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Abstract

Gradient stencils with isotropic O(h2) and O(h4) discretization error are constructed by consid-

ering their effect on common, rotationally invariant building blocks of field-theoretic Lagrangians

in three dimensions. The same approach is then used to derive low-pass filters with isotropic O(h4)

and O(h6) error.
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I. INTRODUCTION

Stencils, finite difference approximations of differential operators on a regular lattice, are

a staple of numerical analysis. In [1], it was pointed out that the traditional measure of

their quality, the order n of the leading discretization error (O(hn) for lattice spacing h) is

insufficient when the number of dimensions > 1. Different stencils then exist for a given n,

generally with different, direction-dependent discretization errors. This anisotropy causes

distortions, like preferred axes of growth or wave propagation.

The authors of [1] proceeded to derive a number of stencils with isotropic error, including

O(h2) discretizations of the Laplacian ∇2, the Bilaplacian (∇2)2 and the gradient of the

Laplacian ∂x(∇2) in three dimensions. Notably absent are improved stencils for first order

derivatives. One reason is presumably that in simple cases, their use can be avoided using

Green’s first identity, i.e. integration by parts,∫
U

(
ψ∇2ϕ+∇ϕ · ∇ψ

)
dV =

∮
∂U

ψ (∇ϕ · ~n) dS (1)

where ϕ and ψ are scalar functions defined on the spatial region U with boundary ∂U . Given

suitable (e.g. periodic or vanishing) boundary conditions, the surface integral vanishes. Any

terms in an action integral on the form∇ϕ·∇ψ can therefore be replaced with the equivalent

−ψ∇2ϕ, as was done e.g. in [2][3][4].

Unfortunately, this simple trick does not work in more complicated cases, like the non-

linear vector-scalar interaction terms on the form f(φ) (Aµ∂νφ−Aν∂µφ)2 found in gauged

sigma models. To study the dynamics of models containing such terms, one must turn to

numerics, and to prevent the introduction of directional artifacts, one must confront the

question: how can the first order derivative be discretized in such a way that the resulting

errors are isotropic?

The obvious idea, using a weighted average of rotated one-dimensional operators, is in-

complete; different weights can be chosen to minimize different errors. The issue has been

studied in detail in the context of aeroacoustic simulations, where there is a special need

to minimize dispersion and dissipation errors. Even in such a specific context, plenty of

arbitrariness remains. You can choose to minimize dispersion over a certain spectral range,

along certain directions (e.g. the diagonals between coordinate axes) and/or over some

spatial average [5][6].
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Here I will follow a different approach, closer in spirit to [1]: write down the most general

stencil of order n, apply it to common rotationally invariant building blocks of field theories

in three spatial dimensions, compare with the equivalent analytical expressions, and impose

the requirement that the errors be rotationally invariant too, at least to O(hn).

II. IMPROVED DERIVATIVE STENCILS

A. O(h2) stencil

Given a differential operator D of order p and a stencil Sijk with extension 2r + 1, i.e.

with each index running from −r to r, follow [1] and impose the requirement that∑
ijk

SijkPq(x+ ih, y + jh, z + kh) = DPq(x, y, z) (2)

for any polynomial

Pq(x, y, z) =

i+j+k≤q∑
i,j,k=0..q

aijkx
iyjzk (3)

where aijk are arbitrary constant coefficients and q = p + n − 1. This is a necessary and

sufficient condition for Sijk to be an O(hn) approximation of D. Since we are interested in

p = 1, our test polynomials will all be q = n.

As a warmup, consider a compact (i.e. r = 1) stencil. From the one-dimensional case,

we know that it can be at most an O(h2) approximation to the first derivative, so we write

P2(x, y, z) = a000 + a001z + a002z
2

+ a010y + a011yz + a020y
2

+ a100x+ a101xz + a110xy

+ a200x
2 (4)

and demand that it behave like a derivative w.r.t. x:

1∑
i,j,k=−1

SijkP2(x+ ih, y + jh, z + kh) = ∂xP2(x, y, z) (5)

As such, it must also satisfy the symmetry conditions

Sikj = Si−jk = Sij−k = Sijk (6)
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(invariance under rotations and reflections about the x axis) and

S−ijk = −Sijk (7)

(must be odd along the x axis). Since the derivative does not care which point we choose as

the origin, it is then sufficient to solve e.g. for S100 at x = y = z = 0, where one easily finds

S100 =
1− 8h(S111 + S101)

2h
(8)

When this relation is satisfied, Eq. (5) holds everywhere.

