SUPPORTING INFORMATION

Mimicking the secretory action of a gland by a composite system made of a pH responsive surfactant-based hydrogel and a dialysis membrane.

Alessio Cesaretti, ${ }^{a}$ Irene Di Guida, ${ }^{a}$ Naishka E. Caldero-Rodríguez, ${ }^{\text {a,b }}$ Catia Clementi, ${ }^{a}$ Raimondo Germani, ${ }^{\text {a }}$ Pier Luigi Gentili*, ${ }^{*}$
${ }^{\text {a}}$ Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di sotto 8, 06123 Perugia, Italy
${ }^{\mathrm{b}}$ Department of Chemistry, College of Natural Science, University of Puerto Rico, Río Piedras Campus, San Juan, PR 00931-3346.
*E-mail: pierluigi.gentili@unipg.it

Contents Page
I. Results 2
I. 1 Interactions between $\boldsymbol{p D o A O}$ and $\boldsymbol{A R S}$ 2
I.1.1 Titrations of $\boldsymbol{A R S}$ with $\boldsymbol{p D o A O}$ at $\mathrm{pH}=7.5$ 3
Table S1 3
Figure S1 4
I.1.2 Titrations of $\boldsymbol{A R S}$ with $\mathbf{p D o A O}$ at $\mathrm{pH}=3.1$ 5
Table S2 5
Figure S2 6
I.1.3 Titrations of $\boldsymbol{A R S}$ with $\boldsymbol{p D o A O}$ in pure unbuffered water (initial $p H=5.5$) 6
Table S3 7
Figure S3 8
I. 2 Dependence of PyI fluorescence quantum yield on the viscosity of pDoAO 8
solutions.
Figure S4 8
Figure S5 9
Figure S6 10
Figure S7 11
I. 3 Activity of the Artificial Gland 11
Figure S8 12
Figure S9 13
Figure S10 13
Figure S11 14
Figure S12 14
Figure S13 15
Table S4 15
Table S5 16
Figure S14 17
Figure S15 17
Figure S16 18
Figure S17 18
I.4 Contribution of the dialysis membrane to the composite pDoAO+DM system 19
Figure S18 19
Figure S19 20
Figure S20 20
Figure S21 21
Figure S22 22
Figure S23 22
Figure S24 23
Figure S25 24
Figure S26 24
II. References 25

I. Results

I. 1 Interactions between pDoAO and ARS

The equation for the determination of the equilibrium association constant [1] between ARS and the micelles of pDoAO is:
$\frac{1}{A-A_{0}}=\frac{1}{\left(A_{\infty}-A_{0}\right) K([p D o A O]-c m c)}+\frac{1}{A_{\infty}-A_{0}}$
where A is the absorbance when the concentration of the micelles is equal to the difference ($[\boldsymbol{p D o A O}]-$ $\mathrm{cmc}), A_{0}$ is the absorbance before any addition of the surfactant, and A_{∞} is the absorbance when all the ARS molecules are associated with the micelles.

I.1.1 Titrations of $A R S$ with pDoAO at $\mathrm{pH}=7.5$

The titration of 2 mL of a buffered ARS solution $\left(8.0 \times 10^{-5} \mathrm{M}\right)$ at $\mathrm{pH}=7.5$, has been performed in a fluorimetric cuvette by adding increasing microvolumes of a buffered $\mathbf{p D o A O}$ solution $\left(\mathrm{C}_{0}=1.0 \times 10^{-3}\right.$ $\mathrm{M})$ at $\mathrm{pH}=7.5$. The spectral evolution recorded for this titration is shown in Figure 1B. The composition of the solution after each addition is reported in Table S1.

Table S1. Composition of the solution of ARS at $\mathrm{pH}=7.5$, after each addition of $\mathbf{p D o A O}$.

