Supramolecular Control of Azobenzene Switching on Nanoparticles

Zonglin Chu,[†] Yanxiao Han,[‡] Tong Bian,[†] Soumen De,[†] Petr Král,^{‡,§} and Rafal Klajn^{*,†}

[†]Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel

[‡]Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA

[§]Department of Physics, Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA

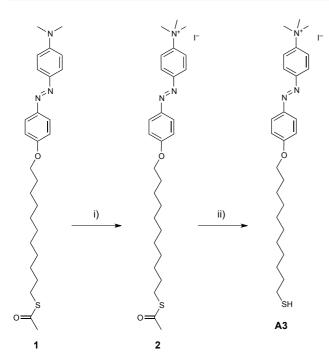
Table of contents

1.	Materials and methods	S2
2.	Synthesis and characterization of thiolated azobenzenes A1–A6	S2
	2.1. Thiolated azobenzene A1	S2
	2.2. Thiolated azobenzene A2	S2
	2.3. Thiolated azobenzene A3	S2
	2.4. Thiolated azobenzene A4	S7
	2.5. Thiolated azobenzene A5	S7
	2.6. Thiolated azobenzene A6	S17
3.	Synthesis and characterization of background ligands B1–B9	S26
	3.1. Background ligand B1	S26
	3.2. Background ligand B2	S26
	3.3. Background ligand B3	S33
	3.4. Background ligand B4	S33
	3.5. Background ligand B5	S33
	3.6. Background ligand B6	S33
	3.7. Background ligand B7	S45
	3.8. Background ligand B8	S49
	3.9. Background ligand B9	S54
4.		S61
	4.1. Synthesis of 2.5 nm gold nanoparticles	S61
	4.1.1. Functionalization of 2.5 nm gold nanoparticles by the simultaneous addition of two thiols	S61
	4.1.2. Functionalization of 2.5 nm gold nanoparticles by the consecutive addition of two thiols	S61
	4.2. Synthesis of 5.5 nm gold nanoparticles	S61
	4.2.1. Functionalization of 5.5 nm gold nanoparticles	S61
5.	Determining the values of χ on Am -functionalized gold nanoparticles	S62
6.	Determining the photoisomerization yield of azobenzene on gold nanoparticles	S63
7.	Azobenzene photoisomerization and thermal relaxation on water-soluble gold nanoparticles	S64
8.	Synthesis and functionalization of 3.5 nm palladium nanoparticles	S73
9.	Synthesis and functionalization of 4.0 nm magnetite nanoparticles	S74
	9.1. Synthesis of 4.0 nm magnetite nanoparticles	S74
	9.2. Synthesis of azobenzene-terminated catechol A7	S74
	9.3. Synthesis of background ligand B10	S74
	9.4. Functionalization of 4.0 nm magnetite nanoparticles	S78
10	. Molecular dynamic simulations	S79
11.		S84
12.	. Supporting references	S84

1. Materials and methods

All chemicals were of analytical grade and were used as received. ¹H and ¹³C NMR spectra were recorded on a Bruker Avance III 400 MHz or a Bruker Avance III HD 500 MHz NMR spectrometer. Chemical shifts (δ) in the ¹H NMR spectra are reported in parts per million (ppm) downfield from TMS (0.00 ppm) or relative to residual solvent resonances (3.31 ppm for methanol-d₄, 7.26 ppm for CDCl₃, 2.05 ppm for acetone-d₆, 4.79 ppm for D₂O, and 2.50 ppm for DMSO-d₆). Multiplicities in the ¹H NMR spectra are reported as "s" (singlet), "d" (doublet), "t" (triplet), and "m" (multiplet). Chemical shifts (δ) in the ¹³C NMR spectra are reported in ppm relative to TMS (0.00 ppm) or relative to residual solvent resonances (49.00 ppm for methanol-d₄, 77.16 ppm for CDCl₃, 29.84 ppm for acetone-d₆, and 39.52 ppm for DMSO-d₆). Electrospray ionization mass spectrometry (ESI-MS) measurements were carried out on a Waters Micromass O-TOF spectrometer. Transmission electron microscopy (TEM) was performed on a JEOL JEM-2100 microscope operating at 200 kV. UV/Vis absorption spectra were recorded with a Shimadzu UV-2700 spectrophotometer. Free-radical thioacetylation reactions were carried out using an LZC-ORG photoreactor (Luzchem Research, Inc.) equipped with eight UVB lamps (wavelength range 280–315 nm; total intensity $\sim 1 \text{ mW} \cdot \text{cm}^{-2}$). For photoirradiation experiments, a 365 nm UVP UVGL-25 lamp (light intensity ~0.7 mW cm⁻²) and a Prizmatix Mic-LED 460 nm LED (collimated LED power of ~215 mW) were used as the UV and blue light sources, respectively.

2. Synthesis and characterization of thiolated azobenzenes A1-A6

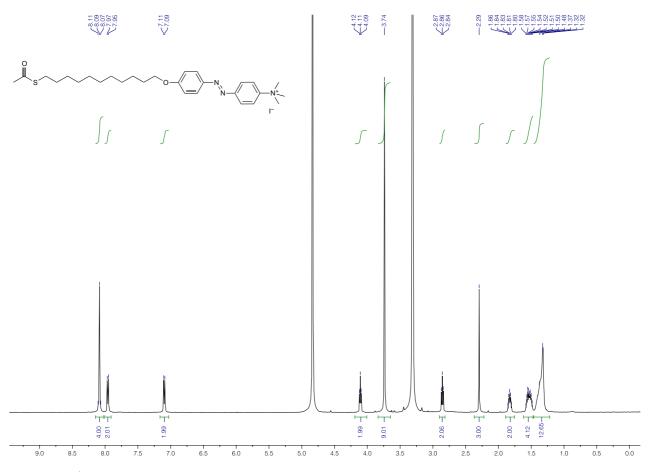

2.1. Thiolated azobenzene A1

11-(4-(phenyldiazenyl)phenoxy)undecane-1-thiol (A1) was synthesized based on a previously reported literature procedure.¹

2.2. Thiolated azobenzene A2

3-(2-(2-(2-(4-(phenyldiazenyl)phenoxy)ethoxy)ethoxy)propane-1-thiol (A2) was synthesized based on a previously reported literature procedure.²

2.3. Thiolated azobenzene A3



Scheme S1. Synthetic route for ligand A3. Reagents and conditions: i) CH₃I, 50 °C, 4 d, quantitative; ii) HCl/MeOH, reflux, 6 h, quantitative.

