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What's in a proton?\lg




What's in a prON
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What's in a proton?\lg

Acts like a collection of particles, or partons

quarks
gluons
photons
electrons

W bosons

Z bosons
Higgs bosons
etc.




Observing the pm 24

Information about proton's structure comes from collisions
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Observing the pm 2%

Information about proton’s structure comes from collisions
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One parton from the probe proton
__ forward momentum of parton
P ™ forward momentum of proton
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Observing the pm 2%

Information about proton’s structure comes from collisions
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One parton from the target proton
__ forward momentum of parton
" forward momentum of proton
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Observing the pm 2%

Information about proton’s structure comes from collisions

Particles come out and hit the detector
Q ~ transverse (sideways) momentum transfer between partons



Observing the pm 2%

Information about proton’s structure comes from collisions

Behavior of target classified by
@ x;: forward momentum fraction
@ (Q: transverse momentum transfer

which are calculated from measurements of outgoing particles



Classifying coIIisions\ 3K
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Classifying coIIisions\ 3%

Low energy collision:

>

@ Target momentum fraction x: large
@ Transverse momentum transfer Q: small
@ Proton acts like few large partons



Classifying coIIisN 3g

small x

large @




Classifying collisions o

High energy collision:

/

@ Target momentum fraction x: large
@ Transverse momentum transfer Q: large
@ Proton acts like few small partons
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Classifying collisions\ 34

High energy collision:

@ Target momentum fraction x: small
@ Transverse momentum transfer Q: small
@ Proton acts like many large partons
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Parton distributions

Parton distribution function
(PDF) xfi(x, Q?) roughly

represents number (or density)
of partons of type i

5 of 19

Shown for some types of partons:

— gluon —up ——down antiup — antidown

This effective description is the parton model
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The parton model and QCD 6%

Quantum chromodynamics (QCD):
theory of strong interactions
Can we derive parton distributions from QCD?

scaled down
by 10

xfi(x, Q%)
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The parton model and QCD 6%

Quantum chromodynamics (QCD):
theory of strong interactions
Can we derive parton distributions from QCD?

no(ish)
—_ scaled down
o by 10
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Parton branching\ 7/9

Here's what happens under the hood:

probe parton ————

target
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Here's what happens under the hood:

probe parton
large x %25%

target
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Here's what happens under the hood:

probe parton

large x

target
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Here's what happens under the hood:

probe parton

large x

target
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Parton branching\ 74

Here's what happens under the hood:

probe parton

large x

small x

target
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Parton branching\ 74

Here's what happens under the hood:

probe parton

large x
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BFKL equation \3/9

Translation into math: BFKL equation

0S(x, r asN, g
(x, ra1) _ /d2 2 1S(x, i) +S(x, ) —S(x, rg)—1]

1 2
dln 2T foatis
where

Fx,k2) = [xf(x Q)|

aQ2 @

S(x,r?) = /dzk e *TF(x, k?)



BFKL equation \ 3%

Translation into math: BFKL equation

as X,I’2 O{ch I’
o) 9o [ ara [S(x S ) S )1

1 2
dln 27 212r2,
where

Fle k) =~ [wi(x. @)

aQ2 @

S(x,r?) = /dzk e *TF(x, k?)



Runaway growth\ 9/9

\‘ Problem:
\ e As xg(x, Q?) increases, so
& ' does gluon interaction
€ 2 s
% \‘ probability
EE \ @ At very small x, trend breaks
L Q2 = 100 GeV| probability conservation!
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Runaway growth\ 94

gluon PDF xg(x, @?)

