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Abstract

The spectrum of Λ three-quark excitations and ππ scattering, with partial-wave mix-

ing, are studied using lattice QCD. These low-lying stationary-state energies in QCD

are calculated as correlation lengths in a statistical field theory. Monte Carlo meth-

ods with importance sampling estimate the multidimensional path integral, with 412

gauge configurations generated according to a clover-improved Wilson action with

2 + 1 flavors of quarks. A matrix of single- and multi-hadron correlators is used to

extract excited-state energies in the Λ-flavored isoscalar strange symmetry channels.

Replacing infinite-volume spin are irreps of the double-point-octahedral group; in this

case G1g, G1u, Hg and Hu. Dirac matrix inverses on a 323×256 lattice and a pion mass

of ≈ 240 MeV are estimated with the stochastic LapH (Laplacian-Heaviside) method.

A generalization of the Luscher quantization condition is used to relate ππ-energies

in finite volume to a ππ-scattering K-matrix. The width and mass of the ρ(770) are

determined using a relativistic Breit-Wigner parametrization of the K-matrix. This

parametrization allows for nonzero L = 1, 3 and 5 partial waves. The formalism used

completely generalizes to multiple inelastic channels and non-identical particles of

nontrivial spin.

i



Dedication

For my partner, Gabrielle Tiede, and for my mother, Nancy Lewin.

This work would not be possible without my dear colleagues and fellow graduate

students, especially Andrew Hanlon, Ben Hörz and Ruaiŕı Brett. Anything I know, I
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Chapter 1

Introduction

1.1 Correlation Functions

Quantum field theory and the Standard Model of particle physics have been enor-

mously successful at describing the various processes seen in accelerator experiments

and cosmic rays. The key concept is that fields and physical states act as carrier

spaces for representations of fundamental symmetries of nature. Lorentz symmetry

allows particles to carry properties like mass and spin, with other quantum numbers

like electric charge dictated by internal symmetries.

These fields are organized into an action S, and any particular field history has a

probability amplitude of eiS/~. In the limit of vanishing ~, only those fields satisfying

the equations of motion add constructively, reproducing classical mechanics. Quan-

tum corrections are the nonzero contributions that appear for nonvanishing ~. In this

regard quantum physics is like thermal physics, with a unimodular probability am-

plitude rather than a real probability weight. Both types of fluctuations are regarded

as statistical:

〈0|Â|0〉 =
1

Z
TrAeiS/~,

〈A〉 =
1

Z
TrAe−H/T .

(1.1)

The basic questions of quantum mechanics, such as “what are the stationary

states” and “what are their energies,” amount to solving for moments and correlation

functions using this statistical distribution. For example, the mass of a particle is

identified not with a parameter m appearing in S, but with the location of a pole in
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a two-point correlation function:

〈0|φ̂(p)φ̂†(p)|0〉 ∼ i

p2 −m2
. (1.2)

1.2 Perturbation Theory

The usual strategy pursued is perturbative. That is, the full theory is treated as a

small perturbation to an exactly solvable free theory and corrections to this solution

approximate the full solution as a power series in the coupling. For some field theories,

often when the coupling is small, this method is able to produce very nearly exact

results. The usual example is Quantum Electrodynamics (QED), the theory of how

photons interact with charged particles, where the power series is in terms of the very

small parameter α, which is ∼ 1
137

at typical energies.

Figure 1.1: Running of the strong coupling with energy. Level of perturbation theory used
is given in parentheses. [1]

It is often the case, however, that the relevant coupling parameter is not small,

and corrections in the perturbative series grow in magnitude rather than shrink.

The coupling, as defined by a three-point correlation function, actually changes with

energy so it is even possible that a theory which is perturbative in one energy range
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could be nonperturbative in another. We have already mentioned QED, which is

weakly coupled at low energies but seems strongly coupled at higher energies; a theory

satisfying the reverse situation, strongly coupled at low energies but weakly coupled

at high energies, can be found in QCD, or Quantum Chromodynamics [2] [3]. In order

to calculate in a regime of strong coupling, we need a nonperturbative approach.

1.3 Lattice Field Theory

When perturbation theory is not sufficient, we can resort to approximating the in-

tegral with Monte Carlo sampling. It is not easy to define a discrete version of the

action S amenable to computer calculation, and even harder to prove that it con-

verges properly as the discretization is made progressively smaller. This discretized

theory is known as a lattice field theory. In spite of the hurdles, these computational

strategies provide the most rigorous definition of many quantum field theories.

Energies correspond to the frequencies in the Fourier transform of temporal cor-

relators, which become decay rates when we Wick-rotate into imaginary time:

〈0|Â(t)B̂†(0)|0〉 =
∑
n

〈0|Â|n〉〈n|B̂†|0〉e−iEnt

⇒
∑
n

Zn
AZ

n∗
B e
−Enτ .

(1.3)

Such a rotation is necessary for e−S to be used as a probability weight in Monte

Carlo sampling. A particular correlator gives rise to a functional in the Monte Carlo

integrand; the value of this functional is importance-sampled according to e−S. In

order to extract multiple energies we form a large matrix of correlators, where each

entry corresponds to the average of some O[φ] weighted by e−S. We calculate this

average by generating a random set of configurations φ distributed according to e−S,

accomplished with a stochastic Markov chain, designed so that its fixed point corre-

sponds to this distribution.

Bosonic variables produce functionals which can be directly related to the fun-

damental fields in the action because the corresponding variables of integration are

complex number-valued. Fermionic variables, however, are anticommuting, so it is

more difficult to relate their ultimately complex-valued integrands to the Grassmann-

valued fundamental fields. Fortunately, the quark fields appear quadratically in the
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action as ψ̄Mψ so the integration over these fields can be done exactly. The inte-

gral over the gauge variables G remains, with probability weight detM [G]e−Sg [G];

integrating the fermions gives rise to a matrix determinant, and quark fields in cor-

relators leave behind elements of a matrix-inverse M−1[G] in the integrand. This is a

prodigiously large matrix and it is computationally infeasible to compute it exactly,

for each set of gauge variables G. Instead we implement a novel stochastic method,

Stochastic LapH, to evaluate these objects efficiently on large lattices [4] [5].

1.4 QCD, Hadrons, and Quarks

In QED, the fundamental quantities are photons, and charged particles like electrons

and positrons. We will also consider protons, which from the perspective of low-energy

QED are not too dissimilar from heavy positrons. We commonly find these objects

bound together, into positronium or hydrogen. Inside this proton is the realm of QCD.

There, the fundamental degrees of freedom are gluons, quarks and antiquarks; these

entities are analogous to the QED particles. In the language of symmetry groups,

the matter-type particles like electrons and quarks transform in the fundamental

representation of a local U(1) or SU(3)-gauge symmetry whereas the photons and

gluons transform in the adjoint representation of the local gauge symmetry group [6].

Just as the fundamental constituents of QED form bound states of positronium or

hydrogen, the proton is itself a bound state of quarks and gluons. Neutrons are the

same way, as are every strongly-interacting particle seen in accelerators and cosmic

rays.

So, QCD controls the formation of these particles, as well as the interactions

among them. Hundreds of years ago, Kepler believed that the mysteries of the cosmos

could be explained by nesting platonic solids in spheres. Now, we describe the patterns

of observed hadrons (baryons and mesons) by using representations of an SU(3)-flavor

symmetry [7] [8], found by e.g. stacking triangles on top of each other (see Figure

1.2).

The SU(3)-flavor symmetry arises from the near degeneracy of the up, down and

strange quark masses, compared to typical energy scales of the hadrons they form.

This symmetry dictates their general behavior, responsible for the similarities and

differences between a pion and a kaon (both mesons in the octet) or a proton and

a lambda (both baryons in the octet). We might write these in the form of fields
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Figure 1.2: (Top) Tensor product of fundamental (quark) and antifundamental (antiquark)
representations decomposes into nine light mesons. (Bottom) Tensor product of three quarks
decomposes into eight states of spin-1/2 and ten of spin-3/2. Overall antisymmetry prevents
a baryonic singlet and keeps only one octet.

carrying particular symmetry properties, as

M (0) ⇔ C
(0;33̄)
fg qf q̄g = δfgq

f q̄g

M
(8)
a ⇔ C

(8;33̄)
afg qf q̄g = λafgq

f q̄g

B
(8)
a ⇔ C

(8;333)
afgh qfqgqh

B
(10)
η ⇔ C

(10;333)
ηfgh qfqgqh,

(1.4)

where the coefficients C accomplish the tensor product decompositions shown in

Figure 1.2. The coefficient for the decouplet is totally symmetric, and as spin-3
2

it is symmetric in spin as well. It seems we are violating total antisymmetry for

fermions, but an additional internal quantum number explains the discrepancy. This

internal quantum number must give rise to an additional antisymmetry that allows

the decouplet to satisfy spin-statistics. Because it is unobserved, we require mesons

and baryons transform trivially; noting that singlets appear in both 3 ⊗ 3̄ and 3 ⊗
3 ⊗ 3, SU(3) seems to satisfy our needs; certainly the coefficient C

(0;333)
ABC = εABC is

antisymmetric, as desired. So, in terms of quark and antiquark fields these mesons

5



and baryons are

M ⇔ C
(0;33̄)C

AB C
(·;33̄)F

fg qfAq̄
g
B = δABC

(·;33̄)F

fg qfAq̄
g
B

B ⇔ C
(0;333)C

ABC C
(·;333)F

fgh qfAq
g
Bq

h
C = εABCC

(·;333)F

fgh qfAq
g
Bq

h
C ,

(1.5)

where (·) indicates 0, 8 or 10 as appropriate. This local gauge symmetry is named

SU(3)-color, because a primary (RGB) color and its complement (CMY) make white,

a meson, and a mix of all three make white as well, a baryon – the designation of

white is meant to reflect the trivial transformation property.

In fact there seem to be six flavors of quarks, but the three least massive quarks

are much lower in mass than the three highest, so one is able to consistently neglect

the presence of these higher mass quarks in many circumstances. The SU(6) versions

of the above diagrams are very hard to draw, and the symmetry is more badly broken.

1.5 Spectroscopy and Scattering

In this work, Monte Carlo methods are applied to spectroscopy, or energy extraction,

in the isoscalar strange G1g, G1u, Hg and Hu baryonic symmetry channels, which con-

tain the Λ particle and its resonances. (See chapter 4 for a discussion of these symme-

try groups.) A particularly interesting resonance in these channels is the Λ(1405), and

we explore some qualitative methods to describe these states in terms of finite-volume

energies. A direct identification here is not always possible, because ultimately the

physical resonances are unstable and can decay, whereas our extracted stationary-

state energies do not decay.

A more rigorous description is possible, which we develop in chapter 7 and apply to

the simple case of ππ scattering. There is a relationship, developed by Martin Luscher,

between finite-volume spectra and infinite-volume scattering processes [9] [10] [11].

This scattering information enables the lattice practitioner to extract the mass and

even decay width of unstable resonances. We examine the L = 1, 3 and 5 scattering

phase shifts for the ρ(770) resonance in ππ scattering using correlators in the isovector

nonstrange T+
1u, A

+
1 , E

+, B+
1 and B+

2 mesonic channels. This is the first time that the

higher partial waves are not neglected in any lattice QCD study, and the technique

can be readily applied to baryonic resonances as well. We perform the entire calcula-

tion on a large 323 × 256 anisotropic lattice with an unphysically heavy pion.
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This thesis is organized as follows: Chapter 2 introduces the QCD Lagrangian

and discretizes and Wick-rotates it to define the lattice version. Chapter 3 discusses

improvements to the action and the tuning of its various free parameters. Chap-

ter 4 details our method of operator construction, focusing on spatial smearing and

symmetry properties. Chapter 5 details the Monte Carlo procedure and discuses the

highly nontrivial incorporation of fermions as Grassmann variables in a computational

model. Chapter 6 gives further details regarding the manipulation of correlation ma-

trices and the extraction of the excited state energies from these correlators. Chapter

7 introduces the Luscher method for scattering phase shifts and resonance data and

details our generalization to include more decay channels and partial waves. Finally,

chapter 8 details the results of our spectroscopy and scattering analysis.
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Chapter 2

Lattice QCD Lagrangian

In this chapter we give the Lagrangian density L of Quantum Chromodynamics in

continuous, infinite Minkowski space and discuss the Wick-rotation into Euclidean

space. We also discuss the formulation of the theory on a space-time lattice.

2.1 The QCD Lagrangian

2.1.1 The Fermionic Sector

In the previous chapter, we introduced the action S and briefly discussed the sym-

metries it ought to feature; we now pursue this in more detail. Quarks are spin-1
2

particles with charge and mass, so the relevant Lagrangian for free quarks is

S[ψ, ψ̄] =

∫
d4xL =

∫
d4xψ̄(x) (iγµ∂µ −m)ψ(x). (2.1)

With only these fields, any other term renders the Lagrangian non-renormalizable.

The above Lagrangian contains one type of quark, ψα, which contains an index

ranging from one to four that counts over left- and right-handed chirality as well as

spin up and down. It seems nature contains six flavors of quarks, so we ought to

write

S[
{
ψf , ψ̄f

}
] =

∫
d4xL =

∫
d4x

6∑
f=1

ψ̄f (iγµ∂µ −mf )ψf , (2.2)

but three of the flavors have a prodigiously high mass mf , such that their effect on

the low energy spectrum is negligible. Because of this, we use only the first three

8



flavors, called up, down, and strange. Going further, the difference mu − md is so

incredibly small compared to the typical scales we are interested in that we simply

take them to be the same. Then, we find:

S[
{
ψf , ψ̄f

}
] =

∫
d4xL =

∫
d4x

∑
f=`,s

ψ̄f (iγµ∂µ −mf )ψf , (2.3)

where to ψ` we add an additional isospin index I ranging from one to two,

ψαI` (x); ψαs (x). (2.4)

This additional exact SU(2)-isospin symmetry

L[ψ, ψ̄]→ L′[ψ′, ψ̄′] = L[ψ′, ψ̄′]

for ψI → ψ′I = UIJψ
J with U ∈ SU(2)

(2.5)

(as well as the trivial U(1)-strangeness symmetry) has important consequences for the

form of our correlators. By taking operators that transform irreducibly under these

symmetries, we will greatly reduce the number of correlators that must be calculated,

knowing in advance that many of these are zero. This will be discussed in more detail

in chapter 4.

The last, and the most important symmetry for Quantum Chromodynamics is

SU(3)-color.

L[ψ, ψ̄]→ L′[ψ′, ψ̄′] = L[ψ′, ψ̄′]

for ψA → ψ′A = UABψ
B with U ∈ SU(3)

(2.6)

That is, we add yet another index A, ranging from one to three; or from red, to blue,

to green. Fully decorated,

S[
{
ψf , ψ̄f

}
] =

∫
d4xψ̄αIA`

(
iγµαβ∂µ − δαβm`

)
ψβIA`

+ ψ̄αAs
(
iγµαβ∂µ − δαβms

)
ψβAs .

(2.7)

Color allows three quarks in the same position and spin-state without violating over-

all antisymmetry. All observed states, however, are colorless. We implement this by

using invariant functionals, like δABψ̄
AψB or εABCψ

AψBψC . The symmetry is cur-

rently global, and will become local after we introduce the bosonic, or gauge, sector.

9



Finally, we briefly mention that these fields must anticommute, rather than com-

mute, which means they cannot be real number- or complex number-valued. How

to handle these complex Grassmann numbers on a computer will be discussed in

more detail in chapter 5. In finite volume we take the quark fields to be periodic

in space, but we require anti -periodicity in time in order to make contact with the

trace in the partition function. That is, these Grassmann numbers must satisfy

ψ(x, t) = −ψ(x, t+ T ).

2.1.2 Gauge Invariance

Electrons and positrons are to photons as colored quarks and antiquarks are to gluons.

Just like with U(1) electric charge, we take the previous Lagrangian and demand its

global SU(3) be promoted to a local SU(3),

L[ψ, ψ̄]→ L′[ψ′, ψ̄′] 6= L[ψ′, ψ̄′] (currently)

for ψA(x)→ ψ′A(x) = UAB(x)ψB(x) with U(x) ∈ SU(3),
(2.8)

which is violated by the kinetic term:

∑
µ

lim
ε→0

ψ̄(x)iγµ
(
ψ(x + aεeµ)− ψ(x)

aε

)
. (2.9)

The symmetry-violating extended structure ψ̄(x)ψ(y) is fixed by adding a gauge

transporter G satisfying

G(x,y)→ G′(x,y) = U(x)G(x,y)U †(y), (2.10)

to form ∑
µ

lim
ε→0

ψ̄(x)iγµ
(
G(x,x + aεeµ)ψ(x + aεeµ)− ψ(x)

aε

)
≡ ψ̄A(x)iγµDAB

µ ψB(x).

(2.11)

Because this is infinitesimally close to the identity we can expand using a basis of

su(3) as

∑
µ

lim
ε→0

ψ̄(x)iγµ

(
igaεeµ ·Aa(x)λ

2

a
ψ(x) + ψ(x + aεeµ)− ψ(x)

aε

)
(2.12)

10



to find the familiar gauge fields. Typically the Lagrangian is crafted out of these

gauge fields Aaµ, but one could also make invariant terms out of the gauge transporter

G.

2.1.3 The Bosonic Sector

The Lagrangian describing the gluon dynamics in the absence of quarks can be written

in terms of the field tensor,

F a
µν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν (2.13)

(with the structure constants fabc of su(3)) as

Lbos. = −1

4
F a
µνF

µνa + θεµνρσF a
µνF

a
ρσ, (2.14)

though experimental evidence suggests θ is negligible, i.e. that QCD respects parity,

so we do not include it.1

We can reconstruct the bosonic sector in terms of gauge transporters by exploiting

how they act on quark fields,

lim
ε→0

G(x,x + aεeµ)ψ(x + aεeµ) = lim
ε→0

eaεeµD
µ

ψ(x). (2.15)

So, in terms of the matrix-valued field tensor F µν
AB = F µν

a λaAB = [Dµ, Dν ]AB we can

see that

F µν = [Dµ, Dν ] = lim
a→0

1

ga2

(
ea

2[Dµ,Dν ] − 1
)
. (2.16)

1Despite its renormalizability; up to this point we have included all possible renormalizable terms.
A similar term in the fermionic sector, m(eiθ

′γ5

)αβ can be removed via a similarity transformation
of the gamma matrices and is thus physically irrelevant. Although it is a total divergence, it is
believed the theta-term in the gauge sector can not be removed.
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The leading term of the exponential, F , is traceless, so we can take the trace of the

series to find the kinetic term,

1

4
TrF µνFµν = lim

a→0

1

g2a4
Tr
(
e[aDµ,aDν ] − 1

)
(no sum over lorentz indices)

= lim
a→0

1

g2a4
Tr
(
eaD

µ

eaD
ν

e−aD
µ

e−aD
ν − 1

)
1

4
TrF µνFµν =

∑
(µ,ν)−
planes

lim
a→0

1

g2a4
Tr (Gµν − 1) ,

(2.17)

where by Gµν we indicate a small a× a-sized box, or plaquette, of gauge-links.