\mathbf{n}° addition	Total added volume ($\boldsymbol{\mu L} \mathbf{)}$	[pDoAO] $\mathbf{(M)}$	moles(pDoAO)/ moles(ARS)	[micelles]/[ARS]
1	3	1.5×10^{-6}	0.019	$/$
2	8	4.0×10^{-6}	0.05	$/$
3	15	7.4×10^{-6}	0.09	$/$
4	25	1.2×10^{-5}	0.16	1
5	40	2.0×10^{-5}	0.25	0.051
6	60	2.9×10^{-5}	0.38	0.17
7	80	3.8×10^{-5}	0.50	0.29
8	100	4.8×10^{-5}	0.63	0.42
9	120	5.7×10^{-5}	0.75	0.54
10	150	7.0×10^{-5}	0.94	0.73
11	180	8.3×10^{-5}	1.13	0.91
12	210	9.5×10^{-5}	1.31	1.09
13	240	1.1×10^{-4}	1.5	1.32
14	280	1.2×10^{-4}	1.75	1.48
15	325	1.4×10^{-4}	2.03	1.80
16	375	1.6×10^{-4}	2.34	2.14
17	435	1.8×10^{-4}	2.72	2.50
18	505	2.0×10^{-4}	3.16	2.88

19	590	2.3×10^{-4}	3.69	3.46
20	690	2.6×10^{-4}	4.31	4.10
21	800	2.9×10^{-4}	5	4.80
22	920	3.2×10^{-4}	5.75	5.55
23	1050	3.4×10^{-4}	6.56	6.18
24	1190	3.7×10^{-4}	7.44	7.06
25	1340	4.0×10^{-4}	8.38	8.04
26	1400	4.1×10^{-4}	8.75	8.37
27	1600	4.5×10^{-4}	10.2	9.82
28	1820	4.8×10^{-4}	11.6	11.2
29	2060	5.1×10^{-4}	13.1	12.7
30	2320	5.5×10^{-4}	15.0	14.6

Determination of the association constant between ARS and micelles at $\mathrm{pH}=7.5$

Determination of the association constant K of the di-anionic form of ARS to the PDoAO micelles in an aqueous solution buffered at $\mathrm{pH}=7.5$. The values of absorbance refer to $\lambda=495 \mathrm{~nm}$ that is the wavelength of the maximum for ARS in water at $\mathrm{pH}=7.5$. The red straight line represents the fitting function presented in equation (1).

Figure S1. Application of equation (1) to the corrected spectral data collected at 495 nm , for ARS $\left(8.0 \times 10^{-5} \mathrm{M}\right)$ and $\left[\mathbf{p D o A O}\right.$] ranging from $1.40 \times 10^{-4} \mathrm{M}$ to $5.46 \times 10^{-4} \mathrm{M}$. The A values have been corrected by considering the dilution effect due to the successive additions of pDoAO solution.

I.1.2 Titrations of $A R S$ with pDoAO at $\mathrm{pH}=3.1$

The titration of 2 mL of a buffered ARS solution $\left(5.8 \times 10^{-5} \mathrm{M}\right)$, has been carried out in a fluorimetric cuvette by adding increasing microvolumes of a pDoAO solution $\left(\mathrm{C}_{0}=9.7 \times 10^{-4} \mathrm{M}\right)$ at $\mathrm{pH}=3.1$. The spectral evolution recorded for this titration is shown in Figure 1C. The composition of the solution after each addition is reported in Table S2.

Table S2. Composition of the solution of ARS at $\mathrm{pH}=3.1$, after each addition of pDoAO .

\mathbf{n}° addition	Total added volume ($\mu \mathrm{L}$)	[pDoAO] (M)	$\begin{gathered} \text { moles(pDoAO)/ } \\ \text { moles(ARS) } \end{gathered}$	[micelles]/[ARS]
1	3	1.5×10^{-6}	0.026	,
2	8	3.9×10^{-6}	0.067	1
3	15	7.2×10^{-6}	0.125	1
4	25	1.2×10^{-5}	0.21	/
5	40	$\begin{gathered} 1.9 \times 10^{-5}> \\ \mathrm{cmc} \end{gathered}$	0.33	0.07
6	60	2.8×10^{-5}	0.50	0.23
7	80	3.7×10^{-5}	0.67	0.39
8	100	4.6×10^{-5}	0.83	0.56
9	120	5.5×10^{-5}	1.00	0.73
10	150	6.8×10^{-5}	1.26	0.98
11	180	8.0×10^{-5}	1.50	1.22
12	210	9.2×10^{-5}	1.75	1.47
13	240	1.04×10^{-4}	2.01	1.72
14	280	1.19×10^{-4}	2.34	2.05
15	325	1.36×10^{-4}	2.73	2.42
16	375	1.53×10^{-4}	3.13	2.83
17	435	1.73×10^{-4}	3.64	3.32
18	505	1.96×10^{-4}	4.22	3.91
19	590	2.21×10^{-4}	4.93	4.60
20	690	2.49×10^{-4}	5.77	5.43
21	800	2.77×10^{-4}	6.69	6.32
22	920	3.06×10^{-4}	7.69	7.33