1
1
1
1
1

extrapolation

Q2 = 100 GeV|
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PARTICLE PHYSICS IS BROKEN
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Multiple scattering\ m%

Multiple interactions occur with lots of partons in the target

probe

target




BK equation \11%

Translation into math: BK equation

0S(x,13)  asN. 5
(x,r1) /d2 2012 [S(X7 ron)—S(x, r022)5(x,r122)]

foa iz

(9In§ 272



BK equation \11%

Translation into math: BK equation

0S X, r2 asN G
(x, 1) _ /d2 2 [S(x. r51)—S(x, 1) S(x, )]

foaris
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Saturat|on \12/
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\‘ BK predicts slower growth

) This is called saturation
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o i Details depend on parameters in
4 the equation
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Cross section calculation 13%

To connect gluon distribution to measurable cross section:

probe
‘ target
M f
)| i '[! ’/
L) W
‘ h"l J“

cross section
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Cross section calculation 13/

of 19

To connect gluon distribution to measurable cross section:

probe
target
‘lli;‘.: '[!y
||‘|‘ i Jmp&?‘";
‘ A
cross section
d3c -~ £ Q?) s y 2
dvdip, = Xpti(xp, Q7) (xg>r1)



Cross section calculation 13%

To connect gluon distribution to measurable cross section:

probe

target

A}v. n
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cross section
a3 . ' '
- xofi(xp> Q) HI (x5, g7 1)S 0, 72)

dyd?p
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Cross section calculation 134

To connect gluon distribution to measurable cross section:

ignored
probe o
target
tl,l"l' 'I!h
[} —— it
'.:l"ll"' \ ‘.‘n‘
‘ A
cross section
\ to detector
o ) 2 (k) 2
dvdZp, = Xpfi(Xp, @°)Dpy; (2(xg), @) Hi (xps Xg¥ 1 )S(xg, r)
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Cross section calculation 134

To connect gluon distribution to measurable cross section:

probe nored
target
Nl i
Jh— b
. it
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cross section
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to detector
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Perturbation series\ 14%

d3c Cx, > 2
e S /dxgdxpx—zg;\yﬁ(\’,,. Q%)Dyy;(2(x5), Q%) /der_ Hff)(x,,.xgu)sug, )
ik P
Leading order: Next to leading order:
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But are these contributions enough?
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Determining the gluon distribution 15%

@ Postulate a form for gluon distribution S(x, r?)
using e.g. BK equation (section 2)

@ Plug in to cross section formula
(section 3)

© Compare results to data

Two reasons it might not match:
@ Proposed model of gluon distribution is not accurate; or

@ Cross section formula is not precise enough



Comparison Withdata\ 164

Best available: from BRAHMS @ RHIC (Brookhaven)

[GeV‘Q]

d3N
dnd?p .
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Comparison Withdata\ 164

Best available: from BRAHMS @ RHIC (Brookhaven)

10*
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Normalized cross section
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——data ||

high p: b high py:
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05 1 15 2 25 3 35 0 1 2 3

Detected pion momentum p, [GeV]

Detected pion momentum p, [GeV]

Strongly suggests the LO4+NLO terms are insufficient!

€



What next? \ 17%

If the leading order

and next to leading order terms

Vab ok b et ol

don't work, look for largest terms at higher orders.

Like W "7 but with more loops.

Amm/




Resummation results

Simplest resummation scheme:

18 of 19
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Resummation results 184

Simplest resummation scheme:

T BRAHMS n =222 BRAHMS n =3.2
% 103 = T T = T T T
O, 103 )
2(?‘1
=z 10 110t .
_ 1071+ high p,: :
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Normalized cross section
=
15}
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——data
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Detected pion momentum p, [GeV] Detected pion momentum p, [GeV]

This is promising! But needs better tuning.
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What does this tellus?\w%

Three possible conclusions:
@ Cross section formula is not precise enough
@ Model of gluon distribution is not accurate, or

@ Model of gluon distribution is accurate

BRAHMS 7 = 3.2

[Gev—2]

&N
dnd?p.

Normalized cross section

0 1 2 3
Detected pion momentum p, [GeV]
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Three possible conclusions:

@ Cross section formula is not precise enough

@ Model of gluon distribution is not accurate, or

@ Model of gluon distribution is accurate
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What does this tellus?\w%

Three possible conclusions:
@ Cross section formula is not precise enough
@ Model of gluon distribution is not accurate, or

@ Model of gluon distribution is accurate

BRAHMS 7 = 3.2

[Gev—2]

&N
dnd?p.

Normalized cross section

0 1 2 3
Detected pion momentum p, [GeV]

NLO formula is useful for looking for saturation
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