S-(11-(4-((dimethylamino)phenyl)diazenyl)phenoxy)undecyl) ethanethioate (1) was synthesized based on a previously reported literature procedure.³

4-((4-((11-(acetylthio)undecyl)oxy)phenyl)diazenyl)-*N*,*N*,*N*-trimethylbenzenaminium iodide (2): Methyl iodide (1.5 mL; 3.42 g; 24.1 mmol) was mixed with **1** (85.0 mg; 0.18 mmol) and the mixture was refluxed (50 °C) for 4 days. Then, the residual methyl iodide was evaporated *in vacuo* and the residue was triturated with diethyl ether to afford **2** in a quantitative yield.

¹**H NMR** (500 MHz, methanol-d₄): $\delta = 8.11-8.07$ (m, 4H), 7.97–7.95 (m, 2H), 7.11–7.09 (t, 2H), 4.11 (t, 2H), 3.74 (s, 9H), 2.86 (t, 2H), 2.29 (s, 3H), 1.86–1.80 (m, 2H), 1.58–1.48 (m, 4H), 1.37–1.32 (m, 12H). ¹³**C NMR** (100 MHz, methanol-d₄): $\delta = 197.63$, 164.35, 154.53, 149.07, 147.96, 126.42, 125.00, 122.40, 116.07, 69.59, 57.84, 30.75, 30.62, 30.55, 30.54, 30.49, 30.41, 30.25, 30.18, 29.85, 29.78, 27.07. **HRMS** calcd for C₂₈H₄₂N₃O₂S [M – I]⁺, m/z = 484.2998; found, 484.2998.

Figure S1. ¹H NMR spectrum of **2** (500 MHz, methanol- d_4).

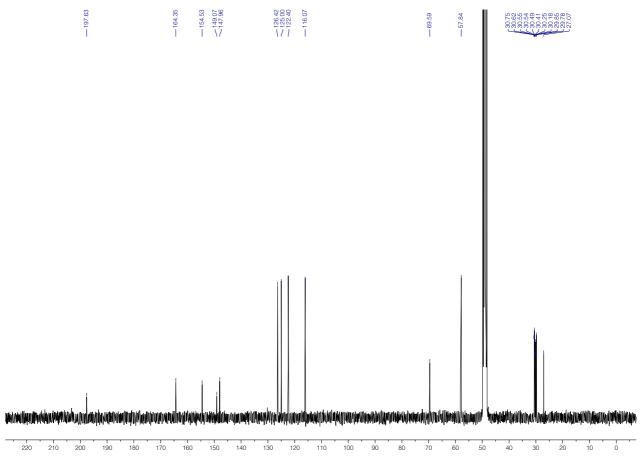
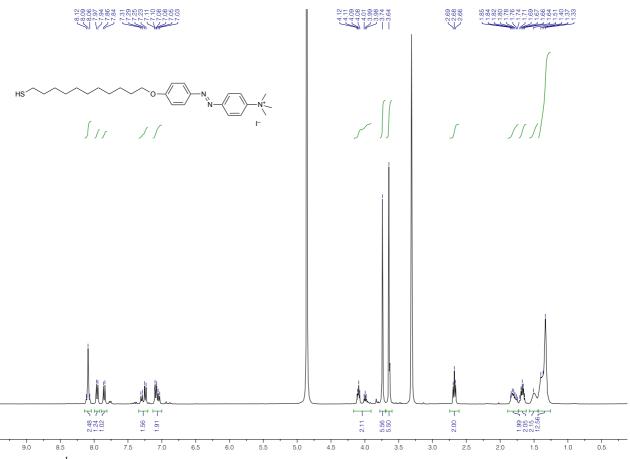



Figure S2. ¹³C NMR spectrum of 2 (100 MHz, methanol-d₄).

4-((4-((11-mercaptoundecyl)oxy)phenyl)diazenyl)-N,N,N-trimethylbenzenaminium iodide (A3): Compound 2 (61.2 mg; 0.1 mmol) was placed in a Schlenk flask equipped with a magnetic stirring bar and a reflux condenser. The flask was purged with nitrogen and charged with degassed methanol (2.0 mL), followed by 50 μ L of 1.25 M HCl solution in methanol. The resulting mixture was refluxed for 6 h. Then, the reaction mixture was cooled down to room temperature and the solvent was evaporated *in vacuo* to afford A3 in a quantitative yield.

¹**H NMR** (500 MHz, methanol-d₄): $\delta = 8.12-8.06$ (m, 2H), 7.97–7.84 (m, 2H), 7.31–7.23 (m, 2H), 7.11–7.03 (m, 2H), 4.11–3.98 (m, 2H), 3.74–3.63 (m, 9H), 2.68 (t, 2H), 1.86–1.74 (m, 2H), 1.71–1.64 (m, 2H), 1.51–1.33 (m, 14H). ¹³**C NMR** (125 MHz, methanol-d₄): $\delta = 164.33$, 154.51, 149.10, 147.97, 126.42, 125.01, 122.43, 116.06, 69.59, 57.85, 39.81, 30.63, 30.60, 30.57, 30.50, 30.44, 30.27, 30.19, 29.41, 27.10. **HRMS** calcd for C₂₆H₄₀N₃OS [M – I]⁺, m/z = 442.2892; found, 442.2884.

