
"Piled Higher and Deeper" by Jorge Cham

Tools for Reproducible Research

Göteborg, November 28-29

1 ECTS

Course content:

• good practices for data analysis and management
• how to use the version control system git to track edits and collaborate on coding
• how to use the package and environment manager Conda
• how to use the workflow manager Snakemake
• how to use R Markdown to generate automated reports
• how to use Jupyter notebooks to document your ongoing analysis
• how to use Docker to distribute containerized computational environments

Snakemake

Teachers

LeifRasmus Viktor

http://nbis-reproducible-research.readthedocs.io

http://nbis-reproducible-research.readthedocs.io/

Introduction to Reproducible Research

Why all the talk about

reproducible research?

The Reproducibility project set out
to replicate 100 experiments
published in high-impact
psychology journals.

About one-half to two-thirds of the
original findings could not be
observed in the replication study.

RESEARCH ARTICLE SUMMARY
◥

PSYCHOLOGY

Estimating the reproducibility of
psychological science
Open Science Collaboration*

INTRODUCTION: Reproducibility is a defin-
ing feature of science, but the extent to which
it characterizes current research is unknown.
Scientific claims should not gain credence
because of the status or authority of their
originator but by the replicability of their
supporting evidence. Even research of exem-
plary quality may have irreproducible empir-
ical findings because of random or systematic
error.

RATIONALE: There is concern about the rate
and predictors of reproducibility, but limited
evidence. Potentially problematic practices in-
clude selective reporting, selective analysis, and
insufficient specification of the conditions nec-
essary or sufficient to obtain the results. Direct
replication is the attempt to recreate the con-
ditions believed sufficient for obtaining a pre-

viously observed finding and is the means of
establishing reproducibility of a finding with
new data. We conducted a large-scale, collab-
orative effort to obtain an initial estimate of
the reproducibility of psychological science.

RESULTS:We conducted replications of 100
experimental and correlational studies pub-
lished in three psychology journals using high-
powered designs and original materials when
available. There is no single standard for eval-
uating replication success. Here, we evaluated
reproducibility using significance and P values,
effect sizes, subjective assessments of replica-
tion teams, and meta-analysis of effect sizes.
The mean effect size (r) of the replication ef-
fects (Mr = 0.197, SD = 0.257) was half the mag-
nitude of the mean effect size of the original
effects (Mr = 0.403, SD = 0.188), representing a

substantial decline.Ninety-sevenpercent of orig-
inal studies had significant results (P < .05).
Thirty-six percent of replications had signifi-

cant results; 47% of origi-
nal effect sizes were in the
95% confidence interval
of the replication effect
size; 39% of effects were
subjectively rated to have
replicated the original re-

sult; and if no bias in original results is as-
sumed, combining original and replication
results left 68% with statistically significant
effects. Correlational tests suggest that repli-
cation success was better predicted by the
strength of original evidence than by charac-
teristics of the original and replication teams.

CONCLUSION:No single indicator sufficient-
ly describes replication success, and the five
indicators examined here are not the only
ways to evaluate reproducibility. Nonetheless,
collectively these results offer a clear conclu-
sion: A large portion of replications produced
weaker evidence for the original findings de-
spite using materials provided by the original
authors, review in advance for methodologi-
cal fidelity, and high statistical power to detect
the original effect sizes. Moreover, correlational
evidence is consistent with the conclusion that
variation in the strength of initial evidence
(such as original P value) was more predictive
of replication success than variation in the
characteristics of the teams conducting the
research (such as experience and expertise).
The latter factors certainly can influence rep-
lication success, but they did not appear to do
so here.
Reproducibility is not well understood be-

cause the incentives for individual scientists
prioritize novelty over replication. Innova-
tion is the engine of discovery and is vital for
a productive, effective scientific enterprise.
However, innovative ideas become old news
fast. Journal reviewers and editors may dis-
miss a new test of a published idea as un-
original. The claim that “we already know this”
belies the uncertainty of scientific evidence.
Innovation points out paths that are possible;
replication points out paths that are likely;
progress relies on both. Replication can in-
crease certainty when findings are reproduced
and promote innovation when they are not.
This project provides accumulating evidence
for many findings in psychological research
and suggests that there is still more work to
do to verify whether we know what we think
we know.▪

RESEARCH

SCIENCE sciencemag.org 28 AUGUST 2015 • VOL 349 ISSUE 6251 943

The list of author affiliations is available in the full article online.
*Corresponding author. E-mail: nosek@virginia.edu
Cite this article as Open Science Collaboration, Science 349,
aac4716 (2015). DOI: 10.1126/science.aac4716

Original study effect size versus replication effect size (correlation coefficients). Diagonal
line represents replication effect size equal to original effect size. Dotted line represents replication
effect size of 0. Points below the dotted line were effects in the opposite direction of the original.
Density plots are separated by significant (blue) and nonsignificant (red) effects.

ON OUR WEB SITE
◥

Read the full article
at http://dx.doi.
org/10.1126/
science.aac4716
..

 o
n

D
ec

em
be

r 1
, 2

01
6

ht
tp

://
sc

ie
nc

e.
sc

ie
nc

em
ag

.o
rg

/
D

ow
nl

oa
de

d
fr

om

Why all the talk about

reproducible research?

A survey in Nature revealed
that irreproducible
experiments are a problem
across all domains of
science1.

Medicine is among the most
affected research fields. A
study in Nature found that
47 out of 53 medical
research papers focused on
cancer research were
irreproducible2.

Common features were
failure to show all the data
and inappropriate use of
statistical tests.[1] "1,500 scientists lift the lid on reproducibility". Nature. 533: 452–454

[2] Begley, C. G.; Ellis, L. M. (2012). "Drug development: Raise standards for preclinical cancer research". Nature. 483 (7391): 531–533.

Summary of the efforts to replicate the published analyses.
Adopted from: Ioannidis et al. Repeatability of published microarray gene expression analyses.
Nature Genetics 41 (2009) doi:10.1038/ng.295

Data not
available

Software not available

Methods unclear

Different results

Cannot
reproduce

Can reproduce…

…in principle

…with some
discrepancies

…from processed
data with some
discrepancies

…partially with some
discrepencies

Why all the talk about

reproducible research?

Replication of data analyses in 18 articles on microarray-based gene
expression profiling published in Nature Genetics in 2005–2006:

”Why call the course Reproducible Research,
when it could just as well be called Research?”

- Niclas Jareborg, NBIS data management guru

What do we mean with

reproducible research?

Data

Same Different

C
od

e Sa
m

e

Reproducible Replicable

D
iff

er
en

t

Robust Generalisable

Data

Environment

Source code

Results

All parts of a bioinformatics analysis have to be reproducible:

”The foundations of knowledge should be
constituted by experimentally produced facts,
which can be made believable to a scientific
community by their reproducibility."

- Robert Boyle, 1627-1691

Decent Getting there… Well done!
• Data available on

request.
• All meta data required

for generating the
results available.

• Data deposited in public
repositories.

• Raw data available in
unedited form.

• If the raw data needed
preprocessing, scripts
were used rather than
modifying it manually.

• Section in the paper to aid in
reproduction.

• Used non-proprietary and
machine-readable formats, e.g.
.csv rather than .xls.

• All code for generating
results from processed
data available on
request.

• All code for generating
results from raw data is
available.

