
Putting it all together

Contains the Snakemake rules (that may use the code in code/)

Recipe for making a Docker image

Configuration / settings for the Snakemake workflow

Conda environment definitions (software and versions)

my_research_project /

Contains documentation, e.g. the project manuscript

Contains all the code

Contains notebooks, e.g. from Jupyter Notebooks

Options for reproducing:

• Git clone and run workflow.
• Git clone, activate conda env, and run workflow.
• Git clone, docker build, and run workflow in container.
• Docker pull and run workflow in container.

my_research_project/

submission_nature_2016-11-23
resubmission_pnas_2017-01-10
resubmission_JNRBM_2017-03-21
publication_JNRBM_2017-06-09

Snakemake

What is reasonable for your project?
Choose the right ambition level…

Minimal: code for reproducible results

Good: versioned and structured repository

Better: ambition to organize dependencies

Best: export everything!

Data

Environment

Source code

Results

Organize your coding
- Write scripts/functions/notebooks for specific tasks (connect raw data to final results)
- Keep parameters separate (e.g. top of file, or input arguments)

Treasure your data
- Consider your input data static. Keep it read-only!
- Don’t make different versions. If you need to preprocess it in any

way, script it so you can recreate the steps (see box below).
- Backup! Keep redundant copies in different physical locations.
- Strive towards uploading it to its final destination already at the

beginning of a project (e.g. specific repositories such as SRA,
GEO, or GenBank, or general repositories such as Dryad or
Figshare).

Reproducible research for bioinformatics projects
Take control of your research by making it reproducible!
By moving towards a reproducible way of working you will quickly
realize that you at the same time make your own life a lot easier! The
added effort pays off by gain in control, organization and efficiency.

Below are all the components of a bioinformatics project that have to
reproducible.

Connect your results with the code
Rmarkdown and Jupyter notebooks blur the
boundaries between code and its output. They
allow you to add non-code text (markdown) to
your code. This generates a report containing
custom formatted text, as well as figures and
tables together with the code that
generated
them.

http://rmarkdown.rstudio.com/ http://jupyter.org/

Everything can be a project
Divide your work into distinct projects
and keep all files needed to go from raw
data to final results in a dedicated
directory with relevant subdirectories
(see example).
Many software support the “project way
of working”, e.g. Rstudio and the text
editors Sublime Text and Atom.

Tip! Learn how to use git, a widely used
system (both in academia and industry)
for version controlling and
collaborating on code. https://git-scm.com/

Snakemake
https://snakemake.readthedocs.io/

For the advanced
As projects grow, it becomes increasingly
difficult to keep track of all the parts and how
they fit together. Snakemake is a workflow
management system that keeps track of how
your files tie together, from raw data and
scripts to final figures. If anything changes
(script code, parameters, software version,
etc) it will know what parts to rerun in order to
have up to date and reproducible results.

Avoid generating files
interactively on the fly
or doing things by
hand (no way to track
how they were made).Figure 1script1data

Figure 2script2Adata script2B script2CfileA filesC,D,E

Leif Wigge (leif.wigge@scilifelab.se)
Rasmus Ågren (rasmus.agren@scilifelab.se)

Bioinformatics long-term support (LTS)

Master your dependencies
- Full reproducibility requires the possibility to

recreate the system that was originally used to
generate the results.

- Conda is a package, dependency, and env-
ironment manager that makes it easy to install
(most) software that you need for your project.

- Your environment can be exported in a simple
text format and reinstalled by Conda on
another system.

https://conda.io

For the advanced
- Conda cannot always completely recreate the

system, which is required for proper repro-
ducibility.

- A solution is to package your project in an
isolated Docker container, together with all its
dependencies and libraries.

- A vision is that every new bioinformatics
publication is accompanied by a publically
available Docker container!

- Singularity is an alternative to Docker which
runs better on HPC clusters.

Singularity
https://www.docker.com/ http://singularity.lbl.gov/

alternatives?
Version control Environment / package

managers
Workflow managers Literate programming Containerization /

virtualization
Git – Widely used and a lot
of tools available + GitHub.

Conda – General purpose
environment and package
manager. Community-hosted
collections of tools at bioconda
or conda-forge.

Snakemake – Based on
Python, easily
understandable format, relies
on file names.

Jupyter – Create and share
notebooks in a variety of
languages and formats by
using a web browser.

Docker – Used for packaging
and isolating applications in
containers. Dockerhub allows
for convenient sharing.
Requires root access.

Mercurial – Distributed
model just like Git, close to
sourceforge.

Pip – Package manager for
Python, has a large repository
at pypi.

Nextflow – Based on Groovy,
uses data pipes rather than
file names to construct the
workflow.

Rmarkdown – Developed by
Rstudio, focuses on
generating high-quality
documents.

Singularity – Simpler Docker
alternative geared towards
high performance computing.
Does not require root.

Subversion – Centralized
model unlike git/mercurial;
no local repository on your
computer and somewhat
easier to use.

Apt/yum/brew – Native
package managers for different
OS. Integrated in OS and might
deal with e.g. update
notifications better.

Make – Used in software
development and has been
around since the 70s. Flexible
but notoriously obscure
syntax.

Zeppelin – Developed by
Apache. Closely integrated
with Spark for distributed
computing and Big Data
applications.

Shifter – Similar ambition as
Singularity, but less focus on
mobility and more on
resource management.

Virtualenv – Environment
manager used to set up semi-
isolated python environments.

Galaxy - attempts to make
computational biology
accessible to researchers
without programming
experience by using a GUI.

Beaker – Newcomer based
on Ipython, just as Jupyter.
Has a focus on integrating
multiple languages in the
same notebook.

VirtualBox/VMWare –
Virtualization rather than
containerization. Less
lightweight, but no reliance
on host kernel.

