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Contrary to common lore, the standard model of particle physics has a “landscape” of physically
inequivalent vacua, most of them quite different from ours. I discuss some cosmological consequences
and related observational constraints, show how non-perturbative electroweak dynamics selects our
special vacuum, and put an old idea to rest.
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I. INTRODUCTION

The standard model (SM) of particle physics is almost
disturbingly successful. Textbooks written decades ago,
like [1] and [2], remain perfectly good introductions to it.
You may want to scribble a note or two in their margins,
like “top quark found 1995, mass 173GeV” and “Higgs
found 2012, mass 125GeV”, but other than that, they
could have been published last week. As I write this, all
convincing signs of physics beyond the SM are related to
the one interaction which it never included; gravity.

The SM is a quantum field theory (QFT). Its basic con-
stituents are fields; particles are their excitations. That
physics should be described by such a theory may seem
like a huge assumption, but if you buy Weinberg’s “folk
theorem” [3], it boils down to accepting quantum me-
chanics, Lorentz invariance and locality. All three can
of course be questioned, but operationally, there is little
room left for doing so within the experimentally explored
range of parameter space. In other words, if we live in a
simulation running on a classical computer, it is doing an
excellent job of faking a universe where physics is local,
Lorentz invariant and quantum mechanical.

Another central theme of the SM is gauge invariance.
In classical terms, a gauge invariant theory has more
degrees of freedom (DoF) than independent equations
of motion (EoM). To compute the time evolution of a
field from a known set of initial conditions, you must
therefore supplement the EoM with extra equations (“fix
the gauge”). Gauge invariance is what prevents the re-
sult from being completely arbitrary: each set of extra
equations which is consistent with the EoM is related to
all other such sets by well defined, continuous transfor-
mations which leave physical quantities unaffected. To-
gether, those transformations define the gauge group of
the theory.

The prototypical gauge invariant theory is classical
electromagnetism. In terms of the 4-vector potential Aµ,
the electric and magnetic fields are Ei = ∂iA0 − ∂0Ai

and Bi = εijk∂jAk, while Maxwell’s equations in empty
space are ∂µ(∂

νAµ − ∂µAν) = 0. Adding an arbitrary
4-divergence ∂µf to Aµ has no effect on any of them.
You are therefore free to reduce the four DoF of Aµ to
the two independent polarization states of light by sup-
plementing the EoM with an equation like the Lorenz
gauge condition ∂µA

µ = 0.

Classically, the advantage of this formulation may seem
debatable (Heaviside apparently wanted Aµ purged from
physics [4]). But already non-relativistic QM requires
electromagnetic interactions to be written in terms of Aµ

rather than of Ei and Bi (a point famously driven home
by the Aharonov-Bohm effect), and when you graduate
to relativistic QM, Lorentz invariance is violated unless
massless vector fields couple to conserved quantities only.
By Noether’s theorem, every continuous symmetry im-
plies the existence of a conserved quantity, so imposing
invariance of the theory under combined gauge trans-
formations of Aµ and of its interaction partners makes
Lorentz invariance almost automatic. Gauge invariance
as a guiding principle is therefore supported by at least
two pillars of Weinberg’s “folk theorem”.

Yet, there are problems. Since Aµ is not gauge invari-
ant, it does not satisfy our definition of a physical quan-
tity, nor does any field which interacts with it. What,
then, is a photon or an electron? This question is eerily
reminiscent of those often asked about QM. Could quan-
tum indeterminacy and the incompleteness of gauge in-
variant theories be two sides of the same coin?

From a more practical point of view, one may question
the classical habit of fixing a gauge when doing QFT.
Why not just compute expectation values by averaging
over all possible field configurations, including ones re-
lated by gauge transformations? The implementation of
this idea is lattice gauge theory. For QCD it works quite
well. But when we turn to electroweak interactions, we
run into a complication: the Higgs mechanism.

II. IF IT’S BROKEN, YOU MUST FIX IT

The big difference between QCD and electroweak in-
teractions is that the gauge symmetry of the latter is
spontaneously broken. In a way, a gauge theory featur-
ing spontaneous symmetry breaking (SSB) is even more
symmetric than the plain vanilla variety. Instead of just
one lowest energy state, it has a continuum of them, all
related by the gauge symmetry. This continuum of de-
generate states is called the vacuum manifold, with the
understanding that “vacuum” is not synonymous with
“empty”; you tell the vacua apart by the expectation
value(s) of some Higgs field(s), so those can not all van-
ish. Unless you want to break Lorentz invariance, they
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must be scalars.
In electroweak theory, the gauge symmetry is

SU(2)×U(1). The Higgs field is the complex doublet

Φ =

[
φ+

φ0

]
=

[
ϕ2 + iϕ1

ϕ0 − iϕ3

]
(1)

(the phase factors in front of the real components
ϕ0 . . . ϕ3 are chosen to match Eq. (3)). Its vacuum man-
ifold is the 3-sphere (S3) defined by

Φ†Φ = (ϕ0)
2 + (ϕ1)

2 + (ϕ2)
2 + (ϕ3)