• The code is publically
available with
timestamps/tags.

• All code for generating results
from publically available raw
data is available.

• Code is documented and
contains instructions for
reproducing results.

• Seeds were used and
documented for heuristic
methods.

• Key programs used are
mentioned in the
methods section.

• List of all programs used,
and their respective
versions, available.

• Instructions for reproducing the
environment publically available.

Read more: Wilson et al. (2017) Good enough practices in scientific computing. PLoS Comput Biol 13(6)

Where does your latest publication fit?

“It takes some effort to organize your research to be reproducible. We found
that although the effort seems to be directed to helping other people stand up
on your shoulders, the principal beneficiary is generally the author herself.
This is because time turns each one of us into another person, and by making
effort to communicate with strangers, we help ourselves to communicate with
our future selves.”

Schwab et al. Making scientific computations reproducible.
Computing in Science Engineering (2000).

What’s in it for me?

What was I
thinking???

Before project
• Improved structure and organization.
• Forced to think about scope and

limitations.

During project
• Easier to rerun analyses and generate

results after updating data, tools,
parameters, etc.

• Closer interaction between collaborators.
• Much of the manuscript "writes itself".

After project
• Faster resumption of research by others (or

your future self), thereby increasing the
impact of your work.

• Increased visibility in the scientific
community.

I’ll just change
this and press

”rerun”.

One year in submission loop and reviewer comments are finally back…
Took courseDidn't take course

Data management

Raw data

Meta data

Data (mis)management in practice

Data

acquisition

Data arrives in

cumbersome and

proprietary

format.

In researcher's

lab journal.

Analysis

Hard-coded in

various analysis

scripts.

Gets converted to

format of choice.

Original files (and

conversion

settings) are lost.

First

submission

Mailed back and

forth between

collaborators in

ever-changing (but

nicely colored)

Excel sheets.

Review

Leads a quiet life

on the HPC cluster,

until the project

expires and the

data has to be

urgently retrieved.

Second

submission

Reformatted and

included as PDF in

the supplementary.

Ends its days on an

external hard drive

on the researcher's

desk.

Publication

"Data available

upon request".

FAIR

Strive to make your data FAIR – Findable, Accessible, Interoperable, and Reusable for both
machines and humans.

Wilkinson, Mark et al. “The FAIR Guiding Principles for scientific data management and stewardship”.
Scientific Data 3, 160018 (2016) doi:10.1038/sdata.2016.18

Comment: The FAIR Guiding
Principles for scientific data
management and stewardship
Mark D. Wilkinson et al.#

There is an urgent need to improve the infrastructure supporting the reuse of scholarly data. A diverse
set of stakeholders—representing academia, industry, funding agencies, and scholarly publishers—have
come together to design and jointly endorse a concise and measureable set of principles that we refer
to as the FAIR Data Principles. The intent is that these may act as a guideline for those wishing to
enhance the reusability of their data holdings. Distinct from peer initiatives that focus on the human
scholar, the FAIR Principles put specific emphasis on enhancing the ability of machines to automatically
find and use the data, in addition to supporting its reuse by individuals. This Comment is the first
formal publication of the FAIR Principles, and includes the rationale behind them, and some exemplar
implementations in the community.

Supporting discovery through good data management
Good data management is not a goal in itself, but rather is the key conduit leading to knowledge
discovery and innovation, and to subsequent data and knowledge integration and reuse by the
community after the data publication process. Unfortunately, the existing digital ecosystem
surrounding scholarly data publication prevents us from extracting maximum benefit from our
research investments (e.g., ref. 1). Partially in response to this, science funders, publishers and
governmental agencies are beginning to require data management and stewardship plans for data
generated in publicly funded experiments. Beyond proper collection, annotation, and archival, data
stewardship includes the notion of ‘long-term care’ of valuable digital assets, with the goal that they
should be discovered and re-used for downstream investigations, either alone, or in combination with
newly generated data. The outcomes from good data management and stewardship, therefore, are
high quality digital publications that facilitate and simplify this ongoing process of discovery, evaluation,
and reuse in downstream studies. What constitutes ‘good data management’ is, however, largely
undefined, and is generally left as a decision for the data or repository owner. Therefore, bringing some
clarity around the goals and desiderata of good data management and stewardship, and defining
simple guideposts to inform those who publish and/or preserve scholarly data, would be of great utility.

This article describes four foundational principles—Findability, Accessibility, Interoperability, and
Reusability—that serve to guide data producers and publishers as they navigate around these
obstacles, thereby helping to maximize the added-value gained by contemporary, formal scholarly
digital publishing. Importantly, it is our intent that the principles apply not only to ‘data’ in the
conventional sense, but also to the algorithms, tools, and workflows that led to that data. All
scholarly digital research objects2—from data to analytical pipelines—benefit from application of
these principles, since all components of the research process must be available to ensure
transparency, reproducibility, and reusability.

There are numerous and diverse stakeholders who stand to benefit from overcoming these obstacles:
researchers wanting to share, get credit, and reuse each other’s data and interpretations; professional
data publishers offering their services; software and tool-builders providing data analysis and
processing services such as reusable workflows; funding agencies (private and public) increasingly

Correspondence and requests for materials should be addressed to B.M. (email: barend.mons@dtls.nl).
#A full list of authors and their affiliations appears at the end of the paper.

OPEN
SUBJECT CATEGORIES

» Research data

» Publication

characteristics

Received: 10 December 2015

Accepted: 12 February 2016

Published: 15 March 2016

www.nature.com/scientificdata

SCIENTIFIC DATA | 3:160018 | DOI: 10.1038/sdata.2016.18 1

principles, leads the resource along the continuum towards this optimal state. In addition, the idea of
being machine-actionable applies in two contexts—first, when referring to the contextual metadata
surrounding a digital object (‘what is it?’), and second, when referring to the content of the digital
object itself (‘how do I process it/integrate it?’). Either, or both of these may be machine-actionable,
and each forms its own continuum of actionability.

Finally, we wish to draw a distinction between data that is machine-actionable as a result of specific
investment in software supporting that data-type, for example, bespoke parsers that understand life
science wwPDB files or space science Space Physics Archive Search and Extract (SPASE) files, and
data that is machine-actionable exclusively through the utilization of general-purpose, open
technologies. To reiterate the earlier point—ultimate machine-actionability occurs when a machine
can make a useful decision regarding data that it has not encountered before. This distinction is
important when considering both (a) the rapidly growing and evolving data environment, with new
technologies and new, more complex data-types continuously being developed, and (b) the growth of
general-purpose repositories, where the data-types likely to be encountered by an agent are
unpredictable. Creating bespoke parsers, in all computer languages, for all data-types and all
analytical tools that require those data-types, is not a sustainable activity. As such, the focus on
assisting machines in their discovery and exploration of data through application of more generalized
interoperability technologies and standards at the data/repository level, becomes a first-priority for
good data stewardship.