2.1.4 Wick-Rotating the QCD Lagrangian

Our full QCD Lagrangian density is then:

L =
∑
f=`,s

ψ̄f

(
iγ ·

[
∂ + igA · λ

2

]
−mf

)
ψf −

1

4
TrF 2 (2.18)

for ψαIA` , ψαAs , and Aaµ.

Written in terms of gauge transporters, which will be more important for the

discretization, we find:

L =
∑
µ

f=`,s

ψ̄f (x)

(
iγµ
[
G(x,x + aµ)− 1

a

]
ψf (x + aµ)−mfψf (x)

)

+
∑

(µ,ν)−
planes

1

2g2a4
Tr (Gµν − 1)

(2.19)

in the limit that each aµ = aeµ → 0.

With the continuum Lagrangian density in hand, we now Wick-rotate, setting

t = −iτ :
x4

(E) ≡ ix0
(M) ⇒ ∂

(E)
4 = −i∂

(M)
0 ⇒ A

a(E)
4 = −iA

a(M)
0 and γ4

(E) ≡ γ0
(M)

xi(E) ≡ xi(M) ⇒ ∂
(E)
i = ∂

(M)
i ⇒ A

a(E)
i = A

a(M)
i and γi(E) ≡ −iγi(M).

This changes the Minkowski γµDµ to a Euclidean iγµDµ = iγµDµ, leaves the ki-

netic gauge term alone, and introduces a small subtlety into the ψ̄ fields.

The requirement of SO+(1, 3) invariance becomes SO(4) invariance, which pre-
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vents ψ̄ψ = ψ†γ0ψ in the Minkowski case from becoming ψ†γ4ψ in the Euclidean case

as the latter is not SO(4) invariant. Although they now have identical transformation

properties, ψ̄ = ψ† is also not possible; it spoils the identification of Euclidean Green’s

functions with Wick-rotated Minkowski Green’s functions.

From the point of view of the path integral, ψ̄ and ψ are separate integration vari-

ables, so they don’t maintain any particular relationship. One difference between the

Euclidean case and the Minkowski cases is that the action is no longer Hermitian.2

After the changes, we get:

iS(M) → −S(E) = −
∫

d4x
∑
f=`,s

ψ̄f

(
γ ·
[
∂ + gA · λ

2

]
+mf

)
ψf +

1

4
TrF 2, (2.20)

where every field is understood as residing in Euclidean space.

2.2 Näıve Discretization

The action of equation 2.20 represents an uncountably infinite number of continuous

degrees of freedom. This integration is divergent and requires a regularization, with

physical values extracted as the regulator is removed. The lattice regulates the theory

by making the number of degrees freedom finite.

Wilson [12] wrote down a lattice-regularized Lagrangian density for fermions that

preserves gauge symmetry and reduces to the form 2.20 in the continuum limit, and

Reisz [13] showed that such a regularization scheme maintains renormalizability at

all orders in perturbation theory.

Looking at our action 2.19 written in terms of small gauge-transporters, a plausible

discretization is practically immediate. We only rewrite the covariant derivative term,

in a more symmetrical form, so the action S is:

S = a4
∑
n

[ ∑
µ

f=`,s

1

a3
ψ̄f (n)γµ

(
Gµ(n)ψf (n + µ̂)−G−µ(n)ψf (n− µ̂)

2a

)

+
1

a3
mf ψ̄f (n)ψf (n) +

∑
µν:
µ<ν

1

2g2a4
Re Tr(1−Gµν(n))

] (2.21)

2However, γ5-Hermiticity of M in S = ψ̄Mψ + Sg guarantees at least that detM is real.

13



for gauge-links Gµ that span from one lattice site to the next, and plaquettes Gµν

that run over a small 1× 1 loop in the (µν)-plane,

Gµ(n) = Gµ;n = G(n,n + ν̂)

Gµν(n) = Gµ,ν = Gµ(n)Gν(n + µ̂)G−µ(n + µ̂+ ν̂)G−ν(n + ν̂).
(2.22)

(Sometimes we also use a 1×2-loop.) In this form the fields, gauge-links and integer-

tuples n are manifestly dimensionless, though the mf ’s still have dimensions.

n

n + eμ

ϵ SU(3)G ( )nμ

Figure 2.1: A gauge link covers a lat-
tice link in a particular direction.

n μ

n + e

n + e + e

n + eμ

ν

ν

G ( )nμν

Figure 2.2: Four gauge links multi-
ply together to make a plaquette.

The term näıve discretization is used because there are an infinite number of lattice

theories that all have the same continuum limit; any two lattice actions S1 and S2

represent the same continuum theory provided ∆S vanishes as a→ 0. Therefore we

can add additional terms, e.g. to improve the convergence from O(a) to O(a2) or to

help alleviate any undesirable features, provided the continuum limit is unaffected.
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Chapter 3

Action Improvement

In this chapter we discuss the various improvements and modifications made to the

lattice-discretized QCD Lagrangian, including how we solve the fermion doubling

problem. We especially note the addition of new terms to the action and modification

of gauge variables in the fermionic sector. We also discuss the tuning of the various

parameters appearing in the action, specifically the quark masses, anisotropy, and

coupling.

3.1 Fermion Doubling

Because the discretized action must only agree in the continuum limit, we can add

additional terms provided they become irrelevant in this limit. There is a particular

undesirable feature appearing in the fermion action – there are 24− 1 other fermions

in the theory! This is known as fermion doubling, and occurs because the fermion

propagator has extra poles at the ends of the Brillouin zone, for all momenta with

any component pµ = π
a
. This is clear given the form of the propagator for massless

modes:

D−1
F (p) = a

−i
∑
µ

γµ sin(apµ)∑
µ

sin2(apµ)
, (3.1)
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found from the free massless fermion action

SF =
∑
mn

aψ̄(n)

[∑
µ

γµ
δn+µ̂,m − δn−µ̂,m

2a

]
ψ(m)

=
∑
mn

aψ̄(n)D(n,m)ψ(m)

D(p, q) =
1

N4

∑
nm

e−iap·nD(n,m)eiaq·m

= δp,qD(p).

(3.2)

Such a term has poles not just at p = (0, 0, 0, 0), but also for any combination of π
a
’s.

3.1.1 Wilson Fermions

This defect can be treated by adding the Wilson term [14],

D(p)→ D(p) +
1

a

∑
µ

(1− cos(apµ))

D(n,m)→ D(n,m)−
∑
µ

δn+µ̂,m − 2δn,m + δn−µ̂,m
2a

(3.3)

which is a discretized form of a∂2, acting on a fermion field. This becomes negligible

in the continuum limit, and adds a mass on the order of 1
a

to each doubled mode.

Therefore, it causes these modes to not affect the low energy theory for small lattice

sizes.

Unfortunately, adding a mass in this way explicitly breaks chiral symmetry; there

is no-go theorem that prevents any lattice regularization from preserving translational

invariance, locality, chiral symmetry and Hermiticity without additional fermion

modes [15] [16]. Our action necessarily violates Hermiticity and chiral symmetry

because of the fermion masses; importantly, massless fermions would still run afoul

of the theorem – the Wilson term gives a mass, thus breaking chiral symmetry ex-

plicitly and satisfying the theorem.
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3.2 Symanzik Improvement

Other terms may be added which improve the convergence in a, provided they disap-

pear in the continuum limit [17]. This is Symanzik improvement, and is performed

in both the fermionic and gauge sectors. For example, we add the clover term [18],

csw
a

∑
µ<ν

1

2
ψ̄(n)σµνCµν(n)ψ(n) (3.4)

where the C’s in the clover term are sums of plaquette petals,

Cµν =
1

4
ImPµν

for Pµν = Gµ,ν +Gν,−µ +G−µ,−ν +G−ν,µ.
(3.5)

In addition to improve the O(a) convergence, this term also seems to partially alleviate

the chirality-breaking effects of Wilson fermions [19].

Cμν

Figure 3.1: Four plaquettes sum together in the clover term.

In the gauge sector, O(a) corrections can be alleviated by adding 2× 1 plaquettes

in the action [20]. For these we use the term Rµν .

3.3 Tadpole Improvement and Stout Smearing

In addition to explicit O(a) convergence, there is a modifcation we make to cancel

some contributions from tadpole diagrams in the gauge sector [21]. These are gen-

erated by the expansion of e
∫

ds·A and are reduced by rescaling each link in a given
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direction, by

u =
1

3
〈ReTr (Gµν)〉

1
4

as Gµν →
1

u4
Gµν .

(3.6)

In practice we tune these u’s iteratively, until we find a fixed point where the variable

that appears in the action uinput is the same as uoutput calculated as in 3.6 [22].

Though we will visit the issue further in chapter 4 on operator construction, we

must pause here and discuss smearing, also. High energy modes are generally less

sensitive to spatially-smeared objects, in the sense that their correlation is reduced

and the smeared operator excites more low energy modes, which we want, and fewer

high energy modes, which serve only to contaminate the spectrum.

This has applications to operators in both sectors, but in the action only the

modification of the gauge links Gµ is important. We replace each gauge link in a

given direction with a superposition of all u-shaped links, with various weights ρµ.

The process is performed iteratively, to generate stout-smeared [23] gauge links G̃µ:

Sµ[Gµ] =
∑
±ν 6=µ

ρµν

(
Gν;xGµ;x+ν̂G

†
ν;x+µ̂ +G†ν;x−ν̂Gµ;x−ν̂Gν;x−ν̂+µ̂

)
Qµ[Gµ] = −Im

(
S[Gµ]G†µ −

1

3
TrS[Gµ]G†µ

)
G(n+1)
µ = exp(Qµ[G(n)

µ ])G(n)
µ ,

(3.7)

where the spatial weight is set to ρij = ρ = 0.14 and temporal directions are not

smeared (ρµ4 = ρ4µ = 0), with n = 2 iterations. The differentiability of this smearing

method is a convenient consequence of the analytic group-multiplicative form. The

symbol G̃ is used to indicate links that have been smeared in this way. The smeared

links replace the unsmeared links only in the fermion action.

3.4 Anisotropic Improved Action

Finally, we note that our lattice is made anisotropic between space and time. That

is, we take each cell’s spatial length as to be greater than its temporal length at; we

are calculating temporal correlators, so the additional time resolution is critical, es-

18



Gμ

Sμ[Gμ]

Figure 3.2: Illustration of stout-smeared gauge link.

pecially for extracting excited state energies. The anisotropy ξ enters the Lagrangian

separately in the fermionic and gauge actions as ξF and ξG. These are only bare

parameters, and in practice both must be tuned separately to ensure that the renor-

malized anisotropies of each sector remain identical. The 2 × 1 plaquettes R in the

gauge action are arranged such that the double-length directions are purely spatial,

and we calculate separate us and ut tadpole factors (from loops in purely spatial

planes xi × xj and temporal planes x0 × xi, respectively).

With everything included, our action is [24]:

S[ψ̄, ψ,G] =
∑
nmf

ψ̄f (n)

[∑
µ

(
ρ(1)
µ γµ

G̃µ(n)δn+µ̂,m − G̃−µ(n)δn−µ̂,m
2

− ρ(1)
µ

G̃µ(n)δn+µ̂,m − 2δn,m + G̃−µ(n)δn−µ̂,m
2

)
+ atmfδn,m −

∑
µ<ν

1

2
ρ(2)
µ σµνC̃µν(n)δn,m

]
ψf (m)

+
∑
n

5β

9ξG

∑
µ<ν

ρ(3)
µνTr[1−Gµν(n)] +

β

36ξG

∑
µ<ν

ρ(4)
µνTr[1−Rµν(n)]

(3.8)
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for

ρ(1)
µ =


1

ũs

ξF
ξG

1

ξ

1

ũt

ρ(2)
µ =


1

(ũs)
3

ξG
ξF

spatial

1

2ũsũ2
t

1

ξG

(
1

ξ
+
ξG
ξF

)
temporal

ρ(3)
µν =


1

(us)4

4

5(usut)2
ξ2
G

ρ(4)
µν =


1

(us)6
spatial plane

4

(u2
sut)

2
ξ2
G space-time plane

(3.9)

In order, these are the minimally-coupled fermionic kinetic term, Wilson term,

fermionic mass term, clover term, and gauge kinetic terms. We have indicated sepa-

rate tadpole factors, calculated with smeared and unsmeared links ũ and u, in each

weight term ρ, as well as the fermion, gauge and renormalized anisotropies ξF , ξG and

ξ. Everything is given as a dimensionless variable, with the exception of m, which is

instead always written in dimensionless form as atm.

3.5 Parameter Tuning

3.5.1 Heavy Pion

Corrections between the finite-volume and infinite-volume spectra are expected to

decrease as we increase the length, compared to the coherence length or mass of the

lightest particle. Specifically, for a massive particle like the pion (i.e. a mass gap)

these corrections are suppressed by e−mπL. So, increasing mπL is critical. This has

effects not just for the accuracy, but also the precision of our results. We will even-

tually find it necessary to estimate matrix inverses, and the low pion mass increases

the likelihood of ill-conditioned matrices.

Other than the pion, we also use the kaon and the omega baryon to set some

input parameters. Chiral perturbation theory finds that the following quantities are

proportional to the quark masses, to first order:

`Ω =
9m2

π

4m2
Ω

sΩ =
9(2m2

K −m2
π)

4m2
Ω

.

(3.10)
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The values atms = −.0743 and atm` = −.0840 are selected, found by monitoring

simple operators for each particle type until the desired (`Ω, sΩ) is achieved. We

choose sΩ to have its physical value, while we keep `Ω as small as possible without

making the entire calculation infeasible. Further details for this tuning procedure,

and those that follow, may be found in [24].

3.5.2 Anisotropy

As previously mentioned, there are separate anisotropy parameters ξG and ξF in the

action. There is an additional anisotropy parameter ξ, which we refer to as the desired

anisotropy. The last of these represents the desired ratio as
at

, and the other two are

tuned to reproduce this value in their respective sector.

In the gauge sector, the anisotropy ξG is set by tracking the ratio of Wilson loop

ratios: (
Wss(a, b)

Wss(a+ 1, b)

)
(

Wst(a, ξb)

Wst(a+ 1, ξb)

) = 1 (3.11)

for

Wµν(a, b) =

〈
Tr

{
U(n,n + aµ̂)U(n + aµ̂,n + aµ̂+ bν̂)

×U(n + aµ̂+ bν̂,n + bν̂)U(n + bν̂,n)

}〉
.

(3.12)

For a desired anisotropy ξ = 3.5 this is achieved with ξG = 4.3. In the fermion

sector, the anisotropy ξF is set by tracking the dispersion relation

a2
tE

2(d) = a2
tm

2
π +

(2π)2

ξ2N2
s

d2 (3.13)

for a pion operator with momentum 2π
L

d. In order to find ξ = 3.5, we set ξF = 1.3.

(Actually, we replace ξF by ν = ξG
ξF

and set ν = 3.4.)

3.5.3 Gauge-coupling

The parameter β = 6
g2 represents the coupling, and is set to 1.5. This value was

chosen to obtain a spatial lattice spacing of about 0.14 fm, determined with a variety
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of particle masses. This spacing is known to produce near-continuum physics while

maintaining a sufficiently large volume. With this value, a physical mΩ particle gives

a lattice spacing of at = .034 fm. In order to take the continuum limit and change a

we would need to change this β value. One should see that as we change β to the

continuum limit value, we should find all of our dimensionless energies atE shrink

in value, so that we may divide them by ever decreasing at to bring them to the

physical values. That is, we must have tuned the theory near a critical point, where

the correlation lengths diverge.

This is not as much of an issue for spectroscopy, because at explicitly disappears in

mass ratios. In fact, these ratios differ from their continuum limit values by terms of

O(a2). Because of this, we require our β to be tuned such that: we are insensitive to

the difference between lattice and continuum dispersion relations, and our correlators

do not fall to zero too quickly due to large atE.
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Chapter 4

Operator Construction

In this chapter we discuss operator construction, with regard to irreducibility, mul-

tiparticle states, displacements and smearing. Much of this chapter focuses on the

many internal and external symmetry transformations that we apply to the fields. The

important quantum numbers to consider are isospin, parity, G-parity, strangeness as

well as the lattice’s substitute for full rotational symmetry, the symmetries of a cube.

4.1 Single Hadrons

4.1.1 Elemental Components

As discussed previously, we are extracting energies from the fall-off of temporal cor-

relators. We must use operators Â, B̂ that have overlap with the energy-state of

interest. For a trivial example, consider φ4 theory: if one is interested in the first

excited state (φ-particle at rest) energy, we could temporally-correlate the operator

φ̂(p = 0) with itself, but one cannot expect to extract this state via φ̂(p 6= 0), as this

latter operator could not couple to any state of total momentum zero. The crucial

distinction is symmetry – the latter operator responds to translations in a different

way than the former, and indeed in a different way than the actual first excited state.

By ensuring that our single-hadron operators possess particular symmetry properties,

we guarantee that they will create states that overlap significantly with single-hadron

states of interest.

The first symmetry we consider is gauge invariance, and every operator we con-

struct must be exactly gauge invariant. We also ask for particular rotational symme-
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tries, and discrete symmetries like time-reversal, parity and G-parity.

We have already discussed at length how to make gauge-invariant gluonic opera-

tors out of gauge-links, because such terms appear in the action. That is, operators

such as

Âµν(p, t) =
∑
x

eip·xTrĜµν(x, t) (4.1)

are gauge-invariant, and create states of particular total momentum p [25]. (The

trace is over color indices, which are not displayed.)

