
Multidimensional Integrability
via Geometry

Artur Sergyeyev

Silesian University in Opava, Czech Republic

A CENTURY OF NOETHER’S THEOREM AND BEYOND

Opava 2018

Artur Sergyeyev (SLU Opava, CZ) Multidimensional Integrability via Geometry 1 / 28



Linear Lax pairs and nonlinear integrable systems
Linear PDEs Lψ = 0 are fairly well understood incl.

I behavior of solutions (asymptotics, etc.)
I explicit exact solutions (in some cases)

P.D. Lax (1960s): a pair of lin. part. diff. ops L & M :
[L,M] = 0 ⇒ nonlin. system for the coeffs of L & M
that, under certain technical conditions, is called
(Lax) integrable and has inter alia

I infinitely many explicit exact solutions
I infinitely many cons. laws & (higher) symmetries

Lin. system Lψ = 0,Mψ = 0 is then called a Lax pair
for this nonlinear system; [L,M] = 0 is a Lax-type
representation for the latter.
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KdV equation: the prototypic integrable system
The Korteweg–de Vries equation for u = u(x , t),

ut + 6uux + uxxx = 0, (1)

has a Lax-type representation [L,M] = 0 with

L = −∂2x − u − λ, M = ∂t + 4∂3x + 6u∂x + 3ux .

[L,M] = 0⇒ compatibility of Lax pair for ψ(x , t, λ):

Qψ = λψ, Mψ = 0, (2)

where Q = −∂2x − u and λ is the spectral parameter
⇒ infinitely many conservation laws and symmetries
⇒ infinitely many exact solutions (incl. the famous

multisolitons) via the inverse scattering transform.
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Why should we care about integrable systems?

Integrable systems are both rare and
universal. Like prime numbers, their
rarity is due to the intricate mathe-
matical structures underlying them,
while at the same time these struc-
tures explain their universality.

Preface of the book
Discrete Systems and Integrability

by J. Hietarinta, N. Joshi, and F. W. Nijhoff
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Hydrodynamic-type (a.k.a. dispersionless) systems

A partial differential system is of hydrodynamic
type (a.k.a. dispersionless) if it can be written as
a first-order homogeneous quasilinear system, that is,

A0(u)ux0+A1(u)ux1+ · · ·+Ad−1(u)uxd−1 = 0; (3)

Ai are M × N matrices, M > N , u ≡ (u1, . . . , uN)T ;

~x = (x0, . . . , xd−1)T , u = u(~x).

Such systems often occur in fluid mechanics
⇒ the term hydrodynamic-type system
Notation: kD denotes k independent variables a.k.a.
k dimensions, e.g. 3D for k = 3 and 4D for k = 4
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Why dispersionless?

dKP system KP system

uy − vx = 0,

ut−3vy+ 6uux = 0

}
DD→←−
DL

{
uy − vx = 0,

ut−3vy+ 6uux+ε2uxxx = 0

DD is dispersive deformation
DL is dispersionless limit
(d)KP is (dispersionless) Kadomtsev–Petviashvili

Warning: not all dispersionless systems admit
dispersive deformations and can be written as
dispersionless limits of dispersive systems
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Example: a class of dispersionless quasilinear
second-order equations

A quasilinear second-order PDE in d dimensions
d−1∑
i=0

d−1∑
j=i

fij(wx0, . . . ,wxd−1)wx ix j = 0

can be written in dispersionless form with N = d for
u = (u1, . . . , uN)T and uj = wx j−1 as

d−1∑
i=0

d−1∑
j=i

fij(u
1, . . . , ud)uix j = 0,

(ui)x j−1 = (uj)x i−1, i = 1, . . . , d , j = i + 1, . . . , d .
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Examples of integrable dispersionless equations

of the form
d−1∑
i=0

d−1∑
j=i

fij(wx0, . . . ,wxd−1)wx ix j = 0

I potential dKP eqn wxt + 3(wxwxx − wyy) = 0
arising e.g. in nonlin. acoustics & fluid dynamics

I Martínez Alonso–Shabat eqn wty = w 2
z (wy/wz)x

I 6D eqn (Sergyeyev JMAA 2017)
ws(wzt−wxy)+wz(wry−wst)+wy(wsx−wrz) = 0

I such equations were studied by many authors incl.
H. Baran, L. Bogdanov, B. Doubrov, E.V. Fera-
pontov, P. Holba, K. Khusnutdinova, I.S. Kra-
sil’shchik, B. Kruglikov, O.I. Morozov, V.S. No-
vikov, M.V. Pavlov, S.P. Tsarev, P. Vojčák etc.
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Lax pairs for 3D dispersionless systems
(following V.E. Zakharov et al.)

