SUPPLEMENTARY MATERIAL

First report of antioxidant abeo-labdane type diterpenoid from intertidal red seaweed *Gracilaria salicornia* with 5-lipoxygenase inhibitory potential

Tima Antony¹, Kajal Chakraborty^{1,*}

Central Marine Fisheries Research Institute, Ernakulam North P.O., P.B. No. 1603, Cochin 682018, India

* Corresponding author. Address: Marine Bioprospecting Section of Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, India. Tel.: +91 484 2394867; fax: +91 484 2394909.
E-mail address: kajal_cmfri@yahoo.com (K. Chakraborty).
¹ Equal contribution

Acknowledgements

The work was supported by Science and Engineering Research Board (SERB) Scheme (SR/S1/OC-96A/2012) funding from Department of Science and Technology, New Delhi, India. The authors thank the Director, Indian Council of Agricultural Research-Central Marine Fisheries Research Institute (ICAR-CMFRI), and Head, Marine Biotechnology Division, ICAR-CMFRI for guidance and support.

ABSTRACT

Phytochemical investigation on the biologically active compounds of seaweed *Gracilaria salicornia* {(C. Agardh) E.Y. Dawson} (family Gracilariaceae) guided to the separation of a previously unreported abeo-labdane class of diterpenoid. The compound was characterized as methyl-

16(13→14)-abeo-7-labdene-(12-oxo) carboxylate by extensive spectroscopic experiments, and comparison with the related compounds. The studied compound registered significantly greater activities against pro-inflammatory 5-lipoxygenase (IC₅₀ 0.86 mg/mL) than that exhibited by non-steroidal anti-inflammatory agent ibuprofen (IC₅₀ 0.92 mg/mL, *P*<0.05). Likewise, this compound exhibited comparable radical quenching (1, 1-diphenyl-2-picryl-hydrazil) activity (IC₅₀ 0.66 mg/mL) as standard antioxidant agent *α*-tocopherol (IC₅₀ 0.62 mg/mL).

Keywords: *Gracilaria salicornia* (C. Agardh) E.Y. Dawson, Gracilariaceae, 16(13→14)-abeo labdane, anti-inflammatory, antioxidant

Supplemental Figures

Table S1. NMR spectroscopic data^a of abeo-labdane type diterpenoid isolated from red seaweed

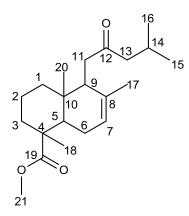

 G. Salicornia

Table S2. In vitro bioactive potentials (antioxidant and anti-infammatory) of compound $16(13 \rightarrow 14)$ abeo-labdene type diterpenoid isolated from red seaweed G. salicornia *vis-a-vis* commercially available references (α-tocopherol and ibuprofen) $^{1}\mathrm{H}$ **Fig. S1.** NMR methyl-16(13 \rightarrow 14)-abeo-7-labdene-(12-oxo) spectrum of carboxylate ^{13}C Fig. S2. NMR spectrum of methyl-16(13 \rightarrow 14)-abeo-7-labdene-(12-oxo) carboxylate DEPT spectrum of methyl- $16(13 \rightarrow 14)$ -abeo-7-labdene-(12-oxo) carboxylate **Fig. S3.** ¹H-¹H COSY spectrum of methyl-16(13 \rightarrow 14)-abeo-7-labdene-(12-oxo) Fig. S4. carboxylate HSQC spectrum of methyl-16($13 \rightarrow 14$)-abeo-7-labdene-(12-oxo) carboxylate **Fig. S5.** HMBC spectrum of methyl-16(13 \rightarrow 14)-abeo-7-labdene-(12-oxo) carboxylate **Fig. S6. Fig. S7.** NOESY spectrum of methyl-16(13 \rightarrow 14)-abeo-7-labdene-(12-oxo) carboxylate (A1) ¹H-¹H COSY (bold face bonds), selected HMBC (red coloured double barbed **Fig. S8.** arrows) and (A2) NOESY (coloured arrows) correlations of methyl- $16(13 \rightarrow 14)$ -abeo-7-labdene-(12-oxo) carboxylate **Fig. S9.** FTIR spectrum of methyl-16(13 \rightarrow 14)-abeo-7-labdene-(12-oxo) carboxylate GC-MS spectrum of methyl-16(13 \rightarrow 14)-abeo-7-labdene-(12-oxo) carboxylate **Fig. S10.** Fig. S11. Tentative mass fragmentation pattern of methyl- $16(13 \rightarrow 14)$ -abeo-7-labdene-(12-oxo)

carboxylate

 Table S1. NMR spectroscopic data^a of abeo-labdane type diterpenoid isolated from red

