

Draft document generated by the IDEAS xSDK project.

We are actively soliciting suggestions from the community at https://xsdk.info/policies.

 xSDK Community Package Policies

The IDEAS Project xSDK Team
Version 0.4.0, July 27, 2018

https://xsdk.info/policies

Background: A key aspect of work in the IDEAS Scientific Software Productivity Project is developing

an Extreme-scale Scientific Software Development Kit (xSDK) — a collection of related and

complementary software elements that provide the building blocks, tools, models, processes, and

related artifacts for rapid and efficient development of high-quality applications. As an initial step in

creating the xSDK, we have written the following draft xSDK package community policies to help

address challenges in interoperability and sustainability of software developed by diverse groups at

different institutions.

Goal: Develop a set of xSDK community policies that a software library/framework (henceforth

referred to as package) must satisfy in order to to be xSDK compatible. The designation of a 1

package being xSDK compatible informs potential users that the package can be easily used with

other xSDK libraries and components and thus helps to address issues in long-term sustainability 2

and interoperability among packages.

We consider two categories of xSDK packages: xSDK compatible packages and xSDK member
packages. We also consider two levels of xSDK compatibility: mandatory policies and

recommended policies.

● A package will be declared xSDK compatible once the xSDK team has determined that the

package satisfies the mandatory xSDK policies listed below. In addition to the required

policies, we specify recommended xSDK policies that further help to address issues in

software interoperability.

1 For the purpose of this document, the term package refers to a collection of source code (possibly containing
C, Fortran, or C++) that can generate zero or more shared or static libraries, zero or more include files, zero or
more Fortran modules, and possibly other auxiliary artifacts, including executables, and whose functionality can
be used by other packages and by application codes. A software artifact that generates only an executable is,
by this definition, not an xSDK package; that is, xSDK packages are libraries, frameworks, and domain
components.
2 See, for example, "Self-Sustaining Software" as outlined in
http://trac.trilinos.org/wiki/TribitsLifecycleModelOverview#self_sustaining_software.

https://xsdk.info/policies
https://xsdk.info/policies
http://www.ideas-productivity.org/
http://xsdk.info/
http://trac.trilinos.org/wiki/TribitsLifecycleModelOverview#self_sustaining_software

Draft document generated by the IDEAS xSDK project.

We are actively soliciting suggestions from the community at https://xsdk.info/policies.

● Similarly, a package can become an xSDK member package if (1) it is an xSDK-compatible

package, and (2) it uses or can be used by another package in the xSDK, and the connecting

interface is regularly tested for regressions.

Initially the requirements and process are informally presented; over time, if needed, we can begin to

formalize them. Currently the xSDK includes seven popular numerical libraries (hypre, MAGMA,

MFEM, PETSc/TAO, SUNDIALS, SuperLU, and Trilinos) and two application packages (Alquimia and

PFLOTRAN), which satisfy the required policies. Over the longer term, the xSDK may expand to

incorporate additional packages, depending on community needs and contributions.

xSDK Mandatory Policies

M1. Each xSDK-compatible package must support either the community GNU Autoconf or CMake
options as defined in the following document: 3

 xSDK Community Installation Policies: GNU Autoconf and CMake Options.

The goal of this policy is to enable individual users, computing centers, and package managers (such

as Spack) to install the package in a way that is compatible with other xSDK packages on the same

system. It is understood that managing all the dependencies for a variety of packages is nontrivial and

is not resolved by standard options.

M2. Each xSDK-compatible package must provide a comprehensive test suite that can be run by

users and does not require the purchase of commercial software. It is recommended that at least a

significant subset of the test suite will complete within a few hours on standard workstation-level

hardware. It is also recommended that at least a significant subset of the tests be runnable in

batch-only environments, that is, systems that require the use of PBS or other submission scripts.

