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Abstract

Context Biodiversity monitoring programs require

fast, reliable and cost-effective methods for biodiver-

sity assessment in landscapes. Sampling pollinators

across entire landscapes is challenging, as trapping

needs to cover many habitat types.

Objectives We developed and tested a landscape-

wide sampling design for pollinators. We assessed the

predictability and stability of pollinator biodiversity

estimates in agricultural landscapes, and tested how

estimates were affected by sampled habitat, landscape

composition and spatial scale.

Methods We sampled pollinators using pan traps at

250 locations in 10 replicated landscapes measuring

1 9 1 km and calculated bee richness predictions

based on different sample sizes. Traps were placed

regularly in each landscape, sampling each habitat

proportionally to its area. Landscapes contained semi-

natural habitats, crop fields and forests and differed in

the amount of a mass-flowering crop (oilseed rape).

Results Regular sampling reflected local habitat

amount. Compared with cereal fields, significantly

more pollinators occurred in oilseed rape, and fewer in

forests. Sampling in only one habitat type led to biased

estimates of landscape-wide bee species richness,

even when sample size was increased. The spatial

scale of best predictions depended on the sampled

habitat. Species richness was overestimated when

sampling was limited to semi-natural habitats and

underestimated in oilseed rape fields. Precision

increased with the number of sampling points per

landscape.

Conclusions To study landscape-wide pollinator

biodiversity, we suggest to sample multiple sites per

landscape in a broad range of resource-providing

habitat types, with sample sizes proportional to habitat

amount. Our approach will also be useful for biodi-

versity monitoring programs in general.
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Introduction

In the context of recent reports on declines in

pollinator biodiversity (Biesmeijer et al. 2006; Potts

et al. 2010) and overall insect biomass (Hallmann et al.

2017; Vogel 2017), the debate has opened up on what

the main drivers of these declines could be. For

example, the study on insect declines by Hallmann

et al. (2017) has received criticism for focusing ‘‘only’’

on protected areas, while little is still known on

pollinator abundance or richness on cropland or on

larger spatial scales. Increasingly, landscapes outside

protected areas are moving into focus (Martin et al.

2012; Willis et al. 2012), yet a clear landscape-wide

sampling methodology for pollinators is lacking.

While there is a staggering amount of separate

studies for pollinators in individual habitat types (e.g.

grassland, cropland, forest), almost nothing is yet

known on pollinator abundance or even pollinator

richness on a landscape-wide scale. Where, in a 1-km2

landscape, do which pollinators occur? And what

happens when major flowering resources in that

landscape occur in different amounts (as is the case

for example for mass-flowering crops)?

In order to address these questions, and to properly

design potential future monitoring programs, an

adequate sampling design is needed that covers a

large spatial scale (say, square kilometers). In addi-

tion, estimates on the required sampling effort are

required. A potentially suitable approach involves

sampling a range of habitat types on a large spatial

scale, for example by (i) selectively sampling several

habitat types (Tylianakis et al. 2005; Holzschuh et al.

2016), (ii) establishing transects with their length

adapted to local habitat area at nested spatial scales

(Gillespie et al. 2017), or (iii) by establishing sampling

grids covering several hectares or square kilometers

(hereafter termed ‘‘landscape grid method’’; Fig. 1).

When two-dimensional maps of pollinator biodi-

versity patterns across whole landscapes are desired

for a realistic estimation of landscape-wide species

abundances, a grid-based sampling approach is par-

ticularly useful, yet this approach has surprisingly

rarely been used so far (Beduschi et al. 2015). Up to

now, examples of grid-based sampling at multiple

spatial scales come e.g. from a sampling campaign for

soil insects, where Benefer et al. (2016) showed

detailed maps of the distribution of various taxa on

sites measuring about 1 9 1 km. Similar approaches

were used in the pan-European project ‘‘Greenveins’’

for insects and birds (Dormann et al. 2007b; Le Féon

et al. 2010), and grid-based approaches in general are

widely employed in biodiversity monitoring schemes

(e.g. Manley et al. 2004) or forest inventories

(Kowalski et al. 2011).

Establishing sampling grids (grid-based sampling,

also termed ‘‘regular’’ or ‘‘centric systematic sam-

pling’’; Krebs 1999; Ripley 2005) allows samples to

be taken evenly across a landscape. According to

Ripley (2005), systematic sampling is ‘‘best unless

[there is] a strong periodicity’’ in the response variable

that coincides with the sampling interval. A major

prerequisite for grid-based sampling (of pollinators) is

that each major habitat in a landscape should be

sampled at least once (termed ‘‘spatial lag’’; Fortin and

Dale 2005).