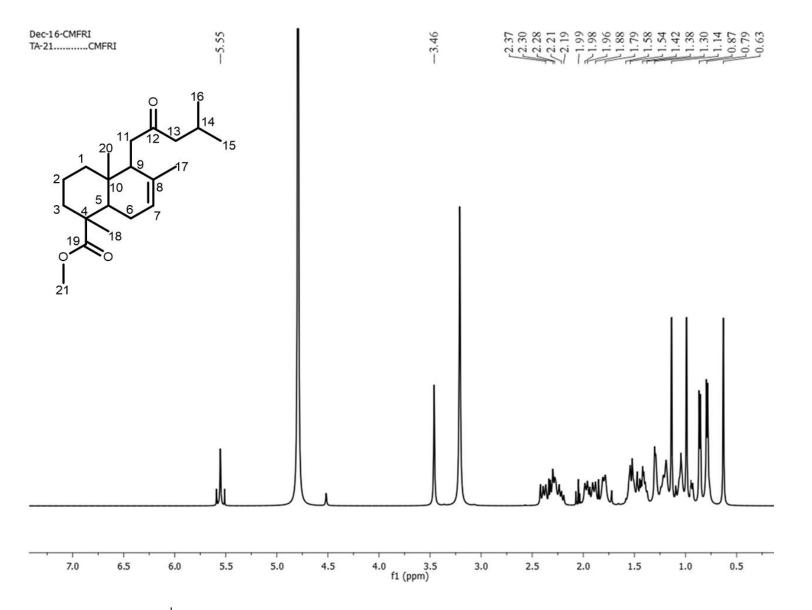
 seaweed G. salicornia

Type of C	C. No.	¹³ C NMR	¹ H NMR	int., mult., J in Hz ^b	COS Y	HMBC
CH ₂	1	38.65	1.54	t, J=5.5Hz	H-2	C-2, 10
			1.30	t, J=4.2Hz	-	-
CH_2	2	20.85	1.54	m	H-3	C-1, 10
			1.42	m	-	-
CH_2	3	38.26	2.19	t, J=5.0Hz	-	C-4, 19
			1.88	t, J=5.0Hz	-	-
С	4	42.91	-	-	-	-
CH	5	44.68	1.98	t, J=3.54Hz	H-6	C-4, 6, 10
CH_2	6	23.54	1.79	t, J=5.1Hz	H-7	-
			1.98	t, J=5.7.1Hz	-	-
CH	7	124.87	5.55	t, J=6.6Hz	-	C-5, 8
С	8	135.93	-	-	-	-
СН	9	45.18	2.21	t, J=5.5Hz	H-11	C-8, 10, 11, 12
С	10	39.27	-	-	-	-
CH_2	11	41.32	2.37	dd, J=10.9, 6.5 Hz	-	C-9, 12
			2.28	dd, J=12.7, 5.4Hz	-	-
С	12	203.27	-	-	-	-
CH_2	13	54.80	2.30	d, J=6.5Hz	H-14	C-12
СН	14	24.16	1.99	m	H-15, 16	C-12
CH ₃	15	16.27	0.79	d, J=6.0Hz	-	-
CH_3	16	17.96	0.87	d, J=6.1 Hz	-	-
CH ₃	17	19.60	1.14	S	-	C-8
CH ₃	18	17.96	1.38	S	-	C-4
С	19	167.63	-	-	-	-
CH ₃	20	10.96	0.63	S	-	C-10
CH ₃	21	69.78	3.46	S	-	C-19