Setting the off-axis weights S111 and S101 to zero reproduces the standard one-dimensional

stencil, as it should, but we want to use them to improve the computation of some rotational

invariant. A natural target is the gradient squared. It’s enough to compute it for a plane

wave with constant wave vector ~k = (kx, ky, kx):

W (~x,~k) = eı
~k·~x = eı(kxx+kyy+kzz) (9)

(∇W (~x,~k))2 = −~k2W 2(~x,~k) (10)

Since W (~x,~k) is a Fourier basis, establishing invariance w.r.t. it establishes invariance for

any (well behaved) field.

At the origin, where (∇W (~x,~k))2 = −~k2, applying our stencil yields(
1∑

i,j,k=−1

Sijke
ıh(ikx+jky+kkz)

)2

+

(
1∑

i,j,k=−1

Sjike
ıh(ikx+jky+kkz)

)2

+

(
1∑

i,j,k=−1

Skjie
ıh(ikx+jky+kkz)

)2

= −~k2

+
h2

3
(k4x + k4y + k4z)

+ 8h3(S101 + 2S111)(k
2
xk

2
y + k2xk

2
z + k2yk

2
z)

+O(h5) (11)

(the stencil for ∂y is obtained by swapping i and j in Sijk, the stencil for ∂z by swapping i

and k).
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At first sight, this is not encouraging. The leading error term is not proportional to

some constant expression which could be made to vanish by an appropriate choice of stencil

coefficients, and it is not rotationally invariant. But we can choose S111 and S101 so as to

complete the squares: any

S101 + 2S111 =
1

12h
(12)

will reduce the O(h2) error term to (h~k2)2/3, which is manifestly isotropic. Since we knew

from the outset that the error would be O(h2), this is the best result we could have hoped

for. It is now easily verified that the improved stencil also produces an isotropic leading

error h2(kA · kB)(k2A + k2B)/6 in the generalized case ∇W (~x, ~kA) · ∇W (~x, ~kB), and the same

leading error term as for gradient squared when applied twice to compute the Laplacian,

∇2W (~x,~k).

Absent further targets for improvement, we can stop here and simply choose to minimize

the number of multiplications and additions by setting e.g. the “corner” coefficient S111 to

zero. The entire stencil is then given by

S0jk = 0 (13)

S1jk = −S−1jk =
1

12h


0 1 0

1 2 1

0 1 0

 (14)

Note that the sum of the weights in S1jk equals the single weight in the one-dimensional

stencil. The improved stencil essentially combines its one-dimensional equivalent with a

low-pass filter along the orthogonal axes.

B. O(h4) stencil

The construction of a stencil with O(h4) isotropic error proceeds along the same lines.

From the one-dimensional case, we know that at least r = 2 is required. Applying the

symmetry conditions of Eq. (6) and (7) reduces the number of independent stencil weights

from 53 = 125 to 12. The test polynomial of Eq. (3) is now P4, and we demand again

that our stencil act on it like a derivative w.r.t. x. Applying this condition at the origin
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eliminates three more independent weights, which can be taken to be e.g.

S100 = 4S111 + 8S201 + 12S102 + 16S211

+32(S112 + S202 + S122) + 64S222

+80S212 + 2/(3h) (15)

S200 = (4(S201 + S202 + S211 + S222)

+8S212 + 1/h)/(−12) (16)

S101 = −2(S111 + S201 + 2(S102 + S211))

−8(S202 + S122)− 10S112 − 16S222

−20S212 (17)

When these relations are satisfied, the stencil acts on P4(x, y, z) like ∂x everywhere.