In the present study, we use a design where samples

are placed regularly throughout the landscape (Fig. 1).

By imposing a regular sampling grid on a given

landscape, habitats are sampled proportionally to their

area in the landscape. Our aim is to investigate how

differences in the number of samples taken influence

estimates of pollinator species richness. We sampled

pollinators in 10 replicated landscapes, each compris-

ing 25 sampling points. These landscapes had been

intentionally selected a priori to differ in the amount of

a mass-flowering crop (oilseed rape—Brassica napus

L., also termed canola). Proportion of oilseed rape

(OSR) was chosen as a likely determinant of pollinator

species richness, as mass-flowering crops are known to

have strong effects on pollinator biodiversity (e.g.

Westphal et al. 2003; Diekotter et al. 2010; Holzschuh

et al. 2016). Of course, we could have used another

gradient (e.g. in amount of arable land or habitat

connectivity), but in our case OSR was known to be an

important crop attracting large quantities of pollina-

tors. We therefore knew a priori that OSR would be a

strong explanatory variable. We tested the following

hypotheses:

(1) Grid-based sampling allows to estimate polli-

nator biodiversity on a landscape scale, and

pollinator richness for a wide range of habitat

types can be determined. This is because a

regular sampling grid will correlate with land-

scape-wide abundance of each habitat.

(2) The proportion of oilseed rape at different

spatial scales (e.g. 0–100 m, 250–500 m etc.)
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around each sampling point will affect estimates

of pollinator biodiversity. This is because pol-

linators respond positively to the abundance of

mass-flowering crops in a landscape (as long as

it is flowering).

(3) Sampling in all habitats, only in OSR fields or

only in seminatural habitats affects pollinator

biodiversity estimates, because of habitat-speci-

fic species compositions.

Methods

Assessment of pollinator biodiversity

The study was performed in 10 landscapes in the

surroundings of Göttingen (51� 320 N, 9� 560 E) in
Central Germany in 2011 (Fig. 1). The landscapes

measured approximately 1 km 9 1 km (mean area ±

SD: 0.93 ± 0.23 km2) and represented a gradient of

percent area occupied by oilseed rape fields. Care was

taken that all other habitat types (grassland, forest,

cereal fields, root crops, corn fields) were present in

each landscape. Sites were selected a priori out of a

total of 13 potential sites that had been visited in the

field, ensuring that OSR was statistically independent

of amount of other habitat types, and sites with low or

high OSR were spatially interspersed. In each land-

scape, sampling was performed in a grid measuring

1x1 km, comprising 5 9 5 points (Fig. 1), which was

laid out over the landscapes to always include forest

margins and grasslands (semi-natural habitats) as well

as crop fields, while excluding cities or villages.

1 9 1-km grids were first roughly placed in Google

Earth (� Google, Inc.), and final position was decided

after extensive field visits. Two areas were slightly

smaller than 1 km2 to exclude settlements.

(a) (b)

(c)

Fig. 1 a Grid-based approach to sample pollinators on a

landscape scape. Several points (e.g. N = 25 as in this study)

are sampled in each of N = 10 landscapes measuring 1 9 1 km.

Only six landscapes shown for brevity. Background imagery:

RapidEye satellite imagery; original resolution: 6.5 m per pixel;

band arrangement: 3-2-1 (R–G–B), color bands: 1 = blue

(440–510 nm), 2 = green (520–590 nm), 3 = red

(630–685 nm), scaled to a maximum of 5111 px and stretched

based on the histogram; b Example detail of a landscape with

classified habitat types and N = 25 points, with estimated

pollinator species richness values (shown as different symbol

sizes). Habitat classification based on ATKIS data (ATKIS

2010), image classification (ENVI EX) and ground truthing;

cDetail of one of the ten sampling grids. The x and y axes are the

coordinates in the World Geodetic System (WGS84) with a

transverse mercator projection (latitude of origin = 0, longitude

of origin = 9, scale factor = 1). a Grid points in a 1 9 1-km

landscape between the villages of Barlissen and Atzenhausen

(Southwest of Göttingen, Germany). Points are medoids of three

independent handheld GPS measurements. b interpolated map

showing pollinator species richness (high richness indicated by

lighter colours). Interpolation was done using gridded bivariate

spline interpolation for irregular. (Color figure online)
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Sampling habitats included oilseed rape fields,

cereal fields and semi-natural habitats, which com-

prised grasslands and forest margins. Satellite-based

image classification was used to assess landscape

composition (OSR, cereals, grassland, forest, corn,

root crops; see Fig. 1b) for each landscape (full 1 9 1-

km scale), and at six additional spatial scales. These

scales were represented by six nested rings (sensu

Schneider et al. 2011) with the following radii:

0–100 m, 100–250 m, 250–500 m, 500–750 m,

750–1000 m and 1000–1500 m, using ESRI� Arc-

MapTM10. False-colour satellite imagery was pro-

vided by RapidEyeTM. Image classification was

performed using ENVI EX (ITT Visual Information

Solutions GmbH, Gilching, Germany), using a train-

ing dataset (ATKIS DLM 25/1, ATKIS 2010).

Yellow pan traps filled with water (0.75 L volume,

156 mm diameter) were mounted to a wooden pole

approximately in the center of each cell of the grid

(centric systematic sampling method) and exposed for

3 days in May and June 2011; however, we focus here

on the June dataset (after oilseed rape flowering),

because the highest bee species richness can be

observed during this month (Holzschuh et al. 2011).

Traps were placed at vegetation height and exactly at

the location given by the grid-based sampling scheme,

but avoiding roads or farm tracks. As three pan traps

were damaged, we had 247 samples overall. All wild

bees were sent to specialists for identification.

Data resampling

To determine how the number of samples per land-

scape affected the results, we randomly sampled 5, 10,

15 and 20 points per landscape from the full dataset

(N = 247), with each of the new datasets subsequently

analyzed (N = 50, 100, 150 and 200, respectively).

This was repeated 50 times for each subset of number

of points, resulting in four sets of model results each

with 50 outcomes.

To assess the effects of differences in the locally

sampled habitat for each landscape, we took two

subsets of our data that included samples collected

only in semi-natural habitats (five points per land-

scape; N = 50) or only in oilseed rape fields (mean

points per landscape ± SD 6.2 ± 5.65; N = 56).

These habitats were chosen as they represented two

extremes in land-use intensity: The semi-natural

habitats are often of high conservation value and tend

to be preferentially sampled in ecological studies. The

oilseed rape fields represent very homogeneous agri-

cultural areas. In each landscape, one point within the

chosen habitat was sampled at random, creating a new

dataset (N = 10) that was subsequently analyzed (see

section Statistical Analyses). This procedure was

repeated 50 times per subset (semi-natural habitats

and oilseed rape fields) to obtain a wide range of

possible results, yielding two sets of model outputs,

one for semi-natural habitats and one for oilseed rape

fields, each containing 50 outcomes.

Overall, this resulted in the following three datasets

used for statistical analysis:

(1) all data points collected following the land-

scape-grid approach.

(2) all data points collected only in semi-natural

habitats (habitat-selection method);

(3) all data points collected only in oilseed rape

fields (habitat-selection method); and

A summary of the resampling methods can be seen

in Table 1. The selection of points for the new datasets

was always repeated 50 times, with each of these new

datasets analyzed accordingly. The complete datasets

were also analyzed to detect the effect of sampling

only one kind of habitat several times per landscape.

Statistical analyses

All analyses were performed using R 3.5.1 (R Core

Team 2018). Overall effects of local habitat on

pollinator species richness were analyzed using

mixed-effects models with ‘‘landscape’’ as a random

effect, and an exponential variance function to account

for heteroscedasticity. Local habitat was the only

fixed-effects term in these models.

We determined the relevant spatial scale(s) using

linear models fit by generalized least squares (GLS) as

these models allow an explicit incorporation of spatial

autocorrelation by fitting a variance–covariance

matrix (Dormann et al. 2007a). As generalized least

squares models returned a log-likelihood, this allowed

us to use information theoretic approaches (AICc) for

model selection. The response variable was bee

species richness and was log transformed (ln

(y ? 1)) to restrict predicted values to be non-

negative. The initial explanatory variables were the

proportions of the area occupied by oilseed rape within

the six spatial scales. All models were simplified using
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a modified version of the stepAIC function (Venables

and Ripley 2002), corrected for sample size (AICc;

Burnham and Anderson 2004); note that the penalty

term in AICc converges to zero for large N. When

more than one point per landscape was sampled, we

defined a spherical correlation structure using the

coordinates of the sampling points and the landscapes

as a grouping variable to account for spatial autocor-

relation. GLS models were fitted using the function gls

from the ‘‘nlme’’ package 3.1-137 (Pinheiro et al.