Gauge-invariant operators made out of fermions have also already appeared in the

action. For example, the term

Âαβ(p, t) =
∑
x

eip·x ˆ̄ψα(x, t)ψ̂β(x, t) (4.2)

already appears in the action, as the mass term, and shares some quantum num-

bers of a meson with momentum p. (The color indices are summed over, and not

displayed.) The above operator is used to create meson states, and we can construct

another type of gauge-invariant functional1 out of three quark fields, as

Aαβγ(p, t) =
∑
x

eip·xεabcψαa(x)ψβb(x)ψγc(x), (4.3)

which represents a typical baryon operator. Both the mesonic and baryonic operators

we have considered so far are referred to as single-site, meaning that each constituent

quark field is taken at the same spatial site. To capture orbital and radial structure

we consider spatially extended objects.

4.1.2 Covariant Displacements

If we are interested in simple examples of spatially-displaced objects that still trans-

form gauge-invariantly, we need look no further than our action. That is, we had

already solved the problem of ψ̄(x)ψ(x+ µ̂) in the kinetic term by including a gauge-

link, as

Aαβµ(p, t) =
∑
x

eip·xψ̄α(x)G(x,x + µ̂)ψβ(x + µ̂), (4.4)

1After this point, we will stop tediously distinguishing between functionals and operators.
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where color indices are hidden and summed over. Likewise, we can make spatially

extended baryon operators with

Aαβγµνρ(p, t) =
∑
x

eip·xεabcGad(x,x + µ̂)ψαd(x + µ̂)

×Gbe(x,x + ν̂)ψβe(x + ν̂)Gcf (x,x + ρ̂)ψγf (x + ρ̂).

(4.5)

In this work, we displace the quark fields only in spatial directions, using the

notation

(Djψ)αa (x) ≡ Gab(x,x + ̂)ψαb(x + ̂) (4.6)

to denote a quark field displaced such that it transforms as if it were at x, but

actually lies on the adjacent site in the ̂ direction. Longer displacements mean

higher powers of D. Following the same procedure as in [26]. For mesons, we perform

the displacements shown in Figure 4.1, and for baryons we perform the displacements

shown in Figure 4.2.

4.1.3 Hermiticity

To extract excited state energies, matrices of correlators are needed. Hence, we

plan to evaluate large numbers of meson- and baryon-operators. Ensuring that our

correlation matrices are Hermitian is crucial for the analysis techniques we plan to

use to extract the excited-state energies. Our correlators should be Wick-rotated

Minkowski objects, so we will define operators such that the Minkowski correlator is

Hermitian, and Wick-rotate to find our desired Euclidean objects.

In Minkowski space, the Hermitian conjugate of ψ is ψ† = ψ̄γ0, which becomes

ψ̄γ4 after the rotation to Euclidean space. So, we replace every ψ with ψ̄γ4 to make a

new list of operators for use in manifestly Hermitian correlator matrices. For example,

if we have a baryonic operator like

εψαψβψγ (4.7)

we should find a real number after correlating with

εχαχβχγ = εψ̄δψ̄εψ̄ζγ
4
δαγ

4
εβγ

4
ζγ. (4.8)
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Figure 4.1: Five types of quark-antiquark displaced operators. Each empty/filled circle
represents smeared quark and antiquark fields, with the line segments indicating covariant
displacements.
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Figure 4.2: Five types of three quark displaced operators. Each filled circle represents
smeared antiquark fields, with the line segments indicating covariant displacements. Here,
the open circles represent epsilon symbols.
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This replacement of ψ̄ → χ = ψ̄γ4 causes issues with Lorentz invariance for

bilinears:
ψ̄ψ → ψ̄SS−1ψ = ψ̄ψ

χψ → χγ4Sγ4S
−1ψ,

(4.9)

but this is not a problem. Lorentz invariance, or even SO(4), is not a symmetry of

the hypercubic lattice so we can’t make operators that transform irreducibly under

this symmetry. The action is still minimized for these symmetries in the continuum

and thermodynamic limits, so our fields take values such that the non-interacting

correlator is

〈ψα(x)ψ̄β(y)〉 =

∫
d4k

(2π)4

(−iγµkµ +m)αβ
k2 +m2

eiγ·(x−y), (4.10)

which Wick-rotates to the desired Minkowski result. Effectively multiplying this by

γ4 to achieve a χ field in the correlator, matching our operators, doesn’t affect the

spectrum which appears as zeroes of k2 + m2. So, we swap all ψ̄’s with χ’s to get

a Hermitian correlator without worrying about spoiled SO(4) invariance of mesonic

operators. It bears repeating that our action ensures the energies come from a theory

which is Lorentz invariant in the physical limit, without requiring that our operators

are Lorentz invariant in the physical limit. (That is, compare Equation 4.10 with

4.9.)

4.1.4 Stout Smearing

The last ingredient in our basic building blocks is smearing. Smearing has already

been introduced, as stout smearing applied to gauge links in the fermion action.

We can extend the same smearing technique to gauge links that make up our desired

operators, which we have already done in the definition of the smeared tadpole factors

ũ. It was inadmissible to smear fermions in the action (doing so spoils some crucial

properties) but smearing the fermion operators is acceptable. This modification to

our operators reduces the noise and excited state contamination.
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We review stout-smearing,

Sµ[Gµ] =
∑
±ν 6=µ

ρµν

(
Gν;xGµ;x+ν̂G

†
ν;x+µ̂ +G†ν;x−ν̂Gµ;x−ν̂Gν;x−ν̂+µ̂

)
Qµ[Gµ] = −Im

(
S[Gµ]G†µ −

1

3
TrS[Gµ]G†µ

)
G(n+1)
µ = exp(Qµ[G(n)

µ ])G(n)
µ ,

(4.11)

where an unsmeared link Gµ is turned into a set of staples Sµ which then generates

an SU(3) group element expQ, finally multiplying Gµ to get G
(1)
µ . This process is

performed iteratively, up to 10 times for the gauge links making up operators, and

2 times for the gauge links appearing in the action. The weights ρ in each direction

orthogonal to the original link are chosen differently as well, with ρ = .10 in the

operators and ρ = .14 in the action. Any temporal component like ρµ4 is set to zero

in both cases.

The group structure of the gauge smearing procedure is crucial [23]. It ensures

that these matrices do not need to be projected to SU(3) since they never leave the

group; the lack of projection ensures differentiability, a key element in the Markov

chain updating scheme used to generate gauge configurations G. This will be revisited

in chapter 5.

4.1.5 Quark Smearing

The key to quark-field smearing is the Laplacian ∇2, which we have already seen as

the spatial part of the Wilson term ∂2 [27]. We want to excite fewer high-energy

modes, so by associating these higher energy modes with higher lying eigenvectors of

the gauge-covariant Laplacian,

∆(x,y) =
∑
i

Gi(x)δx+ı̂,y − 2δx,y +G−i(x)δx−ı̂,y

2
, (4.12)

we can project them out explicitly, with

ψa(x)→ ψ̃a(x) =
∑
y

Sab(x,y)ψb(y)

=
∑
y

Θab(σ
2 + ∆(x,y))ψb(y),

(4.13)
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using the Heaviside step-function of the Laplacian. In terms of the eigenvectors vka(x)

(associated with eigenvalue λk) of the covariant Laplacian, the smearing kernel looks

like

Sab(x,y) = δx4,y4

∑
k

wkv
k
a(x)vk∗b (y) (4.14)

where the weight wk is 1 whenever the associated eigenvalue λk < σ2 and zero oth-

erwise. In theory the number of such eigenvectors could change depending on the

gauge configuration, but truncating the sum at a sufficiently large value, identical

across gauge configurations, has negligible effect on the correlation functions.

So, for a given gauge configuration G, we calculate the lowest Nν eigenvectors of

∆[G] on each timeslice. These are then applied to the quark fields as a smearing

kernel S:

ψ(x)→ ψ̃(x) =
∑
y

δx4,y4

Nν∑
k=1

vka(x)vk∗b (y)ψ(y) (4.15)

Because of the gauge-covariant Laplacian, the smeared operators have all the same

important symmetries as the unsmeared operators.

This also ends up playing a crucial role in the actual evaluation of the Grassmann

variables via Berezin integration which lead to sums and products of inverse matrix

elements of a large matrix M [G̃]. In chapter 5, we explore this issue in more detail.

For now, we say tersely that matrix inverses are expensive and we save time by

restricting ourselves to the LapH subspace only.

4.1.6 Basic Building Blocks

Combining the stout-smeared gauge links into our covariant displacements and covari-

ant Laplacian allows us to write everything in terms of properly smeared, extended

variables [28]. For baryons and mesons:

B
(ijk)
αβγ (p, t) =

∑
x

eip·xεabc

(
D̃

(p)
i ψ̃α

)
a

(x)
(
D̃

(p)
j ψ̃β

)
b
(x)
(
D̃

(p)
k ψ̃γ

)
c
(x)

M
(ijk)
αβ (p, t) =

∑
x

e
ip·
(
x+

dα+dβ
2

)
δab

(
χ̃αD̃

(p)†
i

)
a

(x)
(
D̃

(p)
j D̃

(p)
k ψ̃β

)
b
(x)

(4.16)

where the displacement length p is displayed explicitly. That is, we use

D
(p)
i (x,x + p̂ı) = Gi(x)Gi(x + ı̂) · · ·Gi(x + (p− 1)̂ı) (4.17)
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and displace p = 2 and 3 for baryons and mesons respectively. These are the most

general possible operators; by taking particular combinations of i, j and k, and some-

times not displacing at all, we create the possibilities listed in Figures 4.1 and 4.2.

The factor of dα,dβ of the total quark-antiquark displacements is to ensure a par-

ticular transformation under G-parity, a symmetry we will fully address later this

chapter.

There are corresponding creation fields

B̄
(ijk)
αβγ (p, t) =

∑
x

e−ip·xεabc

(
χ̃αD̃

(p)†
i

)
a

(x)
(
χ̃βD̃

(p)†
j

)
b
(x)
(
χ̃γD̃

(p)†
k

)
c
(x)

M̄
(ijk)
αβ (p, t) =

∑
x

e
−ip·

(
x+

dα+dβ
2

)
δab

(
χ̃αD̃

(p)†
i D̃

(p)†
j

)
a

(x)
(
D̃

(p)
k ψ̃β

)
b
(x).

(4.18)

Now that we have these basic structures, the rest of the chapter will be devoted to

making them transform properly under the various discrete and rotational symmetries

of interest. But first, we visit the topic of quark flavor.

4.2 Symmetries

4.2.1 Flavor Structure

Restoring flavor indices to all the quark and antiquark fields allows us to explore

physical mesons and baryons. For a specific example, we can focus on flavor only

and ignore rotations to make a pion operator; to make an isotriplet meson we first

consider a light quark and antiquark, so f = ` for both particles in Mαβ, to get MαβIJ

with isospin indices I, J = 1, 2 or up and down, or u and d. Then combine these with

a σI3IJ for I3 = −1, 0, 1 to get an isotriplet I = 1 nonstrange S = 0 particle with

isospin projection I3

πI3αβ = σI3IJδabχ̃
`
αaI(x)ψ̃`βbJ(x), (4.19)
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for a single site operator, before projection into a definite momentum state.

Putting together a list of the mesonic flavor structures:

pion πI3αβ = σI3IJδabχ̃
`
αaIψ̃

`
βbJ I3 = −1, 0, 1

kaon KI3
αβ = δabχ̃

s
αaψ̃

`
βbI3

I3 = −1
2
, 1

2

eta ηαβ = δIJδabχ̃
`
αaIψ̃

`
βbJ I3 = 0

phi φαβ = δabχ̃
s
αaψ̃

s
βb I3 = 0.

(4.20)

A few brief points on this list, before we move onto the baryons. First, the antikaon is

not listed, we will soon see these are defined by a transformation of our kaon operators.

Second, the usual η, η′ and φ, ω mesons are particular combinations of ūu+ d̄d and s̄s,

linear combinations of the above operators labeled as η, φ which really mean purely

light isoscalar and purely strange isoscalar. Lastly, the second point demonstrates

these names refer to only the flavor structure – pions and kaons are pseudoscalars,

but the above objects do not have these transformation properties. To get physical

particles we will continue to nail down further symmetries which constrain the states

these operators excite. A physical pion, for example, will be a version of the above

operator that is also a negative parity and G-parity eigenstate, and which is invariant

under rotations.

Putting together a list of the baryonic flavor structures:

nucleon N I3
αβγ = DI3

IJKεabcψ̃
`
αaIψ̃

`
βbJ ψ̃

`
γcK I3 = −1

2
, 1

2

delta ∆I3
αβγ = QI3

IJKεabcψ̃
`
αaIψ̃

`
βbJ ψ̃

`
γcK I3 = −3

2
,−1

2
, 1

2
, 3

2

lambda Λαβγ = δIJεabcψ̃
`
αaIψ̃

`
βbJ ψ̃

s
γc I3 = 0

sigma ΣI3
αβγ = σI3IJεabcψ̃

`
αaIψ̃

`
βbJ ψ̃

s
γc I3 = −1, 0, 1

xi ΞI3
αβγ = εabcψ̃

`
αaI3

ψ̃sβbψ̃
s
γc I3 = −1

2
, 1

2

omega Ωαβγ = εabcψ̃
s
αaψ̃

s
βbψ̃

s
γc I3 = 0

(4.21)

where the coefficients D result from the projection to the doublet part of 2⊗ 2⊗ 2 =

4⊕ 2⊕ 2. There are two possibilities here, but they are redundant under permuation

of indices. That is, we take (ignoring overall normalizations)

D
1
2
IJK = δIuδJuδKd − δIdδJuδKu

D
− 1

2
IJK = δIuδJdδKd − δIdδJdδKu.

(4.22)
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There is only one quartet, so Q is fully determined. For reference these are

Q
3
2
IJK = δIuδJuδKu

Q
1
2
IJK =

1√
3

(δIdδJuδKu + δIuδJdδKu + δIuδJuδKd)

Q
− 1

2
IJK =

1√
3

(δIdδJdδKu + δIdδJuδKd + δIuδJdδKd)

Q
− 3

2
IJK = δIdδJdδKd.

(4.23)

For all of the above operators we have given each possible I3. Because of isospin

symmetry, the energies do not actually depend on I3, so the energies in the I = 1, I3 =

−1 sector should be identical to the I = 1, I3 = 1, assuming other quantum numbers

are identical. However, we will end up requiring different I3 anyway, because we will

want to combine these operators into multi-hadron objects that have definite total

I = I(1) + I(2) and I3. Two-hadron operators will be addressed in more detail later.

4.2.2 G-Parity

G-parity is a transformation that combines charge conjugation with isospin rotation.

Charge conjugation itself is not a symmetry of many states we consider: e.g., although

π0 is electrically neutral and transforms into itself, the other two pions switch under

charge conjugation. We can “switch back” by essentially interchanging u and d, via

isospin rotation:

UIRψ
`
IU
†
IR = eiπ σ

2

2 ψ`I = iσ2
IJψ

`
J (4.24)

which sends u → d → −u and ū → d̄ → −ū. Of course s is left invariant. By

combining this with charge conjugation

UCψαU
†
C = ψ̄βC

†
βα = ψ̄β(γ4γ2)†βα

UCψ̄αU
†
C = −Cαβψβ = −(γ4γ2)αβψβ

UCGiU
†
C = G∗i

(4.25)
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and replacing barred fields in favor of χ = ψ̄γ4 we find these properties for G-parity

UG = UIRUC :

UG
(
Djψ

`
αI

)
a
U †G = iσ2

IJ

(
χ`βJD

†
j

)
a
γ2
βα

UG (Djψ
s
α)a U

†
G = −

(
χsβD

†
j

)
a
γ2
βα

UG

(
χ`αJD

†
j

)
a
U †G = iσ2

IJγ
2
αβ

(
Djψ

`
βI

)
a

UG

(
χsαD

†
j

)
a
U †G = −γ2

αβ

(
Djψ

s
β

)
a
.

(4.26)

Technically, these results depend on the choice of representation for the γ-matrices.

However it turns out the above is true for multiple common choices, the Dirac-Pauli,

Weyl-Chiral, and DeGrand-Rossi conventions. So, for each meson operator (except

the kaon) we can define two sectors of opposite G-parity,

M →M± = M ± UGMU †G. (4.27)

In the case of the kaon, we simply define the k-bar as its G-parity conjugate,

K̄ = UGKU
†
G. (4.28)

4.2.3 Time-Reversal

It turns out that the time-reversed baryon operator has opposite parity, and not

necessarily the same energy. The mesons, however, are candidates for time-reversal

invariance because the forward- and backward-propagating modes have the same par-

ity. In fact, Hermiticity of the correlator can be connected to time-reversal invariance

for Euclidean objects. In the case of baryons, time reversal is tied up with parity and

asking for the former gives us a procedure for constructing the latter. For mesons the

two are independent, but we can increase statistics by requiring it. To really take ad-

vantage of the increase, we must be sensitive to forward- and backward-propagating

modes, which is only plausible for the lightest meson channels. Therefore, the increase

in statistics is not so relevant for the baryons nor most mesons, outside of those in

the A1u, A
±
1u channels. (Though we still construct the baryons accordingly, because

of the relationship to parity.)
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We would like the correlator to satisfy

Cg
ij(t) = −Cu†

ji (T − t) (4.29)

(g, u refer to parity plus and minus, respectively) for baryons, and

Cij(t) = Cij(T − t) (4.30)

for mesons. The latter case is simple; we can take operators of either class M± =

M ± UTMU †T . There is no reason to use one of these over another, but it seemed

that the odd operators were less noisy on small lattices. The symmetry operation UT ,

restricted time-reversal, is unitary and defined by

UT (Djψα)a (x, x4)U †T = (γ4γ5)αβ (Djψβ)a (x, T − x4)

UT

(
χαD

†
j

)
a

(x, x4)U †T =
(
χβD

†
j

)
a

(x, T − x4) (γ4γ5)βα .
(4.31)

Again, the baryon time-reversal behavior will follow automatically from our method

of constructing opposite-parity operators. This will be discussed further in the next

section, but, for reference, baryons satisfy equation 4.31 if, for an even operator like

BΛgλ = dΛλ
αβγBαβγ, (4.32)

the odd operator is constructed according to

BΛuλ = C
(Λ)
λλ′d

∗Λλ′
αβγ

(
γ2
αα′γ

2
ββ′γ

2
γγ′Bα′β′γ′

)
(4.33)

for baryons of opposite parity. The coefficients C are found to be:

C12 = −C21 = 1 for G1, G2

C14 = −C41 = C32 = −C23 = 1 for H
(4.34)

with all other entries zero. (The irreducible representations G1, G2 and H are dis-

cussed in the following section.)
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4.2.4 Cubic Symmetry

The last symmetry we consider is rotational, with spatial inversion. In typical formu-

lations of field theory, we ask for objects that transform irreducibly under SO(3), the

little group of a reference momentum vector (0, 0, 0, 1) for massive particles. However,

in our system we have only the discrete symmetries of a cube, the octahedral group

O. Therefore, we use the irreducible representations of this group at rest, and for

a moving frame we use irreps of the relevant little group. We have been leaving all

spinor indices free on objects like Mαβ because the plan is to eventually project these

into the irreducible representations of cubic, rather than continuous, rotations.