2 = ν2/2 (2)

where the constant ν ≃ 246.3 GeV sets the symme-
try breaking scale. When Φ satisfies Eq. (2), it can

be parameterized using three angles, θ⃗ = [θ1, θ2, θ3] ∈
[−2π, 2π]:

[
ϕ0, ϕ⃗

]
=

ν√
2

[
cos

(
θ

2

)
,
θ⃗

θ
sin

(
θ

2

)]
(3)

This can be viewed as a quaternion encoding a 3D rota-

tion by θ = |θ⃗| about the axis θ⃗/θ.
Picking a ⟨Φ⟩ somewhere on the vacuum manifold, or

equivalently a θ⃗, breaks the rotational symmetry of S3
in the 4-dimensional Euclidean space (R4) spanned by
ϕ0 . . . ϕ3. It also breaks the gauge symmetry, since the
Higgs field carries SU(2) and U(1) charges.
Imagine trying to do QCD-style lattice gauge theory

with Φ. For every point on S3 there is an antipodal point
where ϕ0 . . . ϕ3 all have the same absolute values but op-
posite signs. If such antipodal points are all related by
gauge transformations, the result of averaging Φ over all
possible field configurations, including ones related by
gauge transformations, must be ⟨Φ⟩ = 0. This is the
essence of Elitzur’s theorem [5][6]: in gauge theories, SSB
requires the gauge to be fixed. What is spontaneously
broken is symmetries left over after gauge fixing. If you
like the idea of a deep connection between gauge invari-
ance and QM, this could be a problem. Or it might mean
that gauge fixing is an ingredient of consistent histories.
Textbooks rarely mention such things. Instead, they

note that gauge invariance allows any Φ ̸= 0 to be trans-

formed so that only ϕ0 ̸= 0, or equivalently θ⃗ = 0, and im-
plicitly apply this transformation to configuration space
– the set of all possible field configurations – before quan-
tizing. This is known as imposing the unitary gauge1. Its
main attraction, besides minimizing the number of DoF,
is simple mass terms ∼ ν2 for the weak gauge bosons.
In principle, this is a legitimate maneuver. If the re-

sulting QFT works, i.e. if it is self-consistent and in
agreement with experiment, the procedure used to find
it is ultimately irrelevant. But as Weinberg reminisced
in [7], it does not work:

1 If you are Weinberg, you get to call it “unitarity” gauge.

I tried to prove the renormalizability of
the electroweak theory using the most conve-
nient gauge that can be introduced in the op-
erator formalism, called unitarity gauge, but
I couldn’t do it [8]. I suggested the problem
to a student [9], but he couldn’t do it either,
and to this day no one has done it using this
gauge.

The problem is that the propagator of a vector boson
with a constant mass term tends to a constant value
as its momentum goes to infinity, so contributions from
Feynman diagrams containing loops are not suppressed
at high energy. Perturbation theory becomes an impos-
sible task, requiring the summation of infinitely many,
infinitely complicated diagrams.

The now standard electroweak model therefore became
generally accepted only after it was proved to be renor-
malizable in the Rξ gauges, which retain all components
of Φ and give ϕ1, ϕ2 and ϕ3 masses ∝ the free param-
eter ξ ∈ [0,∞] [10][11][12]. It is possible to establish a
formal equivalence between the unitary gauge and the
limit ξ → ∞ of the Rξ gauges [13], but this does not
prove renormalizability in that limit, due to the ambi-
guities which crop up when multiple quantities are sent
to infinity; letting ξ → ∞ before the momenta in loop
diagrams produces one result, taking the same limits in
the opposite order another one [14].

This has all been known for decades. Yet, bringing
it up seems to have become a sure way to win foes and
alienate people. Why, I do not know. The experimental
success of electroweak theory is based on predictions ob-
tained in the Rξ gauges, so there is no empirical reason
for clinging to the unitary gauge. Maybe it is a cherished
childhood belief.

A more serious concern could be that there is no obvi-
ous reason why the unitary gauge should fail upon quan-
tization. But there is. Analyzing the ways that values on
S3 can be smoothly mapped to spacetime uncovers con-
figurations which can not be continuously deformed to a
constant value [15]. Classically, this is tractable; simply
ignore such troublesome cases. The unitary gauge does
so implicitly. But in QFT, we are supposed to average
over all field configurations. The real surprise would be if
properties of a theory which depend crucially on cancel-
lations between contributions from different field config-
urations, like renormalizability, were to survive arbitrary
amputations of configuration space.

III. THE STANDARD MODEL LANDSCAPE

The mass eigenstates of electroweak gauge bosons
can be parameterized by the Cartesian coordinates
[Θ1,Θ2,Θ3] of an ordinary sphere S2 in R3, reflecting
the O(3) rotational symmetry left over when the O(4)
of S3 is broken (see Appendix A). Each point on the
sphere maps to a different Hopf circle on the Higgs vac-
uum manifold. They all produce the same masses, but
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FIG. 1: Feynman diagram for γ → ν + ν̄. Impossible?

for different linear combinations of gauge bosons. The
electromagnetic couplings of left-handed fermion mass
eigenstates depend linearly on Θ2