Many integrable 3D dispersionless systems

A0(u)ut + A1(u)ux + A2(u)uy = 0 (4)

have Lax-type reps [∂y −Xf , ∂t −Xg ] = 0 & Lax pairs

χy = Xf (χ), χt = Xg(χ) for χ = χ(x , y , t, p). (5)

I Xh = hp∂x − hx∂p is the Hamiltonian vector field
in one d.o.f. with the Hamiltonian h(p,u)

I f = f (p,u), g = g(p,u) are the Lax functions
I nonisospectrality: (5) involves χp

I p is the variable spectral parameter (up ≡ 0)
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Example: the dKP system and its integrability

Dispersionless Kadomtsev–Petviashvili (dKP) system

uy = vx , ut = 3vy − 6uux (6)

I admits a Lax pair of the type (5):

χy = Xf (χ), χt = Xg(χ),

f = u−p2, g = 4p3−6up+ 3v , Xh = hp∂x−hx∂p:
χy = −pχx − uxχp,

χt = (12p2 − 6u)χx − (3vx − 6pux)χp.

I yields the dKP eqn utx = 3uyy − 6(uux)x with
applications in fluid dynamics & nonlin. acoustics
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Integrable systems in 4D known so far
Integrable 4D systems include

I (anti-)self-dual Yang–Mills equations
I (anti-)self-dual vacuum Einstein and related eqs

(e.g. heavenly, Przanowski and Dunajski equations,
and equations for (A)SD conformal structures in 4D)

I a number of other isolated examples
(L. Bogdanov, D. Calderbank, B.Doubrov, E. Ferapontov,
B. Konopelchenko, B. Kruglikov, O. Morozov, V. Novikov,
G. Ortenzi, P. Santini, W. Schief, M. Sheftel, I. Strachan,
K. Takasaki, D. Yazıcı, etc.)

Big picture:
I systems in question are mostly dispersionless

(can be written as 1st order quasilin. homogeneous systems)
I missing effective systematic construction like in
3D via Lax pairs with Hamiltonian vector fields
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Integrable systems in 3D vs 4D:
what was known to date

Dispersive Dispersionless

3D systematic construction systematic construction

(central extension) (Hamiltonian vec. fields)

+sporadic examples +sporadic examples

4D exceptional examples sporadic examples
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Integrable systems in 3D vs 4D:
how things really are

Dispersive Dispersionless

3D systematic construction systematic construction

(central extension) (Hamiltonian vec. fields)

+sporadic examples +sporadic examples

4D exceptional examples systematic construction

(contact vec. fields)

+sporadic examples
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Standard contact structure in dimension three
Consider a 3-manifoldM with local coordinates
x , z , p and the contact one-form α = dz + pdx
(being contact means here that α ∧ dα 6= 0
at all points ofM).
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Contact vector fields

A vector field X is contact (w.r.t. a given contact
form α) if ∃ f :M→ R s.t. LXα = f α.

A contact vector field X is uniquely determined
by its contact Hamiltonian hX = α(X ).

Notation: Xh is the c.v.f. with a cont. Hamiltonian h.

Contact vector fields form a Lie subalgebra in the Lie
algebra of all vector fields onM.

For α = dz + pdx we get

Xh = hp∂x + (phz− hx)∂p + (h − php)∂z .
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Linear contact Lax pairs
Definition A linear contact Lax pair is a system

χy =Xf (χ), χt=Xg(χ) for χ=χ(x , y , z , t, p). (7)
I p is the variable spectral parameter
(recall that u = u(x , y , z , t), so up ≡ 0)

I f = f (p,u), g = g(p,u) are the Lax functions
I Xh = hp∂x + (phz − hx)∂p + (h − php)∂z
I nonisospectrality: (7) involves χp

I L = ∂y − Xf , M = ∂t − Xg are the Lax operators

Remark Lax pairs (7) provide a natural 4D gene-
ralization of well-known 3D Lax pairs (5), that is,
χy =Xf (χ), χt=Xg(χ), where Xh = hp∂x− hx∂p,
since if uz= 0 & χz= 0 then (7) boils down to (5).
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From linear contact Lax pairs to nonlinear systems

Fix f & g in (7) and consider the associated Lax eqn
[∂y − Xf , ∂t − Xg ] = 0, (8)

where Xh = hp∂x + (phz − hx)∂p + (h − php)∂z .
PropositionThe Lax equation (8) holds iff so does

ft − gy + {f , g} = 0, (9)
where {f , g} = fpgx−gpfx−p (fpgz− gpfz)+fgz−gfz .