M3. Each xSDK-compatible package that utilizes MPI must restrict its MPI operations to MPI

communicators that are provided to it and not use directly MPI_COMM_WORLD. The package should

use configure tests or version tests to detect MPI 2 or MPI 3 features that may not be available; it

should not be assumed that a full MPI 2 or MPI 3 implementation is available. The package can

change the MPI error-handling mode by default but should have an option to prevent it from changing

the MPI error handling (which may have been set by another package or the application). The

3 Note that the package is free to use any mechanism, for example Python as PETSc does, to implement the
options but to users they should appear as if a CMake or GNU Autoconf configure package.

2

https://xsdk.info/policies
https://computation.llnl.gov/project/linear_solvers/
http://icl.utk.edu/magma
http://mfem.org/
http://www.mcs.anl.gov/petsc/
https://computation.llnl.gov/projects/sundials
http://crd-legacy.lbl.gov/~xiaoye/SuperLU/
https://trilinos.org/
https://bitbucket.org/berkeleylab/alquimia
http://www.pflotran.org/
https://doi.org/10.6084/m9.figshare.4495133
http://software.llnl.gov/spack/

Draft document generated by the IDEAS xSDK project.

We are actively soliciting suggestions from the community at https://xsdk.info/policies.

package should also behave appropriately regardless of the MPI error handling being used. There is

no requirement that the package provide a sequential (non-MPI) version, although this functionality is

welcome, too. If the package provides a sequential version, there is no requirement that it be

compatible or usable with other xSDK-compatible packages running without MPI.

M4. Each package team must do a “best effort” at portability to common platforms, including

standard Linux distributions, and common compiler toolchains such as GNU, Clang, and vendor 4

compilers. Further portability requirements for xSDK subsets may be conditionally applied
based on sponsor requirements. Support for Apple Mac OS and Microsoft Windows Visual Studio 5

is recommended.

M5. Each package team must provide a documented, reliable way to contact the development
team; the mode of contact may be by email or a website. The package teams should not require

users to join a generic mailing list (and hence receive irrelevant email) in order to report bugs or

request assistance. The IDEAS project will not provide a go-between for users of xSDK packages and

xSDK member packages. The xSDK strategy is to make sure that the xSDK functionality fits naturally

into existing library support models.

M6. Each package should respect the decisions made by other previously called packages
regarding system resources and settings. For example, each package may provide an API for

changing the floating-point exception (FPE) and signal handlers, and even set them in a particular

way by default, but there must be a way to prevent the change. Because it is impossible to determine

the current state of the FPE and signal handlers and thus restore them to the current state after

changing them, it is recommended that the xSDK packages adopt a common protocol for pushing and

popping FPE and signal handlers.

M7. The xSDK collaboration has a strong preference for packages to use an OSI-approved,

permissive open-source license (e.g., MIT or BSD 3-Clause). All new packages will be required to

use such a license. Current packages using other licenses are encouraged to relicense, where

possible. Required dependencies must use an OSI-approved license that is considered compatible

with the preferred permissive licenses for distribution purposes (see

4 This does not mean that xSDK packages and all their dependencies cannot have a dependency of Fortran,
merely that the C and C++ portions of the packages and their dependencies should be compilable with the
Clang compilers.
5 For example, xSDK packages that receive funding from the mathematical libraries component of the U.S.
Department of Energy (DOE) Exascale Computing Project (ECP) must support portability to target machines at
the computing facilities ALCF, NERSC, and OLCF.

3

https://xsdk.info/policies

Draft document generated by the IDEAS xSDK project.

We are actively soliciting suggestions from the community at https://xsdk.info/policies.

https://en.wikipedia.org/wiki/License_compatibility). Non-critical optional dependencies can use any

OSI-approved license. RATIONALE: The choice of a permissive open-source license is friendlier to

use by commercial entities. Note that strong copyleft licenses (e.g., GPL) are not considered

compatible with permissive licenses. Weaker copyleft licenses (e.g., LGPL or GPL v2 with runtime

exception) can be considered compatible for xSDK distribution purposes. Licenses that restrict

commercial use are not acceptable in the xSDK. In the future, xSDK leadership reserves the right to

define a build where packages with weaker copyleft licenses (e.g., LGPL or GPL v2 with runtime

exception) are optional, so that users who wish to avoid these restrictions can do so.