The octahedral group O is made up of the rotations that leave a cube invariant,

E Identity

R
2n
3
π

α Rotations around corners by 2π
3
, 4π

3

R
2n+1

2
π

x Rotations around face normals by π
2
, 3π

2

Rπ
x Rotations around face normals by π

Rπ
a Rotations around edge by π.

(4.35)

The lines are separated by conjugacy class, and each axis is displayed in Figure 4.3.

Incorporating parity leads to the point octahedral group Oh, which is accomplished

with an additional group element I, for spatial inversion, that doubles the number of

conjugacy classes. So far these are single-valued representations which only account

for integer spin, but they can be made projective by adding a further element to O

or Oh called Ē. Now, E represents a rotation by 4π, and Ē is 2π. The additional

element (really, additional set of elements) creates three new conjugacy classes in the

case of O, and six more for Oh.

So, the irreducible representations of OD
h (the double point octahedral group)

are labeled by Λ, and there are sixteen of them because there are sixteen conjugacy

classes; for each parity, there are five integer-spin classes and three half-integer classes.

Following the Mulliken convention, these are labeled as

A1g/u, A2g/u, Eg/u, T1g/u, T2g/u (4.36)
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Figure 4.3: The rotation axes for each element of O. Early Latin letters (a-e) indicate edges,
late Latin (x, y, z) indicate face normals, and Greek indicate corners.

for the usual representations and

G1g/u, G2g/u, Hg/u (4.37)

for the double-covers. (Again, subscript g and u indicate parity + and −, respec-

tively.)

Because we have given up spin-symmetry, in principal it is very hard to relate

states on the lattice with physical particles. For low spin, however, it is not so diffi-

cult, in practice. One can take an irreducible representation of SO(3) (which becomes

reducible if we consider only a few specfic rotations), and find the symmetry sectors

of OD
h to which it subduces. Table 4.1 gives the number of occurrences n of each OD

h

irrep for a given J .

We explicitly build these representations, group-element by group-element, and

use the matrices to project our operators into specific symmetry sectors. This ef-

fectively builds the coefficient dαβγ, mentioned earlier, which ends up depending on

displacement type. We detail the procedure in section 4.2.6.
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J A1 A2 E T1 T2 G1 G2 H
0 1 0 0 0 0 0 0 0
1
2

0 0 0 0 0 1 0 0
1 0 0 0 1 0 0 0 0
3
2

0 0 0 0 0 0 0 1
2 0 0 1 0 1 0 0 0
5
2

0 0 0 0 0 0 1 1

Table 4.1: Number of occurrences of irreducible representations of the double-octahedral
group in the subduction of SO(3). This table continues with many of the irreps showing
up multiple times for any particular J .

4.2.5 Moving Frames

At rest, we used representations of OD
h , but in moving frames we need representations

of the subgroup of OD
h that leaves a certain momentum vector invariant. That is, we

can use operators with total momentum (n, 0, 0), (n, n, 0) and (n, n, n), as well as

the various permutations and inversions (±). For each irrep of OD
h , the little groups

C4v, C2v and C3v have a set of irreducible representations, as outlined in Table 4.2

Again these are built explicitly, and used to project onto the relevant sector. It is

important to remember that parity is no longer a good symmetry of these operators,

because they are moving with a specific nonzero total momentum.

4.2.6 Projection onto Symmetry Sectors

In order to find the coefficients dαβγ or dαβ for baryon and meson operators for each

displacement type, irrep, and irrep row we follow the following procedure, detailed

in [26]:

(1) Assemble a list of operators that transform into each other under rotations.

For single-site operators this is trivial, consisting only of all possible spin indices. For

displaced operators, the directions must be taken into account as well.

(2) Reduce this list to the independent operators (that is, some of the above

operators will be related under permutation of identical particles)

(3) Project each into a specific row of each irrep

(4) Apply lowering operator to get all other rows

(5) Recover the coefficients d by reading them off the resulting linear combinations
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Table 4.2: Subduction of irreps of ODh to the little group of on-axis, cubic-diagonal, and
planar-diagonal momenta.
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The projection formula is

OΛλ=1
i (p, t) =

dΛ

|G|
∑
R∈G

Γ
(Λ)
11 (R)UROi(p, t)U

†
R, (4.38)

which projects onto the λ = 1 row, and then is lowered to other rows via

OΛµ
i (p, t) =

dΛ

|G|
∑
R∈G

Γ
(Λ)
µ1 (R)URO

Λ1
i (p, t)U †R. (4.39)

Here, the symbol dΛ counts the dimension (number of rows) of the irrep, and |G|
is the order of the relevant group. In each case the relevant group is OD

h or one of

its subgroups for moving frames. Like with isospin projection, operators of different

irrep-row will have zero correlation, and result in identical energies, so the only reason

to use multiple rows is in constructing multi-hadron operators.

4.3 Multi-Hadron Operators

We quickly detail the procedure for multiple hadrons. The key point is that we

combine operators of specific total momentum p, like

O(P, t) = A(p1, t)B(p2, t) (4.40)

rather than taking a so-called “local” operator

O(P, t) =
∑
x

eiP·xA(x)B(x). (4.41)

It turns out that nonlocal multiparticle operators have generally less excited state

contamination than local multiparticle operators. We make only meson-meson and

baryon-meson two-hadron operators, which greatly simplifies the number of possibil-

ities. (Baryon-baryon operators are too heavy for us to consider here.)

Symmetries like parity and G-parity combine multiplicatively when appropriate.

Strangeness combines additively, and operators must be made to transform under

total isospin I via standard Clebsh-Gordan coefficients. The only slight complication

comes from rotational symmetries, which we solve by reapplying the above procedure

to project a general two-hadron operator into the desired irrep.
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The last aspect to consider is G-parity. When the individual hadrons are irre-

ducible under G-parity the two-hadron state is automatically irreducible, but it can

be the case that the two individual hadrons do not create G-parity eigenstates. When

neither constituent operator is irreducible, it is sometimes true that the total mul-

tihadron operator can be made to transform irreducibly. For example, we project

operators like KK̄ into positive and negative G-parity sectors, even though this is

not a good quantum number for the individual K and K̄.
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Chapter 5

Monte Carlo Sampling

In this chapter, we discuss Monte Carlo sampling as a means of performing the path

integral. The Dirac matrix is introduced for its use in the probability weight, and

fermions are discussed in detail, as well as quark lines, and their efficient evaluation

via noise dilution in the LapH-subspace. We outline the process of configuration gen-

eration, with the Rational Hybrid Monte Carlo method, and our Metropolis-Hastings

updating scheme.

5.1 Fermions and Correlators

A prototypical correlator between operators A and B, each made out of quark fields

and gauge links, takes the form

〈A(t)B†〉 =
1

Z

∫
Dψ̄DψDGA[ψ̄(t), ψ(t), G(t)]B∗[ψ̄(0), ψ(0), G(0)]e−S (5.1)

with S defined in Equation 3.8. Looking at the form of

S = Sf + Sg =

∫
d4xψ̄M [G]ψ + Sg (5.2)

we see that Sf is quadratic in the fermion fields, which are completely absent in Sg.

Because of this, we can integrate out the quarks exactly which dodges the issue of

numerically representing Grassmann numbers. It is well-known1 that integrating over

Grassmann numbers in a Gaussian e−(ψ̄,Mψ) results in a matrix determinant, detM ;

1See any field theory text, e.g. [29].
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Figure 5.1: Diagram of possible meson correlator. Each line represents a particular element
of the Dirac matrix inverse.

when additional Grassmann numbers appear in the integrand, we find the same factor

of detM , supplemented with additional factors of M−1 matrix-elements. Specifically,∫
Dψ̄Dψψaψ̄be

−(ψ̄,Mψ) = M−1
ab detM, (5.3)

where we have combined every index on ψ into one that iterates over everything. For

example, if the compound index a contains the flavor s and b contains `, the relevant

element of M−1 is guaranteed to be zero. This is the simplest nontrivial case; a more

typical example is a meson correlator

〈ψaψbψ̄cψ̄d〉 =
(
M−1

ad M
−1
bc −M

−1
ac M

−1
bd

)
detM. (5.4)

Each meson operator contributes one ψ and one ψ̄ to this correlator. For the la-

belling choice in Figure 5.1 we can see that the matrix elements M−1 contain both

forward/backward lines and same-time lines. Often, only some of the quark lines con-

tribute to a given operator. For example, in the case of single mesons, only isoscalars

have same-time quark lines.

All of the above is rather generic. In practice we use χ fields rather than ψ̄, for

example, which means there should be a γ4 floating around. Additionally, our actual

fields are smeared and displaced. All these operations take the form of linear oper-

ators like gab that are applied to the above objects. Therefore, they can be applied

to our elements of M−1 rather trivially. So, any correlator can be decomposed into

linear combinations of products of quark lines. For forward quark lines

Qjk(t, t0) = DjSΩ−1(t, t0)SD†k (5.5)
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must be calculated, where we prefer the use of Ω = γ4M rather than the Dirac matrix

itself. Remember that each of theseQjk(t, t0)’s is a matrix in color-spin-position space.

(We ignore flavor and isospin indices because we can only have quark lines between

operators of the same flavor or isospin.) For backward quark lines

Q̄jk(t, t0) = (γ5γ4Qjk(t, t0)γ4γ5)∗ (5.6)

and for same time quark lines, we use the forward line with identical time indices as

Qjk(t0, t0).

Each correlator decomposes into quark lines which each contain inverses of the

Dirac matrix, in the form Ω−1. It turns out that LapH-smearing our quarks has

important consequences for the inversion procedure.

5.1.1 Matrix Inversion

Any matrix inverse M−1 can be estimated by iteratively approximating xi, the so-

lution to Mxi = ei, for each basis vector ei. This is made stochastic (Monte Carlo

within Monte Carlo) by replacing the basis vector ei with a noise vector η, of random

elements. With only a few requirements, iteratively solving for x in Mx = η for each

η yields

〈xiη∗j 〉 = 〈M−1
ik ηkη

∗
j 〉 = M−1

ik 〈ηkη
∗
j 〉 = M−1

ij (5.7)

for an estimate M−1. We note that the expectation value 〈·〉 here is taken over a

set of noise vectors {η} rather than configurations {G} as before. These randomly

generated noise vectors must satisfy

〈ηi〉 = 0

〈ηiη∗j 〉 = δij.
(5.8)

There are many ways to accomplish this, and our noise vector elements ηi are chosen

randomly from the set {1, i,−1,−i}, referred to as Z4 noise. It is easy to show that

the variance in our estimate for M−1 goes like 1
Nn

, for Nn noise vectors η.
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5.1.2 Noise Dilution

We can dramatically decrease the variance in this estimate by projecting our noise

vectors into several distinct subspaces. That is, one makes any complete set of pro-

jectors {P (r)} to solve Mx(r) = P (r)η and form

〈x(r)
i P

(r)
jk η

∗
k〉 = M−1

ij (5.9)

to get the inverse. By diluting the noise vectors in this way we reduce the variance

in our estimate of M−1. For example, fully diluting these η should completely elim-

inate the variance; this corresponds to introducing a set of projectors P
(r)
ij = δirδjr,

which serve to turn a noise vector η into the basis vector er, thereby achieving exact

inversion. A smaller set of projectors will save computational time at the expense of

increasing the variance.

We consider three sets of projectors, referred to as full, interlace-8 and interlace-

16. The former we have already discussed, and the latter two correspond to chopping

up the identity into 8 or 16 subspaces. We do not have to necessarily dilute in ev-

ery index, and in fact we will dilute separately in time, spin, and LapH eigenvector

indices. The last of these is effectively a mix of spatial and color indices, found af-

ter diagonalizing the covariant Laplacian. We see a dramatic cost reduction by only

diluting in the LapH subspace via the stochastic LapH method [5].

5.1.3 Factorization

The diluted noise vectors η(r) allow us to find M−1 by first approximately solving

Ωφ(r) = η(r) for φ(r). So, we can replace our elements of M−1 in Equation 5.9 with

combinations of these source and sink noise vectors. The original operators were

smeared and displaced so we must apply this smearing and displacement to these

very noise vectors, as

Qaαj;bβk(x,y, U) =
1

Nn

Nn∑
n=1

∑
r

ϕ
(r)n
aαj (x, U)%

(r)n
bβk (y, U)∗. (5.10)

The fields % in the above are made by applying a couple of linear operators to our

noise vectors η. Specifically, a large list of noise vectors ηn lying in the LapH subspace
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are acted upon by

ηn → P (r)ηn → DkVsP
(r)ηn = %

(r)n
k (5.11)

to first dilute, move to spatial and color indices (from LapH-eigenvector indices) and

lastly covariantly displace. Simultaneously, we are receiving from each η a corre-

sponding φ and likewise smearing and displacing these:

η(r)n → Ωφ(r)n = Vsη
(r)n (5.12)

is solved to find φ(r)n, which defines ϕ as

φ(r)n → DjSφ(r)n = ϕ
(r)n
j . (5.13)

One notes that the factors of Vs and S appear asymmetrically – this is because the

vectors η lie entirely within the LapH subspace, whereas the vectors φ lie automati-

cally in the whole space.

Each quark line is calculated by combining the source- and sink-vectors, and the

correlator is made by combining all the necessary quark lines. A key point is that

any correlator will end up factorizing, allowing us to calculate all the source- and

sink-vectors, or line-ends, for each operator and then keeping them on disk. Thus,

the fermionic operators can be viewed in the same way as gluonic operators, with a

mere complex number (or set of complex numbers) for each configuration. The only

difference is the computational expense required in forming these ϕ and % fields. By

forming these line-ends for a large number of operators, they can be quickly com-

bined into quark lines which can in turn be combined into correlators. For example,

a typical baryon correlator becomes

C(t− t0) = B(ϕ1, ϕ2, ϕ3; t)
(
B(%1, %2, %3; t0)−B(%1, %3, %2; t0)

−B(%2, %1, %3; t0)−B(%3, %2, %1; t0) +B(%2, %3, %1; t0) +B(%3, %1, %2; t0)
)∗

(5.14)

where we have used an extremely condensed notation. This can be viewed pictorially,

as shown in Figure 5.2.

The factorization is particularly advantageous for large sets of operators and cor-

relation matrices. Each individual operator becomes associated with a set of complex

numbers, the line-ends, which are combined with the line-ends of a different operator
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Figure 5.2: Diagram of possible baryon correlator. Before, each line represented an element
of the Dirac matrix inverse. Now, we see that these inverses are estimated by multiplying
together functions of source and sink vectors.

to form the correlator itself.

5.2 Importance Sampling

Given the previous discussion of Grassmann integration, we see that the remaining

integral takes the form

〈A〉 =
1

Z

∫
DGFA

[
M−1[G]

]
detM [G]e−Sg [G]. (5.15)

Our gauge fields give N4 × 4 × 8 variables to integrate in, using 4 directions and 8

parameters for a 3×3 unitary matrix of determinant 1. The general procedure in such

a situation is to use Monte Carlo sampling, detailed very well in [30], where we take a

statistical sampling of points in the integration region and perform a weighted aver-

age. However, not all of these points contribute significantly to the result. Specifically,

field configurations that are associated with particularly large actions are practically

irrelevant. One can improve the estimate by using importance sampling, where the
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∑
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Figure 5.3: Comparing uniformly distributed sampling (above) to importance sampling
(below). The average of f weighted by W in the former case becomes merely the average
of f , at points distributed according to W , in the latter case.

sampling points themselves are distributed according to detM [G]e−Sg , and we per-

form a simple average over FA, which represent the particular combination of quark

lines that correspond to a given pair of operators.

Therefore, we are sampling according to

W = detM [G]e−Sg [G] (5.16)

rather than merely e−S. That a determinant must be evaluated rather than just

the exponential changes the computational load, but not the conceptual one. We

merely trade a list of G, ψ̄ and ψ sampled according to e−S for a list of G sampled

according to detMe−Sg . Soon, we will discuss approximations and modifications to

this determinant, but first we must detail the configuration generation process itself.

5.3 Configuration Generation

5.3.1 Markov Chains

In order to generate configurations of gauge-links distributed according to W we

exploit stochastic Markov chains. That is, if we can find a stochastic updating pro-

cess with a fixed point equal to W , then with the right updating procedure we can
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randomly explore the vicinity of this fixed point, continually generating new config-

urations distributed according to W [30]. So, any initial field-configuration can be

iteratively massaged to a thermal configuration, which can then be further iterated

upon to continue generating more configurations. Because of the iterative procedure,

these configurations are highly correlated together – one must choose configurations

separated by enough Markov time such that these autocorrelations are negligible.

The entire process is:

(1) Propose a random set of complex numbers

(2) Propose a new set, by randomly modifying the previous configuration.

(3) Accept or reject the new set, according to probability P .

(4) Repeat (2)-(3) many times

(5) After repeating enough times, the chains “thermalize” and we can begin taking

configurations as our sampling points for the integrand, provided they are far enough

apart in Markov time to have small autocorrelations.

To ensure the existence of a fixed point (the thermalization) the updating scheme

must fully cover the region, allowing any configuration to potentially be generated; it

must be aperiodic, so that configurations don’t consistently return to the same point;

and it must be reversible, so that given two configurations we have an identical prob-

ability of proposing the first from the second as vice versa. (The proposal probability

must be the same, not the acceptance probability.)

The metropolis method [31] meets these requirements through random updates

accepted with probability

Paccept = min

(
1,
Wb

Wa

)
, (5.17)

which always takes changes that increase the weight, and sometimes accepts changes

that lower the weight. Accepting changes that increases this weight allows us to find

and remain near the fixed point, while the occasional changes that lower the weight

allow us to explore the area surrounding the maximum. Generally if the acceptance

rate is too high, the changes being made are too small and the integral is being

explored too slowly. If the acceptance rate is too low, then time is being wasted

proposing configurations that are not used.

