o Verification and Refactoring

EEEEEEEEEEEEEEEEEEEEEEEE

IDEAS

productivity Better Scientific Software Tutorial
Anshu Dubey
Argonne National Laboratory
ECP Annual Meeting
January 14, 2019

See slide 2 for
license details

S

j officcof N\ \V &G4
exascaleproject.org GIENERGY | o™ NS

License, citation, and acknowledgements

(i)
License and Citation L®_ﬁ

» This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

» Requested citation: Anshu Dubey, Verification and Refactoring, in Better Scientific Software
Tutorial, Exascale Computing Project Annual Meeting, Houston, Texas, 2019. DOI:
10.6084/m9.figshare.7581746

Acknowledgements

» This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced
Scientific Computing Research (ASCR), and by the Exascale Computing Project (17-SC-20-SC), a
collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear
Security Administration.

» This work was performed in part at the Argonne National Laboratory, which is managed by
UChicago Argonne, LLC for the U.S. Department of Energy under Contract No. DE-ACO02-
06CH11357

A S =\
|DE — \)) st

productivity \(== Al

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://dx.doi.org/10.6084/m9.figshare.7581746

I

Verification

* Code verification uses tests
— It is much more than a collection of tests

* It is the holistic process through which you ensure that
— Your implementation shows expected behavior,
— Your implementation is consistent with your model,
— Science you are trying to do with the code can be done.

A S =\
|DE — \)) st

productivity \(== Al

Specific verification challenges

* Functionality coverage
 Particularly true of codes that allow composability in their configuration

« Codes may incorporate some legacy components

— Its own set of challenges
* No existing tests at any granularity

« Examples — multiphysics application codes that support multiple domains

A S =\
|DE — \)|_: ExpsCELE

productivity \(EEEEEEE

Test Definitions

 Unit tests
— Test individual functions or classes

* Integration tests

— Test interaction, build complex
hierarchy

« System level tests
— At the user interaction level

 Restart tests

— Code starts transparently from a

checkpoint

» Regression (no-change) tests

— Compare current observable output to a
gold standard

 Performance tests
— Focus on the runtime and resource

utilization

IDEAS

productivity

EEEEEEEE
CCCCCCCCC
EEEEEEE

Test Development

« Development of tests and diagnostics goes hand-in-hand with code
development

— Non-trivial to devise good tests, but extremely important
— Compare against simpler analytical or semi-analytical solutions

* When faced with legacy codes with no existing tests
— More creative approach becomes necessary

* Verify correctness
— Always inject errors to verify that the test is working

A S =\
|DE — \)) st

productivity \(== Al

Example from E3SM /\

* |solate a small area of the code /<\//\
 Dump a useful state snapshot
/N

 Build a test driver / N\ o
— Start with only the files in the area /

— Link in dependencies
— Copy if any customizations needed

* Read in the state snapshot

 Restart from the saved state

A =\
- T, e g\ EeXAsCcALeE
IDE A — \)|_J CCCCCCCCC

productivity \(EEEEEEE

Workarounds for Granularity

] Real dependency

Mocked up

* Approach the problem sideways dependency

— Components can be exercised against
known simpler applications

— Same applies to combination of

Unit test
components

o
\
| D EAS — \)) Sxosee

p "o d u Ct| AV} |ty \(_‘ PROJECT

 Build a scaffolding of verification
tests to gain confidence

Example from FLASH

Unit test for Grid

« Verification of guard cell fill

 Use two variables A & B

* Initialize A in all cells and B only
in the interior cells (red)

« Apply guard cell fill to B

10 productivity

EEEEEEEE
CCCCCCCCC
EEEEEEE

11

Example from Flash

Unit test for Equation of State (EOS) lﬂ

* Three modes for invoking EOS
— MODE1: Pressure and density as input, internal energy and temperature as output
— MODEZ2: Internal energy and density as input temperature and pressure as output
— MODES: Temperature and density as input pressure and internal energy as output

Use initial conditions from a known problem, initialize pressure and density
Apply EOS in MODE1
Using internal energy generated in the previous step apply EOS in MODE2

Using temperature generated in the previous step apply EOS in MODE3

At the end all variables should be consistent within tolerance

IDEAS =)

productivity \(

EEEEEEEE
EEEEEEEEE
EEEEEEE

12

Example from FLASH

Unit test for Hydrodynamics .y

e Sedov blast wave

« High pressure at the center

.

