Supporting Information

Inducing a Transient Increase in Blood Brain Barrier Permeability for Improved Liposomal Drug Therapy of Glioblastoma Multiforme

David J. Lundy^{\dagger,\ddagger}, Keng-Jung Lee^{\dagger}, I-Chia Peng^{\dagger}, Chia-Hsin Hsu^{\dagger}, Jen-Hao Lin^{\dagger},

Kun-Hung Chen[†], Yu-Wen Tien[§] and Patrick C.H. Hsieh^{\dagger , §, ||, \perp ,*}

[†]Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan.
[‡]Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei 110, Taiwan.
[§]Department of Surgery, National Taiwan University and Hospital, Taipei 100, Taiwan.
[¶]Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei 100, Taiwan.

 $^{\perp}$ Institute of Clinical Medicine, National Taiwan University, Taipei 100, Taiwan.

Two methods Three tables Thirteen figures

Supplemental Methods

Antibody administration method. 30 μ l Anti-NrCAM primary antibody (Abcam) was injected *via* tail vein, 45 minutes after VEGF or control administration. The antibody was allowed to circulate for 2 hours, then mice were perfused with 50 mL saline followed by 50 mL paraformaldehyde (4 % w/v). The brain was removed, kept in 4 % PFA overnight, then processed for frozen sections. As a positive control, 5 μ l of antibody was injected directly into the brain prior to perfusion. Frozen sections were then stained using secondary antibody conjugated to Alexa 488. As a negative control, brain sections from an untreated animal were used. As a second positive control, a brain section from an untreated animal was stained with anti-nrCAM using conventional lab techniques (1hr room temperature). All images, aside from the stained positive control, were taken at fixed exposure lengths. The intensity of the green channel was quantified in ImageJ.

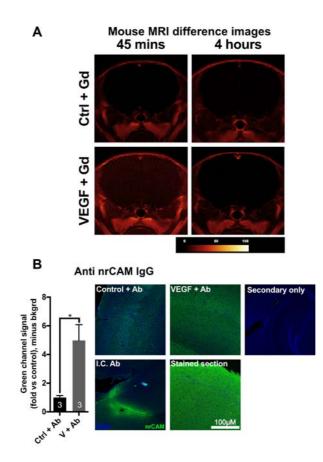
Assay for Phosphorus Quantification. Phosphorus standards were made using Sigma P3869. 15 μ l of samples were mixed with 450 μ l 8.9N H₂SO₄, heated to 200°C for 25 mins, cooled for 5 mins, 150 μ l 10% (v/v) H₂O₂ was added, heated again at 200°C for 30 mins. After cooling, 3.9 ml H₂O, 0.5 ml 2.5% (w/v) ammonium molybate tetrahydrate, 0.5 ml 10% (w/v) ascorbic acid were added and the solution was heated to 100°C for 7 mins. After cooling, absorbance was measured at 820 nm by plate reader.¹

Table S1. Properties of polystyrene nanoparticles with carboxyl (COOH) surface chemistryand following polyethylene glycol modification (PEG).

Size	Surface	Diameter TEM	Diameter	Zeta potential	PDI
(nm)	chemistry	(nm)	DLS (nm)	(mV)	
20	СООН	25.7 ± 2.4	34.6 ± 0.8	-34.1 ± 2.0	0.08
20	PEG	28.2 ± 1.8	52.4 ± 8.9	-1.0 ± 4.0	0.06
100	СООН	92.7 ± 2.1	105.4 ± 2.7	-43.1 ± 2.2	0.04
100	PEG	95.0 ± 2.1	120.1 ± 4.0	-1.4 ± 0.3	0.06
500	СООН	471.8 ± 5.3	471.8 ± 5.3	-48.7 ± 0.3	0.05
500	PEG	482.8 ± 4.5	512.1 ± 6.0	-1.2 ± 0.2	0.03

Solid core diameter was measured by transmission electron microscopy (TEM) and hydrodynamic diameter and zeta potential were measured using a Malvern Zetasizer. Numbers show the mean \pm standard deviation.

Table S2. Properties of LipoDox.


Size (nm)	Zeta potential (mV)	PDI	Drug : lipid ratio
95.55 ± 30.16	- 1.53	0.180	0.1556 ± 0.001943 : 1

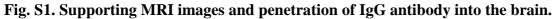

Size and Zeta potential were calculated using Malvern Zetasizer. Drug : lipid ratio was calculated using the Bartlett assay. Numbers show the mean \pm standard deviation.