Making local updates, or changing only a few variables at a time, falls into the

category of small changes that take longer to cover the integration region; the advan-

tage is that a small change is easy to make. These algorithms have been explored
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in the quenched approximation, where the fermion determinant is neglected [32] [33].

Changing the entire field by small amounts explores the integration region faster, but

even small changes made to the entire field often result in large changes to W , which

can often be rejected. W contains a matrix determinant, which must be entirely

recalculated even for local updates (contrastingly, the action need not be entirely re-

calculated) so there is absolutely no advantage to this first method. Thus, we need

a procedure for calculating global updates that only alter the weight W by a small

amount.

5.3.2 Hybrid Monte Carlo

Global modifications that alter the final weight W only slightly are hard to make.

One method is to invent a fictitious Hamiltonian, with fictitious conjugate momenta

Π, with which to evolve fields G, as in [34] [35]. So, we invent a Hamiltonian H that

evolves our fields G and Π in fictitious time according to

H = Sg[G] +

∫
d4x

1

2
Π†µΠµ

G(f + δf) = G(f) + δf{H,G}

Π(f + δf) = Π(f) + δf{H,Π}.

(5.18)

(Ignore the fermions, for now. We will introduce them shortly.) Exact evolution

means that H doesn’t change, so any changes to S must be balanced by the small

changes to Π2. In practice our fictitious time-evolution is inexact, but this is entirely

irrelevant as all that matters is that the changes to S are generally small enough to

be accepted at a decent rate.

Now, incorporating fermions into the above is slightly tricky. We must rewrite this

determinant as a term in the action in order to introduce the above Hamiltonian flow

procedure. This is precisely where it came from originally – a term like ψ̄Mψ between

fermion fields leads to a detM , while the identical term between bosons φMφ leads

to a detM−1. We can’t use Grassmann variables to compute ψ̄Mψ but we can use

bosonic variables to compute φM−1φ.

Using identical up- and down-quarks means that there are two identical factors of

detM` in the integrand. This guarantees positivity for Monte Carlo sampling, and

we move this term into the action with φ†(MM †)−1φ. Unfortunately, this is not as
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easy for the single strange quark. There, the factor becomes φ†(MM †)−
1
2φ if detMs

is positive; because of the comparatively larger mass of the strange compared to the

light quarks this is generally true. Therefore, in the light-sector we apply one M to

each pseudofermion, but for the strange-sector we must use (M †M)
1
4 . The actual

factor of (M †M)
1
4 applied to each φ is estimated via the rational approximation

(M †M)
1
4 ≈ α01 +

∑
i

ai
M †M + bi

(5.19)

for particular set of coefficients α, a, b [36].

To summarize, starting with a set of original fields (G0,Π0, φ0) we update in the

following way:

(1) Calculate a new Π, χ

(2) Evaluate

φ` = M`[G]χ`

φ†` = χ†`M`[G]†

φs = (Ms[G]†Ms[G])
1
4χs

φ†s = χ†s(Ms[G]Ms[G]†)
1
4

(5.20)

(3) Discretely evolve
◦
G = −∂H

∂Π
◦
Π =

∂H

∂G

(5.21)

with a fictitious H

H = Sg[G] +
∑
x

1

2
Π2 + χ†`χ` + χ†sχs (5.22)

(4) Accept the evolved G,Π and new φ with probability

P = min
(
1, e−(H−H0)

)
(5.23)

(5) Repeat

The rational approximation comes into play while evaluating both φs and ∂H
∂G

.

Additionally, the derivative term ∂H
∂G

can be computed because G are stout-smeared
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analytically. This ensures that the map can be differentiated and discretized for

fictitious time-evolution.

The product of all this is merely a set of configurations {G}, distributed according

to W . Now, it is easy to see that operators or functionals of G are straightforward

to calculate, by using the value on each configuration. However, we have clearly not

generated any Grassmann or fermionic fields for similar use. In fact, we have seen

instead that the fermionic fields have completely disappeared, leaving behind only a

factor detM used in the weight W of {G}.
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Chapter 6

Correlator Analysis

In this chapter, we discuss correlator analysis and excited-state extraction via the

single-pivot method. We briefly discuss pruning guidelines, as well as our calculation

of overlap factors and the various fit forms used.

6.1 Excited States

We have been viewing energies as the decay rates of temporal correlators, as in

〈0|Â(t)B̂†(0)|0〉 = CAB(t) =
∑
n

〈0|Â|n〉〈n|B̂†|0〉e−Ent

=
∑
n

Zn
AZ

n∗
B e
−Ent,

(6.1)

so the gap between the ground state and the first excited state is given by:

E1 = lim
t→∞
− d

dt
ln
(
〈0|Â(t)B̂†(0)|0〉 − 〈0|Â|0〉〈0|B̂†|0〉

)
= lim

t→∞
− d

dt
ln
(
CAB(t)− Z0

AZ
0∗
B

)
.

(6.2)

(For every operator we consider these vacuum overlap factors Z0
i are exactly zero,

because our operators transform non-trivially under some symmetries.) We have also

stated that a matrix of correlators will allow extraction of higher-lying excited states.

It is not too different from a variational method: an incomplete set of unperturbed

eigenstates {ϕi} is used to find approximate interacting eigenstates ψ = ciϕi basically

by minimizing 〈ψ|H|ψ〉. Typically, higher-lying modes are found by minimizing the
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expectation value and demanding orthogonality with the previous eigenstate. Re-

membering that the energy is like a decay rate for our correlators, this amounts to

finding the linear combination of operators that decay most slowly. Diagonalizing the

correlator automatically generates these linear combinations.

Specifically, the principal correlator method involves diagonalizing on each time

slice to find eigenvalues λ0 ≥ λ1 ≥ · · · ≥ λN−1:

lim
t→∞

λn(t) = e−Ent
(
1 + O(e−∆nt)

)
(6.3)

where ∆n = min
k 6=n
|Ek−En| is the minimum difference between adjacent energies. This

shows that as the correlator time separation t increases, each eigenvalue becomes a

single decaying exponential, with decay rate En. We can visualize this decay rate by

using the effective mass

meff(t) = − d

dt
lnC(t) (6.4)

which is discretized to

meff(t) = − 1

∆t
(lnC(t+ ∆t)− lnC(t)) . (6.5)

For small times t, one can see that the correlator does not take the form of a single

exponential, which only sets in for large times t. Therefore, whereas the correlator

will always fall to zero exponentially, we expect to see effective masses that eventually

plateau to a constant value, atE in dimensionless units. Once sub-leading contribu-

tions are negligible, we generally fit correlators with a single exponential and then

display the fit value superimposed on an effective mass. It bears repeating that we

do not fit the effective mass itself.

6.2 Single Rotation

The above discussion focused on the so-called principal-correlator method, where

every time slice was diagonalized. In fact, this is not strictly necessary, and similar

results can be found by only diagonalizing at one time, td, and rotating all other

timeslices by the same matrix. This works provided that the off-diagonal elements

stay statistically consistent with zero.
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Figure 6.1: Toy correlator example. On the left, before diagonalization, all effective masses
tend to lowest level. Center, after diagonalization, effective masses tend slowly to excited
states. Right, after diagonalization and pre-/post-multiplying by C−1/2(t0), effective masses
tend quickly to excited states.

So, given a Hermitian correlation matrix Cij(t) we rescale,

Cij(t)→
Cij(t)√

Cii(t)Cjj(t)
= Rij(t) (6.6)

which just rescales the various rows and columns to make the process more compu-

tationally convenient. The first significant step is to choose a “metric time” t0 and

demand the correlator is equal to unity at this time,

R(t)→ R−
1/2(t0)R(t)R−

1/2(t0) = G(t). (6.7)

This serves to change the error factor from ∆n = min
k 6=n
|Ek − En| to ∆n = |EN − En|,

where EN is the first omitted energy. (That is, the lowest energy that we do not

attempt to extract.) This dramatically accelerates the rate these eigenvalues reach

their asymptotic values, as demonstrated in Figure 6.1 using a toy model.

This figure shows, first, that before diagonalizing the correlator matrix every entry

approaches a common decay rate E. After diagonalizing, the decay rate of these

diagonal entries approach a variety of values, albeit slowly. And, pre/post multiplying

by C−1/2(t0) hastens the approach to each energy.

After these preliminary steps are done, we choose a time td at which to diagonalize

G(t):

C̃(t) = U †G(t)U (6.8)

where U diagonalizes G(td).
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6.3 Pruning

Generally, we make a large number of operators for each channel. In practice, some of

these produce rather noisy or poorly estimated correlators. It becomes important to

remove some of these bad operators, where the definition of bad is rather subjective.

For example, by looking directly at the correlators of an operator with itself (the

diagonal entries of the undiagonalized correlator) we can sometimes distinguish a

good operator from a bad operator, with examples shown in Figures 6.2 and 6.3.

Figure 6.2: Clean signal on correlator and effective mass indicates a good operator. A
visible plateau on the effective mass is also desirable, but not required.

Figure 6.3: Noisy signal on correlator and effective mass indicates a bad operator. Large
vertical spreads generally hide poor plateau behavior.
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This is often insufficient. One must also take care to remove any linearly dependent

operators, even if they are well-behaved. If the correlation matrix contains such

operators, they lead to zero modes of the diagonalized correlator, which are obviously

non-physical. Any eigenvalues that are negative or statistically consistent with zero

can be removed completely, with their associated eigenvector not making it into the

matrix U . That is, we move from an N ×N correlator to an M ×M correlator after

dropping N −M eigenvectors. Throughout our results, we used a threshold,

λmin ≡ ϑλmax, (6.9)

dropping any eigenvalues below λmin. We found that ϑ = 0.01 was sufficient.

6.4 Overlaps

In addition to the energy value E, our results also include the (less important) overlap

factors

Zn
i = 〈n|Ôi|Ω〉 (6.10)

which are recovered from the amplitudes of our exponentials, Ae−Bt. After fitting

every level n we find that the correlator takes on an approximate form of

Cnn(t) = Ane
−Ent, (6.11)

and we can use the set {An} to find

Zn
i = G

1/2(t0)ijUjnA
1/2
n (no sum over n), (6.12)

the overlap between the ith operator and the nth energy level. Really, these are only

defined to within a phase, so the physical quantity is |Z|2. Furthermore, we recall

that the overall norm of the correlator was arbitrary, so the numerical value of each

Z is irrelevant. Instead we care only about the relative magnitudes of Zn
i and Zm

i ,

two overlap factors for the same operator on different energy levels. For an N × N
correlator, we must fit every level to recover any overlap factor.

We have already seen that it is necessary to sometimes prune our operators, re-

ducing the size of the correlator from N × N to M × M . If this is the case, the
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extracted overlap factors (post-pruning/post-projection) can be remade into overlap

factors for our original operators with

Z
(O)n
i = PijZ

(P )n
j , (6.13)

which relates j = 1, . . . ,M pruned operators to i = 1, . . . , N original operators. The

N ×M matrix P just projects out the lowest eigenvectors which cause λmin < ϑλmax

in Equation 6.9.

6.5 Temporal Wrap-Around

Recall that our correlators are designed to produce vacuum expectation values only

in the zero-temperature, or infinite time, limits. Furthermore, they are constructed

to satisfy time-reversal symmetry and periodicity. A simple fit form like Ae−Et is

incapable of seeing backward-propagating modes, which are most relevant for lighter

particles or lower energies E. In the meson channels, fit forms like

Ae−Et + Ae−E(T−t) (6.14)

can be used. Clearly the backward-propagating piece disappears as T →∞ for finite

t, and is also less relevant for larger E. For this reason, baryonic channels do not

generally include any backwards piece in the fit form. This is a relief as, for baryons,

the backward-propagating state is the parity-partner (unlike the mesons, where it is

the same particle) so a fit accounting for backward-propagating modes must deal with

two symmetry channels at once, rather than one.

6.6 Fitting

6.6.1 Fit Forms

The form Ae−Et has another defect: it is known to be incorrect for any t 6= ∞. Of

course, it is approximately correct for large t, when the excited-state contamination

(subleading exponentials) is negligible. We can mock up these subleading terms by
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using a two-exponential fit,

C(t) ∼ Ae−Et
(
1 + be−∆t

)
(6.15)

or even a geometric series

C(t) ∼ Ae−Et
(
1 + be−∆t + b2e−2∆t + · · ·

)
=

Ae−Et

1− be−∆t
(6.16)

where in both cases ∆ > 0 represents the difference between our fit energy E and

an unwanted excited state. These extraneous parameters are not used for anything

other than finding an appropriate fit, as defined by the correlator or effective mass.

The energies and overlap factors are calculated as before, using exclusively E and A.

One typically sees that these multi-exponential fit forms are more sensitive to

noise, especially the initially precise correlator data. The main advantage of these

fits is the independence of the starting point, relative to single exponentials which

must be chosen only after subleading contributions are negligible. In the baryonic

sector, we have less-diluted quarks (see chapter 5 for noise dilution) and higher sta-

tistical error. Often only the lowest one or two energy states are clean enough to use

multi-exponential fits, whereas mesonic sectors are typically more amenable to this

technique.

6.6.2 Statistical Error

All of the error analysis is done in the same way, with resampling. That is, take

the set of configurations {G} and make many new sets {G}i; we inquire about some

property of {G} by considering instead the collection {{G}i}. In this work we focus

on bootstrap- and jackknife-resampling.

In jackknife-resampling, one takes a set of Nc configurations {G} and declares

Nc new sets of configurations, each set having one configuration removed from the

original set. So, the set of configurations {U}Nci=1 consists of every configuration in

{G} except the first. Because we are only removing one configuration, values on the

entire ensemble ought to be close to values on each resampling.

The bootstrap-resampling procedure is a lot like jackknifing, except that we choose

new configurations randomly. Specifically, if we have Nc configurations we make Nb

bootstrap-resamplings by choosing Nc samples from our original configurations, ran-
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domly and with replacement, for each desired resampling. The phrase with replace-

ment is key, and allows many configurations to be used multiple times, or not at

all. Here, we are dramatically changing our sets of configurations so one expects that

values should jump around quite a bit from ensemble to resampling, or resampling to

resampling.

A fit value like A or E can be found easily on the entire ensemble, but to find the

errors in these fit values we use the resamplings. All analysis is done by fitting on

each resampling ; the mean of these values is representative of the actual, or ensemble,

average and the spread of these fit values gives the error for the whole ensemble. For

jackknife-resampling, which we use for the spectrum results, the relevant formula is

σ2(f) =
Nc − 1

Nc

Nc∑
i

(〈f〉i − 〈f〉)2 , (6.17)

where 〈·〉 denotes the average on the full ensemble, and 〈·〉i denotes that same average

with the ith configuration removed. In the case of bootstrap-resampling, which we

use for the pion-scattering results, the relevant formula is

σ2(f) =
1

Nb

Nb∑
i

(〈f〉i − 〈f〉B)2 (6.18)

where 〈·〉B denotes the average of all the bootstrap-resamplings, and 〈·〉i denotes only

the average on the ith resampling.

6.6.3 Correlated Fits

Remembering that our configurations were generated through a Markov chain, we

know that there is some residual correlations between our configurations. These are

referred to as autocorrelations, and are intentionally made negligible. However, we

must still perform correlated fits because each datapoint – each time-slice – came

from the same Monte Carlo ensemble. That is, we cannot minimize a traditional,

uncorrelated χ2,

χ2 =
∑
t

(C(t)− f(α, t))2

σ2
t

(6.19)
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for some model function f , but rather a correlated χ2

χ2 =
∑
t,t′

(C(t)− f(α, t))Cov−1(t, t′)(C(t′)− f(α, t′)), (6.20)

where the covariance Cov(t, t′) for our correlator fits is estimated using

Cov(t, t′) =
1

Nt − 1
〈C(t)− 〈C(t)〉〉 〈C(t′)− 〈C(t′)〉〉 , (6.21)

for Nt time-slices used in the fit.
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Chapter 7

Phase Shifts and the Luscher

Method

In this chapter we discuss a generalization of Luscher’s method to extract scattering

information, as well as the K-matrix method to include multiple-channel scattering

and partial waves. We detail the introduction of the box matrix B, which mixes

angular momenta in the cubic volume. We also mention our fit strategy for the

Luscher quantization condition.

7.1 Luscher Quantization Condition

It has been known for some time that scattering phase shifts can be extracted from

the volume-dependence of finite-volume quantum systems [9] [10]. This is an impor-

tant work-around to a no-go theorem of Maiani and Testa [37] that explains what

information Wick-rotation does and doesn’t spoil. Time-independent information,

like stationary-state energies, is preserved by the change but processes like scattering

are blocked, as the absence of phase structure in the imaginary-time formalism elimi-

nates phase shifts. Ultimately, the no-go theorem refers to infinite-volume Euclidean

and Minkowski correlators; the finite-volume spectra do determine some properties

of the infinite-volume Minkowski correlators. It is interesting to note that Luscher’s

solution actually predates the no-go theorem. Originally the method relied on lat-

tice results from multiple volumes and only applied to simple scattering of identical

scalars, but it has been generalized to allow moving frames and more complex scat-

tering situations [38] [39] [40].
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Figure 7.1: The series of ladder diagrams that builds up CL, in 7.1. The Bethe-Salpeter
kernels iK are connected by two fully dressed propagators, indicated by BL. The dashed
rectangle indicates finite volume momentum sum/integrals. The different colors of the
single-particle propagators indicate different types of particles, but choosing the same color
allows for identical particles. The two-body interpolating operator that couples to all open
two-body channels is σ. Initial states are on the right, final states on the left.

The full field-theoretic derivation, which accounts for multiple-channel scatter-

ing, was provided as recently as 2005 [41] [42]. The end result of this process is a

simple condition that relates the infinite volume S-matrix and a peculiar function

F calculated purely from our lattice energies E. We outline the derivation of this

quantization condition.

