS (APCI): calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{NOS} m / z[\mathrm{M}+\mathrm{H}]: 192.0478$; found: 192.0483 .

1-(4-methoxyphenyl)-2-thiocyanatoethan-1-one
Physical appearance: Pale yellow solid
Yield: $17.5 \mathrm{mg}, 44 \%$ yield
Melting Point: $118.3^{\circ} \mathrm{C}$
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta 7.91(\mathrm{~d}, J=8.35 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=8.35 \mathrm{~Hz}, 2 \mathrm{H}), 4.70(\mathrm{~s}$, 2 H), 3.89 ($\mathrm{s}, 3 \mathrm{H}$)
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 189.2,164.8,130.9,127.0,114.3,112.1,55.7,42.9$
HRMS (APCI): calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{NO}_{2} \mathrm{~S} \mathrm{~m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]$: 208.0427; found: 208.0427.

1-(4-(tert-butyl)phenyl)-2-thiocyanatoethan-1-one
Physical appearance: Pale yellow solid
Yield: $35.4 \mathrm{mg}, 79 \%$ yield
Melting Point: $80.3^{\circ} \mathrm{C}$
${ }^{\mathbf{1}}{ }^{\mathbf{H}} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): ~ \delta 7.87(\mathrm{~d}, J=8.40 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=8.40 \mathrm{~Hz}, 2 \mathrm{H}), 4.73(\mathrm{~s}$, 2 H), 1.35 ($\mathrm{s}, 9 \mathrm{H}$)
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 190.4,158.9,131.4,128.5,126.2,112.0,43.0,35.4,30.9$

HRMS (APCI): calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NOS} m / z[\mathrm{M}+\mathrm{H}]: 234.0947$; found: 234.0946

1-(4-ethylphenyl)-2-thiocyanatoethan-1-one
Physical appearance: Pale yellow solid
Yield: $30.7 \mathrm{mg}, 78$ \% yield
Melting Point: $56.3^{\circ} \mathrm{C}$
$\underline{\left.{ }^{1} H \text { NMR (} 500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): ~} \delta 7.85(\mathrm{~d}, J=7.85 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=7.85 \mathrm{~Hz}, 2 \mathrm{H}), 4.72(\mathrm{~s}$, $2 \mathrm{H}), 2.73(\mathrm{q}, J=7.60 \mathrm{~Hz}, 2 \mathrm{H}), 1.27(\mathrm{t}, J=7.55 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 190.5,152.2,131.7,128.7,128.6,112.0,43.0,29.0,15.0$
HRMS (APCI): calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{NOS} m / z[\mathrm{M}+\mathrm{H}]:$ 206.0634; found: 206.0627.

1-(2,5-dimethylphenyl)-2-thiocyanatoethan-1-one
Physical appearance: Light brown solid
Yield: $29.2 \mathrm{mg}, 74 \%$ yield
Melting Point: $111.9^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=7.70 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=7.70 \mathrm{~Hz}$, $1 \mathrm{H}), 4.72$ (s, 2H), 2.51 ($\mathrm{s}, 3 \mathrm{H}), 2.39$ (s, 3H)
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $193.2,137.3,135.9,134.3,133.3,132.7,130.1,112.1,45.1$, 21.4, 20.9

HRMS (APCI): calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{NOS} m / z[\mathrm{M}+\mathrm{H}]:$ 206.0634; found: 206.0632.

1-(3,4-dimethoxyphenyl)-2-thiocyanatoethan-1-one
Physical appearance: Pale yellow solid
Yield: $27.3 \mathrm{mg}, 60 \%$ yield
Melting Point: $136.0^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.53(\mathrm{dd}, J=8.35 \mathrm{~Hz}, J=1.79 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=1.75 \mathrm{~Hz}$, $1 \mathrm{H}), 6.92(\mathrm{~d}, ~ J=8.40 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~s}, 2 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 189.3,154.8,149.6,127.2,123.5,112.1,110.4,110.2,56.3$, 56.1, 42.7

HRMS (APCI): calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{~S} m / z[\mathrm{M}+\mathrm{H}]:$ 238.0532; found: 238.0537.

1-(4-methoxy-2-methylphenyl)-2-thiocyanatoethan-1-one
Physical appearance: Pale yellow solid
Yield: $20.4 \mathrm{mg}, 48 \%$ yield
Melting Point: $120^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta 7.71(\mathrm{~d}, J=9.30 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~s}, 2 \mathrm{H}), 4.74(\mathrm{~s}, 2 \mathrm{H}), 3.88(\mathrm{~s}$, $3 \mathrm{H}), 2.59$ ($\mathrm{s}, 3 \mathrm{H}$)
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 190.8,163.5,144.3,132.7,125.9,118.2,112.4,111.3,55.5$, 45.2, 22.8

HRMS (APCI): calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{NO}_{2} \mathrm{~S} m / z[\mathrm{M}+\mathrm{H}]: 222.0583$; found: 222.0581.

2-thiocyanato-1-(thiophen-3-yl)ethan-1-one
Physical appearance: White solid
Yield: $25.3 \mathrm{mg}, 72 \%$ yield
Melting Point: $81.2^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathbf{M H z}, \mathbf{C D C l}_{3}\right): ~ 88.17-8.15(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.40(\mathrm{~m}$, $1 \mathrm{H}), 4.58$ ($\mathrm{s}, 2 \mathrm{H}$)
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 184.7,138.8,134.0,127.6,126.7,111.7,42.7$
HRMS (APCI): calcd for $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NOS}_{2} \mathrm{~m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]$: 183.9885; found: 183.9881 .