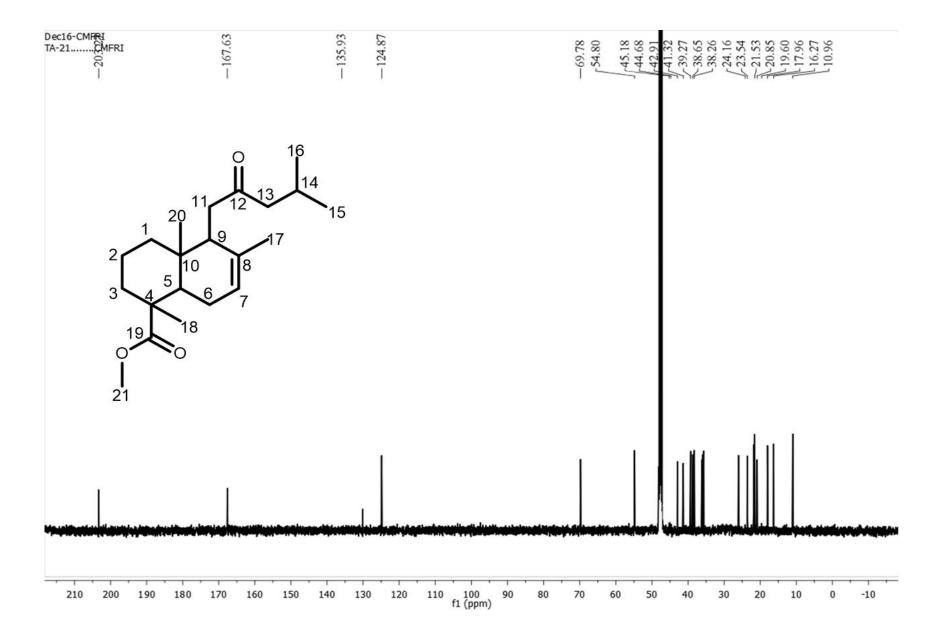
^aNMR spectra were recorded using a Bruker AVANCE III 500 MHz (AV 500) spectrometer (Bruker, Karlsruhe, Germany) in MeOH as aprotic solvent at ambient temperature with TMS as the internal standard ($\delta 0$ ppm).

^bValues in ppm, multiplicity and coupling constants (J= Hz) were indicated in parentheses. Multiplicities were allocated by ¹³⁵DEPT NMR spectrum. The assignments were made with the aid of the COSY, HSQC, HMBC and NOESY experiments.

Table S2. *In vitro* bioactive potentials (antioxidant and anti-infammatory) of compound $16(13 \rightarrow 14)$ abeolabdene type diterpenoid isolated from red seaweed *G. salicornia vis-a-vis* commercially available references (α -tocopherol and ibuprofen)


Compounds	Anti-oxidant IC ₅₀ m		Anti-inflammatory properties IC ₅₀ mg/mL			
	DPPH	ABTS	COX-1	COX-2	5-LOX	Selectivity
	quenching	quenching	inhibition	inhibition	inhibition	index†
16(13→14)abeo-	0.66 ± 0.03^{a}	$0.78 \pm$	$0.80 \pm$	0.57 ±	$0.78 \pm$	-1.40 ± 0.02^{a}
labdene	0.00 ± 0.03	0.04^{a}	0.03 ^a	0.02^{a}	0.02^{a}	
Standards	α-					
Stanuarus	tocopherol		ibuprofen			
	0.62 ± 0.04^{a}	$0.75 {\pm} 0.05^{a}$	0.06 ± 0.00^{b}	$0.08{\pm}0.02^{b}$	0.92±0.11 ^b	0.75 ± 0.01^{b}

The anti-oxidant and anti-diabetic activities were expressed as IC₅₀ values (mg/mL).


^{a-c} Column-wise values with different superscripts of this type indicate significant difference (P<0.05). Triplicate values were taken and the variance analyses (ANOVA) were carried out (using Statistical Program for Social Sciences 13.0) for means of all parameters to examine the significance level (P<0.05).

Results were expressed as mean \pm SD (n = 3).