The FAIR Guiding Principles in detail
Representatives of the interested stakeholder-groups, discussed above, coalesced around four core
desiderata—the FAIR Guiding Principles—and limited elaboration of these, which have been refined
(Box 2) from the meeting’s original draft, available at (https://www.force11.org/node/6062). A
separate document that dynamically addresses community discussion relating to clarifications and
explanations of the principles, and detailed guidelines for and examples of FAIR implementations, is
currently being constructed (http://datafairport.org/fair-principles-living-document-menu). The FAIR
Guiding Principles describe distinct considerations for contemporary data publishing environments
with respect to supporting both manual and automated deposition, exploration, sharing, and reuse.
While there have been a number of recent, often domain-focused publications advocating for specific
improvements in practices relating to data management and archival1,11,12, FAIR differs in that it
describes concise, domain-independent, high-level principles that can be applied to a wide range of
scholarly outputs. Throughout the Principles, we use the phrase ‘(meta)data’ in cases where the
Principle should be applied to both metadata and data.

The elements of the FAIR Principles are related, but independent and separable. The Principles define
characteristics that contemporary data resources, tools, vocabularies and infrastructures should
exhibit to assist discovery and reuse by third-parties. By minimally defining each guiding principle, the
barrier-to-entry for data producers, publishers and stewards who wish to make their data holdings
FAIR is purposely maintained as low as possible. The Principles may be adhered to in any combination
and incrementally, as data providers’ publishing environments evolve to increasing degrees of
‘FAIRness’. Moreover, the modularity of the Principles, and their distinction between data and
metadata, explicitly support a wide range of special circumstances. One such example is highly
sensitive or personally-identifiable data, where publication of rich metadata to facilitate discovery,
including clear rules regarding the process for accessing the data, provides a high degree of ‘FAIRness’
even in the absence of FAIR publication of the data itself. A second example involves the publication

Box 2 | The FAIR Guiding Principles

To be Findable:
F1. (meta)data are assigned a globally unique and persistent identifier
F2. data are described with rich metadata (defined by R1 below)
F3. metadata clearly and explicitly include the identifier of the data it describes
F4. (meta)data are registered or indexed in a searchable resource

To be Accessible:
A1. (meta)data are retrievable by their identifier using a standardized communications protocol
A1.1 the protocol is open, free, and universally implementable
A1.2 the protocol allows for an authentication and authorization procedure, where necessary
A2. metadata are accessible, even when the data are no longer available

To be Interoperable:
I1. (meta)data use a formal, accessible, shared, and broadly applicable language for knowledge representation.
I2. (meta)data use vocabularies that follow FAIR principles
I3. (meta)data include qualified references to other (meta)data

To be Reusable:
R1. meta(data) are richly described with a plurality of accurate and relevant attributes
R1.1. (meta)data are released with a clear and accessible data usage license
R1.2. (meta)data are associated with detailed provenance
R1.3. (meta)data meet domain-relevant community standards

www.nature.com/sdata/

SCIENTIFIC DATA | 3:160018 | DOI: 10.1038/sdata.2016.18 4

Data management plan

• Check the requirements of your funding agency and field
of research.

• List the types of data that you expect to produce.
• Decide what data require archiving, and determine how

much storage space you will need (short and long term).
• Provide metadata that allows others to understand, cite

and reuse your data files.
• Make clear how and when your data can be shared with

scientists outside your group.
• If your research involves sensitive data, explain any legal

and ethical restrictions on data access and reuse.
• Look for suitable data repositories used by your research

community.
• Check what data format and structure the chosen

repository might request.

Adapted from Nature 555, 403-405 (2018), doi: 10.1038/d41586-018-03071-1

Plan

Create

Process

AnalyzePreserve

Share

Reuse

Life cycle for scientific data

Pair up and discuss!

• Does your group have a data management plan in place?
• Do you know "your" repositories and how to submit data to them?

Data acquisition and deposit

• Find the right repository for your data, and strive towards
uploading data to its final destination already at the
beginning of a project.

• Structure metadata in the format needed by the repository
already as the experiments are being performed.

• Stick to non-proprietary and widely used file formats.

• Only 12% of articles from NIH funded research
mention data deposited in international repositories

• Estimated 200000+ “invisible” data sets / year

Read et al. (2015) PLoS ONE 10(7) doi:10.1371/journal.pone.0132735

Scientific Data (Springer Nature) maintains a list of recommended
repositories at www.nature.com/sdata/policies/repositories.

Dedicated repositories:
e.g. SRA, GEO, GenBank, UniProt etc.

Generalist ("long-tail data") repositories:
Research data that doesn’t fit in structured data repositories, e.g.
Data Dryad, Figshare, Zenodo.

Each dataset can be assigned a Digital Object Identifier ();
a persistent identifier used to uniquely identify objects.

Data acquisition and deposit

• Find the right repository for your data, and strive towards
uploading data to its final destination already at the
beginning of a project.

• Structure metadata in the format needed by the repository
already as the experiments are being performed.

• Stick to non-proprietary and widely used file formats.

SRA (Sequence Read Archive) uses a template Excel sheet for metadata.

GEO (Gene Expression Omnibus) uses
text files in SOFT format.

Data acquisition and deposit

• Find the right repository for your data, and strive towards
uploading data to its final destination already at the
beginning of a project.

• Structure metadata in the format needed by the repository
already as the experiments are being performed.

• Stick to non-proprietary and widely used file formats.

- +
Binary Text-based
Proprietary Open

New kid on the block Old as the hills

Compressed/encrypted Uncompressed/unencrypted
Platform dependent Interoperable

Complex Simple

! " #

Raster graphic wmf, psd bmp, gif tiff, png, jpeg

Vector graphic ai, eps pdf svg
Document doc docx, tex odt, utf-8, md

Archive rar 7z zip, tar, gz

Tabular data xls, rds,
mat

xlsx, ods csv

Data sharing

From 10,555 studies with gene expression microarray
data:

• Studies that shared data received 9% more
citations (after accounting for other covariates).

• Data reuse by other researchers continued for >6
years.

• A very conservative estimate found that 20% of the
datasets deposited between 2003 and 2007 had
been reused at least once by third parties.

Piwowar and Vision (2013), Data reuse and the open data
citation advantage, PeerJ 1:e175, doi:10.7717/peerj.175

Data sharing – Open access

• Democracy and transparency
– Publicly funded research data should be accessible

to all free of charge.
– Published results and conclusions should be

possible to check by others.

• Research
– Enables others to combine data, address new

questions, and develop new analytical methods.
– Reduce duplication and waste.

• Innovation and utilization outside research
– Public authorities, companies, and individuals

outside academia can make use of the data.

• Citation
– Citation of data will be a merit for the researcher

that produced it.

Data sharing – Ontologies

lauroyl-CoA
dodecanoyl-CoA
C12:0-CoA
lauroyl coenzyme A
coenzyme A, S-dodecanoate
dodecanoyl coenzyme A
C12:0 coenzyme A
dodecanoic acid coenzyme A
lauroylic acid CoA

Dodecanethioic acid, S-ester with coenzyme A

Coenzyme A, S-laurate (7CI,8CI)

12:0, lauroyl-CoA

1-undecanecarboxylic acid CoA

vulvic acid CoA

3'-phosphoadenosine 5'-(3-{(3R)-4-[(3-{[2-(dodecanoylsulfanyl)ethyl]amino}-3-oxopropyl)amino]-3-hydroxy-2,2-
dimethyl-4-oxobutyl} dihydrogen diphosphate)

Who am I?
urn.miriam.chebi:15521 of course!
<scheme>.<registry>.<repository>:<id>

Data sharing – Ontologies

Project organization

The first step towards working reproducible: Get organized!