As expected, setting the off-axis weights to zero reproduces the standard one-dimensional

O(h4) stencil (S100 = 2/(3h), S200 = −1/(12h)) but again, we can use them to ensure that

the gradient squared of an arbitrary plane wave is reproduced with an isotropic leading error

term. At the origin, the error in (∇W (~x,~k))2 introduced by our stencil is

h4(k6x + k6y + k6z)/15

− 4h5(

3k2xk
2
yk

2
z

(S111 + 2S211 + 8S112 + 16(S122 + S212)

+32S222)

−(k2xk
4
y + k4xk

2
y + k2xk

4
z + k4xk

2
z + k2yk

4
z + k4yk

2
z)

(S102 + S201 + 2(S112 + S211 + S122)

+12S202 + 24S222 + 28S212)

)

+ O(h6) (18)
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Completing the squares, e.g. by substituting

S111 = 2(2(S102 + S201) + 3S211 − 4S122

+8S222 + 12S202 + 20S212)

+
1

6h
(19)

S112 = −1

2
(S102 + S201 + 2(S211 + S122)

+6S202 + 12S222 + 14S212)

− 1

40h
(20)

this becomes h4(~k2)3/15 + O(h6). It is again straightforward to verify that the improved

stencil also produces the same leading error when applied twice to compute the Laplacian.

But to get an isotropic leading error in the more general case ∇W (~x, ~kA) · ∇W (~x, ~kB), we

need to repeat the exercise and complete the squares once more. With

S201 = −2(S211 + 2S202 + 4S222 + 5S212)−
1

30h
(21)

the error becomes h4(kA · kB)((k2A)2 + (k2B)2)/30 +O(h6). Stopping here and setting the six

remaining independent weights S202 = S211 = S212 = S222 = S102 = S122 = 0, the stencil

becomes

S0jk = 0 (22)

S1jk =



0 S112 0 S112 0

S112 S111 S101 S111 S112

0 S101 S100 S101 0

S112 S111 S101 S111 S112

0 S112 0 S112 0


(23)

S100 =
4

15h
(24)

S101 =
1

12h
(25)

S111 =
1

30h
(26)

S112 =
−1

120h
(27)
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FIG. 1: The O(h4) stencil (x axis in red). Red balls are positive weights, blue balls negative.

Volume is proportional to weight.

S2jk =



0 0 0 0 0

0 0 −S111 0 0

0 −S111 S200 −S111 0

0 0 −S111 0 0

0 0 0 0 0


(28)

S200 =
1

20h
(29)

S−ijk = −Sijk (30)

Again, the weights in Sijk sum to the corresponding single weights in the one-dimensional

stencil.

III. IMPROVED LOW-PASS FILTERS

A. O(h4) filter

Besides differentiation, which is essentially a roughening operation, one often needs to

perform the opposite task, smoothing. The same approach used for derivatives can be

applied to construct improved smoothing operators: write down the most generic stencil
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with extension 2r + 1, subject to the total symmetry condition

Sikj = S−ijk = Sikj = Si−jk = Sij−k = Sijk (31)

apply it to a plane wave and demand that the result be isotropic up to some power of h. In

the simplest non-trivial case, r = 1, symmetry allows only four independent weights, which

we can take to be S000, S001, S011 and S111. Applying the stencil to W (~x, ~kA) at the origin

and Taylorizing in h yields

1∑
i,j,k=−1

Sijke
ıh(ikx+jky+kkz)

= S000 + 6S001 + 12S011 + 8S111

−h2~k2(S001 + 4(S011 + S111))

+h4(

(k4x + k4y + k4z)S001

+4 (k4x + k4y + k4z + 3(k2xk
2
y + k2xk

2
z + k2yk

2
z))S011

+4 (k4x + k4y + k4z + 6(k2xk
2
y + k2xk

2
z + k2yk

2
z))S111

)/12

+O(h6) (32)

This is already isotropic up to O(h2). We can complete the squares in the O(h4) terms by

imposing

S011 = (S001 − 8S111)/2 (33)

It is possible to push on to higher order, but if the effect of the stencil is to depend on |~k|,

we need the remaining independent weights.