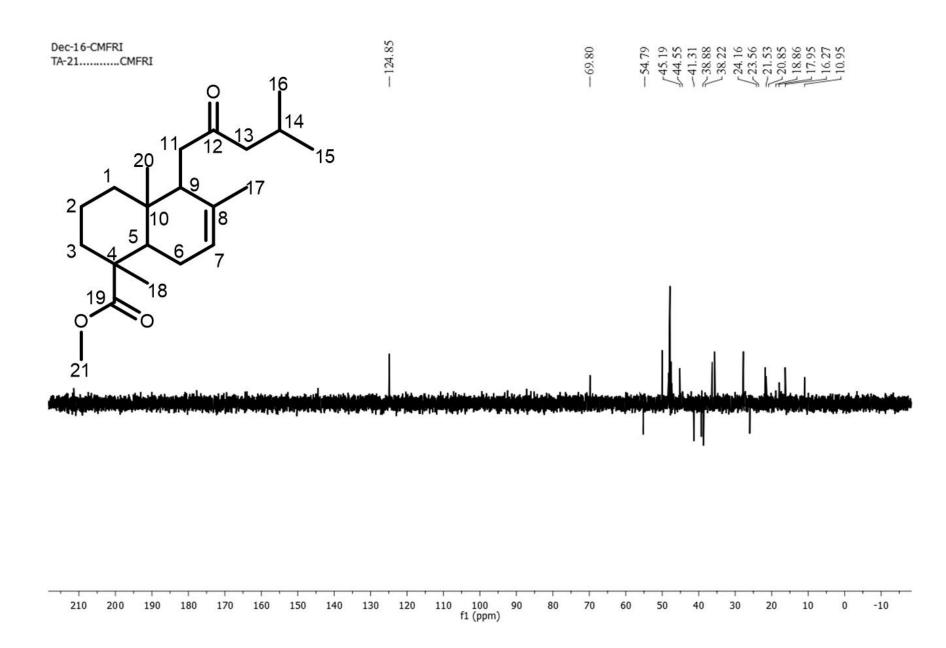

† Selectivity index = IC₅₀anti-COX-1/ IC₅₀anti-COX-2

Fig. S1 ¹H NMR spectrum of methyl-16(13 \rightarrow 14)-abeo-7-labdene-(12-oxo) carboxylate

Fig. S2. ¹³C NMR spectrum of methyl-16(13 \rightarrow 14)-abeo-7-labdene-(12-oxo) carboxylate

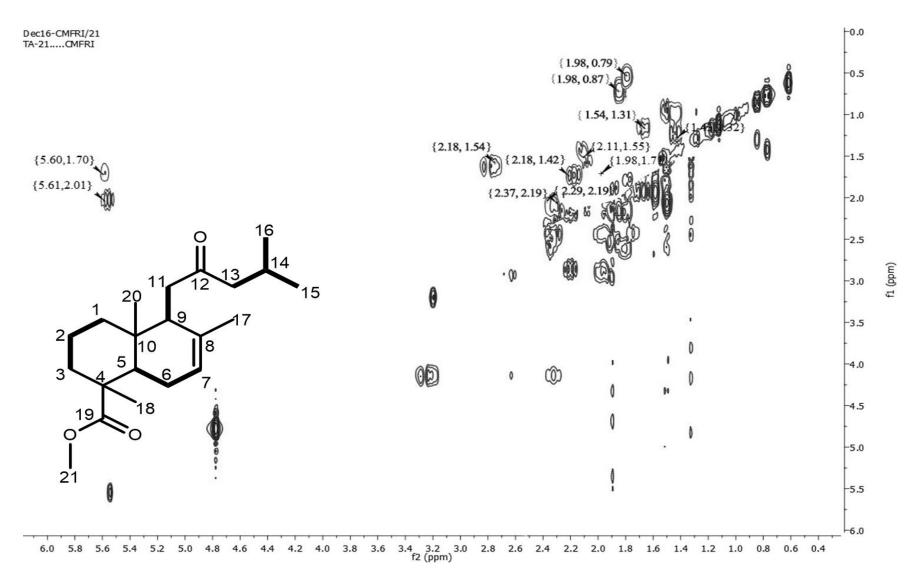
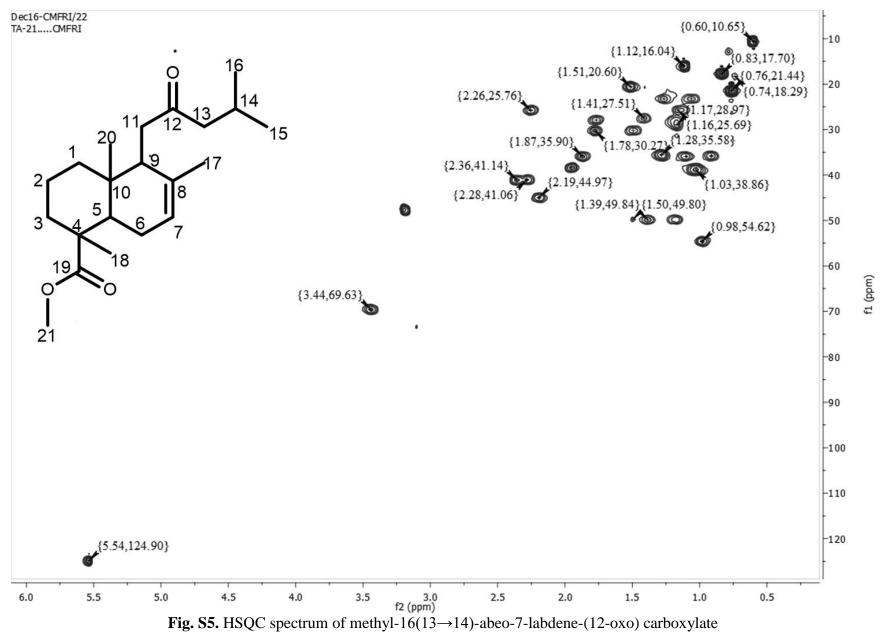