Divide your work into distinct projects and keep all files needed
to go from raw data to final results in a dedicated directory with
relevant subdirectories.

The project directory

Pair up and discuss!

• Do you organize your work in distinct projects?
• How do you organize your files in this context?
• Are you happy with the way you work today?

project
|- doc/ documentation for the study
|
|- data/ raw and primary data, essentially all input files, never edit!
| |- raw_external/
| |- raw_internal/
| |- meta/
|
|- code/ all code needed to go from input files to final results
|- notebooks/ notebooks that document your day-to-day work
|
|- intermediate/ output files from different analysis steps, can be deleted
|- scratch/ temporary files that can be safely deleted or lost
|- logs/ logs from the different analysis steps
|
|- results/ output from workflows and analyses
| |- figures/
| |- tables/
| |- reports/
|
|- Snakefile project workflow, carries out analysis contained in code/
|- config.yml configuration of the project workflow
|- environment.yml software dependencies list, used to create a project environment
|- Dockerfile recipe to create a project container

https://github.com/NBISweden/project_template
Noble WS (2009) A Quick Guide to Organizing Computational Biology Projects. PLoS Comput Biol 5(7): e1000424.

http://journals.plos.org/ploscompbiol/article?id=info:doi/10.1371/journal.pcbi.1000424

Working in projects

Sublime Text

The project directory

https://github.com/NBISweden/project_template
http://journals.plos.org/ploscompbiol/article?id=info:doi/10.1371/journal.pcbi.1000424

File naming system

Machine readable
• Avoid special characters, e.g.: ~!@#$%^&*()`;<>?,[]{}‘”|
• Avoid spaces, alternatives:

• file_name.txt
• file-name.txt
• filename.txt
• FileName.txt

Human readable
• Know the content of a file without opening it, e.g.:

SRR1234.hg19.sorted.trimmed.bam

Control file ordering
• Use dates if appropriate
• Use 01, 02, rather than 1, 2

~ ! @ # $ %
^ & * () ` ; <
> ? , [] { } ‘ ” |

Bad examples: Good examples:

A project in Atom

Syntax highlighting, indentation, and autocomplete

A project in Atom

Integrated version control with Git

A project in Atom

Automatically sync files between local/remote

A project in Atom

Tons of plugins, e.g. for viewing different file formats

Rstudio

A project in RStudio

Data

Environment

Source code

Results

project
|- doc/
|
|- data/
| |- raw_external/
| |- raw_internal/

| |- meta/

|
|- code/
|- notebooks/
|
|- intermediate/
|- scratch/
|- logs/
|
|- results/
| |- figures/
| |- tables/
| |- reports/
|
|- Snakefile
|- config.yml
|- environment.yml
|- Dockerfile

Tools for Reproducible Research

Versioning and
collaborating on code
(and some other files)

Managing
dependencies

Snakemake

Managing and executing
analysis workflow

Isolating and exporting
environment

and…

Connecting code
and reporting

Student experience

Snakemake

Versioning and
collaborating on code
(and some other files)

Managing
dependencies

Snakemake

Managing and executing
analysis workflow

Isolating and exporting
environment

and…

Connecting code
and reporting

Full reproducibility requires the possibility to
recreate the system that was originally used to

generate the results.

- Conda is a package, dependency, and environment manager.
- Works for software developed in any programming language.

Decent Getting there… Well done!

Methods

We used:

Bowtie2
Samtools
HTSeq

Methods

We used:

Bowtie2 (v2.3)
Samtools (v1.6)
HTSeq (v0.9)

Manuscript.docxManuscript.docx

User install manually
(including all needed

dependencies).

channels:
- conda-forge
- bioconda
dependencies:
- bowtie2=2.3
- samtools=1.6
- htseq=0.9

environment.yml

Conda creates an
environment with the listed

packages and dependencies
automatically.

What is Conda?

Fetching package metadata
Solving package specifications:

Package plan for installation in environment /Users/varemo/Applications/miniconda2/envs/test-r2:

The following packages will be downloaded:

package	build
sqlite-3.13.0 | 1 1.4 MB conda-forge
libpng-1.6.24 | 0 338 KB conda-forge
python-2.7.12 | 1 11.8 MB conda-forge
certifi-2016.8.31 | py27_0 218 KB conda-forge
freetype-2.6.3 | 1 782 KB conda-forge
functools32-3.2.3.2 | py27_1 16 KB conda-forge
numpy-1.11.1 | py27_0 3.1 MB defaults
pyparsing-2.1.8 | py27_0 89 KB conda-forge
pytz-2016.6.1 | py27_0 183 KB conda-forge
six-1.10.0 | py27_0 18 KB conda-forge
cycler-0.10.0 | py27_0 13 KB conda-forge
python-dateutil-2.5.3 | py27_0 236 KB conda-forge
setuptools-26.1.1 | py27_0 346 KB conda-forge
matplotlib-1.5.3 | np111py27_0 4.1 MB conda-forge
wheel-0.29.0 | py27_0 81 KB conda-forge
pip-8.1.2 | py27_0 1.5 MB conda-forge
--

Total: 24.2 MB

The following NEW packages will be INSTALLED:

certifi: 2016.8.31-py27_0 conda-forge
cycler: 0.10.0-py27_0 conda-forge
freetype: 2.6.3-1 conda-forge

conda install -c conda-forge matplotlib$

$

>>>

Package manager
- Conda package: compressed tarball (system-level libraries, Python or other modules, executable programs, or other components).

- Conda keeps track of the dependencies between packages and platforms.
- Conda packages are downloaded from remote channels.

python

import matplotlib

conda create --name env1 –c bioconda fastqc
fastqc --version

-bash: fastqc: command not found
source activate env1

fastqc --version
FastQC v0.11.5

source deactivate
conda create --name env2 –c bioconda python=3 snakemake
python --version

Python 2.7.12 :: Continuum Analytics, Inc.
snakemake --version

-bash: snakemake: command not found
source activate env2

python --version
Python 3.4.3 :: Continuum Analytics, Inc.

snakemake --version
3.7.1

$
$

$
$(env1)

$(env1)
$
$

$

$
$(env2)

$(env2)

$(env2)

- Conda environment: directory that contains a specific collection of Conda packages that you have installed.
- Packages are symlinked between environments to avoid duplication.

Environment manager

channels:
- conda-forge
- bioconda
dependencies:
- fastqc=0.11
- sra-tools=2.8
- snakemake=4.3.0
- multiqc=1.3
- bowtie2=2.3
- samtools=1.6
- htseq=0.9
- graphviz=2.38.0

conda env create --name project_a -f environment.yml$

environment.yml - Create an environment from specifications in a file.
- All additional dependencies will be included.
- The environment.yml file can be shared with others and used to recreate

the environment on other systems.

- Update existing environment after adding new packages to environment.yml:

conda env update –f environment.yml$

- Export existing environment as new yaml file (also includes dependencies):

conda env export > environment_full.yml$

Defining and sharing environments

Data

Environment

Source code

Results

project
|- doc/
|
|- data/
| |- raw_external/
| |- raw_internal/
| |- meta/
|
|- code/
|- notebooks/
|
|- intermediate/
|- scratch/
|- logs/
|
|- results/
| |- figures/
| |- tables/
| |- reports/
|
|- Snakefile
|- config.yml
|- environment.yml

|- Dockerfile

The tutorials

A few practical notes…

Scanning electron micro-graph of a
human neutrophil ingesting MRSA

- Methicillin-resistant Staphylococcus aureus
(MRSA):

• is resistant to broad spectrum beta-
lactam antibiotics

• lead to difficult-to-treat infections in
humans

- Lytic bacteriophages have been suggested
as potential therapeutic agents, or as the
source of novel antibiotic proteins or
peptides.