Figure S3. ¹H NMR spectrum of **A3** (500 MHz, methanol-d₄).

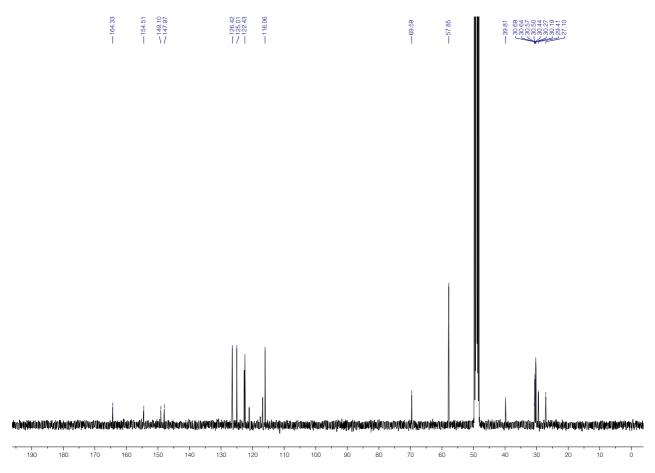
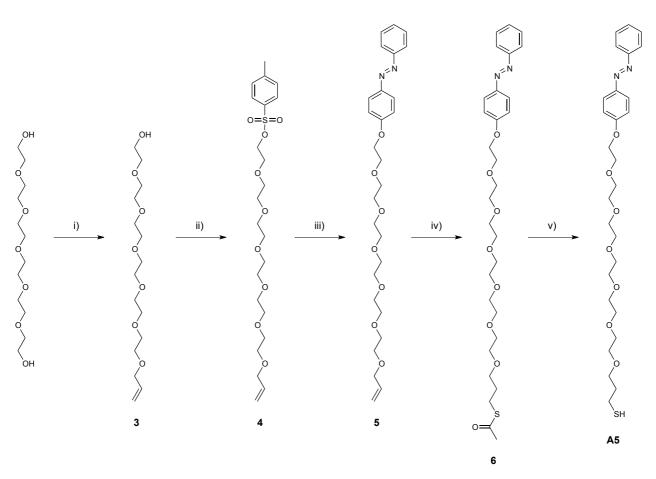



Figure S4. ¹³C NMR spectrum of A3 (125 MHz, methanol-d₄).

3-(4-(phenyldiazenyl)phenoxy)propane-1-thiol (A4) was synthesized based on a previously reported literature procedure.²

2.5. Thiolated azobenzene A5

Scheme S2. Synthetic route for ligand **A5**. Reagents and conditions: i) NaOH/H₂O, allyl bromide, 100 °C, 15 min, 82%; ii) Et₃N, TsCl, DCM, RT, overnight, 88%; iii) ^{*t*}BuOK, 4-hydroxyazobenzene, THF, reflux, overnight, 90%; iv) AIBN, CH₃COSH, toluene, reflux, 6 h, 84%; v) HCl/MeOH, reflux, 2 h, quantitative.

3,6,9,12,15,18-hexaoxahenicos-20-en-1-ol (3): Hexaethylene glycol (11.60 g; 41.09 mmol) was mixed with a solution of NaOH (0.44 g; 11.00 mmol) in water (0.5 mL). The solution was stirred at 100 °C for 30 min, followed by the addition of allyl bromide (1.21 g; 10.00 mmol). After 15 min, the reaction mixture was cooled to room temperature and 100 mL of CH_2Cl_2 was added. The organic phase was washed with brine (70 mL × 5), dried over MgSO₄, filtered, and concentrated *in vacuo* to afford 2.65 g of **3** (yield = 82%).

¹**H NMR** (400 MHz, CDCl₃): δ = 5.96–5.87 (m, 1H), 5.30–5.16 (m, 2H), 4.03–4.01 (m, 2H), 3.74–3.72 (m, 2H), 3.68–3.65 (m, 18H), 3.623.59 (m, 4H). ¹³**C NMR** (100 MHz, CDCl₃): δ = 134.92, 117.26, 72.70, 72.39, 70.95, 70.77, 70.68, 70.46, 69.57, 61.90.



Figure S5. ¹H NMR spectrum of 3 (400 MHz, CDCl₃).

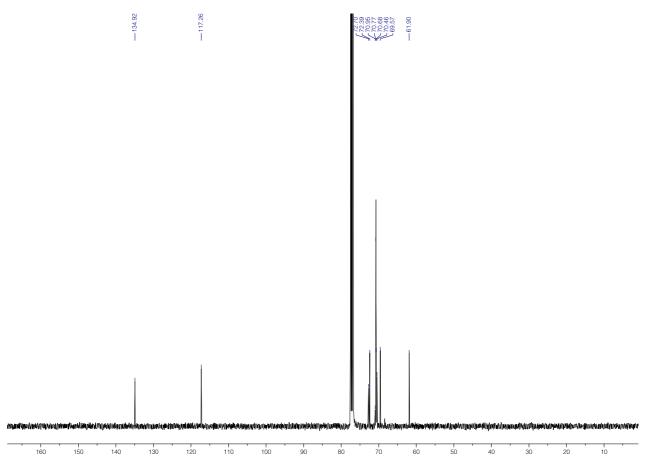


Figure S6. ¹³C NMR spectrum of 3 (100 MHz, CDCl₃).