Fig. S3. DEPT spectrum of methyl- $16(13 \rightarrow 14)$ -abeo-7-labdene-(12 - 0xo) carboxylate

Fig. S4. 1 H- 1 H COSY spectrum of methyl-16(13 \rightarrow 14)-abeo-7-labdene-(12-oxo) carboxylate

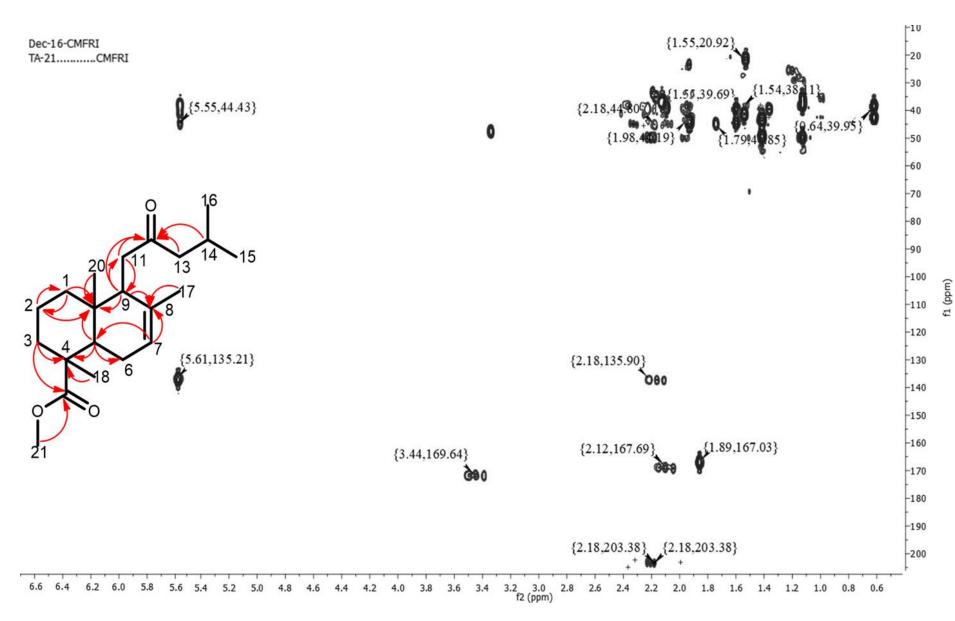
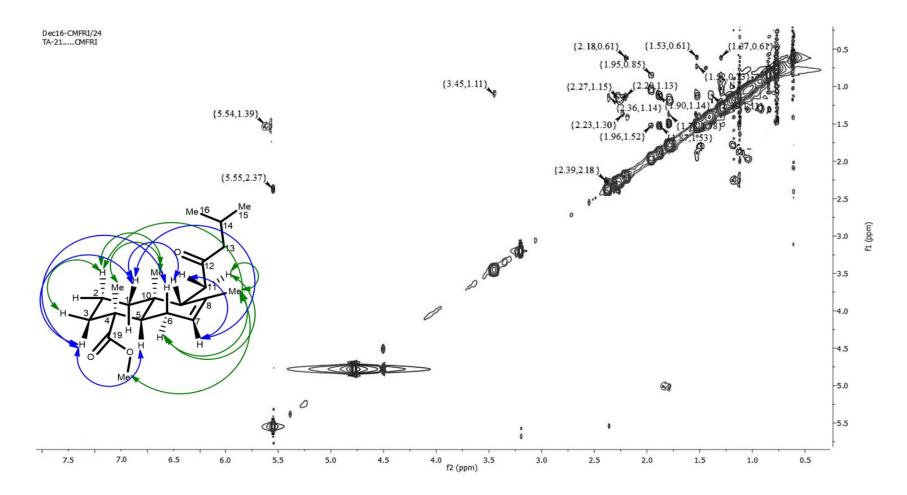