Rt}

« Shock moves out spherically

* FLASH with AMR and hydro

« Known analytical solution

Though it exercises mesh, hydro and eos, if mesh and

eos are verified first, then this test verifies hydro

More testing needed for Grid using AMR
Flux correction and regridding

IDEAS

productivity

EEEEEEEE
CCCCCCCCC
PPPPPPP

13

Example from FLASH

Reason about correctness for testing Flux correction and
regridding

IF Guardcell fill and EOS unit tests passed

* Run Hydro without AMR
— If failed fault is in Hydro

* Run Hydro with AMR, but no dynamic refinement
— If failed fault is in flux correction

* Run Hydro with AMR and dynamic refinement
— If failed fault is in regridding

IDEAS

productivity \(

EEEEEEEE
EEEEEEEEE
EEEEEEE

14

Selection of tests

* Two purposes

— Regression testing

* May be long running

* Provide comprehensive coverage
— Continuous integration

» Quick diagnosis of error

« A mix of different granularities works well
— Unit tests for isolating component or sub-component level faults

— Inte?ratlon tests with simple to complex configuration and system
leve

— Restart tests

* Rules of thumb
— Simple
— Enable quick pin-pointing

IDEAS

productivity

—_—

=\
\)

) EXASCAHLE
COMPUTING
PROJECT

15

Why not always use the most stringent testing?

 Effort spent in devising tests and testing regime are a tax on team resources
* When the tax is too high...

— Team cannot meet code-use objectives

* When is the tax is too low...
— Necessary oversight not provided
— Defects in code sneak through

« Evaluate project needs
— ODbjectives: expected use of the code
— Team: size and degree of heterogeneity
— Lifecycle stage: new or production or refactoring
— Lifetime: one off or ongoing production
— Complexity: modules and their interactions

A S =\
|DE — \)) st

productivity \(e

16

Test Selection

* First line of defense
— code coverage
tools (demo later)

* Necessary but not
sufficient — don't
give any
information about
iInteroperability

IDEAS

productivity

EEEEEEEE
CCCCCCCCC
PPPPPPP

Example

Hydro EOS Gravity Burn Particles
AMR CL CL CL CL
UG SV SV SV
Multigrid WD WD WD WD
FFT PT

« Atest on the same row indicates
iInteroperability between corresponding

Tests Symbol physics

Sedov SV o _

Cellular cL « Similar logic would apply to tests on the
same column for infrastructure

Poisson PT o .

White Dwarf WD « More goes on, but this is the primary

methodology

A S =\
|DE — \)) st

productivity \(A

18

Regular Testing

 Part of ongoing verification
« Automating is helpful

« Can be just a script

* Or a testing harness

Jenkins
C-dash

Custom
(FlashTest)

« Essential for large code
— Set up and run tests
— Evaluate test results

« Easy to execute a logical subset of tests

— Pre-push
— Nightly

 Automation of test harness is critical for

— Long-running test suites

— Projects that support many platforms

PPPPPPP

- Refactoring

20

Considerations

 Know bounds on acceptable behavior change

« Know your error bounds
— Bitwise reproduction of results unlikely after transition