M8. Each package must provide a runtime API, for example a function call, to return the current
version number of the software and indicate what configure/CMAKE and compiler options were used

to build the package. For development versions of the software, each package must provide the

current commit ID in the repository. With this information users should be able to rebuild the package

in the same state. We do not currently require that version information for all dependent packages be

provided, so it may not be possible to rebuild the entire software stack in the same state.

M9. Each package should use a limited and well-defined symbol, macro, library, and include file
name space. For example, there should be no publicly visible include files such as utils.h, or package

named libutil.a or macros name YES or TRUE. Namespacing of include files can be handled either by

prepending each include file with a package name, for example <XXXmat.h>, or by placing and

referencing all include files in a subdirectory with a package name, for example <XXX/mat.h>. Note

that using a -I/XXX/ and referencing via <mat.h> would not be acceptable namespacing.

M10. It is mandatory that each package have an xSDK-accessible repository (not necessarily

publicly available), where the development version of the package is available. Support for taking pull
requests is also recommended since this will greatly ease the effort among the development teams to

improve interoperability and quickly provide bug fixes.

M11. No package should have hardwired print or I/O statements that cannot be turned off through a

programmatic interface ; output should never be hard-wired to stdout or stderr. It is recommended 6

6 Packages should not exclusively use environmental variables as a programmatic interface since other
packages that may be controlling the simulation process cannot set such environmental variables. There must
be an API that can be called from with the source code. It is fine to also support using environmental variables,
but that cannot be the only way.

4

https://xsdk.info/policies
https://en.wikipedia.org/wiki/License_compatibility

Draft document generated by the IDEAS xSDK project.

We are actively soliciting suggestions from the community at https://xsdk.info/policies.

that packages provide a way for users to turn on output and allow them to direct where it goes. Also, 7

packages may print to stdout by default but only on one process (i.e., root rank “0”). But packages

may also be completely silent by default (and require that users turn on outputting in the appropriate

way).

M12. If a package imports software that is externally developed and maintained, then it must allow 8

installing, building, and linking against an outside copy of that software. Acceptable ways to

accomplish this include (1) forsaking the internal copied version and using an externally provided

implementation or (2) changing the file names and namespaces of all global symbols to allow the

internal copy and the external copy to coexist in the same downstream libraries and programs.

M13: When configured with a prefix, a package must install its headers and libraries under

<install-prefix>/include/ and <install-prefix>/lib/, respectively. In addition, the libraries and header files

should not have the version number embedded in them (except for shared libraries that can have

soname versions and symlinks like lib<package>.so -> lib<package>.so.X ->

lib<package>.so.X.Y.Z).

M14: All xSDK-compatible packages must be buildable using 64 bit pointers (this is commonly the

default). It is not required that they be buildable with 32 bit pointers.

M15: All xSDK compatibility changes should be sustainable (e.g., in the official development and

release versions of code; no one-offs).

M16: The package must support production-quality installation compatible with the xSDK install tool

and xSDK metapackage. 9

xSDK Recommended Policies

7 For example, allowing users to control output in a C++ package means that the package must accept an
arbitrary std::ostream object and all output should go to that object. In C, the package should accept a FILE
object to which it can direct its output.
8 For example, some projects import source for some routines from BLAS and LAPACK. The Trilinos Teuchos
package imported an early version of the boost::any class. Also, Trilinos has its own copy of an older version of
SparseSuite. In the latter two cases, new file names and namespaces were created for the imported software to
allow coexistence with the (updated) external versions.
9 Beginning with the xSDK 0.2.0-alpha release in April 2017, the xSDK community has adopted Spack as the
xSDK install tool. All xSDK compatible packages must support portable installation as part of the current xSDK
Spack metapackage.