3,6,9,12,15,18-hexaoxahenicos-20-en-1-yl 4-methylbenzenesulfonate (**4**): To a stirred solution of **3** (2.48 g; 7.69 mmol) in DCM (25 mL) containing Et₃N (1.93 mL; 1.40 g; 13.85 mmol) was added dropwise a solution of TsCl (1.76 g; 9.23 mmol) in DCM (20 mL) at 0 °C. The reaction mixture was stirred at room temperature overnight. Then, 100 mL of statured NaHCO₃ solution in water was added. The crude product was extracted with DCM (100 mL) and the organic layer was washed with brine (100 mL × 4). The organic phase was dried over MgSO₄ and concentrated *in vacuo*. The crude product was purified by silica gel column chromatography (eluent: from CHCl₃ to EtOAc/MeOH = 9/1) to afford 3.21 g of **4** (yield = 88%).

¹**H** NMR (400 MHz, CDCl₃): δ = 7.80–7.78 (d, 2H), 7.35–7.33 (d, 2H), 5.96–5.86 (m, 1H), 5.29–5.16 (m, 2H), 4.15 (t, 2H), 4.02–4.01 (d, 2H), 3.69–3.58 (m, 22H), 2.44 (s, 3H). ¹³**C** NMR (100 MHz, CDCl₃): δ = 144.91, 134.90, 133.16, 129.95, 128.12, 117.24, 72.38, 70.89, 70.76, 70.72, 70.70, 70.66, 69.57, 69.37, 68.83, 27.79.

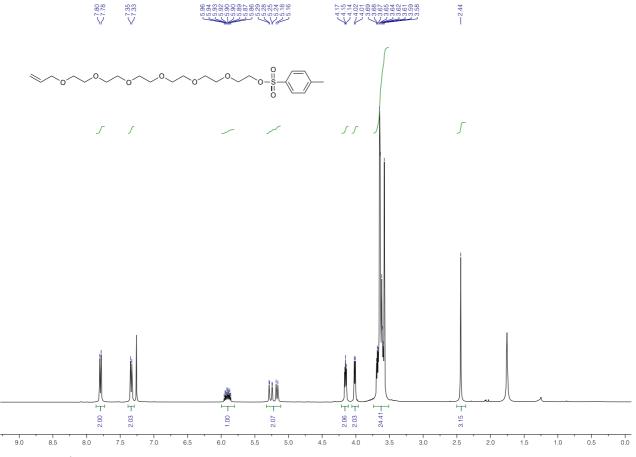


Figure S7. ¹H NMR spectrum of 4 (400 MHz, CDCl₃).

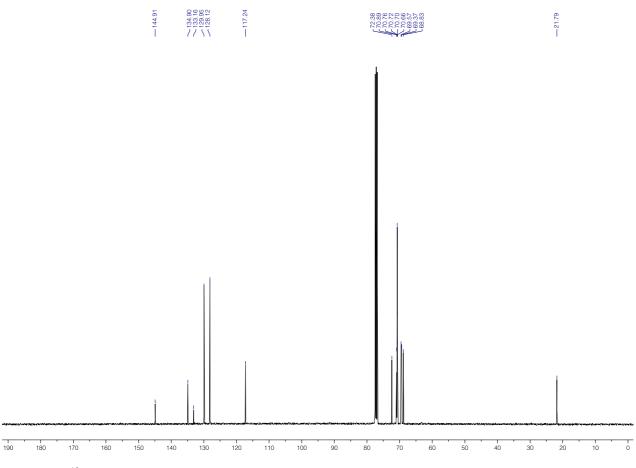


Figure S8. ¹³C NMR spectrum of 4 (100 MHz, CDCl₃).

1-(4-(3,6,9,12,15,18-hexaoxahenicos-20-en-1-yloxy)phenyl)-2-phenyldiazene (5): Solid 4-hydroxyazobenzene (0.87 g; 4.39 mmol) and potassium *tert*-butoxide (0.54 g; 4.81 mmol) were placed in a Schlenk flask equipped with a magnetic stirring bar and a reflux condenser. The flask was evacuated and purged with nitrogen and then dry THF (20 mL) was added. The resulting solution was heated to reflux. Then, 4 (1.90 g; 4.0 mmol), dissolved in THF (10 mL) was added dropwise and the reaction mixture was refluxed overnight. Then, the mixture was cooled down to room temperature and the solvent was removed *in vacuo*. The resulting residue was dissolved in 150 mL of DCM and washed with brine (100 mL \times 2). The organic layer was collected, the solvent was removed *in vacuo*, and the residue was purified by silica gel column chromatography (eluent: from CHCl₃ to CHCl₃/EtOAc = 2/1) to afford 1.81 g of **5** (yield = 90%).

¹**H NMR** (400 MHz, CDCl₃): δ = 7.92–7.86 (m, 4H), 7.52–7.41 (m, 3H), 7.04–7.02 (d, 2H), 5.96–5.86 (m, 1H), 5.29–5.16 (m, 2H), 4.22 (t, 2H), 4.02–4.01 (d, 2H), 3.90 (t, 2H), 3.76–3.73 (m, 2H), 3.70–3.64 (m, 16H), 3.60–3.58 (m, 2H). ¹³**C NMR** (100 MHz, CDCl₃): δ = 161.42, 152.89, 147.21, 134.91, 130.49, 129.15, 124.83, 122.68, 117.22, 114.97, 72.37, 71.05, 70.79, 70.77, 70.73, 69.77, 69.57, 67.88. **HRMS** calcd for $C_{27}H_{38}N_2NaO_7 [M + Na]^+$, m/z = 525.2577; found, 525.2579.