23	1050	3.34×10^{-4}	8.78	8.39
24	1190	3.62×10^{-4}	9.96	9.54
25	1340	3.89×10^{-4}	11.20	10.77
26	1400	3.99×10^{-4}	11.71	11.26

Determination of the association constant between ARS and micelles at $\mathrm{pH}=3.1$.
Determination of the association constant K of the mono-anionic form of ARS to the pDoAO micelles in an aqueous solution buffered at $\mathrm{pH}=3.1$. The values of absorbance refer to $\lambda=420 \mathrm{~nm}$, which is the wavelength of the maximum for ARS in water at $\mathrm{pH}=3.1$. The red straight line represents the fitting function presented in equation (1).

Figure S2. Application of equation (1) to the corrected spectral data collected at 420 nm , for ARS $\left(5.8 \times 10^{-5} \mathrm{M}\right)$ and [pDoAO] ranging from $1.19 \times 10^{-4} \mathrm{M}$ to $2.49 \times 10^{-4} \mathrm{M}$. The A values have been corrected by considering the dilution effect due to the successive additions of pDoAO solution.

I.1.3 Titrations of ARS with p DoAO in pure unbuffered water (initial $p H=5.5$).

The titration of 2 mL of ARS $5.4 \times 10^{-5} \mathrm{M}$ in pure unbuffered water, having the initial pH equal to 5.5 , has been carried out in a fluorimetric cuvette by adding increasing microvolumes of a pDoAO
unbuffered water solution $\left(\mathrm{C}_{0}=9.8 \times 10^{-4} \mathrm{M}\right)$. The spectral evolution recorded for this titration is shown in Figure 1D. The composition of the solution after each addition is reported in Table S3.

Table S3. Composition of the solution of ARS in pure water, after each addition of pDoAO.

$\begin{gathered} \mathrm{n}^{\circ} \\ \text { addition } \end{gathered}$	Total added volume ($\mu \mathrm{L}$)	[pDoAO] (M)	moles(pDoAO)/ moles(ARS)	[micelles]/[ARS]
1	3	1.5×10^{-6}	0.027	1
2	8	3.9×10^{-6}	0.073	1
3	15	7.3×10^{-6}	0.136	1
4	25	1.2×10^{-5}	0.227	1
5	40	$\begin{gathered} 1.9 \times 10^{-5}> \\ \mathrm{cmc} \end{gathered}$	0.36	0.06
6	60	2.85×10^{-5}	0.54	0.24
7	80	3.77×10^{-5}	0.73	0.42
8	100	4.67×10^{-5}	0.91	0.60
9	120	5.55×10^{-5}	1.09	0.78
10	150	6.84×10^{-5}	1.36	1.04
11	180	8.1×10^{-5}	1.63	1.31
12	210	9.3×10^{-5}	1.91	1.58
13	240	1.05×10^{-4}	2.18	1.85
14	280	1.20×10^{-4}	2.54	2.20
15	325	1.37×10^{-4}	2.95	2.60
16	375	1.55×10^{-4}	3.40	2.99
17	435	1.75×10^{-4}	3.95	3.58
18	505	1.98×10^{-4}	4.58	4.22
19	590	2.23×10^{-4}	5.18	4.96
20	690	2.51×10^{-4}	6.26	5.85
21	800	2.80×10^{-4}	7.26	6.84
22	920	3.09×10^{-4}	8.35	7.92
23	1050	3.37×10^{-4}	9.53	9.07

Determination of the association constant between ARS and micelles in pure unbuffered water.
Determination of the association constant K between ARS and pDoAO micelles in pure unbuffered water. The values of absorbance refer to $\lambda=600 \mathrm{~nm}$. The red straight line represents the fitting function that corresponds to equation (1).