The idea is to follow the locations of poles in a general two-particle correlator,

which we write as

CL(P) =

∫
d4xei(Et−P·x)〈0|σ(x)σ†(0)|0〉

=
1

L3

∑
q

∞∫
−∞

dq0

2π
σa(q)BL

a (q)σ†a(q)

+
1

L6

∑
q,q′

∞∫
−∞

dq0

2π

dq′0

2π
σa(q)BL

a (q)iKab(q, q
′)BL

b (q′)σ†b(q
′) + · · · ,

(7.1)

and express diagrammatically in Figure 7.1. The subscripts refer to the decay chan-

nel, K is the Bethe-Salpeter kernel which is expressed in Figure 7.2, and BL is the

fully dressed two-particle finite-volume propagator. The key concept here is that we

separate BL into its infinite-volume counterpart plus a small correction, as shown in

Figure 7.3. We can avoid expressing iK in its finite-volume form, using instead the
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Figure 7.2: Allowed diagrams in iK. This consists of all scattering diagrams that cannot
be considered part of the two fully dressed propagators. Possible meson exchanges are
indicated with black, blue, and green dots.

Figure 7.3: The finite-volume momentum sum/integral for two single-particle dressed prop-
agators is indicated with the dashed box on the left. We relate this to the equivalent
expression in infinite volume, plus a correction term F . This expression defines F .
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infinite-volume version, because in the kinematic region we consider the corrections

are exponentially suppressed. However, a particular pole in BL does become relevant

because it is near our kinematic region, and causes non-exponentially small correc-

tions.

The correlator CL has poles at each stationary-state energy. As L increases, we

expect some of these poles to move off the real axis (unstable resonances), some to

merge into a continuous branch cut (two free particles; scattering states) and others

to stay roughly in the same place (stable particles). For real energies, the equivalent

object in infinite volume, C∞, only has these latter two types of poles. Therefore,

the difference Csub = CL − C∞ should have the same “resonance poles” as CL, since

they can not be removed by C∞. We will show that these are the only poles Csub

contains.

After performing some algebra on the diagrams in CL and C∞, we can show Csub

reduces to a compact form illustrated in Figure 7.4. Algebraically, this is equivalent

to

Csub = AF(1− iMF)−1A′ = A(F−1 − iM)−1A′. (7.2)

The factors A and A′ may produce branch cuts, but cannot contain the real poles

in our kinematic region. F contains the same two-particle “scattering” poles as CL,

but appears in both the numerator and denominator so ultimately Csub is regular

in these regions. Therefore, every pole in Csub comes from the finite-volume states

that become resonances in infinite volume; these poles occur when (F−1− iM) is not

invertible, or

det(1− iFM) = 0. (7.3)

This is the quantization condition. We can rescale the rows and columns of F and

M by a kinematic factor 16π2Ecm

qcm
to find a slightly modified form more convenient for

our purposes,

det [1 + F (S − 1)] = 0, (7.4)
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Figure 7.4: Expressing Csub = CL − C∞, in terms of A,A′, iM and F .
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which was rescaled in order to explicitly display S, the usual infinite-volume scattering

matrix. The function F is calculated purely from our lattice energies E:

Ecm =

√
E2 − (2π)2

L2
d2

γ =
E

Ecm

q2
cm =

1

4
E2

cm −
1

2
(m2

1 +m2
2) +

1

4

(m2
1 −m2

2)2

E2
cm

u2 =
L2

(2π)2
q2

cm

s =

(
1 +

m2
1 −m2

2

E2
cm

)
d

⇒F (s, γ, u2)

(7.5)

Specifically, imagining some set of lattice levels which are supposed to be near a res-

onance, the function F is highly sensitive to the differences between these energies

and free energy of the nearest two-particle state.

Equation 7.3 is always true and sometimes useful. We say sometimes useful be-

cause this is only one equation, and unless there is only one scattering-channel it does

not completely determine the phase shifts. So, we must generally parametrize not

just S in terms of phase shifts and inelasticities, but rather these objects in terms of

particular functions δ(s) and η(s). Historically, lattice results for the ππ scattering

phase shift around the ρ resonance ignore partial waves other than L = 1 and solve

the equation for δ [43].

Ultimately however it is not the phase shift itself in which we are interested. One

is instead interested in where the phase rapidly progresses through π/2, as indica-

tive of a resonance. Specifically, we are looking for the resonance-mass and decay

width, which must be extracted from the phase shift via a parametrization, typi-

cally a Breit-Wigner, anyway. We can parametrize the S matrix in terms of these

quantities directly.
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7.2 K-matrix Method

Rather than parametrizing S, one might be more interested in iT = S − 1 appearing

in equation 7.4 and representing more directly the particle interactions. This T must

satisfy the optical theorem, inherited from the unitarity of S, and an easy way to

ensure this is to focus on

K−1 = T−1 + i (7.6)

which the optical theorem guarantees is real and symmetric. This is the K matrix,

and its parametrization is quite flexible. For example, we can consider multiple

resonances in the same channel by including multiple poles and we can deal with

multiple-channel scattering by extending the matrix.

Explicitly, for the K-matrix of a single channel with one resonance we might write

K =
g2

E2 −M2
(7.7)

where M is the mass of the resonance, and its decay width Γ is written in terms

of g,M and the phase space determined by the decay products m1 and m2. We

are permitted to add polynomials to mock up a background varying slowly in the

region near the pole, and sometimes it is important to add some energy-dependent

prefactors, like

K =
( p
m

)3 1

E

g2

E2 −M2
(7.8)

in the case of L = 1 scattering.

Rewriting the quantization condition in terms of the K matrix gives

det(1 +K [i− 2iF ]) = 0 (7.9)

and the quantity in brackets is redefined as the box matrix B.

7.3 The Box Matrix

This box matrix becomes the core of the analysis, because it represents the totality

of the geometric effects of a finite cubic volume on an otherwise infinite volume

spectrum. It is completely independent of any dynamical QCD effect, caring only

about the values of the masses, momenta and lengths of the system.
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In the usual language of JLS scattering states, the B matrix is written as

〈J ′mJ ′L
′S ′a′|B|JmJLSa〉 = −iδaa′δSS′WL′mL′LmL

C
J ′mJ′
L′mL′SmS

C∗JmJLmLSmS
(7.10)

with

WL′mL′LmL
= i
∑
`,m

Z`m(s, γ, u2)

π3/2γu`+1

√
(2L′ + 1)(2`+ 1)

2L+ 1
CL0
L′0`0C

∗LmL
L′mL′`m

Z`m(s, γ, u2) =
∑
n

Y `
m(z)

z`(z2 − u2)
e−Λ(z2−u2) + δ`0

γπ√
Λ
F0(Λu2)

+
i`γ

Λ`+1/2

1∫
0

dt
(π
t

)`+3/2

eΛtu2
∑
n6=0

eiπn·sY
`
m(w)

w`
e−

π2w2

tΛ

z = n− 1

γ

(
1

2
+ (γ − 1)

n · s
s2

)
s

w = n− (1− γ)
s · n
s2

s

F0(x) = −1 +
1

2

1∫
0

dt
etx − 1

t
3
2

(7.11)

with the generalized zeta functions appearing as a result of extensive manipulation

of infinite sums and contour integrals. We choose the arbitrary constant Λ ≈ 1 and

perform the integrals with Gauss-Legendre quadrature.

The determinant condition is difficult to use since the relevant matrix is infinitely

large. However, one can show that it block-diagonalizes into irreps of the octahedral

and little groups. In each block, one can assume an Lmax to truncate its size to a

finite number of basis states. The structure of B in this basis is important, because

it demonstrates that this matrix preserves internal properties like spin and flavor but

mixes up orbital and total angular momentum, due to the cubic volume. This is to

be compared with the K matrix, which preserves total angular momentum but will

mix spins and flavors due to interactions:

〈Λ′λ′n′J ′L′S ′a′|B|ΛλnJLSa〉 = δΛ′Λδλ′λδS′Sδa′aB
(PΛBSa)
J ′L′n′,JLn(E). (7.12)

These coefficients are tabulated in [44]. We briefly note the distinction between

the label Λ on the irrep of the octahedral or little group in which the resonance
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appears and the label ΛB on the box matrix itself. Because B only cares about the

cubic geometry without regard to details of the scattering channel, it is insensitive to

intrinsic parity. In the case that ηa = 1 we find Λ = ΛB, whereas if ηa = −1 ΛB is

the parity-partner of Λ. These are

d LG ΛB relationship to Λ

(0,0,0) OD
h g ↔ u

(0, 0, n) C4v A1 ↔ A2; B1 ↔ B2; E,G1, G2 stay same

(0, n, n) C2v A1 ↔ A2; B1 ↔ B2; G stays same

(n, n, n) C3v A1 ↔ A2; F1 ↔ F2; E,G stay same

7.4 Fitting

With our parametrizations in hand, we want naively to minimize the determinant

1−KB, with both K and B calculated in our octahedral basis as

det(1−KB). (7.13)

It turns out we find more convenient behavior by considering K−1 − B and instead

minimizing the function Ω :

Ω(µ,K−1 −B) =
det(K−1 −B)

det [µ2 + (K−1 −B)(K−1 −B)†]
1
2

(7.14)

which has a zero at the same places as our original condition, but does not become

large from the product of the many nonzero eigenvalues. Further details on the fit

procedure are found in [44].

The ultimate output of this strategy is a value for the resonance mass and decay

width which are dependent on the K matrix parametrization. We have skipped

finding the phase shift itself entirely, though this can be reconstructed from our K

matrix if desired.
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Chapter 8

Results

In this chapter, we first present the spectroscopy results for several at-rest baryonic

channels, followed by the L = 1, 3 and 5 phase shifts for ππ scattering. For spec-

troscopy, we focus on the Λ resonances, looking at several symmetry channels in the

I = 0, S = −1 sector. Specifically, we have extracted spectra from correlators in the

G1g, G1u, Hg and Hu symmetry channels. Previous work in this sector has been done

on much smaller lattices with heavier pion masses. After the spectra, we present a

mesonic phase shift analysis which extracts the mass and decay width of an infinite

volume ρ resonance without neglecting partial-wave mixing. For the first time in

lattice QCD, we incorporate all partial waves up to L = 5.

8.1 Computational Details

There are four main stages of the calculation. First, the gauge configurations must

be generated using the pseudo-Hamiltonian flow described previously. This process

is extremely expensive, using 200 million core hours total, distributed among Jaguar

at Oak Ridge National Laboratory (sponsored by the Department of Energy) and

Kraken at University of Tennessee (sponsored by the National Science Foundation).

Secondly, we calculate all the quark propagators. This was done with software

written in C++ using the USQCD QDP++ library [45]. The entire process took

about 100 million core hours, mainly on the Kraken machine. In this stage, the

main computational expenses come from inverting the large Dirac matrix; the quark

propagators must be combined into the hadronic source- and sink-functions, which

are then combined for all the relevant operators in a given channel. The bottleneck
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here is mostly due to file I/O. The Stampede supercomputer at University of Texas at

Austin and Comet in San Diego were used to perform these final contractions. This

was also sponsored by the NSF, and took approximately 50 million core hours.

Lastly, after all the source- and sink-functions have been combined into correlator

elements for a given channel, we store them on disk here at CMU. That is, we have a

complex number for each source-sink pair, for each timeslice, for each configuration

stored locally. These are extracted and analyzed with our XML-driven C++ code

which we call SigMonD, for signal extraction of Monte Carlo data. This code performs

the actual matrix-diagonalizations, rotations, and fits, for the energy spectra. The

phase shift calculation itself is done by another piece of XML-driven C++ code,

Chimera, authored by John Bulava.

8.2 G1g Spectrum on 323 × 256

The isosinglet strange G1g channel (at rest) is parity-positive and consists of spins 1
2
,

7
2

and 9
2
, and contains the physical Λ as well as a few resonances mostly of spin 1

2
.

These include Λ(1600), Λ(1810) and Λ(2350) (the last of these is spin 9
2
).

The two-particle-content consists of particular meson-baryon pairings. Remem-

bering that our meson and baryon operators are labeled for flavor structure only, we

see that the the following two-particle operators excite states in this channel:

Λη Isospin 0 + 0 Strangeness −1 + 0 Spin 1
2

+ 0

NK̄ Isospin 1
2

+ 1
2

Strangeness 0− 1 Spin 1
2

+ 0

Σπ Isospin 1 + 1 Strangeness −1 + 0 Spin 1
2

+ 0

ΞK Isospin 1
2

+ 1
2

Strangeness −2 + 1 Spin 1
2

+ 0

(Ordinarily, we would want both η and φ, but Λφ-operators were too high in energy.)

In each case, the above baryons are positive parity and the mesons are negative parity.

So, all of our simple meson-baryon operators must have some nonzero back-to-back

momentum for the total parity to be positive. If any meson-baryon operator in this

channel has zero constituent momenta, at least one of the operators is expected to

couple to a resonance, or at least not the state corresponding most precisely to its

flavor name. For example, an ηΛ both at rest could not correspond to the physical

Λ, but rather a resonance like the Λ(1405) which has negative parity.

A list of some low-lying “expected” levels is given in Table 8.1 . Energies of phys-

ical particles corresponding to a given operator are added to find a non-interacting
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meson baryon operators
K̄[1] N [1] A2 SS2−G1 SS0

π[1] Σ[1]
A−2 SS1−G1 SS0
A−2 SS1−G1 SS2

K̄[2] N [2]
A2 SS0−G SS0
A2 SS1−G SS0

π[2] Σ[2] A−2 SS0−G SS1
η[1] Λ[1] A+

2 SS1−G1 SS1

π[1] Σ(1385)[1]
A−2 SS1−G1 SS0
A−2 SS1−G1 SS2

K̄[3] N [3] A2 SS0−G SS0
η[2] Λ[2] A+

2 SS0−G SS0
π[3] Σ[3] none

K̄∗(892)[1] N [1] E SS2−G1 SS0

K[1] Ξ[1]
A2 SS1−G1 SS0
A2 SS1−G1 SS2

η[0] Λ(1405)[0] none
K̄[4] N [4] A2 SS1−G1 SS0
π[2] Σ(1385)[2] A−2 SS0−G SS1
π[0] Σ(1750)[0] A−1u SS0−G1u SS0

ω(782)[1] Λ[1] E− SS1−G1 SS1

Table 8.1: Some expected two-hadron levels in the G1g channel. We list operators that
might excite, or couple strongly to, each level. In each case, square-brackets [n] indicates
constituent momentum-squared, as p2 = n (2π/L)2.

two-particle energy; this gives us a rough idea of which operators must be made and

used. We make many more operators than appear on this list, but ultimately these

are pruned down to some smaller set which has a better signal. For example, oper-

ators containing an η particle were often found to be noisy, and largely irrelevant,

coupling only to the higher energy states. Such operators are pruned away.

In addition to the above two-particle operators, we also have the single-baryon

operators. A large set of 13 operators was pruned down to just six, by removing noisy

operators as well as operators found to be linearly dependent with others in the set.

The final single hadron operators are:
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Λ G1g SS3

Λ G1g TDT5

Λ G1g TDT8

Λ G1g DDI22

Λ G1g TDT28

Λ G1g TDT38

(The letters indicate displacement type, shown in Table 4.2 and the number is just an

extra index.) We first “optimize” these single-hadron operators by diagonalizing the

correlator only in the single-hadron subspace. We refer to the resulting eigenvectors,

linear combinations of our original operators, as “optimized” because they overlap

more strongly with particular stationary states. We determine overlap factors for

these optimized single-hadron operators, labeled as 0 through 5, rather than the

original operators directly. This is to be contrasted with the two-hadron operators,

which were not pre-rotated in this way. Ultimately, this procedure cannot change the

observed spectrum, instead modifying only the single-hadron overlap factors.

We calculated correlator elements for everything in the above lists, from timeslice

3 to 25, or t = 3at to t = 25at. Diagonalizing at later times would be ideal, except

that noise gets progressively worse at later times. Diagonalizing at earlier times is not

desirable, because it increases excited-state contamination and the correlator is less

likely to stay diagonal. For this channel, a diagonalization time of 8 and a metric time

of 5 were found to be sufficient for off-diagonal elements to be consistent with zero; the

relatively noisy baryons, compared to mesons, prevent a later diagonalization time.

Operators were pruned such that the correlator matrix itself was not ill-conditioned,

having no negative or zero eigenvalues.

While we prefer multi-exponential fits, like the two-exponential or geometric series,

many of the levels in this channel were found to be too noisy for these fits to be

reliably used. As a result, we have preferred single-exponential fits for most levels,

with a geometric series only used for the lowest level. These fits are displayed in Table

8.2. For reference, we also give the effective mass plots for each level in Figure 8.1,

though these are illustrative only and the effective mass points are not used in any

fit.
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Level Time Range atE χ2/dof content
0 (3, 22) .2203(64) 0.83 Λ
1 (10, 22) .329(30) 1.89 K[1]− Ξ[1]
2 (8, 22) .367(33) 1.32 K̄[1]−N [1]
3 (6, 22) .381(10) 1.91 π[1]− Σ[1]
4 (5, 22) .382(13) 1.45
5 (8, 22) .383(25) 1.07 qqq
6 (8, 22) .383(50) 1.11 η[2]− Λ[2]
7 (8, 20) .388(66) 0.47 η[1]− Λ[1]
8 (7, 22) .400(23) 0.84
9 (5, 22) .401(11) 2.40 qqq
10 (5, 22) .4033(82) 1.84 K[2]−N [2]
11 (8, 22) .413(20) 1.29 K[3]−N [3]
12 (6, 22) .414(11) 1.57
13 (7, 22) .417(28) 0.77 K[4]−N [4]
14 (8, 22) .420(19) 0.17
15 (6, 22) .438(15) 1.32 K∗(892)[1]−N [1]
16 (6, 22) .444(14) 2.14
17 (7, 22) .476(45) 1.16 qqq
18 (6, 22) .497(32) 1.43 ω(782)[1]− Λ[1]
19 (5, 22) .509(35) 2.10
20 (6, 22) .524(52) 1.44 K[1]−N [1]
21 (5, 22) .728(79) 0.77

Table 8.2: Results of non-periodic exponential fits to the 22 diagonal entries of a diagonalized
correlator in the G1g channel. Last column indicates an operator which overlaps maximally
with a given level. All fits are single exponentials, with the exception of level 0, a geometric
series. The subleading amplitude and energy for such a fit is neither used nor reported.
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Figure 8.1: Effective energies of diagonal elements of a diagonalized correlator in the G1g channel.

Horizontal lines display the upper and lower bounds for the final fit value, calculated via jackknifing,

and dotted lines, when present, display the approach from any subleading exponentials. We use a

time separation of ∆t = 3 in the discretized derivative.
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Figure 8.2: Overlap factors for each operator onto the extracted energy-levels in the G1g channel.