1-(cyclohex-1-en-1-yl)-2-thiocyanatoethan-1-one
Physical appearance: Pale yellow solid
Yield: $24.3 \mathrm{mg}, 70 \%$ yield

Melting Point: $53.5^{\circ} \mathrm{C}$

${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): ~ \delta 6.97-6.96(\mathrm{~m}, 1 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 2.33-2.31(\mathrm{~m}, 2 \mathrm{H}), 2.25$
$-2.22(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.62(\mathrm{~m}, 4 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 191.4,144.2,137.8,112.3,42.1,26.3,23.0,21.5,21.2$
HRMS (APCI): calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{NOS} m / z[\mathrm{M}+\mathrm{H}]: 182.0634$; found: 182.0633.

1-(4-(dimethylamino)-3-thiocyanatophenyl)ethan-1-one
Physical appearance: White crystal
Yield: $37.1 \mathrm{mg}, 88 \%$ yield
Melting Point: $76.0^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta 8.16(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.50 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.50 \mathrm{~Hz}$, 1 H), 2.79 ($\mathrm{s}, 6 \mathrm{H}$), 2.58 ($\mathrm{s}, 3 \mathrm{H}$)
${ }^{13} \mathbf{C}$ NMR (125 MHz, $\mathbf{C D C l}_{3}$): $\delta 195.7,155.5,133.8,129.7,129.5,122.2,120.5,110.8,44.1$, 26.4

HRMS (ESI): calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{OS} m / z[\mathrm{M}+\mathrm{H}]$: 221.0743; found: 221.0743.

4-t-butylacetophenone

Physical appearance: Clear oil

Yield: $30.1 \mathrm{mg}, 89 \%$ yield
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): ~ \delta 7.90(\mathrm{~d}, J=8.35 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=8.35 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{~s}$, 3 H), 1.34 ($\mathrm{s}, 9 \mathrm{H}$)
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 198.9,156.8,134.7,128.3,125.5,35.1,31.0,26.5$
HRMS (ESI): calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O} \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]: 177.1274$; found: 177.1273.

V. General procedure for preparation of 5 to $\mathbf{8} \&$ corresponding characterization data

a) General procedure for the preparation of 5

Into a degassed 10 mL schlenk flask was loaded a magnetic stirrer and 30 mg (0.16 mmol) of $\mathbf{2 n}$, after which 2 mL of anhydrous THF was added under argon atmosphere. The flask was lowered into an ice bath after which 0.10 mL of 1 M PhMgBr in THF was added slowly. The reaction was allowed to proceed overnight after which solids were noticed to form. THF was removed under reduced pressure and the residue was purified by column chromatography directly to afford the product as a clear oil in 67% yield $(25.7 \mathrm{mg}){ }^{[1]}$

((4-ethylphenyl)ethynyl)(phenyl)sulfane

Physical appearance: Clear oil

${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 7.50(\mathrm{~d}, J=8.10 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.10 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}$, $J=7.60 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.10 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{q}, J=7.60 \mathrm{~Hz}, 2 \mathrm{H})$, $1.26(\mathrm{t}, J=7.70 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 145.3,133.3,131.9,129.2,128.0,126.4,126.1,120.1,98.2$, 74.4, 28.9, 15.4

HRMS (ESI): calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~S} m / z[\mathrm{M}+\mathrm{H}]: 239.0889$; found: 239.0891.

b) General procedure for the preparation of 6

Into a 10 mL vial were loaded $50 \mathrm{mg}(0.28 \mathrm{mmol})$ of $\mathbf{2 a}, 0.40 \mathrm{~mL}$ of isopropyl alcohol, 22 mg ($0.34 \mathrm{mmol}, 1.20$ equiv.) of NaN_{3} and 38 mg of ZnCl_{2} (0.28 mmol). After the starting material was consumed as judged by TLC, the solvent was removed under reduced pressure. $5 \% \mathrm{NaOH}$ solution was then added and the mixture was allowed to stir for two minutes until a suspension of $\mathrm{Zn}(\mathrm{OH})_{2}$ had formed. The residue was washed several times with $5 \% \mathrm{NaOH}$ solution and the filtrate was combined. The filtrate was acidified to pH 1.0 using concentrated HCl , causing the tetrazole product to precipitated, which was collected through filtration, dried. The product was obtained in a pure form in 78% yield $(48.4 \mathrm{mg}) .{ }^{[2]}$

2-((1H-tetrazol-5-yl)thio)-1-phenylethan-1-one
Physical appearance: Yellow solid
Melting Point: $140^{\circ} \mathrm{C}$
¹H NMR (500 MHz, DMSO): $\delta 8.04(\mathrm{~d}, J=7.95 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{t}, J=7.75 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}$, $J=7.75 \mathrm{~Hz}, 2 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}$, DMSO): $\delta 193.3,154.6,135.7,134.3,129.3,128.9,40.8$
HRMS (ESI): calcd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N} 4 \mathrm{NaOS} m / z[\mathrm{M}+\mathrm{Na}]: 243.0311$; found: 243.0310 .

c) General procedure for the preparation of 7

Into a small 10 mL vial was placed 30 mg of $\mathbf{2 a}(0.17 \mathrm{mmol})$ and $30 \mu \mathrm{~L}$ of aniline $(0.32$ mmol, 1.9 eq.) in 0.30 mL methanol. The mixture was refluxed overnight after which the solvent was removed under reduced pressure and the residue columned directly using hexanes/ethyl acetate in 10:1 ratio to afford the product in 64% yield $(42.7 \mathrm{mg}) .{ }^{[3]}$