3. So the SM has its
own “landscape” of physically distinct vacua, a contin-
uum of inequivalent classes of Hopf circles.
Why does this happen? Is the SM Lagrangian not

supposed to be invariant under SU(2)×U(1) transforma-
tions, and is it not true that any choice of vacuum can be
reduced to the standard one by such a transformation?
Those are red herrings. The SM Lagrangian is invari-

ant, fermion mass eigenstates are not. So we can not
expect invariant expressions in the basis of mass eigen-
states. Nor is the mass basis optional if we want to do
physics: real particles in real experiments have definite
masses, and we can not even begin to compute physi-
cal quantities like scattering amplitudes and decay rates
without knowing those masses.
For instance, the last term in Eq. (A22) translates to

the Feynman diagram of Fig. 1. With the conventions
of [1], the corresponding amplitude squared for a photon
with momentum k and polarization vector εtµ(k) under-
going the decay γ → ν + ν̄ is

|M|2 = G2(Θ⃗) εtµ(k)ε
ν
t (k) ·

Tr

[
pσγ

σ +mν

2mν
γµ(1− γ5) ·

p′τγ
τ −mν

2mν
(1 + γ5)γν

]
(4)

You will evidently not get very far without a well defined
neutrino mass mν .
Note that the unitary gauge breaks the residual O(3),

leaving nothing over for SSB. By design, it picks a vac-

uum where Θ3 = 1 ⇒ G(Θ⃗) = 0. Why? Because that
reproduces known physics. But sampling a uniform dis-
tribution on S3, this choice does not seem very likely (see
Fig. 2). Maybe you could modify the theory to produce

the observed electric charges in a larger region of θ⃗ space,
or show that Θ3 = 1 is necessary for the existence of sta-
ble atoms or some other prerequisite for life, and invoke
the anthropic principle. This should all be starting to
sound eerily familiar.

Or you could accept that θ⃗ is spacetime-dependent,
use a gauge that works, and look to the dynamics of the
theory for an explanation.
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FIG. 2: Distribution of Θ4
3 (105 points sampled uniformly on

S3). Why is our Θ4
3 ≃ 1?

This drags cosmology into the argument. The stan-
dard big bang model starts with a high temperature state
where all fields take random values, causing symmetry
restoration [17]-[20] (or rather SSB as the universe cools).
It also has a finite particle horizon within which informa-
tion could have been exchanged at any given time. Since
random choices could not be communicated beyond the

particle horizon, θ⃗ started out with gradients on super-
horizon scales and then relaxed as the horizon grew.

Fans of the unitary gauge sometimes do not seem to

realize that once the possibility of θ⃗ gradients is accepted,
the argument is over. Instead, they claim that imposing
the unitary gauge turns such gradients into collections
of short-lived, massive gauge bosons, which decay on the
time scale of weak interactions. This works only if you
give up locality – the residual O(3) symmetry must be
broken the same way across the whole universe – and
forget to quantize.

Remember, the unitary gauge is imposed before quan-
tization, while constructing the QFT. Transforming the
QFT to a different gauge means going to an inequiva-

lent Hilbert space of physical states. For instance, the θ⃗
fields are massless in the Rξ gauge with ξ = 0 (Landau
gauge, classically equivalent to the Lorenz gauge), but
have the same masses as the gauge bosons with ξ = 1 (’t
Hooft-Feynman gauge). Above the common ground state
level, a massless particle has a continuous energy spec-
trum which only depends on its 4-momentum; a massive
particle has a mass gap, an unphysical energy range be-

low its rest mass. Turning smooth, massless θ⃗ fields with
low energy density into massive gauge bosons therefore
means turning physical (“on shell”) configurations into
unphysical ones.
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We see again the importance of “keeping it real” by
working in the physical mass basis. What actually hap-
pens is that once the energy density of a massless field
falls below that of a pair of its lightest decay products
per Compton volume, decays become exponentially sup-
pressed, essentially because they depend on random fluc-
tuations to produce local overdensities.

Suppose we choose a gauge with massless θ⃗ (on shell,
any working gauge can be used to derive effective EoM for

the quantized theory, valid order by order [21]). θ⃗ gradi-
ents can relax by decaying to neutrinos – see Eq. (A22) –
so their energy density must be . m4

ν for (meta)stability.
Since the SM Lagrangian is quadratic in derivatives of

Φ ∼ νθ⃗, the energy density of a smooth θ⃗ gradient ex-
tending over some length scale L is ∼ ν2/L2. Stability
therefore requires L & ν/m2

ν . If mν = 0.1 eV, this trans-
lates to L & 107 meters.

That is how tight recently created θ⃗ gradients could be.
But if they were born shortly after the bang, they may
have relaxed until temperature fell below ∼ mν , and were
then stretched by metric expansion. Using the cosmic
microwave background (CMB) as a proxy, temperature
fell below 0.1 eV at redshift z ≃ 425, 1.8 million years
after the bang. The particle horizon was then 5.3 million
light years (ly). Multiply by the expansion factor 1 + z,
and the current size limit becomes L & 2.3 Gly.
There is clearly a wide range of possibilities here, de-

pending on initial conditions, the lightest neutrino mass

and the dynamics of θ⃗. But it can be narrowed down

substantially by considering the effect of θ⃗ gradients on
light reaching us from distant sources.

