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Figure S1. Raman spectra of as-purchased raw SWNTs (black), m-SWNTs (blue), and 

s-SWNTs (red) at an excitation wavelength of 785 nm. 

 

 

 

Figure S2. AFM images of as-purchased (a) s-SWNTs, (b) m-SWNTs, and (c) raw 

SWNTs with an average length of 1.1 ± 0.4, 0.9 ± 0.3 and 1.3 ± 0.6 m, respectively. 

Scale bars; 5 m. 
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Figure S3. SEM images of s-SWNT sheets with s-SWNT purity of (a) 98%, (b) 67%, 

and (c) 2%. Scale bars; 500 nm. 

 

 

 

Figure S4. Raman spectra of unsorted SWNT (black) and 67% s-SWNT sheets (red) at 

an excitation wavelength of 785 nm. 
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Figure S5. In-plane thermal diffusivity of s-SWNT sheets as a function of the s-SWNT 

purity (red circles) and the unsorted SWNT sheet (black square).  

 

 

 

 

 

Table S1. S22 and M11 peak areas, calculated from UV-vis-NIR absorption in Figure 2 

after peak fitting 

 
98% 

s-SWNT 
80% 

s-SWNT 
67% 

s-SWNT 
33% 

s-SWNT 
2% 

s-SWNT 

M11 area 0.75 8.36 9.94 21.27 21.60 

S22 area 39.88 33.51 23.87 10.31 0.80 

S22/M11 52.88 4.01 2.40 0.48 0.04 

S22/(S22+M11) 0.98 0.80 0.71 0.33 0.04 

Fitting Type Gauss Gauss Gauss Gauss Gauss 
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Table S2. In-plane Seebeck coefficients of p-typea) s-SWNT sheets at 30 °C in the 

literatures. 

 

 

a)refers to holes as the main transport carrier in the s-SWNT. b)poly[(9,9-dioctylfluorenyl-2,7-diyl)-

altco-(6,6 ′ -(2,2 ′ -bipyridine)]; c)1,1 ′ -(((1E,1 ′ E)-(9,9-didodecyl-9H-fluorene-2,7-

diyl)bis(ethene-2,1-diyl))bis(6-methyl-4-oxo-1,4-dihydropyrimidine-5,2-diyl))bis(3-dodecylurea); 
d)poly[(9,9-di-n-dodecyl-2,7-fluorendiyl-dimethine)-(1,4-phenylene-dinitrilomethine)]; e)1,10-

(((1E,10E)-(9,9-didodecyl-9H-fluorene-2,7-diyl)bis(ethene-2,1-diyl))bis(6-methyl-4-oxo-1,4-

dihydropyrimidine-5,2-diyl))bis(3-dodecylurea); f)double-walled carbon nanotube; g)triethyloxonium 

hexachloroantimonate; h)chlorosulfonic acid; 

 

 

 

  

Type of 
SWNT 

Method of 
extraction 

Diameter 
(nm) 

s-SWNT 
purity 

Bundle 
size 
(nm) 

Dopant 
S 

(V K-1) 
Ref. 

Calculated

 0.5 100%   >2000 [S1] 

 1.4 100%   800 [S1] 

 0.8 100%   1285 [S2] 

 1.3 100%   705 [S2] 

Arc Discharge 

DGU 1.4 (±0.2) 98% 
19.6 

(±11.3) 
O2 76.0 

This 
study 

DGU 1.4 >99%  O2 88 [S3] 

DGU 1.44 100% 
O2 

dedoped 
170 [S4] 

DGU 1.44 98% 
O2 

dedoped 
150 [S4] 

DGU 1.44 >99%  Nitric acid 30180 [S5] 

Laser 
vaporization 

PFO-
basedb) 

1.3 >99%  OAg) 64700 [S2] 

PFO-
basedc) 

1.3 >99% 
23.9 

(±6.7) 
OAg) 20200 [S6] 

PFO-
basedc) 

1.3 >99% 
42.6 

(±12.0) 
OAg) 23130 [S6] 

Plasma-torch 

PFO-
basedd) 

1.0 >99% 15 (±5) OAg) 20200 [S7] 

PFO-
baesde) 

1.0 >99% 20 (±4) OAg) 2190 [S7] 



 

Table S3. In-plane thermal conductivities of SWNT sheets at 30 °C in the literature 

Orientation 
of SWNT 
networks 

 

Length 
of 

SWNTs 

(m) 

Density 
(g cm-3) 

Measurement techniques 

κ 
(W m-1 K-1) 

Ref. Steady-state 
or non-steady-
state method 

Heating method Detection method 

Random 

0.61.9 0.460.76 Non-steady Periodic heating 
Phase difference of 
temperature wave 

9.1617.9 
This 
study 

0.51.0 0.51.1 Steady Electrical heating 
IR thermal imaging 

(temperature) 
80370 [S8] 

1.0  Steady 
Laser Beam 

(Raman 
spectrometer) 

Raman spectra 26 [S9] 


0.90, 
1.35 

Non-steady Periodic heating 
Phase difference of 
temperature wave 

9.8 (±3.3),  
39 (±12) 

[S10] 

  Steady 
Laser Beam 

(Raman 
spectrometer) 

Raman spectra 18.3 [S11] 

5.2    
(±0.7) 

1.5  
(±0.2) 

Steady 

IR radiation by 
light emitting 

diode (Bolometric 
technique) 

Si diode temperature 
sensor 

75 [S12] 

110 0.509 Non-steady Periodic heating 
Phase difference of 
temperature wave 

24.4 [S13] 

  Steady Not indicated 
Comparative method 

(with constantan) 
15, 17.5 [S14] 

 0.42 Steady Electrical heating 
Record temperature 

as a function of 
applied power 

2.2 [S2] 

  Steady Electrical heating 
Record temperature 

as a function of 
applied power 

1.39 (±0.43), 
2.38 (±0.98) 

[S7] 

  Steady Electrical heating 
Record temperature 

as a function of 
applied power 

2.453.85 [S6] 

  Steady 
Electrical heating 

(Self-heating 
method) 

Calculation from 
current and resistance 

plot 
18, 24 [S15] 

 1.1 Steady 
Electrical heating 

(Self-heating 
method) 

Calculation from 
current and resistance 

plot 

43 (±4)51 
(±5) 

[S16] 

>1.0  Steady Not indicated 
Comparative method 

(with constantan) 
2.3, 35 [S17] 

  Steady 
Heat flow by 

PPMS
 a)

 

Temperature 
difference (by 
Thermometer) 

2.6 [S18] 

 1.33 Steady Not indicated 
Comparative method 

(with constantan) 
30 [S19] 

Oriented 

 1.33 Steady Not indicated 
Comparative method 

(with constantan) 
220 [S19] 

  Steady Not indicated 
Comparative method 

(with constantan) 
42 [S20] 

 0.60.9 Steady Not indicated 
Comparative method 

(with constantan) 
60 [S21] 

a) physical property measurement system 
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