Equating to zero the coeffs at pk ∀k ∈ Z in (9)
up=0
=⇒

a system for u with Lax pair (7) & Lax-type rep (8).
Claim ∃ ∞ many pairs (f , g): systems for u with
Lax pairs (7) are new genuinely 4D integrable nonlin.
systems transformable into Cauchy–Kowalewski form.
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From linear contact Lax pairs to differential coverings
Proposition
A hydrodynamic-type system

A0(u)ut + A1(u)ux + A2(u)uy + A3(u)uz = 0
has a Lax pair (7), that is, χy = Xf (χ), χt = Xg(χ),
with given Lax functions f (p,u) and g(p,u) iff it
has a differential covering of the form

Sy = Sz f (Sx/Sz ,u), St = Szg(Sx/Sz ,u).
Coverings of a similar kind, namely, essentially non-
linear coverings with one-dimensional fiber, are some-
times called nonlinear Lax pairs and are closely re-
lated to integrability and also to e.g. exotic cohomo-
logy of symmetry algebras (cf. talk of O. Morozov).
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Lin. contact Lax pairs: inverse scattering & more

Linear contact Lax pairs χy = Xf (χ), χt = Xg(χ)

I belong to a broader class of nonisosp. Lax pairs
χy = K1(p,u)χx + K2(p,u)χz + K3(p,u)χp,
χt = L1(p,u)χx + L2(p,u)χz + L3(p,u)χp,

(∗)

I hence are amenable to the inverse scattering
transform (cf. e.g. Manakov & Santini 2014 etc.).

Lax pairs (∗) are related inter alia to geometry of
characteristic varieties of associated integrable
systems, cf. in particular the preprint
D. Calderbank & B. Kruglikov, arXiv:1612.02753
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Two infinite families of nice pairs of Lax functions
Theorem Lax pairs χy = Xf (χ), χt = Xg(χ), where
Xh = hp∂x + (phz − hx)∂p+ (h − php)∂z , yield new
integrable 4D systems that can be brought into Cau-
chy–Kowalewski form for the following pairs of f & g :

1. f = pn+1 +
n∑

i=0
uip

i , g = pm+1 +
m

n
unp

m +
m−1∑
j=0

vjp
j

with u = (u0, . . . , un, v0, . . . , vm−1)
T ;

2. f =
m∑
i=1

ai
(p − ui)

, g =
n∑

j=1

bj
(p − vj)

with u = (a1, . . . , am, u1, . . . , um, b1, . . . , bn, v1, . . . , vn)
T.

Here m, n = 1, 2, 3, . . . are arbitrary natural numbers.
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4D integrable generalization for dKP: the Lax pair

Let f = p2 + wp + u, g = p3 + 2wp2 + rp + v ,
i.e. m = 2, n = 1, u0 ≡ u, u1 ≡ w , v0 ≡ v , v1 ≡ r ,
in class 1 of the above thm.

The Lax pair χy = Xf (χ), χt = Xg(χ) then reads

χy = (2p + w)χx + (−p2 + u)χz

+(wzp
2 + (uz − wx)p − ux)χp,

χt = (r + 4wp + 3p2)χx + (v − 2wp2 − 2p3)χz

+(2wzp
3 + (rz − 2wx)p

2 + (vz − rx)p − vx)χp.

Recap : Xh = hp∂x + (phz − hx)∂p + (h − php)∂z

Artur Sergyeyev (SLU Opava, CZ) Multidimensional Integrability via Geometry 21 / 28



4D integrable generalization for dKP: the system
For f = p2 + wp + u and g = p3 + 2wp2 + rp + v
Eq. (9), i.e., ft − gy + {f , g} = 0, upon bearing in
mind that up = 0 by assumption and equating to zero
the coefficients at all powers of p, yields a system
ut − vuz − rux + uvz + wvx − vy = 0,
2uz + wx + 2wwz − rz = 0,
2rx− 3ux − 2wy+ 2wuz−vz−2wwx+2uwz = 0,
wt− ry+2vx− 4wux+ wrx− rwx−vwz + urz = 0.