N-4-diphenylthiazol-2-amine
Physical appearance: Yellow solid
Melting Point: $109^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}$, CDCl $_{3}$): $\delta 7.84(\mathrm{~d}, J=7.55 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.31(\mathrm{~m}, 8 \mathrm{H}), 7.09(\mathrm{t}, J=$ $7.00 \mathrm{~Hz}, 1 \mathrm{H}), 6.79$ (s, 1H)
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 164.9,150.2,139.9,133.8,129.5,128.7,128.2,126.1$, 123.5, 118.5, 101.4

HRMS (ESI): calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{~S} \mathrm{~m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]:$ 253.0794; found: 253.0800.
d) General procedure for the preparation of 8

Into a 10 mL schlenk flask was loaded 80 mg of $\mathbf{2 a}$ (0.45 mmol). The vessel was then degassed and loaded with 0.30 mL of anhydrous methanol and the vessel was lowered into an ice bath. Sodium borohydride (1.2 equiv., 21 mg) was then added portionwise. The reaction was monitored until the starting materials were completely reacted. Methanol was then removed under reduced pressure. Solvent extraction of the residue with dichlormethane and distilled water was carried out. The organic extracts were combined, dried with sodium sulfate and solvent subsequently removed under reduced pressure to directly afford the pure product in 79.3 mg (98\% yield). ${ }^{[4]}$

5-phenyl-1,3-oxathiolan-2-imine
Physical appearance: Pale yellow solid
Melting Point: $90.6^{\circ} \mathrm{C}$
${ }^{1}{ }^{\mathbf{H}}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.37-7.33(\mathrm{~m}, 5 \mathrm{H}), 5.57-5.53(\mathrm{~m}, 1 \mathrm{H}), 3.61-3.57(\mathrm{~m}$, 1H), $3.44-3.40$ (m, 1H)
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 169.2,137.1,129.1,128.9,125.8,84.4,39.8$
HRMS (ESI): calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{NOS} m / z[\mathrm{M}+\mathrm{H}]: 180.0478$; found: 180.0480.

VI. General procedure for the preparation of NTS, NTP and NTSc \& corresponding characterization data

Into a 50 mL flask was added 1 equiv. of N-bromosuccinimide, N-bromophthalimide or N -bromosuccinimide along with a magnetic stirrer. The solids were then dissolved in 25 mL of anhydrous dichloromethane after which silver thiocyanate (1.25 equiv.) was then added and the reaction allowed to stir overnight. Formation of light green to yellow precipitate (silver bromide) was observed after overnight stirring. The residue was filtered off and washed several times with DCM. The organic filtrate was consolidated and the dichloromethane removed under reduced pressure to yield the products as solids (near quantitative yield). Residual dichloromethane was removed under absolute vacuum (for approximately 10 mins) after which the products were packed into a glass vial, saturated with argon atmosphere and stored at $0^{\circ} \mathrm{C}$ to $-20^{\circ} \mathrm{C}$.

N -thiocyanosuccinimide
Physical appearance: While solid
Melting point: $85.6^{\circ} \mathrm{C}$
${ }^{1}{ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): ~ \delta 2.72(\mathrm{~s}, 4 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 178.0,107.6,29.6$
HRMS (APCI): calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~S} m / z[\mathrm{M}+\mathrm{H}]:$ 157.0066; found: 157.0065.

N -thiocyanophthalimide
Physical appearance: Yellow powder
Melting point: $122.4^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.85-7.81(\mathrm{~m}, 4 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}$, CDCl $_{3}$): $8168.7,134.3,132.9,122.9,102.4$
HRMS (APCI): calcd for $\mathrm{C}_{9} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} \mathrm{~m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]:$ 205.0066; found: 205.0070.

N -thiocyanosaccharin
Physical appearance: While solid
Melting point: $136.0^{\circ} \mathrm{C}$
${ }^{1}{ }^{1} \mathbf{H}$ NMR ($500 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 8.04-7.99(\mathrm{~m}, 2 \mathrm{H}), 7.98-7.96(\mathrm{~m}, 1 \mathrm{H}), 7.94-7.91(\mathrm{~m}$, 1H)
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 159.9,139.4,135.6,134.7,127.5,125.1,120.9,102.4$
HRMS (APCI): calcd for $\mathrm{C}_{12} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} \mathrm{~m} / \mathrm{z}[\mathrm{M}]: 239.9988$; found: 239.9989 .

Table S1: Finetuning solvents, yield and SCN source for thiocyanation of alkynes

Entry ${ }^{\text {[a] }]}$	R	SCN source (eq.)	Solvent	Yield $^{[\text {b] }}$
1	2-Cl-Ph	NTS (1.20)	THF	43
2	4-Ethyl-Ph	NTS (1.20)	THF	58
3	2-Cl-Ph	NTS (1.20)	1,2 DCE	<2
4	2-Cl-Ph	NTS (1.20)	1,4 dioxane	Unidentified product messy
5	2-Cl-Ph	NTS (1.20)	Acetone	Unidentified product
6	2-Cl-Ph	NTS (1.20)	DCM	Unidentified product 71
7	2-Cl-Ph	NTS (1.20)	Methanol	THF
8	2-Cl-Ph	NTS (1.40)	THF	Unidentified product 86
10	2-Cl-Ph	NTSc (1.40)	2-Cl-Ph	NTP (1.40)

[a] Unless otherwise stated, reaction is conducted using 0.2 mmol of substrate,
SCN source (1.20 eq.) and catalyst ($10 \mathrm{~mol} \%$) in 0.30 ml of solvent under specified conditions. [b] Isolated yield.

