STRATEGIES TO CONNECT RDF GRAPHS FOR LINK PREDICTION USING DRUG-DISEASE KNOWLEDGE GRAPHS

BACKGROUND

- ReDrugS Knowledge Base by McCusker et al. [2]
 - 8 million named Knowledge Graphs containing information on drugs and diseases
 - 6180 drugs
 - 3820 diseases
 - 69279 proteins
 - 899198 interactions
- · Information may be contradictory or missing

GOALS

- · Predict new links between entities in the KB
 - Use graph embeddings and machine learning
- Long term: find new possible treatments for diseases based on existing drugs

METHOD

- Merge individiual graphs together into a single KG (context sensitive vs context insensitive merging)
- Perform graph embeddings using RDF2Vec [1]
- Apply machine learning to perform link prediction
 - One binary classifier per link type
 - Classifiers: Gradient Boosting Classifier (GB), SVM, Naive Bayes Classifier (NB)

RESULTS

- Accuracy high (≥ 94%) but not representative due to skewed data, precision and recall ≤ 50%
- · NB has highest recall
- Context insensitive merge performs better on rdf:type, prov:wasQuotedFrom and rdfs:subClassOf but worse on the other predicates e.g. sio:has-component-part, sio:has-participant, sio:has-agent, sio:is-located-in
- · Embedding visualisations:

OUTLOOK

- Explore hybrid context sensitive and insensitive merging based on link type
- · Examine larger embeddings
- Include more link types in classification
- Cochez, M., Ristoski, P., et al.: Biased graph walks for RDF graph embeddings. In: Proceedings of the 7th International Conference on Web Intelligence, Mining and Semantics pp. 21:1{21:12. WIMS '17, ACM, New York, NY, USA (2017)
- McCusker, J.P., Dumontier, M., Yan, R., He, S., Dordick, J.S., McGuinness, D.L.: Finding melanoma drugs through a probabilistic knowledge graph. PeerJ Computer Science 3, e106 (2016)

Sophie Hallstedt (sophie.hallstedt@rwth-aachen.de), Nikita Makarov (nikita.makarov@rwth-aachen.de), Hossein Samieadel (hossein.semieadel@rwth-aachen.de), Maria Pellegrino (mariaangelapellegrino94@gmail.com), Martina Garofalo (margar1994@gmail.com), Michael Cochez (michael.cochez@fit.frauenhofer.de)

This work was conducted as part of the Knowledge Graphs Lab offered by the RWTH Aachen University Informatik 5 department in collaboration with OSTHUS. We thank OSTHUS for providing student travel grants.