IV. WHY DO WE SEE THE STARS?

The question about the fate of particles crossing θ⃗ gra-
dients was first asked by Weinberg in 1974 [19]. It was
quickly answered for light by A. Everett, who tackled
the problem as one of classical wave transmission. Using
the linearized equations of motion for Aµ, W

± and Z,
he found that the result depended on the width of the
gradient relative to the light’s wavelength: total reflec-
tion from sharp gradients, total transmission across wide
ones, partial transmission in intermediate cases [22]. Ab-
sent some reason to expect sharp gradients, there would
therefore seem to be no observable consequences.
Presumably because of this conclusion, the question

then seems to have been forgotten for three decades, un-
til Penrose brought it up again, asking why we can see
distant objects in optical telescopes [23]. In 2005, hav-
ing read [23] but unaware of Everett’s work, I estimated

the residual luminosity across a θ⃗ gradient, essentially by
projecting the photon state at the source onto the photon
state at the observer’s location, and found

ℓ(ω⃗) = sin2(θW )
(ω2

1 + ω2
2) cos(|ω⃗|) + ω2

3

|ω⃗|2
+ cos2(θW ) (5)

FIG. 3: Randomly sampled θ⃗ points where Θ4
3 < 10−9.

This is just the scalar product of Eq. (A5) for θ⃗ = 0 and

θ⃗ = ω⃗. The physical picture is of two large regions with

constant but different θ⃗, separated by an interpolating
boundary smooth enough to make reflection negligible.
As it crosses the boundary, the photon becomes a lin-
ear combination of electroweak gauge bosons, and given
enough energy, the massive part of the mix decays to
fermions.

There is an implicit assumption here: that electroweak
decays dominate over the rotation from source to desti-
nation photon state studied by Everett. With Eq. (4)
in hand, we can stop assuming and compute the decay
rate of Aµ explicitly. For unpolarized photons, a stan-
dard calculation (see e.g. Ch. 8 in [1]) yields the center
of mass decay rate

ΓCoM =
G2E

8π

√
(1 + 2mν/E)(1− 2mν/E) ·(

1− (1 + 2mν/E)(1− 2mν/E)

3

)
(6)

Note the kinematic threshold E = 2mν . Photons with
lower energy do not decay.

In the limit mν/E → 0, ΓCoM reduces to G2E/(12π).
Substituting this into the expression for surviving photon
fraction derived in Appendix B yields

ℓ(ω⃗) ≃ 1− G2

12π
|ω⃗| (7)

With the ⟨Θ4
3⟩ ≃ 0.2 sampled from a uniform distribution

on S3 (Fig. 2) this suggests an average luminosity loss
in the third decimal, far from the 23% predicted by Eq.
(5)2. While not much, it compounds. Even a loss of

2 Drat.
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FIG. 4: Randomly sampled θ⃗ points where 1−Θ4
3 < 10−3.

only 10−3 per gradient crossing reduces luminosity to 1/3
after 103 crossings. Our ability to see the Andromeda
galaxy clearly, 2.6 Mly away, therefore implies L > 103

ly. With objects only visible at longer wavelengths, you
can tune mν to exploit the kinematic threshold, but the
optical visibility of gamma ray burst GRB 080319B over
a distance of 7.5 Gly strongly suggests L > 107 ly.
There is an even stronger constraint from observation.

The left-handed electron’s coupling to the photon, eΘ2
3,

can be viewed as an effective linear dependence of the
fine-structure constant α on Θ4

3. Based on the absorp-
tion of quasar light by gas clouds along the line of sight,
∆α/α . 10−5 [24]. Apparently, the entire visible uni-
verse prefers to stay close to the points in Fig. 4.
This calls for an explanation. It also means that a con-

firmed small variation in α would not necessarily consti-
tute evidence of new physics, as is sometimes claimed. It
would be interesting to look for correlations between the
α dipole found in [24] and other observed anomalies, like
the suspicious alignment between quasar light polariza-
tion and low multipole moments in the CMB [25].

V. PRELUDE TO DYNAMICS

There is an obvious way to reconcile cosmology with
electroweak symmetry breaking: assume that inflation
ended at or below the electroweak scale, so the entire

observable universe fits within a patch of constant θ⃗.
Higgs-mediated inflation [28]-[31] might produce this re-
sult. Having the SM Higgs do double duty as the inflaton
through a non-minimal coupling to gravity is a particu-
larly attractive idea. But before we jump to conclusions,
let’s consider the alternatives.
Short of renouncing the Higgs mechanism (in favor of

what?) you could take the view, sometimes advocated
by Veltman, that the theory is defined by its perturba-

tive expansion, while the Lagrangian is just a “book-
keeping device” used to aid the construction of Feynman

diagrams [26]. Non-perturbative structures like θ⃗ gra-
dients would go away, but at a cost. Empirically, non-
perturbative QCD works quite well on the lattice, which
raises the question why electroweak interactions should
be so different. Theoretically, the perturbation series is
not guaranteed to converge (in the simple case of QED
it has long been understood to diverge [27]). The closest
well-defined object would be a sum over a finite number
of terms, which is hard to accept as more than an ad-hoc
computational device.