(10)

Proposition System (10) is, up to a suitable rescal-
ing, an integrable generalization to the case of four
independent variables for the dKP system (6), i.e.,

uy = vx , ut = 3vy − 6uux .
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4D integrable generalization for dKP: reduction
If uz = vz = 0 & w = 0, r = 3u/2 then (10) yields

4ut − 4vy − 6uux = 0, 4vx − 3uy = 0, (∗)
which is, up to a rescaling, nothing but the dKP (6):

uy − vx = 0, ut − 3vy + 6uux = 0.

Eliminating v from (∗)⇒ 4utx − 3uyy − 6(uux)x = 0;
after t → 4t and u → −u we get the dKP equation

(ut + 6uux)x − 3uyy = 0:
I applied e.g. in fluid dynamics & nonlin. acoustics
I modulo potentialization & rescaling also known as
• the Lin–Reissner–Tsien equation, or
• the Khokhlov–Zabolotskaya equation
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Lax functions polynomial in p

Let m and n be arbitrary natural numbers,

N = m + n + 1, u = (u0, . . . , un, v0, . . . , vm−1)
T ,

f = pn+1+
n∑

i=0

uip
i , g = pm+1+

m

n
unp

m+
m−1∑
j=0

vjp
j .

Equating to zero the coefficients at all powers of p
in Eq. (9), i.e., ft − gy + {f , g} = 0, while remem-
bering that up = 0 yields a dispersionless system
shown at the next slide.

Recap: {f , g} = fpgx−gpfx−p (fpgz−gpfz)+fgz−gfz
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Lax functions polynomial in p: the system

(uk)t − (vk)y +m (uk−m−1)z − n (vk−n−1)z

+(n + 1) (vk−n)x − (m + 1) (uk−m)x

+
n∑

i=0

{
(k − i − 1)vk−i (ui)z − (i − 1)ui (vk−i)z

−(k + 1− i)vk+1−i (ui)x + iui (vk+1−i)x

}
= 0.

Here k = 0, . . . , n +m, ui
def
= 0 for i > n and i < 0,

vj
def
= 0 for j > m and j < 0; vm

def
= (m/n)un.

This system is (crypto-)evolutionary: it can be solved
for the z-derivatives (ui)z and (vj)z for all i and j .
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Lax functions rational in p

∀m, n ∈ N let f =
m∑
i=1

ai
(p − ui)

, g =
n∑

j=1

bj
(p − vj)

,

u = (a1, . . . , am, u1, . . . , um, b1, . . . , bn, v1, . . . , vn)
T .

Eq. (9), i.e., ft−gy + {f , g}= 0, yields a dispersion-
less system for u shown at the next slide which

I can be brought into Cauchy–Kowalewski form
e.g. by passing from t to T = y + t with all
other variables intact

I if uz = 0 reduces to a known integrable 3D
system found by V.E. Zakharov in 1994
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Lax functions rational in p: the system

(ui )t +
n∑

j=1

{(
bj

vj − ui

)
x

−
(

bjui
vj − ui

)
z

−
2bj(ui )z
vj − ui

}
= 0, i = 1, . . . ,m,

(vj)y +
m∑
i=1

{
−
(

ai
vj − ui

)
x

+

(
aivj

vj − ui

)
z

+
2ai (vj)z
vj − ui

}
= 0, j = 1, . . . , n,

(ai )t +
n∑

j=1

{(
aibj

(vj − ui )2

)
x

+

(
aibj(vj − 2ui )
(vj − ui )2

)
z

+
3ai (bj)z
vj − ui

+
3aibj(vj)z
(vj − ui )2

}
= 0, i = 1, . . . ,m,

(bj)y +
m∑
i=1

{(
aibj

(vj − ui )2

)
x

+

(
aibj(vj − 2ui )
(vj − ui )2

)
z

+
3ai (bj)z
vj − ui

+
3aibj(vj)z
(vj − ui )2

}
= 0, j = 1, . . . , n.
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Summary of main results
I We found a large new class of integrable systems
in four independent variables (4D) with Lax pairs
of a novel kind related to contact geometry
⇒ there is significantly more integrable 4D systems

than it appeared before

I This new class contains two new infinite families
of 4D integrable systems:

I associated with polynomial Lax functions of a special form
including e.g. a new 4D integrable generalization for the
well-known dispersionless Kadomtsev–Petviashvili equation

I associated with rational Lax functions of a special form

Ref: LMP 108 (2018), 359-376 (arXiv:1401.2122)

Děkuji za pozornost
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