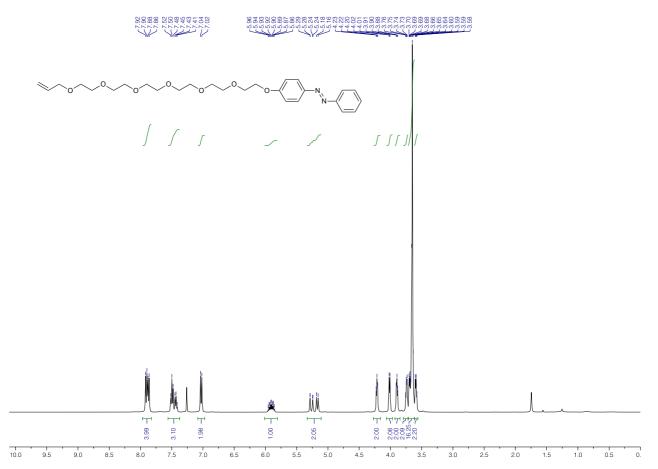


Figure S9. ¹H NMR spectrum of 5 (400 MHz, CDCl₃).

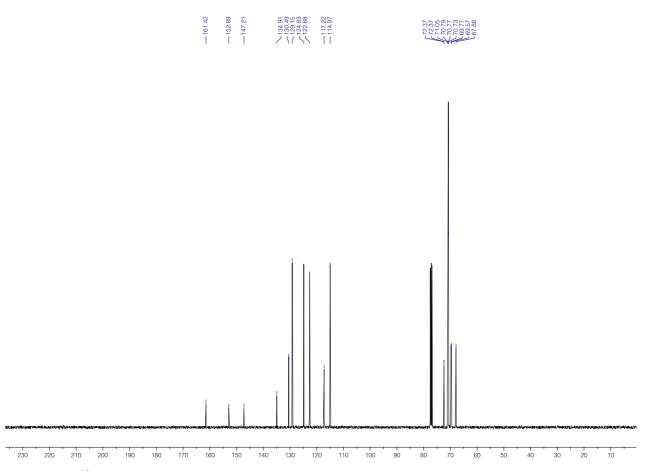


Figure S10. ¹³C NMR spectrum of 5 (100 MHz, CDCl₃).

S-(1-(4-(phenyldiazenyl)phenoxy)-3,6,9,12,15,18-hexaoxahenicosan-21-yl) ethanethioate (6): A solution of 5 (1.26 g; 2.50 mmol), AIBN (0.50 mmol; 82 mg) and thioacetic acid (700 μ L; 0.76 g; 10.0 mmol) in 15 mL toluene was bubbled with N₂ for 15 min before heating to reflux under nitrogen atmosphere. After 6 hours, the reaction mixture was allowed to cool down to room temperature. The solvent was removed *in vacuo* and the resulting crude product was purified by silica gel column chromatography (eluent: from hexane/EtOAc = 4/1 to hexane/EtOAc = 1/2) to afford 1.22 g of 6 (yield = 84%).

¹**H NMR** (400 MHz, CDCl₃): δ = 7.92–7.86 (m, 4H), 7.51–7.41 (m, 3H), 7.04–7.02 (d, 2H), 4.22 (t, 2H), 3.89 (t, 2H), 3.75–3.73 (m, 2H), 3.70–3.61 (m, 16H), 3.58–3.55 (m, 2H), 3.49 (t, 2H), 2.94 (t, 2H), 2.31 (s, 3H), 1.88–1.81 (m, 2H). ¹³**C NMR** (100 MHz, CDCl₃): δ = 195.99, 161.41, 152.88, 147.21, 130.49, 129.15, 124.83, 122.68, 114.97, 71.05, 70.79, 70.76, 70.73, 70.70, 70.35, 69.77, 69.72, 67.88, 30.76, 29.71, 26.13. **HRMS** calcd for C₂₉H₄₂N₂NaO₈S [M + Na]⁺, m/z = 601.2560; found, 601.2566.

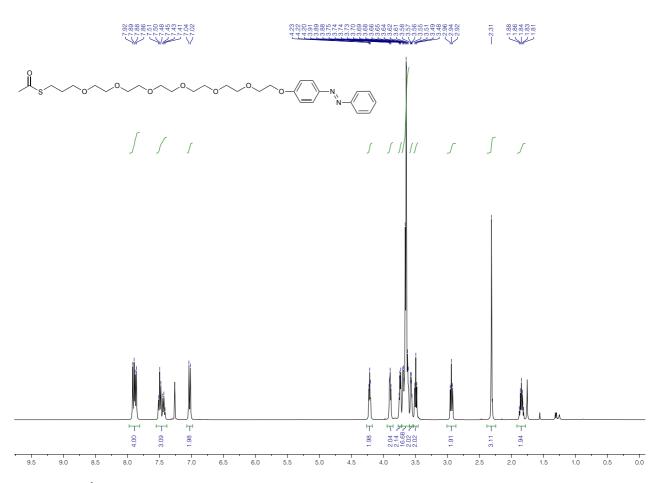


Figure S11. ¹H NMR spectrum of 6 (400 MHz, CDCl₃).

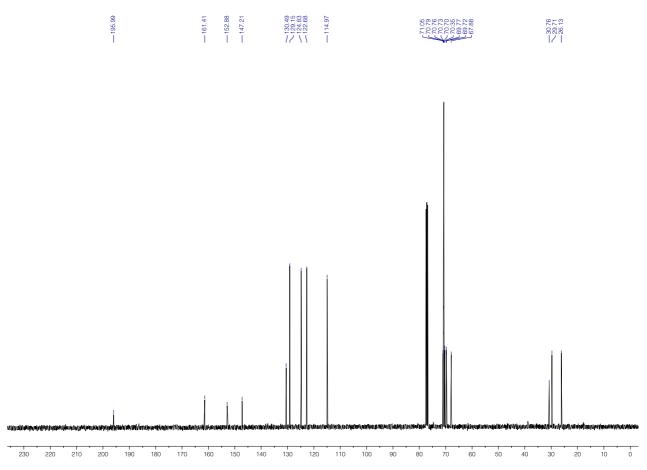


Figure S12. ¹³C NMR spectrum of 6 (100 MHz, CDCl₃).