Each single-hadron operator has been optimized by pre-diagonalizing in the single-hadron subspace.

The maximum bar for each operator is used to identify the corresponding level. Bars within 75% of

the maximum, for single hadrons, denote significant mixing.
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After fitting every level and finding the overlap factors, we can attempt an identi-

fication of the content of these states. Figure 8.2 contains the overlap factors for each

operator, demonstrating to which state(s) a given operator predominately couples.

In addition to maximal peaks, we are also interested in the mixing – many single-

hadron operators couple relatively strongly to multiple states, which is indicative of

the behavior of a resonance. That is, we expect resonances to exhibit mixing between

the dominate qqq content and potential decay products.

A summary of the spectrum is shown in Figure 8.3; in this figure, we color each

level according to each operator that overlaps maximally with that level. So, some

levels can have multiple colors, indicating maximal overlap on more than one opera-

tor, or no colors at all (gray) to indicate that no operator overlaps maximally with

that energy level. Because we are more interested in the single-hadron operators, the

black hatches indicate strong but subleading (> 75% of the maximum for that oper-

ator) overlap with single-hadron operators. The most important energies, colored in

solid black, are those that overlap maximally with the single-hadron levels.

We select these qqq-dominated states to compare with experimental spectra. For

an N × N correlator matrix, the energies near level N are less reliably determined;

because the highest few states are rarely reproduced well, we ignore these levels in the

identification process. In the case of G1g, we ignore the two highest single-hadron-

dominated states.
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Figure 8.3: Full spectrum for isosinglet strange G1g. Levels colored by maximal overlaps, with

large but non-maximal overlaps on single-hadron operators indicating significant mixing. Three

(K̄[0]N [0]π[0]) and four (K̄[1]N [1]π[0]π[0]) particle thresholds are displayed.
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Figure 8.4: Experimentally observed resonances compared with our finite-volume single-
hadron-dominated states. These energies are plotted in units of the kaon mass. On the left,
dark bands indicate experimental uncertainty, with lighter bands indicated decay widths.

The G1g spectrum of single-hadron-dominated states given in Figure 8.4 does not

compare terribly well with the experimental spectrum, when expressed as ratios of

the kaon mass. This is not surprising, given that we have an unphysically heavy pion

and one strange quark in the sector. That is, one expects particles with less strange

and more light content to be strongly affected by the pion mass, while particles with

more strange and less light content ought to be less sensitive.

By comparing with the nucleon (which is made unphysically heavy) as a reference

instead of the kaon (which is set to its physical mass) we can observe better agreement,

shown in Figure 8.5.
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Figure 8.5: Experimentally observed resonances compared with our finite-volume single-
hadron-dominated states. These energies are plotted in units of the nucleon mass. On the
left, dark bands indicate experimental uncertainty, lighter bands indicate decay widths.

The overall structure compares well to past results on Λ baryons [46], shown in

Figure 8.6. We find an isolated low-energy state corresponding to the physical Λ, as

well as a group of three closely-spaced states at roughly twice that energy.

8.3 G1u Spectrum on 323 × 256

The isosinglet strange G1u channel (at rest) is parity-minus and consists of spins 1
2

and 7
2
, and contains a few Λ resonances mostly of spin 1

2
. These include Λ(1405),

Λ(1670), Λ(1800) and Λ(2100) (the last of these is spin 7
2
).

The two-particle content is the same as in the G1g channel, but with the opposite

parity considerations. Because of this, two-particle meson-baryon states with both

particles at rest show up here. A list of some low-lying “expected” levels is given in

Table 8.3.

In addition to the above two-particle operators, we also have the single-baryon

operators. A large set of 11 operators was pruned down to seven, by removing noisy

operators as well as operators found to be linearly dependent with others in the set.

81



Figure 8.6: Observed baryonic states on a 163 lattice with a heavy 391 MeV pion [46]. The
colors indicate SU(3)-flavor irrep, which we have not identified. Levels are labeled by JP .

The final single hadron operators are:

Λ G1u SS0

Λ G1u SS1

Λ G1u DDI10

Λ G1u DDI16

Λ G1u SD21

Λ G1u TDT16

Λ G1u TDT20

As in the G1g channel, these operators are pre-rotated, to find “optimized” single

hadron operators, labeled as 0 through 7, to be used in the calculation of overlap

factors.

For this channel, a diagonalization time of 8 and a metric time of 5 were found

to be sufficient for off-diagonal elements to be consistent with zero. As with G1g,

operators were pruned such that the correlator matrix itself was not ill-conditioned,

having no negative or zero eigenvalues.

We have preferred single-exponential fits for most levels, with a geometric series
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meson baryon operators
π[0] Σ[0] A−1u SS0−G1g SS1
K̄[0] N [0] A1u SS0−G1g SS0
K̄[1] N [1] A2 SS1−G1 SS0
π[1] Σ[1] A−2 SS1−G1 SS2
η[0] Λ[0] A+

1u SS0−G1g SS0
K̄[2] N [2] A2 SS0−G SS0
π[2] Σ[2] A−2 SS0−G SS1
η[1] Λ[1] A+

2 SS1−G1 SS1
K[0] Ξ[0] A1u SS0−G1g SS0
π[1] Σ(1385)[1] A−2 SS1−G1 SS2
K̄∗[0] N [0] T1u SS1−G1g SS0
K̄[3] N [3] A2 SS0−Gg SS0

ω(782)[0] Λ[0] T−1u SS0−G1g SS0

Table 8.3: Some expected two-hadron levels in the G1u channel. We list operators that
might excite, or couple strongly to, each level.

only used for four low-lying levels. These fits are displayed in Table 8.4. For reference,

we also give the effective mass plots for each level in Figure 8.7, though these are

illustrative only and the effective mass points are not used in any fit.
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Level Time Range atE χ2/dof content
0 (3, 22) .298(12) 1.03 Λ
1 (3, 22) .312(24) 1.24 K̄[0]−N [0]
2 (10, 22) .312(41) 0.97
3 (3, 22) .324(16) 0.80 qqq
4 (3, 22) .329(13) 0.83 qqq
5 (8, 22) .340(25) 0.65
6 (8, 22) .358(17) 1.02 K̄[0]− Ξ[0]
7 (8, 22) .364(15) 0.95 π[1]− Σ[1]
8 (8, 22) .368(24) 0.74 K̄[1]−N [1]
9 (8, 22) .393(32) 1.66
10 (8, 22) .398(25) 0.72 π[2]− Σ[2]
11 (5, 22) .3995(88) 1.66 K̄[2]−N [2]
12 (8, 22) .415(40) 1.73 K̄∗[0]−N [0]
13 (8, 22) .453(66) 0.77 qqq
14 (6, 22) .459(22) 1.19 ω(782)[0]− Λ[0]
15 (6, 22) .472(55) 0.56 qqq
16 (5, 12) .529(51) 1.19 η[0]− Λ[0]
17 (3, 12) .614(23) 2.36 η[1]− Λ[1]
18 (3, 12) .735(44) 1.21 qqq

Table 8.4: Results of non-periodic exponential fits to the 19 diagonal entries of a diagonalized
correlator in the G1u channel. Last column indicates an operator which overlaps maximally
with a given level. All fits are single exponentials, with the exception of levels 0, 1, 3 and
4, geometric series. The subleading amplitude and energy for such a fit is neither used nor
reported.

84



Figure 8.7: Effective energies of diagonal elements of a diagonalized correlator in the G1u channel.

Horizontal lines display the upper and lower bounds for the final fit value, and dotted lines, when

present, display the approach from any subleading exponentials. We use a time separation of ∆t = 3

in the discretized derivative.
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Figure 8.8: Overlap factors for each operator onto the extracted energy levels in the G1u channel.

Each single-hadron operator has been optimized by pre-diagonalizing in the single-hadron subspace.

The maximum bar for each operator is used to identify the corresponding level. Bars within 75% of

the maximum, for single hadrons, denote significant mixing.

As in G1g, after fitting every level and finding the overlap factors, we can attempt

an identification of the content of these states. Figure 8.8 contains the overlap factors

for each operator, demonstrating to which state(s) a given operator predominately

couples.
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Figure 8.9: Full spectrum for isosinglet strange G1u. Levels colored by maximal overlaps, with

large but non-maximal overlaps on single-hadron operators indicating significant mixing. Three

(K̄[1]N [1]π[0]) and four (K̄[0]N [0]π[0]π[0]) particle thresholds are displayed.

A summary of the spectrum is shown in Figure 8.9, colored in the same way as the

G1g spectrum. We again select qqq-dominated states to compare with experimental

spectra. Because the highest few states are rarely reproduced well, we ignore these

levels in the identification process. In the case of G1u, we ignore the two highest

single-hadron-dominated states.
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Figure 8.10: Experimentally observed resonances compared with our finite-volume single-
hadron-dominated states. On the left, dark bands indicate experimental uncertainty, lighter
bands indicate decay widths.

The G1u spectrum of single-hadron-dominated states given in Figure 8.10 does

not compare terribly well with the experimental spectrum. By comparing with the

nucleon (which is made unphysically heavy) as a reference instead of the kaon (which

is set to its physical mass) we can observe better agreement, shown in Figure 8.11.
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Figure 8.11: Experimentally observed resonances compared with our finite-volume single-
hadron-dominated states. On the left, dark bands indicate experimental uncertainty, with
lighter bands indicated decay widths.

The overall structure compares well to past results on Λ baryons [46], shown

in Figure 8.12. We find that our lowest state corresponds roughly to the Λ(1405),

and lies in a closely-spaced group of three states. Additional resonances seem to lie

above these, where we have neglected to include further two-particle operators. The

qualitative reproduction of the Λ(1405) by a qqq-dominated state seems contradict

recent results which suggest it is an antikaon-nucleon molecular state [47] [48]. In

fact, this result seems to depend highly on the pion mass. The evidence for K̄N -

content is given in [47] and concerns the vanishing of the strange magnetic moment,

and the evidence given in [48] concerns the structure of an effective Hamiltonian. In

the former case, we can see from their plot, reproduced below as Figure 8.13, that

these magnetic moments are sensitive to the pion mass and the conclusion applies to

the physical point. Likewise, for unphysically heavy pions the effective Hamiltonian

seems to require a bare three-quark state even though this seems unnecessary near

the physical point.
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Figure 8.12: Observed baryonic states on a 163 lattice with a heavy 391 MeV pion [46]. The
colors indicate SU(3)-flavor irrep, which we did not identify. Levels are labeled by JP .

8.4 Hg Spectrum on 323 × 256

The isosinglet strange Hg channel (at rest) is parity-plus and consists of spins 3
2
, 5

2
,

7
2
, and so on. It contains several resonances: Λ(1820) of spin 5

2
, Λ(1890) of spin 3

2
,

Λ(2110) of spin 5
2
, Λ(2350) of spin 9

2
.

The two-particle content consists of particular meson-baryon pairings. Remem-

bering that our meson- and baryon-operators are labeled for flavor structure only, we

see that the the following two-particle operators excite states in this channel:

Λη Isospin 0 + 0 Strangeness −1 + 0 Spin 1
2

+ 0

NK̄ Isospin 1
2

+ 1
2

Strangeness 0− 1 Spin 1
2

+ 0

Σπ Isospin 1 + 1 Strangeness −1 + 0 Spin 1
2

+ 0

ΞK Isospin 1
2

+ 1
2

Strangeness −2 + 1 Spin 1
2

+ 0

This is the same content as the G1g/u channels, except that here the total spin must

be supplemented by additional angular momentum to lie in the channel. Therefore,

any two-particle operator with both particles at rest appears here must represent

excited states rather than the ground state for which these operators are named. For
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Figure 8.13: The light and strange quark contributions to the magnetic form factor of
the Λ(1405) at Q2 ≈ 0.16 GeV2/c2 are presented as a function of the light quark masses,
indicated by the squared pion mass, m2

π. The vertical dashed line indicates the physical
pion mass.

example, π[0]Σ[0] could not refer to the physical sigma, but rather the Σ(1670). A

list of some low-lying “expected” levels is given in Table 8.5.

In addition to the above two-particle operators, we also have the single-baryon

operators. A large set of 12 operators was pruned down to just three, by removing

noisy operators as well as operators found to be linearly dependent with others in the

set. The final single hadron operators are:

Λ Hg SD42

Λ Hg SS0

Λ Hg TDT134

As in the G1g channel, these operators are pre-rotated, to find “optimized” single

hadron operators, labeled as 0 through 2, to be used in the calculation of overlap

factors.

For this channel, a diagonalization time of 7 and a metric time of 4 were found

to be sufficient for off-diagonal elements to be consistent with zero. As with G1g,

operators were pruned such that the correlator matrix itself was not ill-conditioned,

having no negative or zero eigenvalues.

We have preferred single-exponential fits for every level in this channel. These fits

are displayed in Table 8.6. For reference, we also give the effective mass plots for each
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meson baryon operators
K̄[1] N [1] A2 SS1−G1 SS0
π[1] Σ[1] A−2 SS1−G1 SS0
K̄[2] N [2] A2 SS0−G1 SS0
π[2] Σ[2] A−2 SS0−G SS1
η[1] Λ[1] A+

2 SS1−G1 SS1

π[1] Σ(1385)[1]
A−2 SS1−G2 SS0
A−2 SS1−G1 SS0

K̄[3] N [3] A2 SS0−G SS0
π[0] Σ(1670)[0] A−1u SS0−Hu SS2
η[2] Λ[2] none
π[3] Σ[3] A−2 SS0−G SS4

K̄∗(892)[1] N [1] E SS2−G1 SS0
K[1] Ξ[1] A2 SS1−G1 SS0

Table 8.5: Some expected two-hadron levels in the Hg channel. We list operators that might
excite, or couple strongly to, each level.

level in Figure 8.14, though these are illustrative only and the effective mass points

are not used in any fit.
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Level Time Range atE χ2/dof content
0 (8, 22) .364(13) 1.12 K̄[2]−N [2]
1 (5, 20) .3780(49) 2.57 K̄[1]−N [1]
2 (8, 22) .383(13) 1.50 K̄[1]− Ξ[1]
3 (5, 15) .3849(47) 1.23 π[1]− Σ[1]
4 (6, 22) .3852(93) 1.60 π[1]− Σ(1385)[1]
5 (6, 22) .3857(72) 1.18 K̄[3]−N [3]
6 (6, 22) .3883(83) 0.82
7 (6, 22) .3926(90) 1.71 qqq
8 (8, 22) .397(17) 0.55 π[0]− Σ(1670)[0]
9 (8, 22) .400(20) 0.99 K̄∗(892)[1]−N [1]
10 (7, 20) .402(31) 0.79 η[1]− Λ[1]
11 (6, 22) .407(12) 0.83 qqq
12 (6, 20) .415(10) 1.86
13 (6, 20) .452(14) 0.88 π[3]− Σ[3]

Table 8.6: Results of non-periodic exponential fits to the 14 diagonal entries of a diagonalized
correlator in the Hg channel. Last column indicates an operator which overlaps maximally
with a given level. All fits are single exponentials.
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Figure 8.14: Effective energies of diagonal elements of a diagonalized correlator in the Hg channel.

Horizontal lines display the upper and lower bounds for the final fit value. We use a time separation

of ∆t = 3 in the discretized derivative.
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Figure 8.15: Overlap factors for each operator onto the extracted energy levels in the Hg channel.

Each single hadron operator has been optimized by pre-diagonalizing in the single-hadron subspace.

The maximum bar for each operator is used to identify the corresponding level. Bars within 75% of

the maximum, for single hadrons, denote significant mixing.

As in G1g, after fitting every level and finding the overlap factors, we can attempt

an identification of the content of these states. Figure 8.15 contains the overlap factors

for each operator, demonstrating to which state(s) a given operator predominately

couples.

A summary of the spectrum is shown in Figure 8.16, colored in the same way as the

G1g spectrum. We again select qqq-dominated states to compare with experimental

spectra. Because the highest few states are rarely reproduced well, we ignore these

levels in the identification process. In the case of Hg, we ignore only the highest
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Figure 8.16: Full spectrum for isosinglet strange Hg. Levels colored by maximal overlaps, with

large but non-maximal overlaps on single-hadron operators indicating significant mixing. Three

(K̄[1]N [1]π[0]) and four (K̄[1]N [1]π[0]π[0]) particle thresholds are displayed.

single-hadron-dominated state.
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Figure 8.17: Experimentally observed resonances compared with our finite-volume single-
hadron-dominated states. On the left, dark bands indicate experimental uncertainty, lighter
bands indicate decay widths.

The Hg spectrum of single-hadron-dominated states given in Figure 8.17 does

not compare terribly well with the experimental spectrum. By comparing with the

nucleon (which is made unphysically heavy) as a reference instead of the kaon (which

is set to its physical mass) we can observe better agreement, shown in Figure 8.18.
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Figure 8.18: Experimentally observed resonances compared with our finite-volume single-
hadron-dominated states. On the left, dark bands indicate experimental uncertainty, with
lighter bands indicated decay widths.

Both our spectra in Figure 8.18 and previous lattice results in Figure 8.19

show a complete absence of very low-lying resonances, especially compared to other

channels. The first resonances in this channel occur in the same energy regime as the

multiply-excited resonances in the Hu channel, in Figures 8.24 and 8.25. We have

extracted the lower-lying levels, and shown that they do not couple strongly to single

hadron operators, with the first single-hadron-dominated state coming in at just above

2mN . We see fewer states, only two or three (if we include the highest single-hadron

resonance, possibly reasonable in this case) compared to 8.19, but in every channel

we have not gone high enough in energy to reliably extract states ≈ 2.5 MeV.
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Figure 8.19: Observed baryonic states on a 163 lattice with a heavy 391 MeV pion [46]. The
colors indicate SU(3)-flavor irrep, which we did not identify. Levels are labeled by JP .

8.5 Hu Spectrum on 323 × 256

The isosinglet strange Hu channel (at rest) is parity-minus and consists of spins 3
2
, 5

2
,

7
2
, and so on. It contains several resonances: Λ(1520) of spin 3

2
, Λ(1690) of spin 3

2
,

Λ(1830) of spin 5
2

and Λ(2100) of spin 7
2
. A list of some low-lying “expected” levels

is given in Table 8.7.