Fig. S6. HMBC spectrum of methyl- $16(13 \rightarrow 14)$ -abeo-7-labdene-(12 - 0xo) carboxylate

Fig. S7. NOESY spectrum of methyl- $16(13 \rightarrow 14)$ -abeo-7-labdene-(12 - 0xo) carboxylate

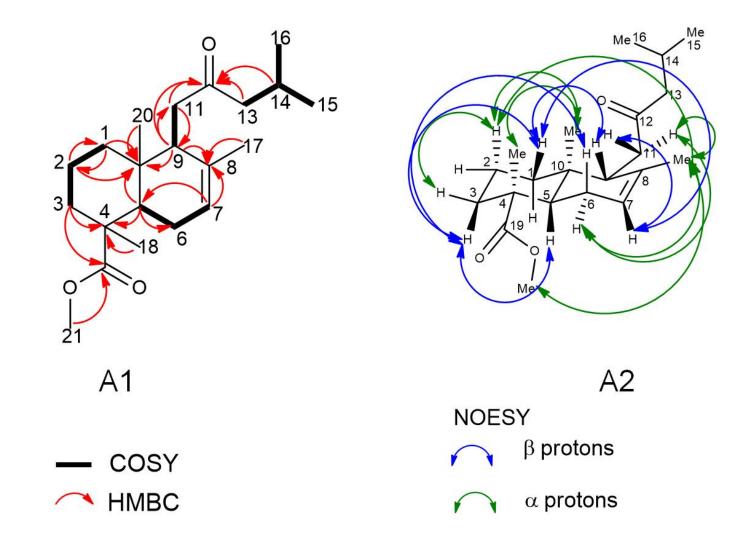
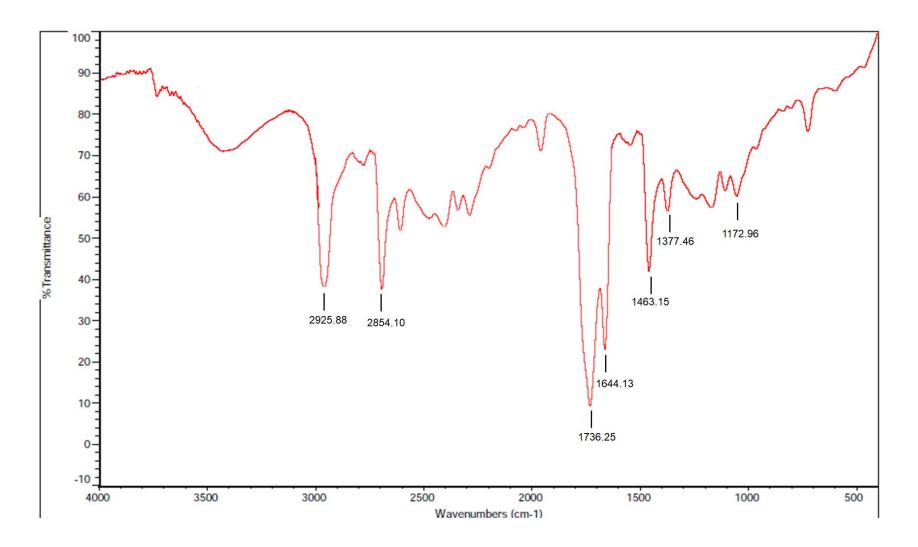