1-(4-(phenyldiazenyl)phenoxy)-3,6,9,12,15,18-hexaoxahenicosane-21-thiol (A5): Compound 6 (199 mg; 0.50 mmol) was placed in a Schlenk flask equipped with a magnetic stirring bar and a reflux condenser. The flask was purged with nitrogen and degassed methanol (7 mL) was added, followed by 3.0 mL of 1.25 M methanolic HCl. The resulting mixture was refluxed for 2 h. Then, the mixture was cooled down to room temperature and the solvent was evaporated *in vacuo* to afford A5 in a quantitative yield.

¹**H** NMR (400 MHz, CDCl₃): δ = 7.92–7.86 (m, 4H), 7.52–7.42 (m, 3H), 7.04–7.02 (d, 2H), 4.22 (t, 2H), 3.90 (t, 2H), 3.75–3.54 (m, 22H), 2.64–2.59 (q, 2H), 1.90–1.84 (m, 2H), 1.37 (t, 1H). ¹³**C** NMR (100 MHz, CDCl₃): δ = 161.45, 152.87, 147.20, 130.52, 129.17, 124.87, 122.70, 115.00, 71.06, 70.80, 70.75, 70.38, 69.80, 69.27, 67.93, 35.50, 33.88, 29.29, 21.59. **HRMS** calcd for $C_{27}H_{40}N_2NaO_7S$ [M + Na]⁺, m/z = 559.2454; found, 559.2462.

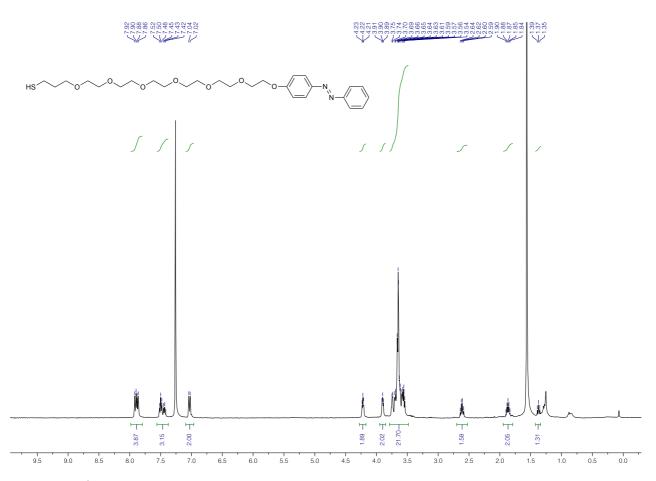


Figure S13. ¹H NMR spectrum of A5 (400 MHz, CDCl₃).

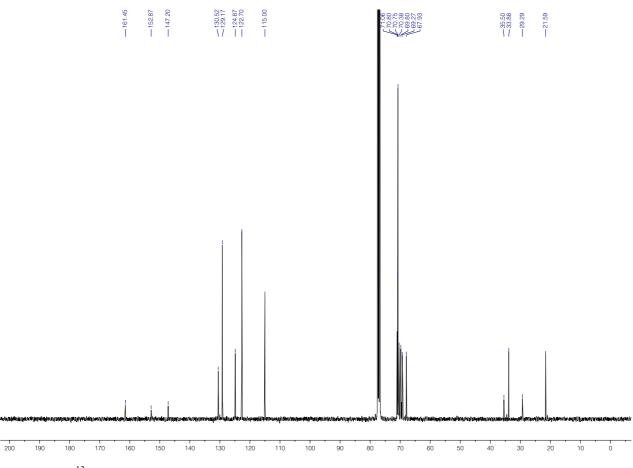
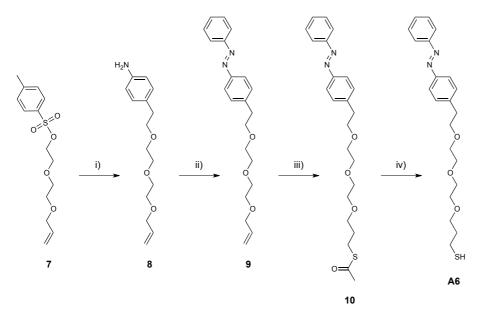
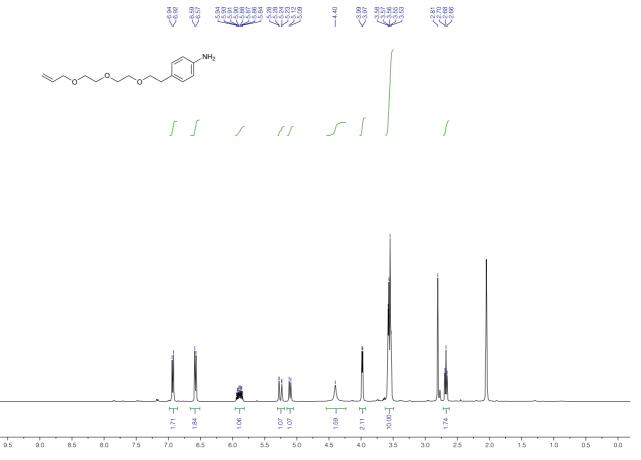



Figure S14. ¹³C NMR spectrum of A5 (100 MHz, CDCl₃).


2.6. Thiolated azobenzene A6

Scheme S3. Synthetic route for ligand A6. Reagents and conditions: i) ^{*t*}BuOK, 2-(4-aminophenyl)ethyl alcohol, THF, RT, overnight, 60%; ii) nitrosobenzene, CH₃COOH, DCM, RT, overnight, quantitative; iii) CH₃COSH, DCM, UVB, 2 d, 78%; iv) HCl/MeOH, reflux, 2 h, quantitative.