If you accept the possibility of non-perturbative elec-
troweak structures, finite particle horizons make them
mandatory: there is no reason to assume perturbatively

small differences in θ⃗ between regions which have been
causally disconnected since before the symmetry was bro-
ken (inflation does not change this conclusion, only the
spatial scale).

The study of such structures requires other tools than
those familiar to most particle physicists. Axial gauges,
which simply set a Lorentz component of every gauge bo-
son to zero, stand out in this context [32]. Among them,
the time-axial (a.k.a. temporal, Weyl, or Hamiltonian)
gauge plays a special role, since it arises naturally in the
canonical operator formalism; already in electrodynam-
ics, the conjugate momentum of A0 vanishes, making it
impossible to impose the canonical commutation relation
[A0(t, x⃗),Π0(t, x⃗

′)] = iδ(x⃗ − x⃗′). Instead, gauge invari-
ance is invoked to set A0 = 0, and the QFT is written
using only the space-like components of Aµ, leaving a
residual invariance under time-independent gauge trans-
formations which is removed by imposing Gauss’ law.
Since the latter commutes with the Hamiltonian, this
need only be done at one point in time, e.g. as an initial
condition.

The familiar path integral for arbitrary gauges can be
derived from this formalism, arguably making it more
fundamental [33]. It has proved invaluable for non-
perturbative QFT: the instanton solution to the U(1)
problem of QCD [34][35], electroweak sphalerons [36]-
[40] with related, cosmologically significant violation of
baryon number conservation [41]-[43], and extended con-
figurations like Nielsen-Olesen strings [44]-[46] were all
found using the time-axial gauge. Its simplicity also
makes it ideal for non-perturbative numerical simula-
tions, where it is ubiquitous [47]-[53].

Like the Landau gauge, axial gauges leave θ⃗ massless.
This sometimes makes people nervous: why don’t we see

massless θ⃗ particles flying around? In the Rξ gauges, the
gauge boson propagators pick up extra poles at the same

masses as θ⃗, and their contributions to Feynman ampli-

tudes cancel, effectively confining θ⃗ particles to within
a distance ∼ 1/(gν) [12]. In axial gauges, the cancella-
tion is against poles in the interaction vertices of massive
gauge bosons, with the same result [54].

Absence of θ⃗ particles propagating over macroscopic



6

distances does not imply absence of macroscopic and

evolving θ⃗ configurations, any more than quark confine-
ment implies absence of macroscopic and evolving hadron
configurations. You might therefore worry about long-

range θ⃗ potentials competing with gravity. This too is a

non-issue as long as the coupling between θ⃗ and fermions
→ 0 with momentum transfer [55]. It does; see the sec-
ond row in Eq. (A22).
The convenience of the time-axial gauge becomes ap-

parent when deriving the effective photon mass on a θ⃗
gradient, MO in Eq. (B2). With A0 = 0, the terms of
the SM Lagrangian quadratic in Aµ can be rearranged as

the quadratic form 1
2 A⃗

TMA⃗, where the 3 × 3 matrix M
has components

M11 =
(
∂0θ⃗

T H ∂0θ⃗ + ∂2θ⃗
T H ∂2θ⃗ + ∂3θ⃗

T H ∂3θ⃗
)

(8)

M12 =
(
−∂2θ⃗

T H ∂1θ⃗
)

(9)

etc. and H has components

Hab = sin2(θW )
∂Θc

∂θa

∂Θc

∂θb
(10)

SinceH is real and symmetric,M is too, and can therefore
always be diagonalized. Its three eigenvalues are M2

O in
the three principal directions defined by its eigenvectors.

The mapping of Θ⃗ to Hopf circles guarantees that H
always has at least one vanishing eigenvalue for any θ⃗.
The other two are non-negative. The middle one peaks
at θ = 0 and falls off for larger θ; the largest one is
symmetric about the line θ1 = θ2 = 0 and along it. On
that line, the only non-zero elements of H are

H11 = H22 = 2 sin2(θW ) (1− cos(θ3)) /θ
2
3 (11)

In M, they only multiply derivatives of θ1 and θ2, so MO

vanishes not only for constant θ⃗, but also when θ1 = θ2 =
0.
Consider a linear θ⃗ gradient along the photon’s direc-

tion of motion, e.g. the z axis. The two transverse po-
larization modes then have effective mass

MO =

√
∂3θ⃗T H ∂3θ⃗ =

1

L

√
∆θ⃗T H∆θ⃗ (12)

Substituting
√
∆θ⃗T H∆θ⃗ for |∆θ⃗| in Eq. (B3), taking

the limit L → ∞ and picking random θ⃗ pairs uniformly
from S3 produces the residual luminosity distribution of
Fig. 5. The average loss is 0.53% per crossing.

VI. DYNAMICAL VACUUM SELECTION

A uniform distribution over static vacuum configura-

tions is just an assumption. How does θ⃗ really evolve
from the random initial conditions expected at the bang?
It is tempting to derive the classical EoM of the full

SM Lagrangian and evolve those, arguing that quantum

l
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FIG. 5: Residual luminosity distribution for one gradient

crossing (E = 1 eV, mν = 0.1 eV, 105 θ⃗ pairs sampled uni-
formly on S3).

corrections are small. This works with a plasma hot
enough to maintain large occupation numbers for all mas-
sive fields [56]-[58]. But at lower energy densities, where
mass gaps can no longer be ignored, the infinite divisibil-
ity of classical fields ceases to be a good approximation.
There are no fractional W± and Z bosons on shell.