* Map from here to there
» Check for coverage provided by existing tests

* Develop new tests where there are gaps

IDEAS

productivity

EEEEEEEE
CCCCCCCCC
EEEEEEE

21

Example FLASH

Infrastructure

— Manages data

— Domain discretization

— simpleUnsplilt

— Unsplit
e Driver

— Time-stepping
— Orchestrates interactions Physics

Monitoring

\
EXASCAHLE
\) —) COMPUTING

PROJECT

FLASHS

AMReX - Lawrence Berkeley National Lab FLASH FLASH
« Designed for exascale

* Node-level heterogeneity

« Smart iterators hide parallelization

Other units Other units

Grid API Grid API
I I

GridMain :> GridMain
| |

Goal: Replace Paramesh with AMReX | | | |

AMR AMR
Plan:
« Paramesh & AMReX coexist
« Adapt interfaces to suit AMReX @ @@

» Refactor Paramesh implementation

« Compare AMReX implementation against
Paramesh implementation

A S =\
|DE — \)) st

productivity \(== Al

23

Refactoring plan

Design

* Degree & scope of change

* Formulate initial requirements
Prototyping

« Explore & test design decisions
« Update requirements
Implementation

« Recover from prototyping

« Expand & implement design
decisions

FLASH
Version
4.4

AMReX
Mesh

|

AMReX
Mesh

Require-
ments .
gathering New aIternat_we
Implementation
Interfaces
Data Iterators over
Structures Paramesh
Iterators l
|

IDEAS

productivity

Fine-coarse

t
Flux correction
Top-level
interaction
Hydro Driver
From
Old
FLASH

Unsplit
Hydro

\
EXASCAHLE
\) —) COMPUTING

PROJECT

24

Phase 1 - design

* Derive and understand principal definitions & abstractions

» Collect & understand Paramesh/AMReX constraints
— Generally useful design due to two sets of constraints?

» Collect & understand physics unit requirements on Grid unit

* Design fundamental data structures & update interface
— AMReX introduces iterators over blocks/tiles of mesh
— Package up block/tile index with associated mesh metadata

* Minimal prototyping with no verification

IDEAS

productivity

o

)

) EXASCAHLE
COMPUTING
PROJECT

Phase 2 - prototyping

Implement new data structures

— Evolve design/implementation by iterating
between Paramesh & AMReX

Explore Grid/physics unit interface
— simpleUnsplit Hydro unit

Discover use patterns of data structures
and Grid unit interface

Adjust requirements & interfaces

25

Verification

Single simpleUnsplit simulation
Quantitative regression test with
Paramesh

Proof of concept with AMReX via
qualitative comparison with Paramesh

A S =\
|DE — \)) st

productivity \(e

26

Phase 3 - implementation

Derive & implement lessons learned _—
Verification

— Clean code & inline documentation e Git workflow
 Grow test suite / Cl with Jenkins

* Update Unsplit Hydro Add new feature/test
— AMReX manages data « Refactor Paramesh implementation

* Implement with AMReX & compare
against Paramesh baseline

— Paramesh drives AMR

Fully-functioning simulation with AMReX

Prune old code

A S =\
|DE — \)) st

productivity \(e

27

Other resources

Software testing levels and definitions: _
http://www.tutorialspoint.com/software_testing/software_testing_levels.htm

Working Effectively with Legacy Code, Michael Feathers. The legacy software change
algorithm described in this book is very straight-forward and powerful for anyone working on a
code that has insufficient testing.

Code Complete, Steve McConnell. Includes testing advice.
Organization dedicated to software testing: https://www.associationforsoftwaretesting.org/

Software Carpentry: http://katyhuff.github.io/python-testing/

Tutorial from Udacity: https://www.udacity.com/course/software-testing--cs258

Papers on testing: _ _ .
http://lwww.sciencedirect.com/science/article/pii/S0950584914001232 _ _
https://www.researchgate.net/publication/264697060_Ongoing_verification_of _a_multiphysic
s_community _code FLASH

Resources for Trilinos testing:
Trilinos testing policy: https://github.com/trilinos/Trilinos/wiki/Trilinos-Testing-Policy
Trilinos test harness: https://github.com/trilinos/Trilinos/wiki/Policies--%7C-Testing

—_—

IDEAS

=\
\ EXASCAHLE

) —) COMPUTING

PROJECT

productivity

	Verification and Refactoring
	License, citation, and acknowledgements
	Verification
	Verification
	Specific verification challenges
	Test Definitions
	Test Development
	Example from E3SM
	Workarounds for Granularity
	Example from FLASH
	Example from Flash
	Example from FLASH
	Example from FLASH
	Selection of tests
	Why not always use the most stringent testing?
	Test Selection
	Example
	Regular Testing
	Refactoring
	Considerations
	Example FLASH
	FLASH5
	Refactoring plan
	Phase 1 - design
	Phase 2 - prototyping
	Phase 3 - implementation
	Other resources