- One such protein, gp67, was identified as a
transcription-inhibiting transcription factor
with an antimicrobial effect.

- To identify S. aureus genes repressed by
gp67, the authors expressed gp67 in
S. aureus cells.

- RNA-seq was performed on S. aureus
strains:

• RN4220 with pRMC2 with gp67
• RN4220 with empty pRMC2
• NCTC8325-4

The analysis workflow

Snakemake

Environment management
Set up and manage the project environment

Version control
Track and backup your project history

Workflow management
Move from separate scripts to a connected analysis

Reports
Connect code, output and text in fancy reports

Containerization
Make your project self-contained and distributable

Notebooks
Document your exploratory analysis

The tutorials

Do it all! Workflow
Reproducible
environment

Interactive
notebooks

Start here!

Start here!

http://nbis-reproducible-research.readthedocs.io

- Clone course git repository to get all files needed for
tutorials!

- Each tutorial will run in a specific subdirectory within
reproducible_research_course, make sure you
are running from the right place!

- Exception: the git tutorial will be run in a user-created
directory outside of
reproducible_research_course.

Getting started

http://nbis-reproducible-research.readthedocs.io/

Versioning and
collaborating on code
(and some other files)

Managing
dependencies

Snakemake

Managing and executing
analysis workflow

Isolating and exporting
environment

and…

Connecting code
and reporting

As projects grow or age, it becomes
increasingly difficult to keep track of all the parts

and how they fit together.

“Snakemake is a workflow management system that
aims to reduce the complexity of creating workflows by

providing a fast and comfortable execution environment,
together with a clean and modern specification

language in python style.”

Snakemake

Figure 1script1

Figure 2script2AdataA script2B script2CfileA filesC,D,E

Reproducibility

dataBSc
al

ab
ilit

y

dataC

dataD

Workflow management systems come in different
flavors.

Explicit syntax ("Push")

"Here are my inputs, please perform these
operations in this order on them."

Implicit syntax ("Pull")

"I need this output, could you please figure out
which operations to perform and in which order?"

Snakemake

Explicit approach using Bash

for sample in *.fastq
do

id=$(echo ${sample} | sed 's/.fastq//')

Trim fastq file
echo “Trimming ${id}“
seqtk trimfq -b 5 -e 10 $sample > \
${id}.trimmed.fastq

Compress fastq file
echo “Compressing ${id}“
gzip -c ${id}.trimmed.fastq > \
${id}.trimmed.fastq.gz

Remove intermediate files
rm ${id}.trimmed.fastq

done

$bash trim_and_zip.sh
Trimming sample: a
Compressing sample: a
Trimming sample: b
Compressing sample: b

Snakemake

trim_and_zip.sh

Implicit approach using Snakemake

rule trim_fastq:

input: "{prefix}.fastq"
output: temp("{prefix}.trimmed.fastq")
shell:

"seqtk trimfq -b 5 -e 10 {input} > {output}"

rule gzip:
input: "{prefix}"
output: "{prefix}.gz"
shell:

"gzip -c {input} > {output}"

$snakemake {a,b}.trimmed.fastq.gz
Provided cores: 1
Rules claiming more threads will be
scaled down.
Job counts:
count jobs
2 gzip
2 trim_fastq
4
rule trim_fastq:

input: a.fastq
output: a.trimmed.fastq
wildcards: prefix=a

1 of 4 steps (25%) done
rule gzip:

input: a.trimmed.fastq
output: a.trimmed.fastq.gz
wildcards: prefix=a.trimmed.fastq

Removing temporary output file a.trimmed.fastq.
2 of 4 steps (50%) done
rule trim_fastq:

input: b.fastq
output: b.trimmed.fastq
wildcards: prefix=b

3 of 4 steps (75%) done
rule gzip:

input: b.trimmed.fastq
output: b.trimmed.fastq.gz
wildcards: prefix=b.trimmed.fastq

Removing temporary output file b.trimmed.fastq.
4 of 4 steps (100%) done

Snakemake

Snakefile

Snakemake figures out how rules can
be pieced together to generate some
requested output.

Here we ask for supplementary.pdf,
which is an R Markdown report
generated by the rule
make_supplementary.

Snakemake

$snakemake supplementary.pdf --rulegraph | dot -Tpdf > rulegraph.pdf

$snakemake supplementary.pdf --dag | dot -Tpdf > dag.pdf

Snakemake

make_supplementary

multiqc generate_rulegraphgenerate_count_table

fastqc
id: SRR935090

sort_bam
prefix: intermediate/SRR935090

get_genome_gff3
genome_id: NCTC8325

get_SRA_by_accession
sra_id: SRR935090

align_to_genome

index_genome

get_genome_fasta
genome_id: NCTC8325

Snakemake keeps track of when files
were generated and by which rules.

Dotted rule boxes show that
supplementary.pdf already exists
and that it's newer than its
dependencies (recursively).

$touch intermediate/NCTC8325.1.bt2

$snakemake supplementary.pdf --dag | dot -Tpdf > dag.pdf

Snakemake

Here Snakemake detects that a file
used in align_to_genome is newer
than downstream files, so it reruns the
necessary rules.

make_supplementary

multiqc generate_count_table generate_rulegraph

fastqc
id: SRR935090

sort_bam
prefix: intermediate/SRR935090

get_genome_gff3
genome_id: NCTC8325

get_SRA_by_accession
sra_id: SRR935090

align_to_genome

index_genome

get_genome_fasta
genome_id: NCTC8325

$snakemake supplementary.pdf --config genome_id=ST398

-f get_genome_fasta --dag | dot -Tpdf > dag.pdf

Snakemake

make_supplementary

multiqc generate_count_table generate_rulegraph

fastqc
id: SRR935090

get_genome_gff3
genome_id: ST398

sort_bam
prefix: intermediate/SRR935090

get_SRA_by_accession
sra_id: SRR935090

align_to_genome

index_genome

get_genome_fasta
genome_id: ST398

Forcing a rule (get_genome_fasta
here) to be rerun also leads to
rerunning all rules that depend on it.

Note that we also change the
parameter "genome_id" to use another
genome to align to. This causes
get_genome_gff3 to be rerun as
well.

import os

rule trim_fastq:
input: "{prefix}.fastq"
output: temp("{prefix}.trimmed.fastq")
params:

leftTrim=5,
rightTrim=10

log: "logs/trim_fastq.log"
version: "0.1"
message: "Trimming {input[0]}."
shadow: True
threads: 8
priority: 90
resources: mem=64
conda: "envs/seqtk.yaml”
singularity: "docker://quay.io/biocontainers/seqtk"
run:

if (os.stat(input[0]).st_size > 0):
shell("seqtk trimfq -t {threads} –b {params.leftTrim}

-e {params.rightTrim} {input} > {output} 2> {log}")
else:

raise IOError(input[0]+" is empty.")