To study the low energy, long distance limit, you
must first derive an effective theory. The Appelquist-
Carazzone decoupling theorem guarantees that massive
fields only affect it through corrections ∝ powers of in-
teraction energy over mass [59][60][61]. Below the low-
est mass threshold, the EoM for massless fields only are
therefore a good approximation. To leading order, they
follow from the classical Lagrangian with everything else
set = 0,

L =
1

2
Gab∂µθ

a∂µθb

+
1

2
∂µAν (∂

νAµ − ∂µAν)

+
1

2
HabAµ∂νθ

a(Aν∂µθb −Aµ∂νθb) (13)

where the scale parameter ν has been absorbed into Aµ

and

Gab =

(
δadδbe

2
+

1− cos θ

θ2
εcdaεceb

)
θdθe
θ2

(14)

is the metric of S3. Varying L in A0 yields the Gauss
constraint

∇ · E⃗ = ∂0θ⃗
THAm∂mθ⃗ (15)
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With A0 = 0, this is trivially satisfied by any static con-
figuration.
Eq. (13) describes an O(4) non-linear sigma model

coupled to electromagnetism by the effective photon mass
term. It should hold for energy densities below the pair
production threshold of the lightest neutrino, ∼ (0.1 eV)4

assuming mν = 0.1 eV. As a comparison, the current
dark energy density is estimated to be ≃ (3 · 10−3 eV)4.

The decoupling of θ⃗ and A⃗ when θ1 = θ2 = 0 sug-

gests that radiation pressure will drive θ⃗ to that line.
Mathematically, it should accrete at minima in the speed

s = |∂0(θ⃗, Π⃗)| of the Hamiltonian phase space flow

∂0(θ⃗, Π⃗) = (∂H/∂Π⃗,−∂H/∂θ⃗), or equivalently in

s2 =
∂H

∂Πa

∂H

∂Πa
+

∂H

∂θa

∂H

∂θa
(16)

Finding such minima is hard, but if we also require that

∇θa = Π⃗ = 0 (i.e. static vacua), the only non-vanishing
second derivatives of the Hamiltonian are

∂2H

∂Πa∂Πb
=
[
K−1

]
ab

(17)

where

K = G+ A⃗2H (18)

Since minima of s2 should have vanishing derivatives in

θ⃗ and Π⃗, the minima of the largest eigenvalue of K−1

should coincide with the θ⃗ least influenced by A⃗. For

A⃗2 = 0, the largest eigenvalue at θ⃗ = 0 is 4; from there, it

grows isotropically with θ. For finite A⃗2, the minimum is

still 4 at θ⃗ = 0, but larger values form concentric prolate

spheroids extending along the θ3 axis. θ⃗ can therefore be
expected to settle around that axis.
This is confirmed by numerical simulations [62]. The θ3

axis acts as an attractor, growing stronger with electro-
magnetic energy density. The larger the latter, the more

θ⃗ spreads out along θ3, reflecting the cigar-like shape of

the surfaces in Fig. 6. At comparable energy densities, θ⃗
settles around θ1 = θ2 = 0 after a few collisions between
wavefronts. In Minkowski space, MO then approaches
some finite value asymptotically as radiation pressure

finds a balance with the thermal motion of θ⃗.
An expanding (FRW) metric adds two notable effects:

it cools θ⃗, causing the “cigar” to keep shrinking about
some point on the θ3 axis, and it aids the formation of
extended structures, apparently by pumping up plasma

oscillations in θ⃗ (max extension gets an extra push, in-

creasing E⃗, while max velocity is reduced, damping B⃗).
The result is a foam-like structure of large “bubbles” with
low MO, separated by boundaries where it’s larger (but
still unobservable in the parameter space accessible with
a PC).
Neutral domains with charged boundaries have been

proposed in the past to explain baryogenesis, dark mat-
ter and even dark energy. But the main point is that the
dynamics always drives Θ3 → 1, without extra assump-
tions.

FIG. 6: Max eigenvalues of K−1 with A⃗2 = 1002 (cut through
isosurfaces, θ3 axis in red).

FIG. 7: Typical asymptotic “cigar” distribution of θ⃗.

VII. CONCLUSION

The standard model of particle physics has a landscape
of physically inequivalent vacua. Naively assigning equal
probability to each makes our universe look very unlikely.
At first, rejecting the “just so” unitary gauge and an-
thropic principle seems to make things worse. But by
forcing us to consider the dynamics, this intransigence
eventually leads to a natural explanation.