Table S2: Finetuning solvents for hydrothiocyanation of alkynes

Index	[Ag]	Co-catalyst	additive	NTS	Yield 2a (\%) ${ }^{\text {a }}$	Yield 3a (\%) ${ }^{\text {a }}$
1	AgOTf	1	1	1.2 equiv.	26	1
2	AgOTf	1	$\mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{~mL})$	1.2 equiv.	<2	1
3	AgOTf	1	MeOH (6.5 equiv.)	1.2 equiv.	<2	1
4	AgOTf	1	AgClO_{4} (1.0 equiv.)	1.2 equiv.	<2	1
5	AgOTf	1	MeOH (6.5 equiv.)	1	1	62
6	AgOTf	NaAuCl_{4}	MeOH (6.5 equiv.)	1.2 equiv.	42	1
7	AgOTf	LiAuCl_{4}	MeOH (6.5 equiv.)	1.2 equiv.	38	1
8	AgOTf	JohnPhos AuCl	MeOH (6.5 equiv.)	1.2 equiv.	<2	1
9	AgOTf	AuBr_{3}	MeOH (6.5 equiv.)	1.2 equiv.	30	1
10	1	NaAuCl_{4}	MeOH (6.5 equiv.)	1.2 equiv.	<2	1
$11^{\text {b }}$	AgOTf	NaAuCl_{4}	MeOH (6.5 equiv.)	1.2 equiv.	50	1

[a] Isolated yield. [b] AgOTf \& MeOH were allowed to react with alkyne for 12 h before the addition of NaAuCl_{4} and NTS.

Table S3: Finetuning solvents for hydrothiocyanation of alkynes

$=\mathrm{H} \frac{$ 1) $\mathrm{AgOTf}\left(\begin{array}{c}10 \mathrm{~mol} \%), \mathrm{MeOH} \text { (1.0 equiv) } \\ \text { solvent, } \mathrm{T} 1,12 \mathrm{~h}\end{array}\right.$ 2) $\mathrm{NaAuCl}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mol} \%), \mathrm{SCN} \text { (X equiv) }$ $\mathrm{T} 2,2 \mathrm{~h}$}{ (Xuiv }						
Index ${ }^{\text {[a] }}$	Additive (equiv)	Solvent	Reagent (eq)	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	T2 (${ }^{\circ} \mathrm{C}$)	\% Yield ${ }^{\text {[b] }}$
1	MeOH (1.5)	1,4 dioxane	NTS (2.00)	65	RT	63.5
2	MeOH (1.0)	THF	NTS (1.00)	65	80	33.5
3	MeOH (1.0)	ACN	NTS (1.00)	65	80	21
4	MeOH (1.0)	DMSO	NTS (1.00)	65	80	NR
5	MeOH (1.0)	DMF	NTS (1.00)	65	80	NR
6	MeOH (1.0)	ethylene glycol	NTS (1.00)	65	80	NR

[a] Unless otherwise stated, reaction is conducted using 0.2 mmol of substrate, SCN source (1.20 eq .) and catalyst ($10 \mathrm{~mol} \%$) in 0.30 ml of THF under specified conditions. [b] Isolated yield.

Table S4: Finetuning catalyst and additive ratio for hydrothiocyanation of alkynes

Index ${ }^{\text {[a] }}$	$\begin{aligned} & \text { Metal Catalyst } \\ & 1 \text { (mol \%) } \end{aligned}$	$\begin{aligned} & \text { Metal Catalyst } \\ & 2(\mathrm{~mol} \%) \end{aligned}$	Additive (equiv)	Phenylace(eq)	Reagent (eq)	T1 (${ }^{\circ} \mathrm{C}$)	T2 (${ }^{\circ} \mathrm{C}$)	\% Yield ${ }^{[b]}$
1	AgOTf (10)		MeOH (1.0)	2.0	NTS (1.00)	60	60	side products
2	$\mathrm{NaAuCl}_{4} .2 \mathrm{H}_{2} \mathrm{O}$ (2)		MeOH (1.0)	2.0	NTS (1.00)	60	60	side products
3	AgOTf (15)	$\mathrm{NaAuCl}_{4} .2 \mathrm{H}_{2} \mathrm{O}(2)$	$\mathrm{MeOH}(1.0): \mathrm{H}_{2} \mathrm{O}(0.3)$	1.0	NTS (1.50)	60	RT	48.2
4	AgOTf (15)	$\mathrm{NaAuCl} 4.2 \mathrm{H}_{2} \mathrm{O}(2)$	MeOH (1.2): $\mathrm{H}_{2} \mathrm{O}(0.3)$	1.0	NTS (1.50)	60	RT	41.4
5	AgOTf (15)	$\mathrm{NaAuCl} 4.2 \mathrm{H}_{2} \mathrm{O}$ (2)	$\mathrm{MeOH}(2.0): \mathrm{H}_{2} \mathrm{O}(0.6)$	1.0	NTS (1.50)	60	RT	66.7
6	AgOTf (15)	$\mathrm{NaAuCl}_{4} .2 \mathrm{H}_{2} \mathrm{O}(2)$	$\mathrm{MeOH}(2.5): \mathrm{H}_{2} \mathrm{O}$ (0.6)	1.0	NTS (1.50)	60	RT	75.0
7	AgOTf (15)	$\mathrm{NaAuCl}_{4} .2 \mathrm{H}_{2} \mathrm{O}(2)$	MeOH (7.0)	1.0	NTS (1.50)	60	RT	33.2
8	AgOTf (15)	$\mathrm{NaAuCl}_{4} .2 \mathrm{H}_{2} \mathrm{O}$ (2)	$\mathrm{H}_{2} \mathrm{O}$ (7.0)	1.0	NTS (1.50)	60	RT	NR
9	AgOTf (15)	$\mathrm{NaAuCl}_{4} .2 \mathrm{H}_{2} \mathrm{O}$ (2)	$\mathrm{MeOH}(2.0): \mathrm{H}_{2} \mathrm{O}$ (0.6)	1.0	NBS (1.50)	60	RT	Messy
10	AgOTf (15)	N/A	$\mathrm{MeOH}(2.0): \mathrm{H}_{2} \mathrm{O}$ (0.6)	1.0	NBS (1.50)	60	RT	N.R.
11	N/A	N/A	N/A	1.0	NBS (1.50)	N/A	RT	N.R.
12	N/A	$\mathrm{NaAuCl}_{4} .2 \mathrm{H}_{2} \mathrm{O}(2)$	N/A	1.0	NBS (1.50)	N/A	RT	N.R.