Given (approximate) isotropy, we can analyze the frequency response along any conve-

nient direction. On the x axis, applying the stencil to W (~x, ~kA) (at the origin, as usual) has

the effect of multiplying the latter by the frequency response function

H(ω) = S000 + 6S001 − 16S111

+6(S001 − 4S111) cos(ω) (34)

where ω = kxh is the circular frequency. For this to be as close to an ideal low-pass filter as

possible, we want H(0) = 1 and H(π) = 0 (ω = π is the Nyquist frequency, beyond which
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signals are aliased to lower frequencies due to the finite resolution of the lattice). The first

condition is satisfied by imposing

S111 =
S000 + 12S001

40
− 1 (35)

the second one by

S001 = 4S111 + 1/12 (36)

With these choices,

H(ω) =
1 + cos(ω)

2
(37)

and the stencil reduces to

S0jk =


S011 S012 S011

S012 S000 S012

S011 S012 S011

 (38)

S011 =
1 + 6S000

24
(39)

S012 =
1− 6S000

12
(40)

S1jk = S−1jk =


S111 S011 S111

S011 S012 S011

S111 S011 S111

 (41)

S111 = −S000

8
(42)

This can be viewed as an interpolator which seeks to determine the value of the central

lattice site from those of its nearest neighbors and mixes the result with the original value,

in proportion to the remaining independent weight S000.
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FIG. 2: Frequency response H(ω) of the improved low-pass filter for circular frequency ω.

B. O(h6) filter

With r = 2, completing the squares leaves enough independent weights for a low-pass

filter with H(π) = 0 up to O(h6). To that order, isotropy holds when

S001 = 16S112 + 8S111 − 20S012

−100S122 − 128S022 (43)

S002 = 40S222 + 31S122 + 5S112 + 2S022

+(S111 − 5S012)/2 (44)

S011 = 256S222 + 120S122 + 30S112 + 4S111

−64S022 − 20S012 (45)

The twin requirements H(0) = 1 and H(π) = 0 can then be satisfied with

S122 = (22080S112 − 136704S022 − 20352S012

+8304S111 + 512S000 − 97)/99840 (46)

At this point, the frequency response still has a dependence on S000, which can be removed

by imposing

S112 =
−2S000

135
(47)

so that

H(ω) =
1 + cos(ω)

832

((3888S111 − 27648S022 + 3456S012 − 37) cos(ω)

−3888S111 + 27648S022 − 3456S012 + 453) (48)
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For a simple low-pass filter,

S111 =
27648S022 − 3456S012 + 37

3888
(49)

reduces Eq. (48) to Eq. (37). Setting S012 = S022 = 0 then produces the final result

S0jk =



0 0 S002 0 0

0 S011 S001 S011 0

S002 S001 S000 S001 S002

0 S011 S001 S011 0

0 0 S002 0 0


(50)

S001 =
−1368S000 + 305

3240
(51)

S002 =
63S000 + 2

1620
(52)

S011 =
2(9S000 + 2)

135
(53)

S1jk =



S122 S112 0 S112 S122

S112 S111 S011 S111 S112

0 S011 S001 S011 0

S112 S111 S011 S111 S112

S122 S112 0 S112 S122


(54)

S111 =
37

3888
(55)

S112 =
−2S000

135
(56)

S122 =
72S000 − 7

38880
(57)

S−1jk = S1jk (58)

S2jk =



S222 S122 0 S122 S222

S122 S112 0 S112 S122

0 0 S002 0 0

S122 S112 0 S112 S122

S222 S122 0 S122 S222


(59)

S222 =
27S000 + 1

19440
(60)

S−2jk = S2jk (61)

12



When the smoothing filter is used together with O(h4) derivative stencils, there is little

reason to go beyond this point.

[1] M. Patra, M. Karttunen, Num. Meth. for PDEs 22 (2005) 936.

[2] A.V. Frolov, JCAP 11 (2008) 009 (http://arxiv.org/abs/0809.4904).

[3] J. Sainio, Comp. Phys. Comm. 181 (2010) 906 (http://arxiv.org/abs/0911.5692).

[4] J. Sainio, arXiv:1201.5029 (http://arxiv.org/abs/1201.5029).

[5] W.D. Roeck, W. Desmet, M. Baelmans, P. Sas, ISMA 2004, 353 (http://www.isma-isaac.

be/publications/isma2004).

[6] A. Sescu, R. Hixon, A.A. Afjeh, J. Comp. Phys. 227 (2008) 4563.

13