Table S3. Primer sequences u	used in quantitative real-time PCR
------------------------------	------------------------------------

Gene name (human/ mouse)	Name. Function	Gene ID	Forward sequence	Reverse sequence	Product length	Avg C _T (brain control)
GAPDH/Gapdh	GAPDH. Internal	NM_00128972	ACC CAG AAG ACT	CAC ATT GGG GG	171	18
	control	6.1	GTG GAT GG	T AGG AAC AC		
Neuroinflammat	ion markers	I	I	I		
TNF/Tnf	TNFα. Acute	NM_013693	GAC CCT CAC ACT	CCT CCA CTT GGT	80	28
	phase cytokine		CAG ATC ATC TTC T	GGT TTG CT		
IL-1b/Il1b	IL-1β.	NM_008361	TGC CAC CTT TTG	ATG TGC TGC TGC	136	31
	Inflammatory cytokine		ACA GTG ATG	GAG ATT TG		
IL6/Il6	IL-6. Acute phase	NM_031168	TCC AGA AAC CGC	CAC CAG CAT	73	31
	cytokine		TAT GAA GTT C	CAG TCC CAA GA		
CCL2/ccl2	CCL2.	NM_011333	GTT GGC TCA GCC	AGC CTA CTC ATT	81	30
	Chemokine		AGA TGC A	GGG ATC ATC TTG		
GFAP/Gfap	GFAP. Astrocyte	NM_00113102	GAA CAA CCT GGC	GCG ATT CAA CCT	80	29
	marker	0.1	TGC GTA TAG	TTC TCT CCA A		
CXCL1/cxcl1	CXCL1.	NM_008176	CAC CCA AAC CGA	AAT TTT CTG AAC	82	21
	Chemokine		AGT CAT AGC	CAA GGG AGC TT		
FN1/Fn1	Fibronectin 1	NM_010233	AGG CAA TGG ACG	CTC GGT TGT CCT	104	24
			CAT CAC	TCT TG		
IL-1a/Il1a	IL-1α. Acute	NM_010554	CGC TTG AGT CGG	CAG AGA GAG	115	31
	phase cytokine.		CAA AGA AAT C	ATG GTC AAT GGC		
				А		
BBB components	5				1	
TFR/Tfrc	Transferrin	NM_011638	CTG CTC ATC ACT	TGA CCC CAT GGC	108	27
	receptor		ATG GTG GCT A	AAA ACT GA		
CRT/Slc6a8	Creatinine	NM_133987.2	GTG GGG GTA AGG	GCC ACA ACT	103	33
	transporter		GTG GAA TGT A	ACA CAC TCC CAA		
GLUT1/Slc2a1	Glucose	NM_011400.3	TGG CGG GAG ACG	GCC CGT CAC CTT	110	24
	transporter		CAT AGT TA	CTT GCT		
ATA2/Slc38a2	Amino acid	NM_175121.4	ACG AAA CAG ACT	AAG CCC AAG	92	23
	transporter		TTC ATC CAG GTA	GAT TCC ACT GC		
MRP4/Abcc4	Multidrug	NM_00116367	GGG CGA GAT GCT	GGG TTG AGC	93	30
	resistance pump	6.1	GCC G	CAC CAG AAG AA		
MDR1a/Abcb1a	P-glycoprotein	NM_011076.2	CCA TCT TCC AAG	CCA TCA CGA CCT	107	26
	efflux pump		GCT CTG CT	CAC GTG TC		
ZO1/Tjp1	Tight junction	NM_009386.2	CCT GTG AAG CGT	CGC GGA GAG	100	25
	protein		CAC TGT GT	AGA CAA GAT GT		

ZO2/Tjp2	Tight junction	NM_00119898	GAGATGCCGGTGC	TTTGGAATCCTTC	126	27
	protein	5	GGG	TGCAGGG		
OCLN/Ocln	Tight junction	NM_008756.2	CAT AGT CAG ATG	ATT TAT GAT GAA	91	26
	protein		GGG GTG GA	CAG CCC CC		
CLDN5/Cldn5	Tight junction	NM_013805.4	GTC ACG ATG TTG	AAA TTC TGG GTC	106	25
	protein		TGG TCC AG	TGG TGC TG		
JAM-A/F11r	Tight junction	NM_172647.2	AGT GTA CAC CGA	TGT AAC TGT AAT	106	27
(CD321)	protein		ACC CTT GC	GGG CAC CG		
SPARC1/Sparcl	ECM adhesion	NM_010097.4	ACC TCT CCG CAG	GGT GTC ACC AGT	136	20
1			ATC TAG CCA	GTT GCA GT		
MAOB/Maob	Enzymatic barrier	NM_172778.2	GCT GGA CCA AAT	TGG TTG TAC CTC	123	26
			CTA CAA AGC A	CAC ACT GC		