[a] Unless otherwise stated, reaction is conducted using 0.2 mmol of substrate, SCN source (1.20 eq .) and catalyst ($10 \mathrm{~mol} \%$) in 0.30 ml of THF under specified conditions. [b] Isolated yield.

III. Crystal Data

Crystal data	
CCDC number	1866145
Chemical formula	$\mathrm{C}_{17} \mathrm{H} 9 \mathrm{NS}$
M_{r}	259.31
Crystal system	Monoclinic
Crystal system, space group	$\mathrm{P} 2_{1} / \mathrm{n}$
Temperature (K)	$100(2)$
$\mathrm{a}, \mathrm{b}, \mathrm{c}(\AA)$	$\mathrm{a}=12.9956(8)$
	$\mathrm{b}=5.4342(4)$
	$\mathrm{c}=17.9421(10)$
$\mathrm{V}\left(\AA^{3}\right)$	$1219.99(14)$
Z	4
Analytical Wavelength	0.71073
Crystal size (mm)	$0.554 \times 0.209 \times 0.206$
Absorption coefficient $\left(\mathrm{mm}^{-1}\right)$	0.247

Crystal data	
CCDC number	1866142
Chemical formula	$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{NOS}$
M_{r}	177.22
Crystal system	Monoclinic
Crystal system, space group	$\mathrm{P} 2_{1} / \mathrm{c}$
Temperature (K)	$100(2)$
$\mathrm{a}, \mathrm{b}, \mathrm{c}(\AA)$	$\mathrm{a}=10.6135(4)$
	$\mathrm{b}=5.5409(2)$
	$\mathrm{c}=14.9229(5)$
$\mathrm{V}\left(\AA^{3}\right)$	$845.23(5)$
Z	4
Analytical Wavelength	1.54178
Crystal size (mm)	$0.589 \times 0.117 \times 0.056$
Absorption coefficient $\left(\mathrm{mm}^{-1}\right)$	2.963

Crystal data	
CCDC number	1866144
Chemical formula	$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{OS}$
M_{r}	220.29
Crystal system	Orthorhombic
Crystal system, space group	Pbca
Temperature (K)	$100(2)$
$\mathrm{a}, \mathrm{b}, \mathrm{c}(\AA)$	$\mathrm{a}=7.1790(2)$
	$\mathrm{b}=17.3113(4)$
	$\mathrm{c}=17.4130(4)$
$\mathrm{V}\left(\AA^{3}\right)$	$2164.05(9)$
Z	8
Analytical Wavelength	1.54178
Crystal size (mm)	$0.294 \times 0.266 \times 0.108$
Absorption coefficient $\left(\mathrm{mm}^{-1}\right)$	2.446

IX. References

[1] R. Adams, H. B. Bramlet, F. H. Tendick, Journal of the American Chemical Society 1920, 42, 2369-2374.
[2] S. Vorona, T. Artamonova, Y. Zevatskii, L. Myznikov, Synthesis 2014, 46, 781-786.
[3] I. Lagoja, C. Pannecouque, G. Griffioen, S. Wera, V. M. Rojasdelaparra, A. Van Aerschot, European Journal of Pharmaceutical Sciences 2011, 43, 386-392.
[4] F. R. Bisogno, A. Cuetos, I. Lavandera, V. Gotor, Green Chemistry 2009, 11, 452-454.

P192-1-55

P192-1-55

 m M NH NTN


```
mas
```


$$
10
$$

\qquad $+$
\qquad ,

 かrarararararararar

웅웅

	9	8	7	6	5	4	3	2	1	ppm

P191-11

P199-4 $4-\mathrm{Br}$

P199-4

P146-9

P194-7

P194-7

$\infty \mathrm{m} M \mathrm{~m}$

ががががが

\qquad

80

	9	8	7	6	5	4	3	2	1	ppm

2ME 4-OMe

P185-4

P186-2

F2 - Acquisition Parameters
Date_ 20180120
Time 10.48
INSTRUM spect
PROBHD 5 mm PABBO BE/
PULPROG \quad zg30
32768
TD
NS
NS
DS
SW
SWH
FIDRES
AO
RG
DW
DW
DE
IE
TE 304.2 K

D1 1.00000000 sec
TDO

$========$ CHANNEL $f 1=======$	
NUC1	1 H
P1	10.50 used
PL1	0.25 dB

E2 - Processing parameters
SI - Processing paramet

SF	500.1300131
WDW	MHz

SSB 0
$\begin{array}{lll}\mathrm{LB} & 0 & 0.30 \mathrm{~Hz} \\ \mathrm{GR} & 0 & 1.00\end{array}$
$\mathrm{PC} \quad 1.00$

p180-1

Current Data Parameters	
NAME	sjy 0712
EXPNO	1
PROCNO	1

F2 - Acquisition Parameters
Date 20171207

20171207

$$
\begin{aligned}
& \text { Time } \\
& \text { INSTRUM } \\
& \text { PROBHD }
\end{aligned}
$$

$$
13.56
$$

$$
\begin{aligned}
& \text { PROBHD } \\
& \text { PULPROG }
\end{aligned}
$$

5 mm PABBO BB/

$$
\begin{aligned}
& \text { TD } \\
& \text { SOLVENT }
\end{aligned}
$$ $2 \mathrm{zg}^{30}$

$$
\begin{aligned}
& \text { SOLVEl } \\
& \text { NS }
\end{aligned}
$$ 32768 CDC13

$$
\begin{aligned}
& \text { NS } \\
& \text { DS }
\end{aligned}
$$

$$
\begin{aligned}
& \text { DS } \\
& \text { SWH }
\end{aligned}
$$

$$
\begin{aligned}
& \text { SWH } \\
& \text { FIDRES }
\end{aligned}
$$

10330.578 Hz
FIDR
10330.578
0.315264 Hz

$$
\begin{aligned}
& \mathrm{AQ} \\
& \mathrm{RG} \\
& \mathrm{nW}
\end{aligned}
$$