2018). For maps showing actual sampling locations

(Fig. 1a–c), we calculated averages of three measured

GPS coordinates by clustering of input data around

N = 25 medoids per landscape (R function ‘‘pam’’ in

package ‘‘cluster’’; Maechler et al. 2017).

Spatial interpolation for whole landscapes (Fig. 1c)

was conducted using the ‘‘interp’’ function in R

package ‘‘akima’’, version 0.6-2 (Akima and Gebhardt

2016) with bicubic spline interpolation per landscape,

restricting predictions to the convex hull of sampling

points.

Results

Using grid-based sampling allowed us to sample

habitats according to their true amounts in the

landscapes (Fig. 2): The total area covered (Fig. 2a)

was almost perfectly matched by the number of

sampling points (‘‘selection frequency’’ in Fig. 2b),

indicating that our sampling methodology indeed

reflected landscape-wide habitat amounts.

Overall, we collected 76 bee species, excluding

Apis mellifera (Linnaeus, 1758). Thirty per cent of the

species (23 spp.) were not found in semi-natural

habitats and 55% (42 spp.) were not found in oilseed

rape fields. Across all landscapes, bee species richness

was significantly higher in OSR fields than in cereal

fields, and significantly lower in forest habitats than in

cereal fields (Fig. 3). Interpolation allowed landscape-

wide prediction of pollinator species richness

(Fig. 1c).

The number of sampling points had large effects on

the detection of relevant spatial scales in models on

pollinator richness vs. OSR among (Fig. 4): When

only one point per landscape was sampled (total

N = 10), often no scale (i.e. radius of landscape sector)

was selected as relevant (72% of the times for semi-

natural habitats and 56% for oilseed rape fields;

Fig. 4a) or found to be significant (80% and 60% of the

times for semi-natural habitats oilseed rape fields,

respectively; Fig. 4b). Additionally, no clear pattern

Table 1 Summary of sampling habitat and number of sampling points considered for resampling and analyses

Sampling habitat Number of sampling points in the new

datasets (per sampling area)

Number of sampling points in the complete datasets

All habitats 5, 10, 15 or 20 247

Oilseed rape fields 1 56

Semi-natural habitats 1 50

New dataset refers to the six groups of 50 datasets created by resampling. Complete dataset indicates all points sampled within the

mentioned habitat(s). Sampling area indicates each one of the 10 landscapes where sampling was performed
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Fig. 2 a The summed areas (across all 10 landscape) of each

habitat type (in km2) and b the number of sampling points

(selection frequency) in each habitat type. For example, cereals

made up about 4.6 km2 and received about 130 sampling points

in total, while corn fields made up only 0.1 ha and received less

than 5 sampling points
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identifying a preferred radius was recognized. How-

ever, with an increasing number of points sampled in a

landscape, it was possible to detect an increasing

precision, with the 750–1000 m scale chosen as

relevant and significant in the majority of the models

(Fig. 4a, b). When 20 points per landscape were

sampled (total N = 200), this scale was statistically

significant in 94% of the 50 models performed

(Fig. 4b).

When all samples collected in oilseed rape fields

(N = 56) were analyzed in a single model, only the

1000–1500 m radius remained in minimal adequate

models (Table 2). This means that this is the only scale

that can explain the data. The model using the dataset

restricted to semi-natural habitats (N = 50) selected

the same scale as the model that included all N = 247

systematically sampled points (750–1000 m).

Nonetheless, the estimate from this full semi-natural

habitat model was very different from the one

incorporating all habitats (Table 2; Fig. 5). In the

semi-natural habitat model, none of the points sampled

presented a proportion of oilseed rape greater than 0.3

and only a few exceeded 0.2. This constitutes a

truncated oilseed rape gradient, which means that part

of the range of the environmental variable was not

included in the sampling frame (Albert et al. 2010). As

a result, the expected number of bee species in the

missing range was clearly underestimated in the

outcome of the model, when compared to sampling

all habitats.