Figure S3. Application of equation (1) to the corrected spectral data collected at 600 nm , for ARS $\left(5.4 \times 10^{-5} \mathrm{M}\right)$ and [pDoAO] ranging from $9.3 \times 10^{-5} \mathrm{M}$ to $2.8 \times 10^{-4} \mathrm{M}$. The A values have been corrected by considering the dilution effect due to the successive additions of pDoAO solution.
I. 2 Dependence of PyI fluorescence quantum yield on the viscosity of pDoAO solutions.

Figure S4. PyI emission spectra at different concentrations of pDoAO (read the legend in the plot on the left), and linear trend of Φ_{F} vs. the logarithm of viscosity (η), on the right. The linear function
represented by the red straight line is $\Phi_{F}=-(0.074 \pm 0.007)+(0.050 \pm 0.004) \log (\eta)$, determined by the least-squares method.

Figure S5. Effect of consecutive injections of HCOOH 1 M (acid) and NaOH 1 M (base) on the emission spectrum of PyI $\left(2 \times 10^{-5} \mathrm{M}\right)$ dissolved in 2.5 mL solution with [pDoAO] $=10^{-2} \mathrm{M}$. The emission spectra have been corrected by the dilution effect. The most intense spectra have been recorded after neutralizing the acid.

Figure S6. Effect of consecutive injections of HCOOH 1 M (acid) and NaOH 1 M (base) on the emission spectrum of $\mathbf{P y I}\left(2 \times 10^{-5} \mathrm{M}\right)$ dissolved in 2.5 mL solution with $[\mathbf{p D o A O}]=10^{-2} \mathrm{M}$ (upper graph). The emission spectra have been corrected by the dilution effect. The lower graph shows the trend of $\Phi_{\mathrm{F}}(\mathbf{P y I})$ and the logarithm of the viscosity after every addition of either the acid or the base.

Figure S7. Effect of consecutive injections of HCl 1 M (acid) and NaOH 1 M (base) on the emission spectrum of $\mathbf{P y I}\left(2 \times 10^{-5} \mathrm{M}\right)$ dissolved in 2.5 mL solution with $[\mathbf{p D o A O}]=10^{-2} \mathrm{M}$ (upper graph). The emission spectra have been corrected by dilution effect. The lower graph shows the trend of $\Phi_{\mathrm{F}}(\mathbf{P y I})$ and the logarithm of the viscosity after every addition of either the acid or the base.

I. 3 Activity of the Artificial Gland

The data shown in Figures 5A and 5B of the Article were obtained by using 1.98 g of the 0.1 M pDoAO gel containing $\mathbf{C}_{8} \mathbf{A c}$ at the concentration of $8 \times 10^{-6} \mathrm{M}$. The gel-to-sol transition was induced by adding $19.5 \mu \mathrm{~L}$ of $99 \% \mathrm{CH}_{3} \mathrm{SO}_{3} \mathrm{H}$ to the gel. A volume of 20 mL of pure deionized water
constituted the phase collecting the secretion of the artificial gland model when PDoAO was in both its gel and sol state. The values of the $\mathbf{C}_{8} \mathbf{A c}$ molar fraction $\left(\chi_{\left(C_{8} A c\right)}\right)$ secreted by the artificial gland model in both its gel and sol state (Figure 5A) were determined by recording the emission spectrum of $\mathbf{C}_{8} \mathbf{A c}$ from the aqueous solution contained in the beaker. By knowing that the fluorescence quantum yield of $\mathbf{C}_{8} \mathbf{A c}$ is $\Phi_{F}\left(\lambda_{\text {exc }} @ 360\right)=0.32$, and by using tetracene in cyclohexane as fluorometric standard, it was possible to calculate the absorbance of $\mathbf{C}_{8} \mathbf{A c}\left(A_{C_{8} A c}\right)$ through equation (2):
$A_{\boldsymbol{C}_{8} \boldsymbol{A c}}=\frac{\operatorname{AreaEm}\left(\boldsymbol{C}_{8} \mathbf{A c}\right) \Phi_{F}(S t)}{\operatorname{AreaEm}(S t) \Phi_{F}\left(\boldsymbol{C}_{\mathbf{8}} \mathbf{A c}\right)}\left(\frac{n_{a q}}{n_{S t}}\right)^{2} A_{S t}$
In (2), St represents the standard; Area Em is the integral of the emission spectrum; $n_{a q}$ and $n_{S t}$ are the refractive indices of the aqueous and cyclohexane solution, respectively. Then, from the value of $A_{C_{8} A c}$, it was possible to calculate the concentration and $\chi\left(C_{8} A c\right)$ since the absorption coefficient of $\mathbf{C}_{8} \mathbf{A c}$ was known (see Figure S8).