4-(2-(2-(allyloxy)ethoxy)ethoxy)ethyl)aniline (8). Compound **7** (Ref. 4) was synthesized in two steps following the same protocol as compound **4**, but using di(ethylene glycol), as opposed to hexa(ethylene glycol), as the starting material. A solution of **7** (330 mg; 1.10 mmol) in 5 mL of dry THF was slowly added to a stirred mixture of 2-(4-aminophenyl)ethyl alcohol (137 mg; 1.00 mmol) and potassium *tert*-butoxide (123 mg; 1.10 mmol) under nitrogen atmosphere and the resulting reaction mixture was stirred overnight at room temperature under nitrogen atmosphere. Then, the mixture was placed in a separating funnel containing EtOAc (100 mL) and washed with water (50 mL) and brine (50 mL). The organic layer was collected, dried over MgSO₄ and concentrated *in vacuo*. The crude was purified by silica gel column chromatography (eluent: Hexane/EtOAc from 9/1 to 1/1) to afford 160 mg of **8** (yield = 60%).

¹**H** NMR (400 MHz, CDCl₃): $\delta = 6.93$ (d, 2H), 6.58 (d, 2H), 5.94–5.84 (m, 1H), 5.26 (d, 1H), 5.11 (d, 1H), 4.40 (bs, 2H), 3.98 (d, 2H), 3.58–3.53 (m, 10H), 2.68 (t, 2H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 136.43$, 130.25, 127.93, 120.11, 116.23, 115.23, 73.45, 72.96, 72.40, 71.29, 70.94, 70.39, 36.24. HRMS calcd for C₁₅H₂₃NNaO₃ [M + Na]⁺, m/z = 288.1576; found, 288.1572.

Figure S15. ¹H NMR spectrum of **8** (400 MHz, acetone-d₆).

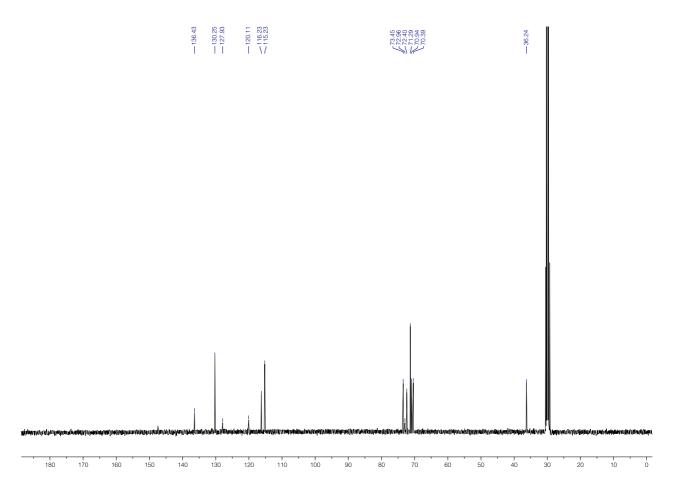


Figure S16. ¹³C NMR spectrum of 8 (100 MHz, acetone-d₆).

1-(4-(2-(2-(2-(allyloxy)ethoxy)ethoxy)ethyl)phenyl)-2-phenyldiazene (9). To a solution of nitrosobenzene (60.5 mg; 0.565 mmol) in DCM (0.5 mL), a solution of 8 (150 mg; 0.565 mmol) in DCM (2 mL) was introduced, followed by the addition of acetic acid (177 μ L). The reaction mixture was stirred overnight under nitrogen atmosphere at room temperature. Then, the reaction mixture was diluted with 100 mL of EtOAc and washed with a 1 M NaOH solution (30 mL × 3), saturated NaHCO₃ solution (30 mL × 2), and brine (30 mL × 2). The organic phase was dried over MgSO₄ and concentrated *in vacuo* to afford 9 in a quantitative yield.

¹**H** NMR (400 MHz, CDCl₃): δ = 7.90 (d, 2H), 7.85 (d, 2H), 7.53–7.44 (m, 3H), 7.37 (d, 2H), 5.96–5.87 (m, 1H), 5.27 (d, 1H), 5.17 (d, 1H), 4.02 (d, 2H), 3.74 (t, 2H), 3.66–3.64 (m, 6H), 3.61–3.58 (m, 2H), 2.98 (t, 2H). ¹³**C** NMR (100 MHz, CDCl₃): δ = 152.88, 151.42, 142.73, 134.93, 130.93, 129.80, 129.21, 123.03, 122.90, 117.26, 72.41, 72.06, 70.85, 70.80, 70.55, 69.61, 36.34. **HRMS** calcd for C₂₁H₂₆N₂NaO₃ [M + Na]⁺, m/z = 377.1841; found, 377.1829.

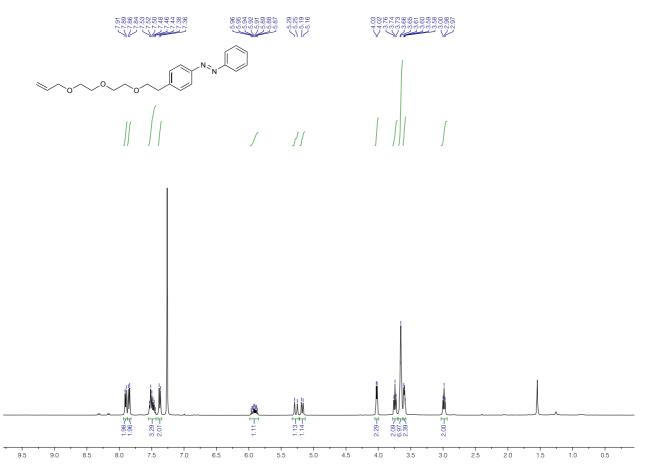


Figure S17. ¹H NMR spectrum of 9 (400 MHz, CDCl₃).