The estimates of bee richness in relation to

percentage of oilseed rape fields, when considering

only one point per landscape (N = 10), were very

variable, independent of the sampling habitat selected,

and fluctuated from negative to positive values

(Fig. 6). Furthermore, we found a gradual increase in

the precision of the estimates and reduction in bias

with a growing number of points included in the

sampling, as a larger proportion of the models

approached the estimate of the complete model

including all N = 247 points sampled (Fig. 6).
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Fig. 3 Overall pollinator species richness (predicted from

mixed-effects models) with the corresponding standard errors,

for each sampled habitat. Note the high standard errors in root

crops and corn (that were represented by only a few samples)
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Discussion

Our study shows that pollinator species richness can

be assessed on a landscape-wide scale using regular

grid-based sampling. The sampled habitats closely

reflected the ‘‘true’’ amounts of habitats in the

landscape. The number of samples per area and

sampling habitat affect the estimation of landscape–

wide pollinator species richness.

We found that limiting sampling to only one point

(one habitat patch) per landscape yields biased esti-

mates, given that individual points are subject to local

stochasticity. Estimates depended on the sampling

points chosen, as a consequence of the great variation

found among possible sampling points in the land-

scape. If only a few points in a landscape are sampled,

sampling intensity may be increased by exposing traps

for a longer period of time (Beduschi et al. 2018).

Under low sampling intensity per landscape, all of

the considered radii had equal chances of explaining

the data (Fig. 3); thus, the relevant spatial scales in a

dataset can only be reliably estimated if either (i) the

precision of individual estimates per landscape (i.e.

the number of sampling points) is increased or (ii) the

number of landscapes sampled is increased (which

was not possible in our case). Our simulation study

showed that the probability to identify the most

influential (‘‘correct’’) radius for a given response

variable increases with sample size. This sheds new

light on previous studies that extrapolated to the

landscape scale, but used only a few points in the

landscape (not arranged in a grid): For example,

several studies have focused on the effect of propor-

tion of oilseed rape fields in the landscape on pollen

beetles Meligethes aeneus (Fabricius, 1775), a pest of

oilseed rape, reaching very different conclusions.

Rusch et al. (2011) did not find an effect, while

Valantin-Morison et al. (2007) observed a positive

correlation and Zaller et al. (2008) found a negative

correlation between proportion of oilseed rape and

pollen beetle abundance.

Our results show that limiting the sampling to one

habitat type can lead to biased estimates in that they

cannot be extrapolated to the whole landscape. This

was observed even when the number of samples in that

habitat was increased. This can happen, as was the

case with the semi-natural habitat samples, because

ecological studies often do not encompass the full

range of possible environmental conditions (so-called

‘‘truncated gradient’’). Truncated gradients can be

avoided by sampling across a wider range of environ-

mental conditions (Mohler 1983), as is the case in

grid-based sampling.

The implications of our findings are potentially far-

reaching, as they may also affect species distribution

models; if these models are parameterized based on

Table 2 Scales retained in minimal adequate models, with

parameter estimates and standard errors from generalised least

squares models performed on the complete datasets of points

collected in semi-natural habitats, oilseed rape fields and

following a grid throughout the landscape

Sampling habitat Relevant scale Intercept Slope N

All habitats 750–1000 m 1.71 ± 0.07 - 1.72 ± 0.46 247

Oilseed rape fields 1000–1500 m 1.74 ± 0.14 - 2.31 ± 0.93 56

Semi-natural habitats 750–1000 m 1.87 ± 0.23 - 4.47 ± 1.80 50

All samples
r
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Fig. 5 Relationships between bee species richness (log trans-

formed) and proportion of area occupied by oilseed rape within a

buffer area ranging from 750 to 1000 m distance from the

sampling point. Data points constituting the full dataset are

represented by black circles. Yellow and green filled circles

represent samples from oilseed rape fields and semi-natural

habitats, respectively. Lines show predictions from generalized

least squares models. (Color figure online)
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poorly estimated samples, predictions of landscape-

wide biodiversity can be flawed. This results from the

inaccuracy of the estimated curves, which are incom-

plete descriptions of the responses of species to

environmental predictors (Thuiller et al. 2004).

Edwards et al. (2006) compared how predictions

based on a probabilistic versus a non-probabilistic

sampling designs reflect the real pattern of lichen

species distribution, and found that a systematic grid

sampling produces more realistic results than a

purposive sampling strategy (where sampling effort

is locally increased to detect particular species).