1.5859712 Bec

$$
\begin{aligned}
& \text { RG } \\
& \text { DW }
\end{aligned}
$$

.5859712
35.9

$$
\begin{aligned}
& \mathrm{DW} \\
& \mathrm{DE} \\
& \mathrm{TE}
\end{aligned}
$$

48.400 user 6.00 usec

$$
\begin{aligned}
& \text { TE } \\
& \text { D1 }
\end{aligned}
$$ 296.7 K

$$
\begin{aligned}
& \text { D1 } \\
& \text { TDO }
\end{aligned}
$$

1.00000000 sec

F2 - Processing parameters	
SI	16384
SF	500.1300137
WDW	EM
SSB	0

Current Data Parameters
NAME
EXPNO
PROCNO
F2 - Acquisition Parameters
Date_ 20171207
Time $\quad 14.00$

INSTRUM PROERD
PULPROG
TD
SOLV
NS
NS
DS
SWE
SWH
FIDRES
AR
RG
AQ
RG
DW
DW
DE
TE
d11
5 mm PABBO $\mathrm{BE} /$
zgpg 30
30030.029 Hz
16.650 usec

$$
297.3 \mathrm{~K}
$$

DELTA
TDO
zgpg 30
65536
65536
CDC13
CDC13
365
30030.029 Hz
0.458222 Hz
1.0911744 sec
.0911744 =

$$
6.00 \text { used }
$$

2.00000000 sec 0.03000000 sec 1.89999998 sec

CHANNEL \qquad 13 C NUC1
8.90 usec

P1
PL1 0 dB
SFOI
$125,7709936 \mathrm{MHz}$

CPDPRG[2
NUC2
waltz16
PCPD2
PL2
${ }^{\mathrm{PLI} 12}$
PL13
SFO2
80.00 usec
0.25 dB
17.89 dB
15.83 dB
500.1320005 MHz

F2 - Processing parameters

SI	125.7577890 MHz	
SF	EM	
WDW	0	1.00 Hz
SSB	0	
LB	0	1.40


```
P164-3
```


2 anisole thiocyanato ketone

4 anisole thiocyanatoketone

Current Data Parameters	
NAME	sjy 2605
EXPNO	6
PROCNO	1

F2 - Acquisition Parameters

$$
\begin{aligned}
& \text { F2_-Acquisition Parame } \\
& \text { Date_ } 20180526
\end{aligned}
$$

$$
\begin{array}{lr}
\text { Date_ } & 20180526 \\
\text { Time } & 11.05
\end{array}
$$

$$
\begin{array}{ll}
\text { Time } & 11.05 \\
\text { INSTRUM } & \text { spect }
\end{array}
$$

$$
\begin{array}{lr}
\text { INSIRUM } & \text { spect } \\
\text { PROBHD } & 5 \mathrm{~mm} \text { PABBO BE/ } \\
\text { PULPROG } & \text { zgpg } 30
\end{array}
$$

$$
\begin{array}{lr}
\text { PULPROG } & \text { ID } \\
& 655336 \\
\hline
\end{array}
$$

TD

$$
\begin{aligned}
& \text { SOLVEN } \\
& \text { NS }
\end{aligned}
$$

$$
\begin{aligned}
& \text { NS } \\
& \text { DS }
\end{aligned}
$$

$$
\begin{aligned}
& \text { DS } \\
& \text { SWH }
\end{aligned}
$$

$$
\begin{aligned}
& \text { SWH } \\
& \text { EIDRES }
\end{aligned}
$$

$$
\begin{aligned}
& \text { FID } \\
& \text { AO }
\end{aligned}
$$

$\begin{array}{lrl}\text { RG } & 1.0911744 & \text { se } \\ \text { DW } & 16384 & \\ \text { DE } & 16.650 & \text { use }\end{array}$
$\begin{array}{lr}\mathrm{DE} & 16.650 \text { use } \\ \mathrm{DE} & 6.00 \text { use }\end{array}$

$$
\begin{array}{lr}
\mathrm{DE} & 6.00 \text { use } \\
\mathrm{TE} & 297.0 \mathrm{~K} \\
\mathrm{DI} & 2.00000000 \mathrm{sec}
\end{array}
$$

$$
\begin{array}{ll}
\text { D1 } & 2.00000000 \mathrm{sec} \\
\text { d11 } & 0.03000000 \mathrm{sec}
\end{array}
$$

$$
\begin{array}{lr}
\text { dII } & 0.03000000 \mathrm{sec} \\
\text { DELTA } & 1.89999998 \mathrm{sec} \\
\text { TD0 } & 150
\end{array}
$$