Figure S8. Absorption (black trace) and emission (red trace) spectra of $\mathbf{C}_{8} \mathbf{A c}$ in pure water.

The values of the molar fraction of the surfactant molecules $\left(\chi_{(p D O A O)}\right)$ released by the composite pDoAO+DM system was determined by recording the absorption spectra of the aqueous solution and knowing the absorption coefficients values of pDoAO molecules in both its zwitterionic and cationic state (see Figure S9).

Figure S9. Absorption spectra of pDoAO in its zwitterionic (black trace) and cationic (red trace) states.

The emission and absorption spectra of the collecting aqueous solution recorded when $\mathbf{~ P D o A O}+\mathbf{D M}$ was in the gel state, are shown in Figure S10 and S11, respectively.

Figure S10. Emission spectra of $\mathbf{C}_{\mathbf{8}} \mathbf{A c}$ secreted at different elapsed times in the collecting aqueous solution when $\mathbf{~ D D o A O}+\mathbf{D M}$ is in the gel state.

Figure S11. Absorption spectra of the collecting aqueous solution when $\mathbf{~ P D o A O}+\mathbf{D M}$ is in the gel state.

The emission and absorption spectra of the collecting aqueous solution, recorded when $\mathbf{~ P D o A O}+\mathbf{D M}$ is in the sol state, are shown in Figure S12 and S13, respectively.

Figure S12. Emission spectra of $\mathbf{C}_{\mathbf{8}} \mathbf{A c}$ secreted at different elapsed times in the collecting aqueous solution when $\mathbf{~ P D o A O}+\mathbf{D M}$ is in the sol state.

Figure S13. Absorption spectra of the collecting aqueous solution when $\mathbf{~ P D o A O}+\mathbf{D M}$ is in the sol state.

Table S4. Trends of the concentrations and molar fractions of $\mathbf{C}_{8} \mathbf{A c}$ secreted by $\mathbf{p D O A O}+\mathbf{D M}$ from both the gel and the sol state.

Time (s)	$\left[\mathbf{C}_{8} \mathbf{A c}\right](\mathrm{M})$ from gel	$\chi\left(\boldsymbol{c}_{8} \boldsymbol{A c}\right)$ from gel	$\left[\mathbf{C}_{8} \mathbf{A c}\right](\mathrm{M})$ from sol	$\chi\left(\boldsymbol{c}_{8} \boldsymbol{A c}\right)$ from sol
630	1.15×10^{-8}	0,015		
900			5.26×10^{-8}	0,069
1200	1.64×10^{-8}	0,021		
1800	1.92×10^{-8}	0,025	1.04×10^{-7}	0,136
2400	2.11×10^{-8}	0,028		
2700		0,030		$0,36 \times 10^{-7}$
3000	2.31×10^{-8}	0,031	1.71×10^{-7}	0,225
3600	2.39×10^{-8}	0,033		
4200	2.54×10^{-8}		2.07×10^{-7}	0,273
4500		0,033		
4800	2.53×10^{-8}	0,033	2.48×10^{-7}	0,327
5400	2.48×10^{-8}	0,035	2.85×10^{-7}	0,375
6300	2.67×10^{-8}			

7200	2.65×10^{-8}	0,035	3.21×10^{-7}	0,423
8100			3.53×10^{-7}	0,464
9000			3.87×10^{-7}	0,509
48000			8.59×10^{-7}	1,130

Table S5. Trends of the concentrations and molar fractions of pDoAO released by pDoAO+DM from both the gel and the sol state.