In addition to the above two-particle operators, we also have the single-baryon

operators. A large set of 10 operators was pruned down to just five, by removing

noisy operators as well as operators found to be linearly dependent with others in the

set. The final single hadron operators are:

Λ Hu DDI16

Λ Hu DDL166

Λ Hu SD23

Λ Hu SD38

Λ Hu SS0
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meson baryon operators
K̄[1] N [1] A2 SS1−G1 SS0
π[0] Σ(1385)[0] A−1u SS0−Hg SS0
π[1] Σ[1] A−2 SS1−G1 SS2
K̄[2] N [2] A2 SS0−G SS0
π[2] Σ[2] A−2 SS0−G SS1
η[1] Λ[1] A+

2 SS0−G1 SS1

π[1] Σ(1385)[1]
A−2 SS1−G1 SS2
A−2 SS1−G2 SS0

K̄∗(892)[0] N [0] T1u SS1−G1g SS0
K̄[3] N [3] A2 SS0−G SS0

ω(782)[0] Λ[0] T−1u SS0−G1g SS0
η[2] Λ[2] none
π[3] Σ[3] none

K̄∗(892)[1] N [1] A1 SS2−G1 SS0
K̄[1] Ξ[1] A2 SS1−G1 SS0
K̄[4] N [4] A2 SS1−G1 SS0

Table 8.7: Some expected two-hadron levels in the Hu channel. We list operators that
might excite, or couple strongly to, each level.

As in the G1g channel, these operators are pre-rotated, to find “optimized” single-

hadron operators, labeled as 0 through 4, to be used in the calculation of overlap

factors.

For this channel, a diagonalization time of 7 and a metric time of 4 were found

to be sufficient for off-diagonal elements to be consistent with zero. As with G1g,

operators were pruned such that the correlator matrix itself was not ill-conditioned,

having no negative or zero eigenvalues.

We have preferred single-exponential fits for every level in this channel. These fits

are displayed in Table 8.8. For reference, we also give the effective mass plots for each

level in Figure 8.20, though these are illustrative only and the effective mass points

are not used in any fit.
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Level Time Range atE χ2/dof content
0 (8, 22) .328(18) 1.14 Λ
1 (8, 22) .333(11) 1.57 K̄[1]−N [1]
2 (8, 22) .338(19) 1.29
3 (8, 22) .3400(73) 1.41 π[0]− Σ(1385)[0]
4 (8, 22) .352(11) 1.04
5 (8, 22) .368(14) 1.85
6 (8, 22) .376(35) 0.85 qqq
7 (8, 22) .383(14) 1.18 ω(782)[0]− Λ[0]
8 (6, 22) .385(18) 2.01 K̄[4]−N [4]
9 (8, 22) .389(15) 0.92 qqq
10 (5, 22) .3905(76) 1.64 π[1]− Σ[1]
11 (6, 22) .398(13) 0.74
12 (7, 22) .400(14) 1.60 K̄[2]−N [2]
13 (7, 22) .410(11) 1.95 K̄[1]− Ξ[1]
14 (6, 22) .420(12) 0.98
15 (5, 12) .450(16) 4.06 K̄∗(892)[0]−N [0]
16 (5, 12) .505(33) 3.12 K̄∗(892)[1]−N [1]
17 (6, 15) .575(59) 1.20 η[1]− Λ[1]

Table 8.8: Results of non-periodic exponential fits to the 18 diagonal entries of a diagonalized
correlator in the Hu channel. Last column indicates an operator which overlaps maximally
with a given level. All fits are single exponentials.
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Figure 8.20: Effective energies of diagonal elements of a diagonalized correlator in the Hu channel.

Horizontal lines display the upper and lower bounds for the final fit value. We use a time separation

of ∆t = 3 in the discretized derivative.
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Figure 8.21: Overlap factors for each operator onto the extracted energy levels in the Hu channel.

Each single hadron operator has been optimized by pre-diagonalizing in the single-hadron subspace.

The maximum bar for each operator is used to identify the corresponding level. Bars within 75% of

the maximum, for single hadrons, denote significant mixing.

As in G1g, after fitting every level and finding the overlap factors, we can attempt

an identification of the content of these states. Figure 8.21 contains the overlap factors

for each operator, demonstrating to which state(s) a given operator predominately
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Figure 8.22: Full spectrum for isosinglet strange Hu. Levels colored by maximal overlaps, with

large but non-maximal overlaps on single-hadron operators indicating significant mixing. Three

(K̄[1]N [1]π[0]) and four (K̄[1]N [1]π[0]π[0]) particle thresholds are displayed.

couples.

A summary of the spectrum is shown in Figure 8.22, colored in the same way as the

G1g spectrum. We again select qqq-dominated states to compare with experimental

spectra. Because the highest few states are rarely reproduced well, we ignore these

levels in the identification process. In the case of Hu, we ignore only the highest

single-hadron-dominated state.
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Figure 8.23: Experimentally observed resonances compared with our finite-volume single-
hadron-dominated states. Dark bands indicate experimental uncertainty, lighter bands
indicate decay widths.

The Hu spectrum of single-hadron-dominated states given in Figure 8.23 does

not compare terribly well with the experimental spectrum. By comparing with the

nucleon (which is made unphysically heavy) as a reference instead of the kaon (which

is set to its physical mass) we can observe better agreement, shown in Figure 8.24.
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Figure 8.24: Experimentally observed resonances compared with our finite-volume single-
hadron-dominated states. Dark bands indicate experimental uncertainty, with lighter bands
indicated decay widths.

The overall structure compares well to past results on Λ baryons [46], shown in

Figure 8.25. We have reproduced a group of four closely spaced levels at the bottom

of the spectrum. However, the previous results indicate a larger spacing between the

levels than we have observed; the experimental separation is much smaller as well.

We remark that lowering the pion mass seems to have brought these levels closer

together, and indeed closer to what is seen experimentally.

8.6 ππ Scattering Results

So far, we have identified Λ-resonances with finite-volume stationary-state energies.

Such identifications are natural for QCD-stable particles, such as the long-lived Λ,

but associating these stationary-states with unstable resonances, like the Λ(1405), is

problematic, preventing a precise correspondence. Fortunately, there is a method that

relates finite-volume energies to scattering processes, in infinite volume. The Luscher

method is difficult to implement, especially for multiple decay channels and several

partial waves. Before attempting the especially difficult task of applying this method
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Figure 8.25: Observed baryonic states on a 163 lattice with a heavy 391 MeV pion [46]. The
colors indicate SU(3)-flavor irrep, which we did not identify. Levels are labeled by JP .

to Λ resonances, we first need to test it with a simpler system. Thus, we consider the

decay of the rho meson to two pions. The goal is to show how the Luscher method

can incorporate higher partial waves. Success for these mesons will lead to similar

calculations for any baryonic resonance, whether above or below elastic thresholds

and regardless of partial wave mixing.

The ρ(770) is seen as a resonance in ππ-scattering, which at higher energies can

mix with K̄K. To simplify the analysis, we stay below the K̄K threshold but this

is not necessary for the formalism. In fact, the higher partial waves extracted for ππ

scattering, ` = 1, 3 and 5 are implemented in the same way as an additional K̄K

scattering channel. If we assume a single resonance in the P -wave and none in the

L = 3 or 5 partial waves, in our energy region, then the K-matrix is parametrized

according to

K =


(qcm)3 1

6πE

g2
1

E2−m2
ρ

0 0

0
(
qcm

mπ

)7

g2
3 0

0 0
(
qcm

mπ

)11

g2
5

 , (8.1)
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Figure 8.26: Lab energies of stationary states used for ππ scattering.

where the resonance occurs near E = mρ. We use a coupling factor for the L = 3

and 5 entries to allow for the possibility of additional partial waves. From the final fit

values of the couplings g3 and g5, we can show that these partial waves are negligible.

Because we are after the ρ(770), we examine the T+
1u isovector nonstrange channel.

Boosting to nonzero total momenta, this subduces to A+
1 , E

+, B+
1 and B+

2 . The lowest

few energies in each channel are used, and reported in Figure 8.26 and Table 8.9.

First, we perform fits utilizing a 1× 1 K-matrix. Here the determinant condition

det (K−1 −B) = 0 can be solved exactly, giving B = K−1. We can plot B, and

functions of B, for each energy, and various fits using our parametrization of K−1

give us the resonance parameters. For example, a plot of B features a zero at the

resonance-mass, and features a slope roughly corresponding to its coupling factor, or

width. In the case of the phase shift itself, the resonance-mass is where it rapidly

precesses through π
2

radians, while the width is related to the slope at this point.

Plots of cot δ, δ and S display the typical resonance features, in Figures 8.27, 8.28

and 8.29, respectively.

We can solve the quantization condition to find B = K−1, with B explicitly

calculated in terms of our energies E, and parametrize K with

K = (qcm)3 1

6πEcm

g2

E2
cm −m2

ρ

. (8.2)
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Figure 8.27: Plot of the B-matrix element times a normalization factor, (2π/mπL)3, as-
suming only the L = 1 partial wave is present. With this assumption, B is proportional to
q3

cmcotδ. The resonance location is where this plot crosses zero, with the width controlling
the inverse of the slope. A higher decay width means a larger g, which makes the plot
more shallow; a smaller decay width increases the curvature of this plot. Bands are ±85%
confidence intervals.
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irrep level d2 Elab/mπ ∆E/mπ Ecm/mπ q2
cm/m

2
π

T+
1u 0 0 3.184(66) -0.316(67) 3.184(66) 1.54(10)
T+

1u 1 0 3.789(46) 0.289(46) 3.789(46) 2.590(86)
A+

1 1 1 3.667(30) -0.354(30) 3.369(33) 1.838(55)
E+ 0 1 3.545(63) -0.477(64) 3.235(70) 1.62(11)
A+

1 1 2 3.910(35) -0.550(36) 3.331(41) 1.774(68)
B+

1 0 2 3.837(28) -0.623(30) 3.244(33) 1.632(53)
B+

2 0 2 3.440(20) -0.061(19) 2.763(25) 0.910(33)
B+

2 1 2 4.021(33) 0.521(33) 3.460(38) 1.994(66)
E+ 0 3 3.851(42) -0.170(42) 2.922(56) 1.136(80)
E+ 1 3 4.423(41) 0.401(41) 3.643(50) 2.318(91)
A+

1 1 4 4.464(63) 0.395(63) 3.397(83) 1.89(14)
E+ 0 4 4.344(65) 0.275(67) 3.238(87) 1.62(14)

Table 8.9: Lab energies, interaction energies, and center-of-momentum-frame energies of
stationary states used for ππ scattering. We also display the constituent momenta for the
center-of-momentum-frame two-particle states.

Figure 8.28: Plot of phase shift δ1, as determined by the B-matrix assuming only an L = 1
partial wave. The resonance location is where this plot briefly shoots upward, with the
width controlling the slope in this region. This displays the typical resonance phenomena
of rapidly precessing through π. Bands are ±85% confidence intervals.
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Figure 8.29: Plot of S-matrix e2iδ1 , as determined by the B-matrix assuming only an L = 1
partial wave. The resonance location is where this plot peaks, with the width readily
apparent. Purely finite-volume data can precisely predict a physical particle, necessarily in
infinite-volume, in terms of a peaked cross-section − just like an experiment!
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Performing the fit procedure detailed in [44], we find the values:

mρ

mπ

= 3.323± 0.027 g = 6.35± 0.49 χ2/dof = 0.69 (8.3)

which compares favorably to experiment. The resonance-mass-ratio we report is un-

physical, thanks to the heavy pion, but the coupling we extract nearly agrees with

the physical value of 6. The relationship between the parameter g and the actual

decay width is given by

Γ =
g2

1

48π
mρ

[
1−

(
2mπ

mρ

)2
] 3

2

Γ

mπ

= 0.439± 0.093

(8.4)

and does not compare nearly as well as the g-coupling; the experimental Γ value

is found to be about 1.08mπ. However, the decay width and resonance-mass are

much closer to experimental values if we report them in units of the kaon instead,

which might have interesting implications in chiral perturbation theory. Even after

putting these in units of the kaon, the width is not expected to agree, given that

the phase space of the decay is sensitive to the unphysical mπ value. The resonance

value is also in line with the corresponding lattice state in T+
1u, which reinforces the

connection between these single-hadron dominated stationary states and the infinite-

volume resonances.

By using a one-dimensional K-matrix we have neglected higher partial waves. We

can use a larger matrix to include other phase shifts, but by doing so we trade one

unknown, δ, for more; because the quantization condition is only one equation, we

cannot solve exactly for these additional phase shifts. We are forced to minimize the

determinant condition with a parameterized K. So, for L = 3 we use

K =

 (qcm)3 1
6πEcm

g2

E2
cm−m2

ρ
0

0
(
qcm

mπ

)7

g2
3

 (8.5)

and minimize Ω(µ,K−1 −B), defined in Equation 7.14.

The same process can be repeated, adding another row/column for L = 5. We
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Figure 8.30: Plot of phase shift δL, for L = 1, 3 and 5. The resonance location is where δ1

briefly shoots upward, with the width controlling the slope in this region. This displays the
typical resonance phenomena of rapidly precessing through π. Bands are ±85% confidence
intervals. Data points are identical to previous plots, curves are not fit to this data. Curve
results come from fitting the quantization condition including L = 1, 3 and 5 partial waves.
However, we still see agreement.

parametrize with

K =


(qcm)3 1

6πEcm

g2

E2
cm−m2

ρ
0 0

0
(
qcm

mπ

)7

g2
3 0

0 0
(
qcm

mπ

)11

g2
5

 (8.6)

and minimize Ω(µ,K−1 −B). Doing this, we find our L = 1, 3 results
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Figure 8.31: Plot of q3 cot δ1 and the S-matrix element e2iδ1 , after minimizing Ω inlcuding
L = 1, 3 and 5 partial waves. Data points are identical to previous plots, curves are not fit
to this data. However, we still see agreement.

mρ

mπ

= 3.319± 0.029 g = 6.09± 0.48

g2
3 = −2.9± 3.7× 10−3

χ2/dof = 0.62

(8.7)

and the L = 1, 3, 5 results

mρ

mπ

= 3.330± 0.042 g = 6.20± 0.60

g2
3 = 0.5± 1.2× 10−3

g2
5 = −1.8± 2.3× 10−4

χ2/dof = 0.72.

(8.8)

The phase shifts for the higher partial waves are consistent with zero, and the data

points (extracted by neglecting higher partial waves) still compare well to our new

L = 1 parametrization (which includes these higher partial waves). That is, the

grey bands of Figures 8.30 and 8.31 still agree well with the data from Figures 8.27,

8.28 and 8.29. The value of mρ is relatively insensitive to the different parametriza-

tions. Technically, these results depend on the parametrization of the K-matrix;

parametrization-dependent techniques are inescapable for resonances that lie near or

above inelastic thresholds, as well as for non-negligible partial wave mixing.

The fit results are consistent with our published work [44] [43], and previous lat-
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tice results compare relatively well [49] [50] [51]; previous works use different values

for the light quark mass, and thus pion mass, so demanding agreement within 1σ is

less meaningful.

In spite of the rigorous justification that the lattice provides to quantum field

theory, many quantities seem inaccessible. For example, the scattering and decay

processes of a resonance seem to irreconcilable with the restrictions imposed by a

Wick-rotated periodic finite box. Nonetheless, techniques have been developed and

applied to extract true physical – meaning real-time, infinite volume – data from

lattice calculations. We can apply the technique for particles of any spin, with and

without partial-wave mixing, and above or below inelastic thresholds. The only caveat

is that we have only included two-particle effects in the Bethe-Salpeter kernel1.

This work allows the first computation of the L = 5 scattering phase shift for

isovector ππ scattering with a technique that generalizes to include multiple decay

channels and arbitrary spins. This means, in particular, the technique should work

well for baryon resonances on large lattices using noise dilution to achieve high pre-

cision.

1Work on including three-particles has been explored in [52] [53] [54]
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Chapter 9

Conclusion

The spectra of three-quark excitations for four symmetry channels in the Λ baryon

sector were studied using state-of-the-art lattice QCD techniques. As a step towards

studying unstable resonances, we further developed a computational strategy that

relates finite-volume energies to the S-matrix. This technology was tested using the

ρ(770) decaying into two pions, incorporating the L = 1, 3 and 5 partial waves for

the first time. The main results are summarized in Figures 8.5, 8.11, 8.18, 8.24

and 8.30. All calculations are performed on a set of 412 gauge configurations of an

anisotropic 323 × 256 grid, at an unphysically heavy pion mass of ≈ 240 MeV using

Wilson fermions.

In order to extract excited states on the lattice and relate them to infinite-volume

resonances, it is crucial to use a large number of single- and multi-hadron oper-

ators. We detail the algorithmic procedure for creating a plethora of single- and

multi-hadron operators for any symmetry sector, by using LapH-smeared covariantly

displaced quark fields in chapter 4. These operators are used to define correlators

which are evaluated using Monte Carlo methods, as detailed in chapter 5. Stochastic

LapH with noise dilution, also discussed in chapter 5, is the critical ingredient enabling

efficient evaluation of the quark lines in each correlator, in particular same-slice lines.

The temporal fall-off of these correlators is related to the energy of various stationary

states; the single-rotation method, discussed in chapter 6, can be used robustly for

energy extraction, performing well despite the inherent noise of baryons.

In chapter 8 we applied these methods to four of the isosinglet strange baryon

channels, G1g, G1u, Hg and Hu, which contain the Λ and some of its excitations.

Around 20 operators for each channel were used to analyze the energy spectra, with
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qqq-dominated states identified via overlap factors onto optimized single-hadron op-

erators. We expect these qqq-dominated states to become the actual resonance states

as the volume increases. In this instance, the experimental comparisons are generally

made better by reporting energies as a ratio of quantities that are affected by the un-

physically heavy pion. The qualitative structure of these isosinglet strange baryons

compares favorably, but not exactly, with similar calculations on smaller lattices with

a heavier pion [46].

We also can relate the finite-volume energies to infinite-volume resonances using

the Luscher method, discussed in chapter 7. In chapter 8 we demonstrate how this

method can incorporate multiple partial waves, in the simple case of ππ scattering.

Our results demonstrate that the techniques we use to extract the mass and width

of the ρ(770) should also work well for the study of baryonic resonances, such as the

Λ(1405).

Increasing computing power and improved Monte Carlo procedures have enabled

lattice calculations on larger lattices at lower pion masses, making the experimental

comparisons more direct. The techniques explored here allow us to connect these

finite-volume spectra both qualitatively and quantitatively to infinite-volume reso-

nances, with the ultimate goal of understanding the nature of these unstable particles.
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