Any resemblance to other theories, living or dead, may
be purely coincidental.
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APPENDIX A: EVERY UNITARY GAUGE

In this appendix, I follow the introductory textbook
approach of taking the classical SM Lagrangian and pick-
ing a point on the Higgs vacuum manifold, Eq. (2), but
with a twist. Instead of choosing the standard vacuum
and merging it into the math as an anonymous number,
I carry it along explicitly as a variable. The payoff at the
end of the calculation is be the ability to easily read off
the effect of choosing different vacua. If they are all phys-
ically equivalent, physical quantities will be unaffected.
Substituting Eq. (3) into the SM Lagrangian and read-

ing off terms quadratic in the electroweak gauge fields[
Bµ,W

1
µ ,W

2
µ ,W

3
µ

]
yields the mass matrix

ν2

2

 g2B gBgWΘ1 gBgWΘ2 −gBgWΘ3

gBgWΘ1 g2W 0 0
gBgWΘ2 0 g2W 0
−gBgWΘ3 0 0 g2W

(A1)
where gB and gW are the gauge coupling constants. You
may recognize the auxiliary quantities

Θ1 = [θ1θ3(cos(θ)− 1) + θθ2 sin(θ)] /θ
2 (A2)

Θ2 = [θ2θ3(cos(θ)− 1)− θθ1 sin(θ)] /θ
2 (A3)

Θ3 =
[
(θ21 + θ22) cos(θ) + θ23

]
/θ2 (A4)

as the Hopf map [16], which takes disjoint circles on S3
to different points on S2: (Θ1)

2
+ (Θ2)

2
+ (Θ3)

2
= 1.

The eigenvalues of Eq. (A1) are independent of θ⃗, and
easily recognized as the tree level masses squared of pho-
ton, W± and Z0: 0, g2W ν2/4 and (g2W +g2B)ν

2/4. As you
may have expected, all vacua are equivalent as far as the
gauge boson masses are concerned.
The two degenerate eigenstates can be orthogonalized

to obtain

Aµ = [gW /gB ,−Θ1,−Θ2, Θ3]/
√
1 + g2W /g2B (A5)

Ẃ 1
µ = [0, −Θ2, Θ1, 0]/

√
Θ2

1 +Θ2
2 (A6)

Ẃ 2
µ = [0,Θ1Θ3,Θ2Θ3,Θ

2
1 +Θ2

2]/
√

Θ2
1 +Θ2

2 (A7)

Zµ = [−gB/gW ,−Θ1,−Θ2,Θ3]/
√

1 + g2B/g
2
W(A8)

all in terms of the basis
[
Bµ,W

1
µ ,W

2
µ ,W

3
µ

]
. Eq. (A5) is

the massless combination, i.e. the photon, in an arbitrary
vacuum.
Eqs. (A5)-(A8) are orthonormal eigenstates, so they

are trivially inverted. In particular, setting all massive
combinations to zero and keeping only the photon yields

Bµ = Aµ cos(θW ) (A9)

W 1
µ = −AµΘ1 sin(θW ) (A10)

W 2
µ = −AµΘ2 sin(θW ) (A11)

W 3
µ = AµΘ3 sin(θW ) (A12)

where θW is the Weinberg angle, sin2(θW ) = g2B/(g
2
B +

g2W ) ≃ 0.232.
Note that each set of mass eigenstates applies to an

entire Hopf circle of vacua. For every θ⃗, there is therefore
a direction on the Higgs vacuum manifold along which
the mass eigenstates remain unchanged.

The SM Higgs field also produces fermion masses
through Yukawa couplings on the form

fuq̄LΦ̃uR + fdq̄LΦdR +H.c. (A13)

where fu and fd are the coupling constants, qL =
[uL, dL]

T is an SU(2) doublet of left-handed fermions
(e.g. up and down quarks), uR and dR are the corre-
sponding right-handed fermions, H.c. is short for Her-
mitian conjugate, and Φ̃ = [ϕ0∗,−ϕ+∗]T . For the cog-
nescenti, I use 4-component Dirac spinors with the op-
posite chirality projected out: uL = 1

2 (1 − γ5)uL, uR =
1
2 (1 + γ5)uR, q̄L = q†Lγ

0. The γµ are Dirac’s gamma
matrices.

This can equivalently be written in matrix form by
assembling uR and dR in a right-handed doublet qR, the
Higgs components in the SU(2) matrix[

φ0∗ φ+

−φ+∗ φ0

]
=

ν√
2
Σ (A14)

and the Yukawa couplings in a diagonal matrix

ML =
ν√
2

[
fu 0
0 fd

]
(A15)

Eq. (A13) then becomes

q̄LΣMLqR + q̄RM
†
LΣ

†qL (A16)

In the standard vacuum, Σ is diagonal, so the fermions
are mass eigenstates. In other vacua, it is evident by
inspection that the mass matrix is diagonalized by the
rotation qL → q′L = Σ†qL, i.e. by

qL = Σq′L (A17)

The SM Lagrangian can therefore be expressed using
fermion mass eigenstates q′L by substituting Eq. (A17)
into it. The task is simplified by using Eq. (3), Eq. (A14)
and the Pauli matrices

τ1 =

[
0 1
1 0

]
τ2 =

[
0 −i
i 0

]
τ3 =

[
1 0
0 −1

]
(A18)

to write

Σ = cos

(
θ

2

)
+ i

θaτa
θ

sin

(
θ

2

)
= exp

(
i

2
θaτa

)
(A19)

We now have all we need to rewrite the standard kinetic
term iq̄LDµγ

µqL, where

Dµ = ∂µ +
ieBµ

cos(θW )