$$
=-\infty=-=-=\text { CHANNEL } f
$$

\qquad
NUC1
\qquad

$$
\begin{aligned}
& \text { NUC } \\
& p_{1}
\end{aligned}
$$

$$
13 C
$$

$$
\begin{aligned}
& \text { P1 } \\
& \text { PL1 }
\end{aligned}
$$

$$
{ }_{\text {PL1 }}^{\text {PFO1 }} \quad 0 \mathrm{~dB}_{125}
$$

$$
8.90 \text { usec }
$$

$$
-\quad-\pi-=-\infty
$$

$$
\begin{array}{r}
125.77 \\
\text { CHANNEL }
\end{array}
$$

$$
\text { f2 }-\cdots=-
$$

CPDRRG[2
NUC2
waltz16

$$
\begin{aligned}
& \text { NUCL } \\
& \text { PCPD }
\end{aligned}
$$

1H
PL2

$$
\begin{aligned}
& \text { PLI } \\
& \text { PL12 }
\end{aligned}
$$

$$
\begin{gathered}
80.00 \text { use } \\
0.25 \mathrm{~dB}
\end{gathered}
$$

$$
\begin{array}{r}
0.25 \mathrm{dF} \\
17.89 \mathrm{dE}
\end{array}
$$

$$
\begin{array}{lr}
\text { PL12 } & 17.89 \mathrm{dE} \\
\text { PL13 } & 15.83 \mathrm{dE} \\
\text { SFO2 } & 500.1320005 \mathrm{ME}
\end{array}
$$

$$
\begin{aligned}
& \mathrm{FL12} \\
& \mathrm{PL13} \\
& \mathrm{SFO} 2
\end{aligned}
$$

$$
\begin{aligned}
& \text { F2 - Processing parameters } \\
& \text { SI } \\
& \text { SF } \\
& 125,7577890
\end{aligned}
$$

$$
\begin{array}{lcc}
\text { SI } & & 32768 \\
\text { SF } & & 125.7577890 \mathrm{MHz} \\
\text { WDW } & & \text { EM } \\
\text { SSB } & 0 & 1.00 \mathrm{~Hz} \\
\text { LB } & 0 & 1.40
\end{array}
$$

P163-12

t bu intermediate

P162-1

grignard. alkyne SCN

Current Data Parameters NAME
EXFNO
EXPNO
PROCNO
F2 - Acquisition Parameters

Date		$\begin{aligned} & \text { n Parame } \\ & 20180713 \end{aligned}$
Time ${ }^{-}$		10.15
INSTRUM		spect
PROBHD	5 mm	PABBO BE/
PULPROG		2 gpg 30
TD		65536
SOLVENT		CDC13
NS		2500
DS		0
SWH		30030.029
FIDRES		0.458222
AQ		1.0911744
RG		16384
DW		16.650
DE		6.00
TE		295.9
D1		2.00000000
d11		0.03000000
DELTA		1.89999998

NuCl	13 C
P1	8.90 usec
PLI	0 dB
SFO1	125.7709936 MHz
CPDPRG [2	waltz16
NUC2	1月
PCPD2	80.00 usec
PL2	0.25 dB
PL12	17.89 dB
PL13	15.83 dB
SFO2	500.1320005 MHz

E2	- Processing parameters	
SI	32768	
SF	125.7577890 MHz	
WDW		EM
SSB	0	1.00 Hz
LB	0	1.40
GB	0	

Current Data Parameters NAME
EXPNO EXPNO
PROCNO

F2 - Adquisition Parameters
Date_ 20180902
Time
INSTRUM
INSTRUM
PRORHD
PROBHD
PULEROG 5 mm PABBO BB/
$\begin{array}{lr}\text { TD } & 29 p g 30 \\ \text { SOLVENT } & 65536\end{array}$
SOLVEN
NS
DS
$\begin{array}{lr}\text { DS } & 3616 \\ \text { SWH } & 0\end{array}$
$\begin{array}{ll}\text { SWH } & 30030.029 \mathrm{~Hz} \\ \text { FIDRES } & 0.458222 \mathrm{~Hz}\end{array}$
FIDRES $\quad 0.458222 \mathrm{~Hz}$ 1. 0911744 sec

16384
$\begin{array}{lr}\text { RG } & 16.650 \text { usec } \\ \text { DE } & 6.00 \text { usec } \\ \text { TE } & 296.4 \mathrm{~K} \\ \text { DI } & 2.00000000 \mathrm{sec} \\ \text { d11 } & 0.03000000 \mathrm{sec}\end{array}$
$\begin{array}{lr}\text { RW } & 16.650 \text { usec } \\ \text { DE } & 6.00 \text { usec } \\ \text { TE } & 296.4 \mathrm{~K} \\ \text { DI } & 2.00000000 \mathrm{sec} \\ \text { d11 } & 0.03000000 \mathrm{sec}\end{array}$
$\begin{array}{lr}\text { RG } & 16.650 \\ \text { usec } \\ \text { DE } & 6.00 \\ \text { usec } \\ \text { TE } & 296.4 \mathrm{~K} \\ \text { D1 } & 2.00000000 \mathrm{sec} \\ \text { d11 } & 0.03000000 \mathrm{sec}\end{array}$ $\begin{array}{ll}\text { d11 } & 0.03000000 \mathrm{sec} \\ \text { DELIA } & 1.89999998 \text { sec }\end{array}$

CHANNEL f \qquad

$\begin{array}{lll}\text { PLI } & 0 \mathrm{~dB} \\ \text { SFO1 } & 125,7709936 \mathrm{MHz}\end{array}$
C-w-e-e=
CPDPRGl2
NDC2
PCPD
${ }^{\text {PLP2 }}$
PL12
PL13