Fig. S8. (A1) ${}^{1}\text{H}{}^{-1}\text{H}$ COSY (bold face bonds), selected HMBC (red coloured double barbed arrows) and (A2) NOESY (coloured arrows) correlations of methyl-16(13 \rightarrow 14)-abeo-7-labdene-(12-oxo) carboxylate

Fig. S9. FTIR spectrum of methyl- $16(13 \rightarrow 14)$ -abeo-7-labdene-(12-oxo) carboxylate

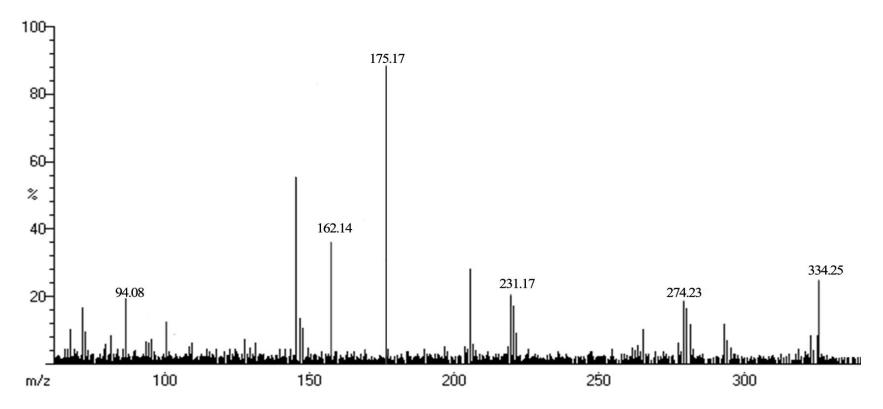
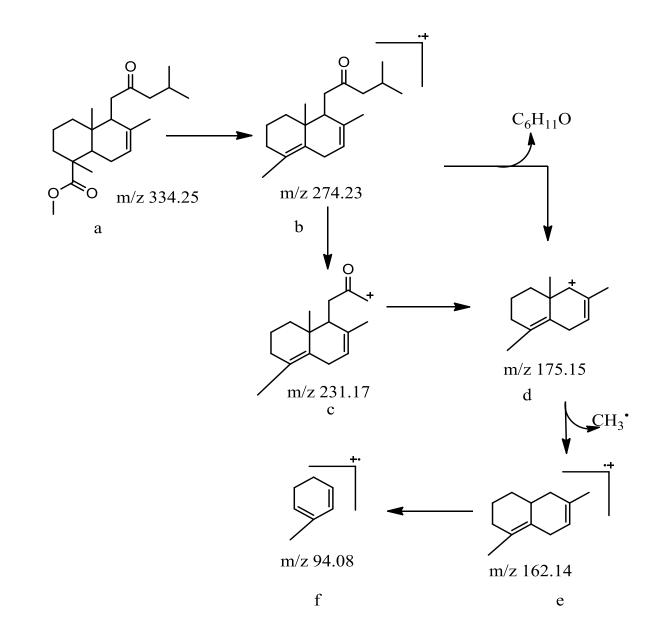



Fig. S10. GC-MS spectrum of methyl- $16(13 \rightarrow 14)$ -abeo-7-labdene-(12 - 0x0) carboxylate

Fig. S11. Tentative mass fragmentation pattern of methyl- $16(13 \rightarrow 14)$ -abeo-7-labdene-(12-oxo) carboxylate