(
q − τ3

2

)
+

ieW a
µ τ

a

2 sin(θW )
(A20)
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is the covariant derivative, e is the electric charge of
the proton (related to the fine-structure constant α ≃
1/137.04 by e2 = 4πα) and q is the electric charge oper-
ator. For brevity, let’s focus on electromagnetic interac-
tions by using Eqs. (A9)-(A12) and a neutrino-electron
doublet LL = [νL, eL]

T for qL. Applying Eqs. (A17),
(A19) and

Σ∂µΣ
† =

i

2
∂µθ

aΣ†τaΣ (A21)

this becomes

iL̄LDµγ
µLL = i ν̄′L∂µγ

µν′L

+
1

2

[
Θ1∂µθ

1 +Θ2∂µθ
2 −Θ3∂µθ

3
]
ν̄′Lγ

µν′L

+ GAµν̄
′
Lγ

µν′L + . . . (A22)

where

G = e
(
Θ2

1 +Θ2
2

)
= e

(
1−Θ2

3

)
(A23)

and “. . .” contains all terms involving eL and massive
gauge bosons. The last row in Eq. (A22) says that
even at interaction energies too low to involve those, ν′L
and photons interact with effective coupling strength G.

When θ⃗ → 0, Θ3 → 1 and G → 0. The equivalent ex-

pressions for e′L are similar; the ∂µθ⃗ terms change sign,
the effective photon coupling becomes eΘ2

3.

So, as θ⃗ moves away from 0, ν′L picks up an effective
electric charge G = e(1−Θ2

3), while that of e
′
L is reduced

by the same amount. G = 0 only on the axis θ1 = θ2 = 0
and on a ring in the θ3 = 0 plane with radius squared
θ21 + θ22 = π2. Centered on that ring, there is a torus
where G = e, with inner radius squared π2/4 and outer
radius squared 9π2/4 extending along θ23 ≃ [0, 2π]. On
that torus, ν′L has unit electric charge, while e′L has none.
There are also mixed interaction terms

Aµ (F ν̄′Lγ
µe′L + F ∗ē′Lγ

µν′L) (A24)

where

F = eΘ3

[
Θ1 − iΘ2 − 2 (i θ1 + θ2)

sin(θ)

θ

]
(A25)

This may look alarmingly messy, but its contribution to
the amplitude squared of such interactions (i.e. to their
probability) is

|F |2 = (eΘ3)
2(Θ2

1 +Θ2
2) = eGΘ2

3 (A26)

For quarks, it is sufficient to note that the kinetic term
i Q̄LDµγ

µQL with

QL =

[
uL

dL

]
(A27)

can be obtained from its lepton counterpart by the sub-
stitutions νL → uL, eL → dL, Bµ → −Bµ/3. The form

of the mixed interaction terms does not change, while the
diagonal terms become

e

(
1

3
−Θ2

3

)
Aµū

′
Lγ

µu′
L (A28)

and

e

(
Θ2

3 −
2

3

)
Aµd̄

′
Lγ

µd′L (A29)

Like ν′L and e′L, u
′
L and d′L swap electric charges as Θ3

goes from 1 to 0.
Right-handed fermions do not partake in weak interac-

tions and work as usual, independently of θ⃗. For instance,

iL̄RDµγ
µLR = i ν̄Rγ

µ∂µνR + i ēRγ
µ∂µeR

+ eAµēRγ
µeR (A30)

APPENDIX B: PHOTON DECAY

Particles with decay rate Γ have mean life τ = 1/Γ;
the surviving fraction after a time t is exp(−t/τ) =
exp(−tΓ). If they are moving at relativistic speed β in
the observer’s reference frame and Γ is known in their
center of mass (CoM) frame, the observer will see a di-
lated lifetime, or equivalently a reduced decay rate

ΓO = ΓCoM

√
1− β2 (B1)

where β = MO/E, MO is particle mass in the observer
frame and E is total particle energy. The time t needed
to traverse a gradient of spatial width L is t = L/β, so
the fraction of particles which survive the crossing is

exp(−t/τ) = exp

(
−LΓCoM√
E2/M2

O − 1

)
(B2)

In our case, MO is the effective photon mass due to the

θ⃗ gradient. To leading order, it can be obtained by sub-
stituting Eqs. (A9)-(A12) into the SM Langrangian and
reading off all terms quadratic in Aµ. Since Aµ is defined
by its lack of an ordinary mass ∝ ν, such terms can only
come from the quartic interactions of W a

µ . Even without

a full derivation, we can therefore tell thatMO ∼ |∆θ⃗|/L,
where ∆θ⃗ is the difference in θ⃗ across the gradient and L
its width. Substituting MO into exp(−t/τ) and expand-
ing in 1/L yields

exp(−t/τ) ≃ exp

(
−ΓCoM |∆θ⃗|

E

)[
1−O

(
ΓCoM

L2E3

)]
(B3)

Visible light has E≃ 1 eV≃ 1/(10−6 m). One ly is≃ 1016

m, so the first term is quite sufficient for astronomic L.
Eq. (B3) essentially says that the longer mean life of
a photon crossing a wider gradient is compensated by
the longer flight time, so the surviving fraction stays the
same.
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