A) Difference image of mouse MRI. B) Penetration of anti-nrCAM IgG primary antibody into brain tissue. Primary antibody was injected intravenously, 45 minutes following control or VEGF, then the animal was perfusion fixed, the brain was frozen sectioned, and stained with fluorescent secondary antibody. For the I.C. Ab sample, anti-nrCAM was directly injected intracranially. A section stained by conventional methods is also shown for reference.

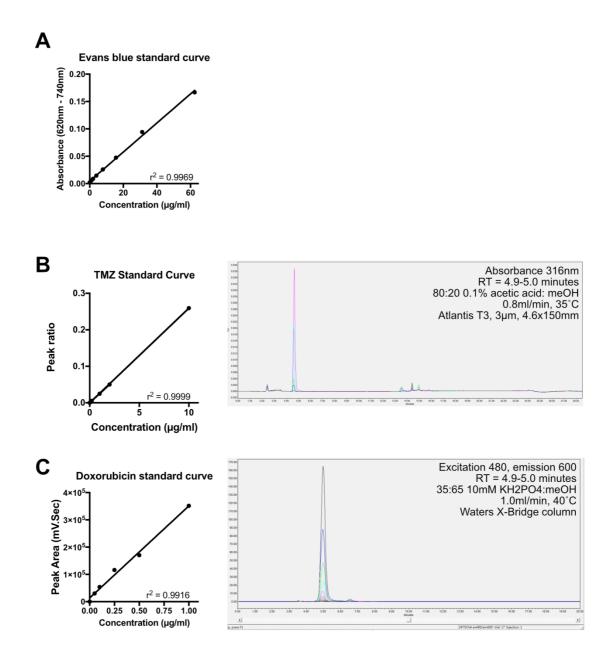
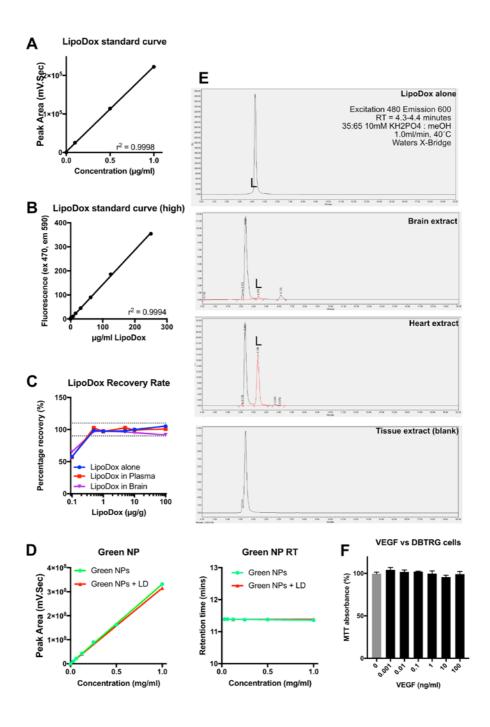
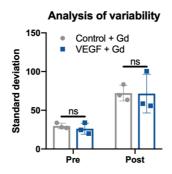
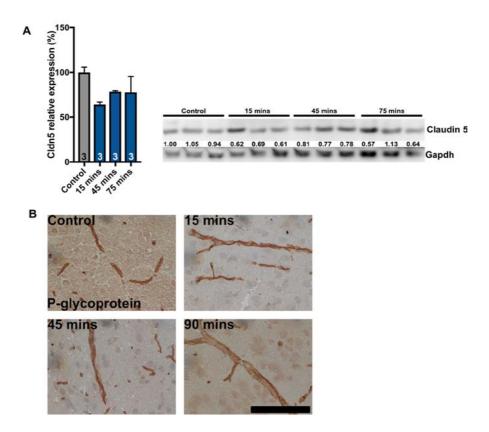


Figure S2. Standard curves for Evans blue, TMZ and Doxorubicin.