Time (s)	$[\mathbf{p D o A O}](\mathrm{M})$ from gel	$\chi_{(\boldsymbol{p D o A O})}$ from gel	$[\mathbf{p D o A O}$ (M) from sol	$\chi_{(\boldsymbol{p D o A O})}$ from sol
630	1.86×10^{-5}	0,00196		
900			8.06×10^{-5}	0,00848
1200	2.59×10^{-5}	0,00272		
1800	2.34×10^{-5}	0,00246	1.39×10^{-4}	0,01466
2400	2.88×10^{-5}	0,00303		
2700			1.57×10^{-4}	0,01654
3000	2.30×10^{-5}	0,00242		
3600	3.19×10^{-5}	0,00336	1.76×10^{-4}	0,01857
4200	3.25×10^{-5}	0,00342		0,02358
4500			2.24×10^{-4}	
4800	3.42×10^{-5}	0,00360		0,02661
5400	3.77×10^{-5}	0,00396	2.53×10^{-4}	0,02982
6300	3.77×10^{-5}	0,00396	2.83×10^{-4}	0,03267
7200	3.32×10^{-5}	0,00345	3.10×10^{-4}	0,03502
8100			3.33×10^{-4}	0,03633
9000			3.45×10^{-4}	
48000				

The data shown in Figures 5C and 5D of the Article were obtained by using 3.8 g of the 0.1 M pDoAO gel containing $\mathbf{C}_{8} \mathbf{A c}$ at the concentration of $8 \times 10^{-6} \mathrm{M}$. The gel-to-sol transitions were induced by adding $40 \mu \mathrm{~L}$ of $99 \% \mathrm{CH}_{3} \mathrm{SO}_{3} \mathrm{H}$ to the gel. The sol-to-gel transitions were promoted by injecting 310 $\mu \mathrm{L}$ of NaOH 2 M . A volume of 40 mL of pure deionized water constituted the phase collecting the secretion of the artificial gland model $\mathbf{~ D D O A O}+\mathbf{D M}$ in both its gel and sol state. The values of the
$\mathbf{C}_{8} \mathbf{A c}$ molar fraction $\left(\chi_{\left(C_{8} A c\right)}\right)$ secreted by the artificial gland model in both its gel and sol state were determined by recording the emission spectrum of $\mathbf{C}_{8} \mathbf{A c}$ from the aqueous solution contained in the beaker (see Figures S14 and S15). The method of calculation of $\chi\left(C_{8} A c\right)$ was explained above.

Figure S14. Emission spectra of $\mathbf{C}_{8} \mathbf{A c}$ secreted at different elapsed times in the collecting aqueous solution when $\mathbf{~ P D o A O}+\mathbf{D M}$ was alternatively in the gel and sol states.

Figure S15. Trend of $\chi_{\left(\boldsymbol{c}_{8} A c\right)}$ in the aqueous solution collecting $\mathbf{C}_{8} \mathbf{A c}$ secreted by $\mathbf{p D o A O}+\mathbf{D M}$ in its consecutive gel and sol states.

The values of the molar fraction of the surfactant molecules $\left(\chi_{(p D O A O)}\right)$ released by the composite pDoAO+DM system was determined by recording the absorption spectra of the aqueous solution, and knowing the absorption coefficients values of pDoAO molecules in both its zwitterionic and cationic state (see Figures S16 and S17).

Figure S16. Absorption spectra of the collecting aqueous solution when $\mathbf{~ P D o A O}+\mathbf{D M}$ was alternatively in its gel and sol states.

