Supporting Information

Contact-Electrification Between Two Identical Materials: Curvature Effect

Cheng Xu ^{1,2,3}, Binbin Zhang ³, Aurelia Chi Wang ³, Haiyang Zou ³, Guanlin Liu ³, Wenbo Ding ³, Changsheng Wu ³, Ming Ma ², Peizhong Feng ², Zhiqun Lin ³, Zhong Lin Wang, ^{1,3,4*}

¹Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China

²School of Materials Science and Engineering, China University of Mining and Technology,

Xuzhou 221116, China

³School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States

⁴School of Nanoscience and Technology, University of Chinese Academy of Sciences,
Beijing 100049, China

*Corresponding author. E-mail: zhong.wang@mse.gatech.edu (Z.L. Wang).

Figure S1. Properties of the PTFE TENG with many initial surface charges. (a)-(c) The diagram, $V_{\rm OC}$ and $Q_{\rm SC}$ of the TENG with initial negative charges on the surface of PTFE-A. (d)-(f) The diagram, $V_{\rm OC}$ and $Q_{\rm SC}$ of the TENG with initial negative charges on the surface of PTFE-B.

Figure S2. V_{OC} and Q_{SC} of the PTFE TENG (sample 5 in Figure 2b,d) when the surface contact position of parts A and B is kept the same each time. Before each test, the TENG was discharged for 8 hours in the ambient air.

Figure S3. V_{OC} (a-b) and Q_{SC} (c-d) of PTFE TENG with a convex surface (the curvature is 0.20 cm⁻¹) and a concave surface (the curvature is -0.20 cm⁻¹).

Figure S4. Properties of the FEP TENG with surfaces of different shapes. (a)-(b) Typical $V_{\rm OC}$ and $Q_{\rm SC}$ of the TENG with a convex surface (curvature of 0.20 cm⁻¹) and a flat surface. (c)-(d) Typical $V_{\rm OC}$ and $Q_{\rm SC}$ of the TENG with a concave surface (curvature of -0.07 cm⁻¹) and a flat surface. (e)-(h) $V_{\rm OC}$ and $Q_{\rm SC}$ of the TENG with a convex surface (curvature of 0.20 cm⁻¹) and a concave surface (curvature of -0.07 cm⁻¹).

Figure S5. Properties of the Kapton TENG with surfaces of different shapes. (a)-(b) Typical $V_{\rm OC}$ and $Q_{\rm SC}$ of the TENG with a convex surface (curvature of 0.20 cm⁻¹) and a flat surface. (c)-(d) Typical $V_{\rm OC}$ and $Q_{\rm SC}$ of the TENG with a concave surface (curvature of -0.07 cm⁻¹) and a flat surface. (e)-(h) $V_{\rm OC}$ and $Q_{\rm SC}$ of the TENG with a convex surface (curvature of 0.20 cm⁻¹) and a concave surface (curvature of -0.07 cm⁻¹).

Figure S6. Properties of the polyester TENG with surfaces of different shapes. (a)-(b) Typical $V_{\rm OC}$ and $Q_{\rm SC}$ of the TENG with a convex surface (curvature of 0.20 cm⁻¹) and a flat surface. (c)-(d) Typical $V_{\rm OC}$ and $Q_{\rm SC}$ of the TENG with a concave surface (curvature of -0.07 cm⁻¹) and a flat surface. (e)-(h) $V_{\rm OC}$ and $Q_{\rm SC}$ of the TENG with a convex surface (curvature of 0.20 cm⁻¹) and a concave surface (curvature of -0.07 cm⁻¹).

Figure S7. Properties of the Nylon TENG with surfaces of different shapes. (a)-(b) Typical $V_{\rm OC}$ and $Q_{\rm SC}$ of the TENG with a convex surface (curvature of 0.20 cm⁻¹) and a flat surface. (c)-(d) Typical $V_{\rm OC}$ and $Q_{\rm SC}$ of the TENG with a concave surface (curvature of -0.07 cm⁻¹) and a flat surface. (e)-(h) $V_{\rm OC}$ and $Q_{\rm SC}$ of the TENG with a convex surface (curvature of 0.20 cm⁻¹) and a concave surface (curvature of -0.07 cm⁻¹).

Figure S8. $V_{\rm OC}$ (a) and $Q_{\rm SC}$ (b) of the PTFE TENG with surface curvature of 0.26 cm⁻¹ and 0.07 cm⁻¹.

Figure S9. Typical $V_{\rm OC}$ (a) and $Q_{\rm SC}$ (b) of the Kapton TENG with two flat surfaces under atmospheric pressure and at room temperature.

Figure S10. SEM images of the Kapton surface after 388 K measurement.