Standard curves for (A) Evans blue (plate reader), (B) Temozolomide and (C) Doxorubicin (HPLC). Example HPLC peaks are shown, along with HPLC operating conditions.


Figure S3. LipoDox and nanoparticle HPLC quantification.

(A) Standard curve of low concentration (< 1.0 μ g/ml) LipoDox. (B) Standard curve of high concentration (< 300.0 μ g/ml) LipoDox. (C) LipoDox recovery from brain tissue. Dotted lines indicate 90 % and 110 % margins. (D) Standard curve of HPLC-based nanoparticle quantification, with and without the presence of LipoDox. The right side graph shows that presence of LipoDox does not affect nanoparticle dye retention time. (E) Example HPLC peaks showing blank tissue, LipoDox extracted from brain and heart, and LipoDox alone. The LipoDox peak is marked by "L". (F) MTT assay showing DBTRG cells cultured with VEGF up to a concentration of 100 ng/ml.

Figure S4. Quantification of variation in pig MRI signal enhancement.

Graph showing standard deviations of SNR enhancement. An ROI was drawn to encompass the brain parenchyma, excluding the ventricles. For "pre" images, the difference between two precontrast images were analysed, to establish a baseline amount of variation which occurs between sequential images.

Figure S5. Western blot of claudin 5. P-glycoprotein staining.

(A) Western blot of whole mouse brain Claudin 5 following VEGF treatment. (B) P-glycoprotein staining following VEGF treatment. Scale bar = $100 \,\mu$ m.

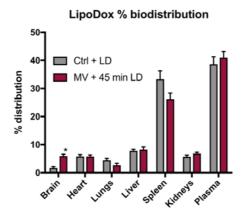
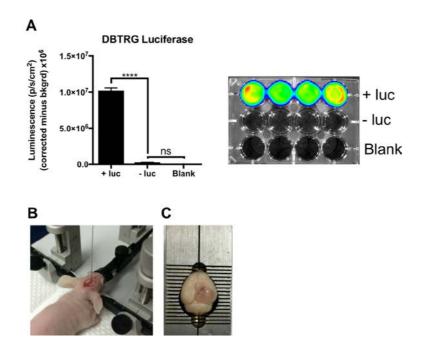



Figure S6. Biodistribution of LipoDox following MV + LD treatment in mice.

Biodistribution of LipoDox following multi-VEGF and LipoDox administration. Biodistribution expressed as percentage of LipoDox recovered.

Figure S7. Further GBM model information.

(A) Luciferase expression of engineered DBTRG-05MG human glioblastoma cell line. (B) Example of BALB/c NU mouse receiving intracranial injection. (C) Typical tumour morphology in right hemisphere after 65 days.

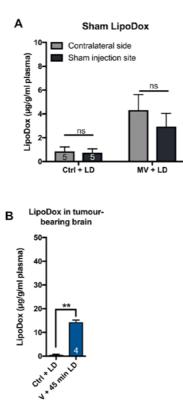


Figure S8. Effect of sham injections on drug retention. Intratumoral LipoDox following V + LD treatment.

(A) LipoDox concentration at the sham injection site or contralateral side in mice. (B) Intratumoural LipoDox concentration following a single dose of VEGF followed by LipoDox.

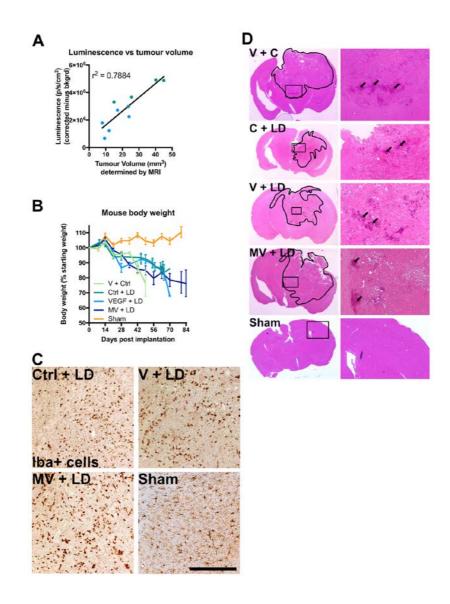


Figure S9. Mouse body weights, Iba1 tumour staining, example tumour H&E image.