Figure S17. Trend of $\chi_{(\text {(poato })}$ in the aqueous solution collecting the molecules released by pDoAO+DM in its consecutive gel and sol states.

I. 4 Contribution of the dialysis membrane to the composite $\mathbf{p D o A O}+\boldsymbol{D M}$ system

To monitor the contribution of the dialysis membrane (DM) with respect to the performances of the composite $\mathbf{p D o A O}+\mathbf{D M}$ system, the releases of $\mathbf{C}_{\mathbf{8}} \mathbf{A c}$ from aqueous solutions at different pHs , devoid of the pDoAO surfactant, and through the dialysis membrane, were investigated spectrofluorometrically.

The experimental conditions that were common to all the experiments performed to monitor the role of $\mathbf{D M}$ are:

2 mL of aqueous solution with $\left[\mathbf{C}_{8} \mathbf{A c}\right]_{\text {initial }}=8 \times 10^{-6} \mathrm{M}$ (internal solution) were separated by the dialysis membrane from 20 mL of water (collecting solution), maintained at 298 K and under constant magnetic stirring.
I) The internal solution was at $\mathrm{pH}=4$ (after addition of $\mathrm{CH}_{3} \mathrm{SO}_{3} \mathrm{H}$) and with $\left[\mathbf{C}_{\mathbf{8}} \mathbf{A c}\right]_{\text {initial }}=$ $8 \times 10^{-6} \mathrm{M}$.

Figure S18. Absorption spectra (on the left) and emission spectra (on the right) of the collecting aqueous solution at different elapsed times (see the legends). The spectral contributions were originated by the $\mathbf{H}_{\mathbf{2}} \mathbf{O}+\mathbf{D M}$ system with the internal aqueous solution at $\mathrm{pH}=4$ and having $\left[\mathbf{C}_{8} \mathbf{A c}\right]_{\text {initial }}$ $=8 \times 10^{-6} \mathrm{M}$.
II) The internal solution was at $\mathrm{pH}=8$ (after adding NaOH) and with $\left[\mathbf{C}_{8} \mathbf{A c}\right]_{\text {initial }}=8 \times 10^{-6} \mathrm{M}$.

Figure S19. Absorption spectra (on the left) and emission spectra (on the right) of the collecting aqueous solution at different elapsed times (read the legends). The spectral contributions were originated by the $\mathbf{H}_{\mathbf{2}} \mathbf{O}+\mathbf{D M}$ system with the internal aqueous solution at $\mathrm{pH}=8$ and having $\left[\mathbf{C}_{\mathbf{8}} \mathbf{A c}\right]_{\text {initial }}$ $=8 \times 10^{-6} \mathrm{M}$.
III) The internal solution was pure deionized water with $\left[\mathbf{C}_{8} \mathbf{A c}\right]_{\text {initial }}=8 \times 10^{-6} \mathrm{M}$.

Figure S20. Absorption spectra (on the left) and emission spectra (on the right) of the collecting aqueous solution at different elapsed times (see the legends). The spectral contributions were
originated by the $\mathbf{H}_{\mathbf{2}} \mathbf{O}+\mathbf{D M}$ system with the internal aqueous solution that was pure deionized water with $\left[\mathbf{C}_{8} \mathbf{A c}\right]_{\text {initial }}=8 \times 10^{-6} \mathrm{M}$.

By using equation (2), the molar fractions of $\mathbf{C}_{\mathbf{8}} \mathbf{A c}$ from the three solutions were calculated (see Figure S 21). All the three trends show a bell curve. At first, $\mathbf{C}_{\mathbf{8}} \mathbf{A c}$ was released by $\mathbf{D M}$. Then, it was withdrawn.

Figure S21. Trends of the molar fraction of $\mathbf{C}_{\mathbf{8}} \mathbf{A c}$ collected in 20 mL of pure water and coming from 2 mL of aqueous solutions at different pHs .