Snakemake

Anatomy of a Snakemake rule

execute the workflow with target a.trimmed.fastq.gz
snakemake a.trimmed.fastq.gz

execute the workflow with the first rule as target
snakemake

dry-run, print shell commands and reason for execution
snakemake -n –p -r

visualize the DAG of jobs using the Graphviz dot command
snakemake --dag | dot -Tsvg > dag.svg

execute the workflow with 8 cores
snakemake --cores 8

run the workflow on a SLURM cluster
snakemake --cluster-config cluster.yml --cluster \

"sbatch -A {cluster.account} -t {cluster.time}"

Snakemake

Command line interface

Things can get
rather complex...

Snakemake

diffbind

get_main_annotat ion_file

generate_paper_figures

aggregate_phantompeaks

qc_report

bamtools_filter_script

atacseq_correct_coordinates

compare_to_FAIRE_and_DNASE

bed_report

atacseq_report

generate_all_reports

download_blacklist

ling_macs2_filter_peaksbed6_blacklist

aggregate_bed_jaccard

picard_collect_alignment_summary_metrics

atacseq_aggregate_picard_results

ling_macs2_combine_xls_with_annotat ion

macs2_xls_to_bed

plot_correlat ion

find_mot if_posit ions

genome_coverage

phantompeaks

pdf2png

merge_bam_diabet ic

bam_subsampling bam_summary

picard_build_bam_index

compare_to_FAIRE

merge_close_peaks

annotatePeaks

macs2_callpeak_t reatment_only_bam_pe

peaks_vs_coverage

annotate_TSS_distance_groups

homer_find_mot ifs

fetch_chrom_sizes

picard_merge_sam

picard_mark_duplicates

qualimap_bamqc

download_histone_modificat ions

compare_to_histone_modificat ions

bamtools_create_filter_script

filter_macs

intersect_all_bedaggregate_bed_reldist

annotate_subset

bowt ie2_align_pe

picard_sort_sam

rulegraph_png

merge_annotated_features

merge_bam

rulegraphpicard_collect_insert_size_metrics picard_mark_duplicates_log

download_FAIRE_and_DNASE

atacseq_aggregate_cutadapt_results

annotate_to_mult iple

cutadapt_cut_paired_end

aggregate_histone_mark_comparison

merge_bam_healthy

get_all_TSS

bowt ie2_build

homer_annotat ion_to_bed

atacseq_aggregate_qualimap_results

Data

Environment

Source code

Results

project
|- doc/
|
|- data/
| |- raw_external/
| |- raw_internal/
| |- meta/
|
|- code/
|- notebooks/
|
|- intermediate/
|- scratch/
|- logs/
|
|- results/
| |- figures/
| |- tables/
| |- reports/
|
|- Snakefile

|- config.yml

|- environment.yml
|- Dockerfile

Snakemake

Versioning and
collaborating on code
(and some other files)

Managing
dependencies

Snakemake

Managing and executing
analysis workflow

Isolating and exporting
environment

and…

Connecting code
and reporting

- Widely used system for file version control.
- Keeps copies of files and code from every stages

in their lifecycle.
- Kind of like Dropbox, but you decide when each

version is saved (and a lot more advanced
features).

- Each file has a distinct history with specific
incremental changes (each with a reference
code).

- Revert files to previous state.
- Compare changes over time.
- See who modified what.

- Makes you fearless.
- Runs on command line, but there also exists GUI

and integration in e.g. text editors.
- Mainly for text files, not for binary files or large

files.
- Versioning, backup, and sharing!

What is Git?

Local

M
?
A

Working directory

Staging area

environment.yml

Snakefile

Git repository
Current state

History of all files

A

• Edit environment.yml
• Add a new file Snakefile
• git add environment.yml
• git commit –m “Add snakemake 4.4.0”
• git add Snakefile
• git commit –m “Add Snakefile”
• git push
• git pull

Push

Pull

How does it work in practice?

Remote

✓

✓

Pu
sh

a2c36bs Add heatmap figure
6152ff6 Format figure label
0abd0cb Update multiqc version
8dhfls8 Add snakemake 4.4.0
kfhs7s6 Add Snakefile

git log

a2c36bs Add heatmap figure
6152ff6 Format figure label

0abd0cb Update multiqc version

git log

8dhfls8 Add snakemake 4.4.0
kfhs7s6 Add Snakefile
2kd7f0f Fix alignment command2kd7f0f Fix alignment command

Directory with all files, will include a .git folder
A specific version of the repository
Upload local changes to remote repository
Download changes from remote repository

Nomenclature

Repository
Commit
Push
Pull

During the working day…
- Pull collaborator's latest work to get your local repository up to date.
- Carry on with your work and edit files.
- Commit often!

- Each commit should be related to a distinct change/addition/task.
- Write descriptive commit messages.

- Push your changes to the remote repository.
- If you know several people are actively working on the same repository, push

and pull often!

Local

Remote repository

Data

Environment

Source code

Results

project
|- doc/

|
|- data/
| |- raw_external/
| |- raw_internal/
| |- meta/
|
|- code/
|- notebooks/

|
|- intermediate/
|- scratch/
|- logs/
|
|- results/
| |- figures/
| |- tables/
| |- reports/
|
|- Snakefile
|- config.yml

|- environment.yml

|- Dockerfile

Versioning and
collaborating on code
(and some other files)

Managing
dependencies

Snakemake

Managing and executing
analysis workflow

Isolating and exporting
environment

and…

Connecting code
and reporting

Typical guidelines for keeping a notebook of wet-lab work

Use a bound notebook so that
tear-out would be visible.

Use a ball point pen so that
marks will not smear nor will
they be erasable.

All pages must be pre-
numbered.

Use a ball point pen so that
marks will not smear nor will
they be erasable.

The investigator and
supervisor must sign each
page.

It is critical that you enter all
procedures and data directly
into your notebook in a timely
manner.

Each page should be
numbered and dated
consistently.

Write a title for each and
every new set of entries.

If you're testing a specific
hypothesis, write it down
beforehand.

Record everything you do in the
lab, even if you are following a
published procedure.

If you make a mistake, put a line
through the mistake and write
the new information next to it.

When you finish a page, put a
corner-to corner line through any
blank parts that could still be
used for data entry.

Properly introduce and
summarize each experiment.

Typical guidelines for keeping a notebook of dry-lab work

Literate programming
Instead of imagining that our main task is to instruct
a computer what to do, let us concentrate rather on
explaining to human beings what we want a
computer to do.
Donald Knuth (1984)

Literate computing
A literate computing environment is one that allows
users not only to execute commands interactively,
but also to store in a literate document the results of
these commands along with figures and free-form
text.
Millman KJ and Perez F (2014) Wolfgang Mathematica notebook (1988)

- The Jupyter Notebook is a
web application for interactive
data science and scientific
computing.

- In-browser editing for code,
with automatic syntax
highlighting, indentation, and
tab completion/introspection.

- The ability to execute code
from the browser, with the
results of computations
attached to the code which
generated them.

- Mix and match languages to
suit your needs (e.g. scikit-
learn + ggplot2).

Runs as a local web server à

Load/save/manage notebooks à

Markdown cell with a header à
Code cell with some Python code à

Run shell command to list files à

The notebook itself is a JSON file à

You can define and call functions à

Sharing is caring

Put the notebook on
GitHub/Bitbucket and it
will be rendered there..

.. or export to one of
many different formats,
including HTML and
PDF ..