(A) Correlation of tumour luminescence determined by IVIS vs confirmed tumour size by MRI. (B) Mouse body weight throughout survival experiment. (C) Iba1 staining of tumours from mice in treatment groups. The corresponding normal brain region was imaged in the sham mice. Scale bar = 100 μ m. (D) Composite example H&E stained brain slices from tumour-bearing mice. The tumour region is outlined and a magnified view is presented. Areas of haemorrhage are indicated with black arrows. The haemorrhage area was calculated as a percentage of the tumour area.

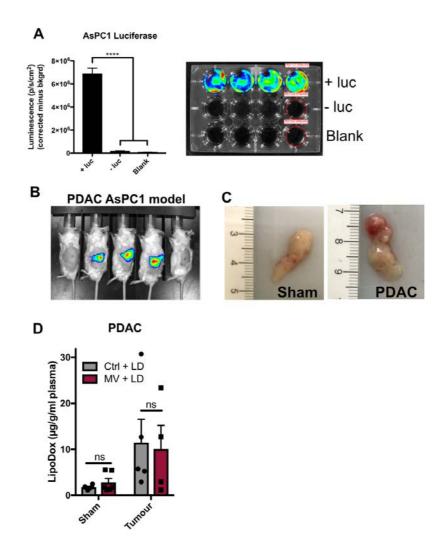
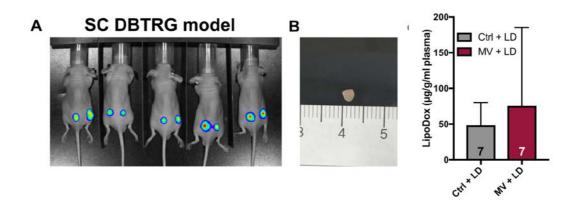



Figure S10. PDAC model information.

(A) IVIS confirming luciferase expression of AsPC1 cells. (B) IVIS showing pancreatic tumour establishment in mice. (C) Example photo of normal pancreas and PDAC xenograft pancreas. (D) Quantification of LipoDox in PDAC tumours or sham-operated pancreas.

Figure S11. Subcutaneous GBM model information.

(A) Representative IVIS image of subcutaneous (SC) tumour growth. (B) Representative tumour after 60 days. (C) Intratumoural LipoDox concentration following control or VEGF pre-treatment.

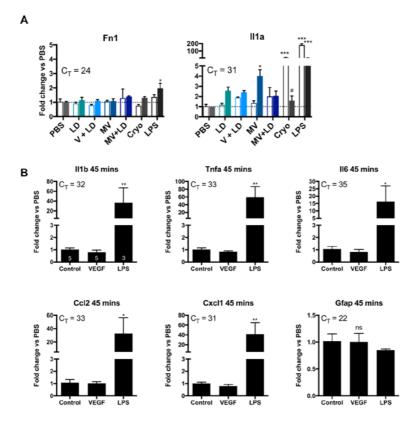
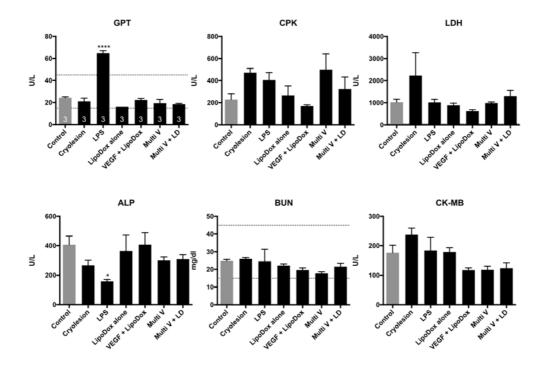



Figure S12. Supplementary 45 minute, 4 hr and 24 hr inflammation gene expression.

(A) Expression of Fn1 and II1a following treatment groups. Cryolesion (cryo) and lipopolysaccharide (LPS) were used to induce neuroinflammation as positive controls. (B) Gene expression 45 minutes following VEGF administration. Error bars show standard error of the mean. Inset numbers indicate the number of animals. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 compared to control. ns indicates not significant.

Figure S13. Mouse serum blood chemistry.

ALT/GPT, alanine Aminotransferase; CPK, creatinine kinase; ALP, alkaline phosphatase; BUN, blood urea nitrogen; LDH, lactate dehydrogenase; CK-MB, creatinine kinase MB. Dotted lines show internal laboratory references ranges, where available.

Supplemental references

(1) Bartlett, G. R. Colorimetric Assay Methods for Free and Phosphorylated Glyceric Acids. *J Biol Chem* **1958**, 234, 469–471.