To understand the origin of the "withdrawing" action, we performed experiments where the pH of both the internal and the collecting aqueous solution were adjusted.
IV) The internal and the collecting solutions were at $\mathrm{pH}=4$ (after addition of $\mathrm{CH}_{3} \mathrm{SO}_{3} \mathrm{H}$) and the internal solution had $\left[\mathbf{C}_{8} \mathbf{A c}\right]_{\text {initial }}=8 \times 10^{-6} \mathrm{M}$.

Figure S22. Absorption spectra (on the left) and emission spectra (on the right) of the collecting aqueous solution at different elapsed times. The spectral contributions were originated by the $\mathbf{H}_{\mathbf{2}} \mathbf{O}+\mathbf{D M}$ system with the internal and collecting aqueous solution at $\mathrm{pH}=4$. In the internal aqueous solution, the initial concentration of $\mathbf{C}_{8} \mathbf{A c}$ was $8 \times 10^{-6} \mathrm{M}$.
V) The internal and the collecting solutions were at $\mathrm{pH}=8$ (after addition of NaOH) and the internal solution had $\left[\mathbf{C}_{8} \mathbf{A c}\right]_{\text {initial }}=8 \times 10^{-6} \mathrm{M}$.

Figure S23. Absorption spectra (on the left) and emission spectra (on the right) of the collecting aqueous solution at different elapsed times. The spectral contributions were originated by the
$\mathbf{H}_{\mathbf{2}} \mathbf{O}+\mathbf{D M}$ system with the internal and collecting aqueous solution at $\mathrm{pH}=8$. In the internal aqueous solution, the initial concentration of $\mathbf{C}_{8} \mathbf{A c}$ was $8 \times 10^{-6} \mathrm{M}$.

Figure S24. Trends of the molar fraction of $\mathbf{C}_{8} \mathbf{A c}$ released from 2 mL of water and collected in 20 mL of water. The pHs of both aqueous solutions were adjusted by addition of $\mathrm{CH}_{3} \mathrm{SO}_{3} \mathrm{H}$ to have $\mathrm{pH}=4$, and NaOH to have $\mathrm{pH}=8$.

From Figure S24, it is evident that only when both the internal and the collecting aqueous solutions were at $\mathrm{pH}=4$, the trend of $\chi_{\left(C_{8} A c\right)}$ grew monotonically and did not exhibit the "withdrawing" action. The origin of this behavior could be the slow release of a by-product by the dialysis membrane that becomes negatively charged. These negative charges withdraw $\mathbf{C}_{8} \mathbf{A c}$ and are responsible for the bellshape of the trends shown in Figures S21 and S24. When the collecting solution is acid, the superficial negative charges of $\mathbf{D M}$ are neutralized. The by-product released by $\mathbf{D M}$ is responsible for the spectral bands recorded in absorption and shown in Figures S18, S19, S20, S22, and S23.

Comparisons:

Figure $\mathbf{S 2 5}$. Trends of $\chi_{\left(C_{8} A c\right)}$ vs. time from the composite $\mathbf{p D o A O}+\mathbf{D M}$ system in the sol state (black points), and from $\mathbf{H}_{2} \mathbf{O}+\mathbf{D M}$ system when only the internal solution was at $\mathrm{pH}=4$ (red points) and both aqueous solutions were acid (blue points).

Figure S26. Trends of $\chi_{\left(\boldsymbol{C}_{8} A c\right)}$ vs. time from the composite $\mathbf{~ P D o A O}+\mathbf{D M}$ system in the gel state (black points), and from $\mathbf{H}_{\mathbf{2}} \mathbf{O}+\mathbf{D M}$ system when only the internal solution was at $\mathrm{pH}=8$ (red points) and both aqueous solutions were alkaline (blue points).

From Figures S25 and S26 it is evident that the sol and gel states of pDoAO slow down the secretion of $\mathbf{C}_{8} \mathbf{A c}$. Moreover, the surfactant pDoAO buffers the "withdrawing" action of the dialysis membrane. The latter action is particularly evident for the sol state when the surfactant molecules are positively charged after their protonation.

II. References

[1] U. Costas-Costas, C. Bravo-Diaz, E. Gonzalez-Romero, Langmuir, 2003, 19, 5197-5203.