One of the most prominent examples of purposive

sampling of pollinators (and other flying insects) is a

recent study on insect declines in protected areas

(Hallmann et al. 2017). The study reported that insect

declines were ‘‘independent of land use composition at

surroundings’’ of their study locations, but sampling

was restricted to protected areas of low productivity.

Thus, conservation decisions on a landscape scale,

derived from purposive sampling, have to be handled

with care, and more studies encompassing a wider

range of habitats in a landscape are needed.

It is not surprising that sample size was important

for the precision of our estimates. This has already

been pointed out by Hirzel and Guisan (2002), while

Albert et al. (2010) argued that sampling design and

not sample size is the most relevant factor influencing

parameter estimation. Additionally, Marsh and Ewers

(2013) claimed that both configuration and number of

sampling points affect beta-diversity estimates, which

results in incorrect diversity partitioning estimates.

And even though the present study focused on alpha

diversity, we observed that both sample size and

sampling design play a significant role, influencing

precision and bias (for beta diversity, see Beduschi

et al. 2018). Therefore, it is advisable to sample study

areas multiple times to reduce uncertainty around the

estimates. While this procedure can generate spatial

autocorrelation in the residuals, a variety of statistical

methods can be used to account for this (e.g. Dormann

et al. 2007a).
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Fig. 6 Relationships between bee species richness (log trans-

formed) and proportion of area occupied by oilseed rape within a

buffer area ranging from 750 to 1000 m distance from the

sampling point. Yellow (dotted), green (dashed) and black lines

show the predictions made by generalized least squares models

for all the data points collected in oilseed rape fields, semi-

natural habitats and following a grid throughout the landscape,

respectively, as seen in Fig. 5. Each grey line represents the

outcome of a generalized least squares model performed in each

of 50 datasets created according to the following rules: a 1 point
per area sampled in semi-natural habitats; b 1 point per area

sampled in oilseed rape fields; c 5 random points per landscape

(top right); d 10 random points per landscape; e 15 random

points per landscape (bottom centre) and f 20 random points per

landscape
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Finally, we found that the spatial scale determining

pollinator species richness also changes with sampling

habitat. This indicates that the processes affecting

pollinator diversity operate at different scales accord-

ing to habitat type. For example, the radius of a

landscape sector best predicting species richness in

oilseed rape fields was larger than in semi-natural

habitats, which indicates that landscape-scale dilution

effects take place at larger scales as bees spillover to

farther areas. This shows that studies that sample only

one habitat are valuable to determine how diversity

relates to environmental variables or how it increases

with area within that habitat type. Nonetheless, it

should remain clear that the results will only allow

indirect estimates of how the surrounding landscape

affects local diversity.

It should be noted that the aim of our study was not

to justify pan-trap sampling over other sampling

methods. However, we were surprised to see that such

a comparatively simple method can produce pollinator

richness estimates across a wide range of habitats (as

has also been shown, e.g., by Westphal et al. 2008).

Future studies could employ colorless pan traps (e.g.

Everwand et al. 2014) to avoid too attractive traps.

Conclusions

We demonstrated that the sampling design can affect

the predictability of landscape-wide pollinator biodi-

versity estimates. Our results show that number of

samples per study area affected the precision of

parameter estimation and the preferential selection of

habitats for sampling generated biased estimates of

parameter and species richness. Parameter estimates

obtained by sampling in only one habitat type may be

relevant when the researcher aims to understand

biological responses within the boundaries of the

habitat. However, studies performed in only a single

habitat type cannot be extrapolated to the whole

landscape, which is the scale driving population

dynamics including extinction and survival, and

should therefore be interpreted cautiously. For studies

attempting to understand how pollinators respond to

landscape components, we suggest that the range of

the sampling area, variety of sampling habitats and the

number of sampling units should be increased to all

habitat types of the landscape level to obtain more

reliable results.

We showed how differences in sampling design

affect responses of pollinators to landscape-level

variables. However, our findings have wider implica-

tions also for other organisms with different foraging

ranges or home range sizes. Spatially interpolated

maps of organism presence should be based on

random or regular sampling designs, and grid-based

sampling schemes should be employed for biodiver-

sity monitoring schemes as a whole. Some countries,

such as Switzerland or Austria, have already imple-

mented grid-based sampling schemes, and it is hoped

that the present manuscript will contribute to improv-

ing such sampling regimes across taxa.
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