.. or paste a link to any
Jupyter notebook at
nbviewer.jupyter.org
and they will render it for
you.

http://nbviewer.jupyter.org/

JupyterLab

JupyterLab is a full-
fledged IDE, similar to
e.g. Rstudio.

conda install –c conda-forge jupyterlab

Data

Environment

Source code

Results

project
|- doc/
|
|- data/
| |- raw_external/
| |- raw_internal/
| |- meta/
|
|- code/
|- notebooks/
|
|- intermediate/
|- scratch/
|- logs/
|
|- results/
| |- figures/
| |- tables/
| |- reports/
|
|- Snakefile
|- config.yml
|- environment.yml
|- Dockerfile

Versioning and
collaborating on code
(and some other files)

Managing
dependencies

Snakemake

Managing and executing
analysis workflow

Isolating and exporting
environment

and…

Connecting code
and reporting

- R Markdown makes your analysis more
reproducible by connecting your code, figures and
descriptive text.

- You can use it to make reproducible reports, rather
than e.g. copy-pasting figures into a Word
document.

- You can also use it as a notebook, in the same way
as lab notebooks are used in a wet lab setting.

What data did I use for this figure??

Header in YAML format

• Document-wide options
• Output format
• Parameters

Header in YAML format

• Document-wide options
• Output format
• Parameters

Code chunks

• Evaluate R code and show output
• Also Bash, Python, Rcpp, SQL, Stan
• Chunk options

Header in YAML format

• Document-wide options
• Output format
• Parameters

Code chunks

• Evaluate R code and show output
• Also Bash, Python, Rcpp, SQL, Stan
• Chunk options

Markdown text

• Freely add and format text using markdown

• Documents/reports (HTML, PDF, MS Word, Tufte
handouts)

• Presentations (Powerpoint, Beamer, Slidy,
ioslides, reveal.js)

• Interactive documents and dashboards (HTML
widgets, Shiny)

• Books and websites
• Other templates…

Can require different markdown syntax depending
on output!

Output formats

• Evaluate inline
• Render from menu
• Render from R console or terminal

R –e "rmarkdown::render('Report.Rmd')"$

R Markdown in RStudio

Data

Environment

Source code

Results

project
|- doc/
|
|- data/
| |- raw_external/
| |- raw_internal/
| |- meta/
|
|- code/
|- notebooks/
|
|- intermediate/
|- scratch/
|- logs/
|
|- results/
| |- figures/
| |- tables/
| |- reports/
|
|- Snakefile
|- config.yml
|- environment.yml
|- Dockerfile

Versioning and
collaborating on code
(and some other files)

Managing
dependencies

Snakemake

Managing and executing
analysis workflow

Isolating and exporting
environment

and…

Connecting code
and reporting

Results should be possible to reproduce
regardless of platform and with minimal effort.

“Docker provides a way to run applications securely
isolated in a container, packaged with all its

dependencies and libraries."

Bremges et al. GigaScience (2015) 4:33 Page 4 of 6

Fig. 1Methane metabolism pathway analysis. Genes reconstructed in our assembly that are involved in the methane metabolism [PATH:ko00680,
(http://www.genome.jp/kegg-bin/show_pathway?ko00680)], are highlighted: genes with only metagenomic support are in yellow and genes with
metatranscriptomic support as well, suggesting active gene expression, are in orange. Methane is synthesized from CO2, methanol or acetate. KEGG
pathway map courtesy of Kanehisa Laboratories

Discussion
We report extensive metagenomic and metatranscrip-
tomic profiling of the microbial community from a
production-scale biogas plant. Given the unprecedented
sequencing depth and established bioinformatics, our
data will be of great interest to the biogas research
community in general and microbiologists working on
biogas-producing microbial communities in particular.
In a first applied study, our metagenome assembly was
used to improve the characterization of a metaproteome
generated from biogas plant fermentation samples and
to investigate the metabolic activity of the microbial
community [17].
By sharing our data, we want to actively encourage

its reuse. This will hopefully result in novel biological
and biotechnological insights, eventually enabling a more
efficient biogas production.

Availability of supporting data
Data accession
Raw sequencing data are available in the European
Nucleotide Archive (ENA) under study accession
PRJEB8813 (http://www.ebi.ac.uk/ena/data/view/PRJEB
8813). The datasets supporting the results of this article
are available in GigaScience’s GigaDB [2].

Reproducibility
The complete workflow is organized in a single GNU
Makefile and available on GitHub [18]. All data and
results can be reproduced by a simple invocation of
make. To further support reproducibility, we bundled all
tools and dependencies into one Docker container avail-
able on DockerHub [19]. docker run executes the afore-
mentioned Makefile inside the container. Reproduction

Bremges et al., "Deeply sequenced metagenome and metatranscriptome of a
biogas-producing microbial community from an agricultural production-scale
biogas plant", GigaScience (2015) 4:33, doi:10.1186/s13742-015-0073-6

$uname –a
Darwin dhcp-140-26.vpn.chalmers.se 15.6.0 Darwin Kernel Version 15.6.0:
Thu Sep 1 15:01:16 PDT 2016; root:xnu-3248.60.11~2/RELEASE_X86_64
x86_64

$docker pull ubuntu:16.04
16.04: Pulling from library/ubuntu
22dc81ace0ea: Pull complete
1a8b3c87dba3: Pull complete
91390a1c435a: Pull complete
07844b14977e: Pull complete
b78396653dae: Pull complete
Digest:
sha256:e348fbbea0e0a0e73ab0370de151e7800684445c509d46195aef73e090a49bd6
Status: Downloaded newer image for ubuntu:16.04

$docker run -it ubuntu:16.04
root@407b0fd13fe5:/# uname -a
Linux 407b0fd13fe5 4.9.60-linuxkit-aufs #1 SMP Mon Nov 6 16:00:12 UTC
2017 x86_64 x86_64 x86_64 GNU/Linux

Docker image
FROM ubuntu:16.04

Install prerequisites
RUN apt-get update && \

apt-get install -y --no-install-recommends \
bzip2 curl ca-certificates

Install Conda
RUN curl https://repo.continuum.io/miniconda.sh -O && \

bash miniconda.sh -bf -p /opt/miniconda3/ && \
rm miniconda.sh

Add conda to PATH
ENV PATH="/opt/miniconda3/bin:${PATH}”

Install git and nano from conda-forge
RUN conda install -c conda-forge git nano

Use bash as shell
SHELL ["/bin/bash", "-c"]

Set workdir
WORKDIR /home

Dockerfile

Build

Docker container
Docker container

Docker container

|- bin/
|- boot/
|- dev/
|- etc/
|- home/
|- lib/
|- lib64/
|- media/
|- opt/
|- proc/
|- root/
|- run/
|- sys/
|- tmp/
|- usr/
|- var/

project
|- doc/
|
|- data/
| |- raw_external/
| |- raw_internal/
| |- meta/
|
|- code/
|- notebooks/
|
|- intermediate/
|- scratch/
|- logs/
|
|- results/
| |- figures/
| |- tables/
| |- reports/
|
|- Snakefile
|- config.yml
|- environment.yml
|- Dockerfile

Local project directory

Mounting volumes

Docker image file system

$docker run -it -v $PWD/data:/home/data ubuntu:16.04

|- bin/
|- boot/
|- dev/
|- etc/
|- home/
| |- data/

| |- raw_external/

| |- raw_internal/

| |- meta/
|- lib/
|- lib64/
|- media/
|- opt/
|- proc/
|- root/
|- run/
|- sys/
|- tmp/
|- usr/
|- var/

As an advanced environment
manager.