5

https://xsdk.info/policies
https://spack.readthedocs.io/en/latest/

Draft document generated by the IDEAS xSDK project.

We are actively soliciting suggestions from the community at https://xsdk.info/policies.

In addition to the required xSDK policies listed above, the following capabilities are also

recommended.

R1. It is recommended that each package have a public repository, for example at GitHub or

Bitbucket, where the development version of the package is available. Support for taking pull
requests is also recommended since this will ease greatly the effort for users to provide

improvements to the packages.

R2. It is recommend that all packages make it possible to run their test suite under valgrind in order to

test for memory corruption issues.

R3. It is recommended that each package adopt and document a consistent system for
propagating/returning error conditions/exceptions and provide an API for changing the behavior.

For example, all routines may, by default, return an error code with the option of changing it to

generate an abort on the error (for running in the debugger). No package should have hardwired calls

to abort, exit, or MPI_Abort(). Also, no package should have hardwired print statements for error

conditions. Each package should document which error codes/exceptions are recoverable, which may

result in lost resources (for example, unfreed memory), and which indicate that the process may be in

an undefined or totally broken state (for example, after a segmentation violation). It is the

responsibility of the calling routine not to simply continue the computation when a “hard” error is

returned; the calling routine will likely, by default, call an abort, but again that should be possible to

override.

R4. It is recommended that each package free all system resources it has acquired as soon as

they are no longer needed. This recommendation includes closing open files, freeing memory, freeing

MPI communicators, and freeing MPI data types created by the package. In particular, it is crucial that

xSDK compatible code not have any growing memory leaks (such as leaking memory during every

timestep). Any resources created by the package that should be freed by the user, rather than by the

package, must be fully documented. Valgrind can be used to locate when these resources are

mistakenly not released.

R5. It is recommended that each package provide a mechanism to export its ordered list of library
dependencies so that any other package or executable linking to the package knows to include these

dependencies when linking.

6

https://xsdk.info/policies

Draft document generated by the IDEAS xSDK project.

We are actively soliciting suggestions from the community at https://xsdk.info/policies.

R6: Each package should document the versions of packages with which it can work or upon
which it depends, including software external to the xSDK, preferably in a machine-readable form.

The developers of xSDK member packages will coordinate the needed versions of various packages

for each xSDK release.

History of xSDK community policies. The original version of this document was prepared in 2015

by Barry Smith with key input from Roscoe Bartlett and feedback from members of the IDEAS project.

Over time, revisions have been introduced based on discussions with the broader computational

science community and developers of an expanding collection of xSDK member packages. We thank

all xSDK package developers, the IDEAS team, and the scientific computing community for insightful

discussion about issues and approaches.

● Changes in version 0.4.0, July 27, 2018:

○ Split policy M4 into 2 parts: M4 (portability to common platforms) and new policy R6

(package should document the versions of packages with which it can work on on

which it depends). See https://github.com/xsdk-project/xsdk-issues/issues/55

○ Revision to M7: language about open source licensing requirements. See

https://github.com/xsdk-project/xsdk-issues/issues/56

○ New section on history of policies and summary of changes, misc minor edits

● Changes in version 0.3.0, November 6, 2017: added 2 new policies (M15 and M16), changed

naming convention to follow xSDK release number, minor typo edits

● Changes in version 0.3, December 2, 2016: clear definition of xSDK member packages, misc

minor edits

● Changes in version 0.2, January 28, 2016: minor edits

● Version 0.1, November 10, 2015: original version

Frequently Asked Questions about the xSDK: See the xSDK FAQ list.

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Advanced Scientific
Computing Research and Biological and Environmental Research programs.

7

https://xsdk.info/policies
https://github.com/xsdk-project/xsdk-issues/issues/55
https://github.com/xsdk-project/xsdk-issues/issues/56
http://xsdk.info/faq/