E2	- Processing parameters
SI	32768
SF	125.7577890 MHz
WDW	
SSB	0

P12-1

NAME
EXPNO
PROCNO
F2 - Acquisition Parameters
Date_ 20180313
Time- 20180313
INSTRDM 14.18
INSTRUM PROBHD PULEROG TD
SOLVENT NS DS
SWH FIDRES $\quad 30030.029 \mathrm{~Hz}$ FID
AQ
RG AQ
RG
DW $\begin{array}{lr}\text { DW } & 16384 \\ \text { DE } & 16.650 \\ & 6.00 \\ \text { use }\end{array}$ 6.00 usec 299.3 K
$\begin{array}{lr}\text { TE } & 299.3 \mathrm{~K} \\ \text { D1 } & 2.00000000 \mathrm{sec} \\ \text { d11 } & 0.03000000 \mathrm{sec}\end{array}$
$\begin{array}{ll}\text { d11 } & 0.03000000 \text { sec } \\ \text { DELTA } & 1.89999998 \text { sec }\end{array}$
TDO 1.89999998

NUC1		
P1		
PLI		

SFOI 125.7709936 MHz
$==$ Channel. f2
CPDPRG [2
NUC2
PCPD 2
PL2
PL12
PL13
SFO2

E2	- Processing parameters	
SI	32768	
SF	125.7577890 MHz	
WDW		EM
SSB	0	1.00 Hz
LB	0	1.40

13C AMX500

$\begin{array}{lr}\text { Current } \\ \text { NAME } & \text { Data } \begin{array}{r}\text { Pameters } \\ \text { sjy } 2606\end{array} \\ \text { EXPNO } & 4 \\ \text { PROCNO } & 1\end{array}$
F2 - Acquisition Parameters
Date_ 20180626
Time 20180626
INSTRUM $\begin{array}{r}8.49 \\ \text { spect }\end{array}$
PROBHD 5 mm PABBO BB/
$\begin{array}{lr}\text { PULEROG } & 29 p g 30 \\ \text { TD } & 65536\end{array}$
$\begin{array}{lr}\text { SOLVENT } & \text { CDC13 } \\ \text { NS } & 442 \\ \text { DS } & 0\end{array}$
$\begin{array}{lr}\text { DS } & 0 \\ \text { SWH } & 30030.029 \mathrm{~Hz}\end{array}$
FIDRES $\quad 0.458222 \mathrm{~Hz}$ $\begin{array}{lr}\text { AQ } & 1.0911744 \mathrm{sec} \\ \text { RG } & 16384\end{array}$
16.650 usec
$\begin{array}{lr}\text { DE } & 16.650 \text { Used } \\ \text { DE } & 6.00 \text { usec } \\ \text { TE } & 300.11 \mathrm{~K} \\ \text { D11 } & 2.0000000 \mathrm{sec} \\ \text { d11 } & 0.03000000 \mathrm{sec}\end{array}$
$\begin{array}{lr}\text { DE } & 16.650 \text { usec } \\ \text { TE } & 6.00 \text { usec } \\ \text { D1 } & 300.1 \mathrm{~K} \\ \text { d11 } & 2.00000000 \mathrm{sec} \\ \text { DELA } & 0.03000000 \mathrm{sec}\end{array}$ $\begin{array}{ll}\text { d11 } & 0.03000000 \mathrm{sec} \\ \text { DELIA } & 1.89999998 \mathrm{sec}\end{array}$
TD0
=="n===0
=====-== CHANNEL f
NUC1 13 C

NUC1	
P1	13 C
100 use	

$\begin{array}{lc}\text { SFO1 } & 125.7709936 \mathrm{MHz}\end{array}$

CPDPRG12
NUC2
PCPD 2
PL2
PL12
PL13
SFO2
E2 - Processing parameter
32768

SI	125.7577890	
SF	MHz	
WDW		32768
SSB	0	
LB	0	1.00 Hz
GB	0	1.40

$\begin{aligned} & \text { L6IE•S } \\ & \text { LIZ } \cdot S\end{aligned}>$

$\begin{array}{llllllllllllll}220 & 200 & 180 & 160 & 140 & 120 & 100 & 80 & 60 & 40 & 20 & \mathrm{ppm}\end{array}$

Current Data Parameters
NAME
sjy 2307 EXPNO PROCNO

F2-Acq		
Time		201000
INSTRUM		spect
PROBHD	5 mm	PABBO BB/
PULPROG		2 gpg 30
TD		65536
SOLVENT		CD3CN
NS		1603
DS		0
SWH		30030.029
FIDRES		0.458222
AQ		1.0911744
RG		16384
DW		16.650
DE		6.00
TE		301.3
DI		2.00000000
d11		0.03000000
DELTA		1.89999998

$$
==\pi====\text { CHANNEL } \mathrm{fl}==\pi===
$$

$$
\begin{aligned}
& ========\text { CHANNEL } f 1==== \\
& \text { NUC1 }
\end{aligned}
$$

$$
\begin{array}{lr}
\text { NUC1 } & 13 \mathrm{C} \\
\text { P1 } & 8.90 \text { usec }
\end{array}
$$

$$
\begin{array}{lc}
\text { PLI } & 0 \mathrm{~dB} \\
\text { SFO1 } & 125.7709936 \mathrm{MHz}
\end{array}
$$

"wn-w-= CHANNEL f2 =ww-e=
CPDPRG [2
NUC2
Waltz16
PCPD2
PL2

$$
\begin{aligned}
& \text { PL2 } \\
& \text { PL12 }
\end{aligned}
$$

$$
\begin{gathered}
80.00 \text { used } \\
0.25 \mathrm{~dB}
\end{gathered}
$$

$$
\begin{array}{r}
0.25 \mathrm{dE} \\
17.89 \mathrm{dE}
\end{array}
$$

$$
\begin{aligned}
& \text { PL13 } \\
& \text { SFO2 }
\end{aligned}
$$

500.1320005 MH

E2	- Processing parameters	
SI	32768	
SF	125.7577890	
WDW	EM	
SSB	0	
LB	0	1.00 Hz
GB	0	1.40

