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Background

e Current sleep scoring manual (AASM) is designed for the human eye.  Novel approach to cluster sleep data using
* Limited information is extracted from polysomnographic data. unsupervised classification

* Interscorer agreements are poor for patients with sleep disorders.  Moving towards a data-driven sleep classifi-
cation system

* Application to non-standard cases

(e.g. lucid dreaming)
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Result - Clustering

Result - Algorithm vs Human

Clustering with hctsa features (n=10)
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PCA in an embedding space * Algorithm scores align well with human scorers, especially in the sleep
stage NREMS.
Result - Lucid dreaming * Without prior knowledge, algorithm scored the Wake stage (determined

by human scorers) with a combination of Wake, NREM1 and REM stages.
Lucid Dreaming Detection

Discussion

100

Lucid dreaming episode

* Our unsupervised approach has reasonable agreement with human ex-
identified by [2] _p

perts and has strong potential in detecting lucid dreaming episodes.
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* This novel approach could analyse more complex features and richness
of sleep data, compared to current sleep scoring practice.
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* Automating our approach could improve consistencies in sleep scoring,
potentially including sleep disorders data.

o

* Algorithm prediction of the approximate occurrence of lucid dreaming.
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