Building a mobile reaction lab notebook

Alex M. Clark, Ph.D.

March 2014

© 2014 Molecular Materials Informatics, Inc. http://molmatinf.com

Electronic Lab Notebooks

- Many shapes & sizes: big, small, hosted, desktop, mobile
- Domains: chemistry, biology, instrumentation
- Many ELNs are generic: functionally equivalent to a Word document
- This talk is about chemical reactions

Data Capture

• Reactions normally drawn for *chemists*...

• ... rather than computers.

Data Capture

• Reactions normally drawn for *chemists*...

• ... rather than computers.

Digitally Friendly

Digitally Friendly

Functionality

- Priorities:
 - 1. computer-friendly datastructures
 - 2. human-friendly workflow
- Because people are flexible! We can do better than the tired paper notebook metaphor

balancing

atom mapping

green metrics

quantity calculation

solvent lookup

sustainable feedstocks

byproduct datasheets

reaction transforms

wizards

Yield101

- Prior art: designed originally for education
- Fancy reaction quantity calculator
- Simple & cheap

 All quantities mapped to structure: stoichiometry, molecular weight, mass, volume, density, concentration, moles, yield

Green Lab Notebook

- Under construction as an iOS app (phones & tablets)
- Superset of Yield101 core functionality
- General purpose reaction lab notebook, with supplementary green chemistry features
- Start with experiment drawing...

- Start with a fresh slate: select the reactant placeholder
- Select the draw icon
- Sketch the reactant structure
- Apply the change: display shows reaction in progress
- Note molecular formula & molecular weight

- Start with a fresh slate: select the reactant placeholder
- Select the draw icon
- Sketch the reactant structure
- Apply the change: display shows reaction in progress
- Note molecular formula & molecular weight

- Start with a fresh slate: select the reactant placeholder
- Select the draw icon
- Sketch the reactant structure
- Apply the change: display shows reaction in progress
- Note molecular formula & molecular weight

- Start with a fresh slate: select the reactant placeholder
- Select the draw icon
- Sketch the reactant structure
- Apply the change: display shows reaction in progress
- Note molecular formula & molecular weight

- Draw product
- Draw stoichiometric reactants
- Draw reagents
- Balance

- Draw product
- Draw stoichiometric reactants
- Draw reagents
- Balance

- Draw product
- Draw stoichiometric reactants
- Draw reagents
- Balance

- Draw product
- Draw stoichiometric reactants
- Draw reagents
- Balance

Quantities

Classify primary reactants & waste products

Quantities

Classify primary reactants & waste products

The Second Step

- Append step
- Draw second product
- Balance: byproducts
- Stoichiometric reagent
- For step 2: any nonwaste product from step
 1 is a primary reactant

Quantities

- Fill in all available measurements
- All possible mappings autocalculated
- Cross-fertilised with stoichiometry & molarity
- Molecular weight really matters...

Quantities

- Fill in all available measurements
- All possible mappings autocalculated
- Cross-fertilised with stoichiometry & molarity
- Molecular weight really matters...

Green Metrics

Process Mass Intensity (**PMI**) = mass of all reactants mass of products

Atom Economy = $\frac{\sum molecular \ weight \ products}{\sum molecular \ weight \ reactants}$

• Trivial calculations... if the information is available.

Green Metrics

```
\Sigma reactants = 1 g + 0.189199 g + 0.829233 g + 0.115314 g + 17.34 g + 0.5 g = 19.9737 g
\Sigma products = 0.567247 g + 0.606206 g = 1.17345 g
\Sigma waste = 0.422504 g + 0.461082 g + 0.122239 g + 0.0889981 g + 0.122239 g = 1.21706 g
                                   PMI = \frac{1 \text{ g} + 0.189199 \text{ g} + 0.829233 \text{ g} + 0.115314 \text{ g} + 17.34 \text{ g}}{0.567247 \text{ g}} = 34.3303
                                   E-factor = \frac{0.422504 \text{ g} + 0.461082 \text{ g} + 0.122239 \text{ g}}{0.567247 \text{ g}} = 1.77317
                                   Atom-E = \frac{204.225}{360.029 + 68.117 + 138.206} = 36.0598 \%
                                   PMI = \frac{1 \text{ g} + 0.189199 \text{ g} + 0.829233 \text{ g} + 0.115314 \text{ g} + 17.34 \text{ g} + 0.5 \text{ g}}{0.606206 \text{ g}} = 32.9487
                                   E-factor = \frac{0.422504 \text{ g} + 0.461082 \text{ g} + 0.122239 \text{ g} + 0.0889981 \text{ g} + 0.122239 \text{ g}}{0.0889981 \text{ g} + 0.122239 \text{ g}} = 2.00767
                                                                                            0.606206 g
                                   Atom-E = \frac{218.252}{204.225 + 90.0779} = 74.1588 %
```

- Totals for reactants, products & waste
- For each non-waste product: PMI, E-factor, Atom-E
- Always calculated, always recorded...

Green Solvents

Environmental data from ACS GCI & GSK

Feedstocks

- Reference collection:
 - info about supply chain
 - encourage renewable use
- Link lab-available quantities to experiment records
- Could synchronise with inventory software
- Lookup in vendor catalogs...

Reaction Transforms

- Provide a pre-curated list of "green" reaction transforms
- Promote user entered experiments into transforms (numbering, clipping)
- Associate with:
 - reagents, catalysts & solvents
 - stoichiometry & quantities
 - yield & experimental conditions
 - literature & green reference data

Further Work

- Work in progress: minimum viable product is close
- Experiment definition extensions to include preparation details, free text, spectra, references, pictures, etc.
- Synchronisation with centralised databases
- Automated structure lookup of problem-compounds: curation required
- Curation of sustainable feedstocks & green reaction transforms
- Facile promotion of experiment-to-transform: ultra convenient reuse

Acknowledgments

- Sean Ekins (Green Solvents)
- Eidogen-Sertanty (Yield101)
- Inquiries to info@molmatinf.com

MOLECULAR MATERIALS INFORMATICS

http://molmatinf.com

http://molsync.com

http://cheminf20.org

@aclarkxyz