Environment

To package a whole workflow, e.g. to
accompany a manuscript.

Environment
Code
Data

To package your code with the
environment it needs.

Environment
Code

What can I use Docker for?

$docker run -it
-v $PWD:/home
my_image /bin/bash

$docker run
-v $PWD/data:/home/data
-v $PWD/results:/home/results
my_image snakemake report.pdf

$docker run
-v $PWD/results:/home/results
my_image snakemake report.pdf

$d
oc
ke
r
pu
sh

docker hub

$d
oc
ke
r
pu
ll

you$ docker run image_id

OS kernel From host system
Dockerfile

A Docker image

ob3b79cf: Base image

6f0d2f5e: Star installed

1904ae78: Config added

C471fd60: …
} Read-only

layers of diffs

me$ docker run image_id 9c774b63ce: Container x Writable layer

FROM debian:latest

RUN conda install star

ADD config.yml

…

Data

Environment

Source code

Results

project
|- doc/
|
|- data/
| |- raw_external/
| |- raw_internal/
| |- meta/
|
|- code/
|- notebooks/
|
|- intermediate/
|- scratch/
|- logs/
|
|- results/
| |- figures/
| |- tables/
| |- reports/
|
|- Snakefile
|- config.yml
|- environment.yml
|- Dockerfile

Putting it all together

Contains the Snakemake rules (that may use the code in code/)

Recipe for making a Docker image

Configuration / settings for the Snakemake workflow

Conda environment definitions (software and versions)

my_research_project /

Contains documentation, e.g. the project manuscript

Contains all the code

Contains notebooks, e.g. from Jupyter Notebooks

Options for reproducing:

• Git clone and run workflow.
• Git clone, activate conda env, and run workflow.
• Git clone, docker build, and run workflow in container.
• Docker pull and run workflow in container.

my_research_project/

submission_nature_2016-11-23
resubmission_pnas_2017-01-10
resubmission_JNRBM_2017-03-21
publication_JNRBM_2017-06-09

Snakemake

What is reasonable for your project?
Choose the right ambition level…

Minimal: code for reproducible results

Good: versioned and structured repository

Better: ambition to organize dependencies

Best: export everything!

Data

Environment

Source code

Results

Organize your coding
- Write scripts/functions/notebooks for specific tasks (connect raw data to final results)
- Keep parameters separate (e.g. top of file, or input arguments)

Treasure your data
- Consider your input data static. Keep it read-only!
- Don’t make different versions. If you need to preprocess it in any

way, script it so you can recreate the steps (see box below).
- Backup! Keep redundant copies in different physical locations.
- Strive towards uploading it to its final destination already at the

beginning of a project (e.g. specific repositories such as SRA,
GEO, or GenBank, or general repositories such as Dryad or
Figshare).

Reproducible research for bioinformatics projects
Take control of your research by making it reproducible!
By moving towards a reproducible way of working you will quickly
realize that you at the same time make your own life a lot easier! The
added effort pays off by gain in control, organization and efficiency.

Below are all the components of a bioinformatics project that have to
reproducible.

Connect your results with the code
Rmarkdown and Jupyter notebooks blur the
boundaries between code and its output. They
allow you to add non-code text (markdown) to
your code. This generates a report containing
custom formatted text, as well as figures and
tables together with the code that
generated
them.

http://rmarkdown.rstudio.com/ http://jupyter.org/

Everything can be a project
Divide your work into distinct projects
and keep all files needed to go from raw
data to final results in a dedicated
directory with relevant subdirectories
(see example).
Many software support the “project way
of working”, e.g. Rstudio and the text
editors Sublime Text and Atom.

Tip! Learn how to use git, a widely used
system (both in academia and industry)
for version controlling and
collaborating on code. https://git-scm.com/

Snakemake
https://snakemake.readthedocs.io/

For the advanced
As projects grow, it becomes increasingly
difficult to keep track of all the parts and how
they fit together. Snakemake is a workflow
management system that keeps track of how
your files tie together, from raw data and
scripts to final figures. If anything changes
(script code, parameters, software version,
etc) it will know what parts to rerun in order to
have up to date and reproducible results.

Avoid generating files
interactively on the fly
or doing things by
hand (no way to track
how they were made).Figure 1script1data

Figure 2script2Adata script2B script2CfileA filesC,D,E

Leif Wigge (leif.wigge@scilifelab.se)
Rasmus Ågren (rasmus.agren@scilifelab.se)

Bioinformatics long-term support (LTS)

Master your dependencies
- Full reproducibility requires the possibility to

recreate the system that was originally used to
generate the results.

- Conda is a package, dependency, and env-
ironment manager that makes it easy to install
(most) software that you need for your project.

- Your environment can be exported in a simple
text format and reinstalled by Conda on
another system.

https://conda.io

For the advanced
- Conda cannot always completely recreate the

system, which is required for proper repro-
ducibility.

- A solution is to package your project in an
isolated Docker container, together with all its
dependencies and libraries.

- A vision is that every new bioinformatics
publication is accompanied by a publically
available Docker container!

- Singularity is an alternative to Docker which
runs better on HPC clusters.

Singularity
https://www.docker.com/ http://singularity.lbl.gov/

alternatives?
Version control Environment / package

managers
Workflow managers Literate programming Containerization /

virtualization
Git – Widely used and a lot
of tools available + GitHub.

Conda – General purpose
environment and package
manager. Community-hosted
collections of tools at bioconda
or conda-forge.

Snakemake – Based on
Python, easily
understandable format, relies
on file names.

Jupyter – Create and share
notebooks in a variety of
languages and formats by
using a web browser.

Docker – Used for packaging
and isolating applications in
containers. Dockerhub allows
for convenient sharing.
Requires root access.

Mercurial – Distributed
model just like Git, close to
sourceforge.

Pip – Package manager for
Python, has a large repository
at pypi.

Nextflow – Based on Groovy,
uses data pipes rather than
file names to construct the
workflow.

Rmarkdown – Developed by
Rstudio, focuses on
generating high-quality
documents.

Singularity – Simpler Docker
alternative geared towards
high performance computing.
Does not require root.

Subversion – Centralized
model unlike git/mercurial;
no local repository on your
computer and somewhat
easier to use.

Apt/yum/brew – Native
package managers for different
OS. Integrated in OS and might
deal with e.g. update
notifications better.

Make – Used in software
development and has been
around since the 70s. Flexible
but notoriously obscure
syntax.

Zeppelin – Developed by
Apache. Closely integrated
with Spark for distributed
computing and Big Data
applications.

Shifter – Similar ambition as
Singularity, but less focus on
mobility and more on
resource management.

Virtualenv – Environment
manager used to set up semi-
isolated python environments.

Galaxy - attempts to make
computational biology
accessible to researchers
without programming
experience by using a GUI.

Beaker – Newcomer based
on Ipython, just as Jupyter.
Has a focus on integrating
multiple languages in the
same notebook.

VirtualBox/VMWare –
Virtualization rather than
containerization. Less
lightweight, but no reliance
on host kernel.