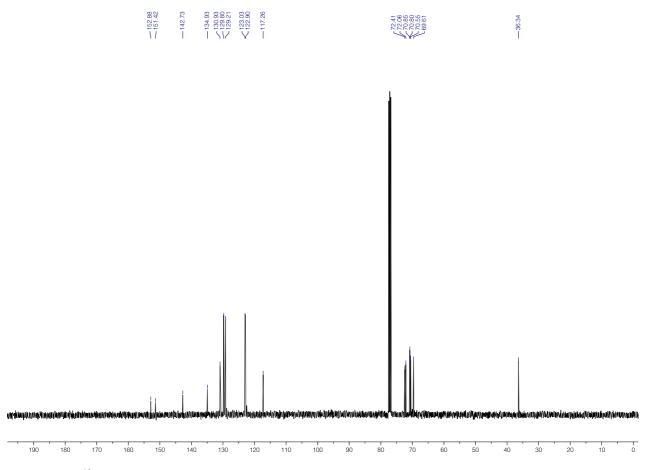


Figure S18. ¹³C NMR spectrum of 9 (100 MHz, CDCl₃).

S-(3-(2-(4-(phenyldiazenyl)phenethoxy)ethoxy)propyl) ethanethioate (10): A solution of 9 (200 mg; 0.56 mmol) and thioacetic acid (139 μ L; 150 mg; 1.98 mmol) in DCM (5 mL) was stirred at room temperature under UVB light for 2 days. Then, the reaction mixture was diluted with 100 mL of DCM and washed with a saturated solution of NaHCO₃ (30 mL × 2). The organic phase was collected, dried over MgSO₄, and concentrated *in vacuo*. The crude product was purified by silica gel column chromatography (eluent: hexane/EtOAc = 9/1 \rightarrow 1/1) to afford 190 mg of 10 (yield = 78%).

¹**H NMR** (500 MHz, CDCl₃): δ = 7.90 (d, 2H), 7.85 (d, 2H), 7.51 (t, 2H), 7.48–7.45 (m, 1H), 7.37 (d, 2H), 3.74 (t, 2H), 3.66–3.62 (m, 6H), 3.58–3.56 (m, 2H), 3.51 (t, 2H), 2.98 (t, 2H), 2.94 (t, 2H), 2.31 (s, 3H), 1.88–1.82 (m, 2H). ¹³**C NMR** (125 MHz, CDCl₃): δ = 196.03, 152.87, 151.42, 142.72, 130.93, 129.80, 129.21, 123.03, 122.90, 72.07, 70.78 (2 C), 70.56, 70.40, 69.75, 36.34, 30.77, 29.72, 26.15. **HRMS** calcd for C₂₃H₃₀N₂NaO₄S [M + Na]⁺, m/z = 453.1824; found, 453.1821.

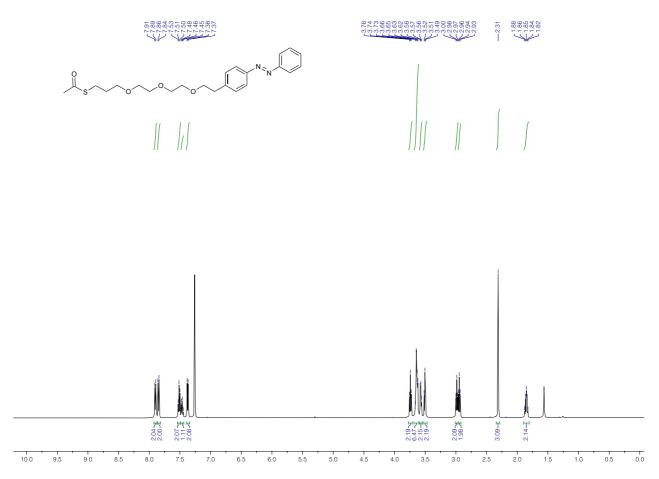


Figure S19. ¹H NMR spectrum of 10 (500 MHz, CDCl₃).

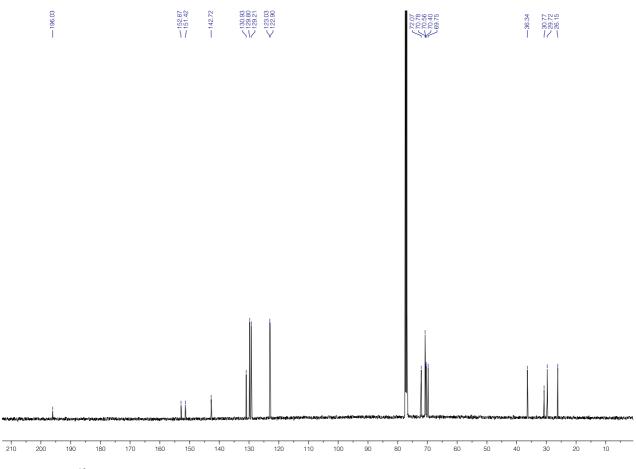


Figure S20. ¹³C NMR spectrum of 10 (125 MHz, CDCl₃).

3-(2-(2-(4-(phenyldiazenyl)phenethoxy)ethoxy)propane-1-thiol (A6). Compound **10** was deprotected following the procedure identical to compound A5 to afford A6 quantitatively.

¹**H** NMR (500 MHz, CDCl₃): δ = 7.90 (d, 2H), 7.85 (d, 2H), 7.51 (t, 2H), 7.48–7.45 (m, 1H), 7.37 (d, 2H), 3.74 (t, 2H), 3.64–3.62 (m, 6H), 3.59–3.54 (m, 4H), 2.99 (t, 2H), 2.61 (q, 2H), 1.90–1.84 (m, 2H), 1.37 (t, 1H). ¹³**C** NMR (125 MHz, CDCl₃): δ = 152.87, 151.42, 142.73, 130.95, 129.81, 129.22, 123.04, 122.91, 72.07, 70.79 (2 C), 70.58, 70.42, 69.28, 36.35, 33.89, 21.60. **HRMS** calcd for C₂₁H₂₈N₂NaO₃S [M + Na]⁺, m/z = 411.1718; found, 411.1716.

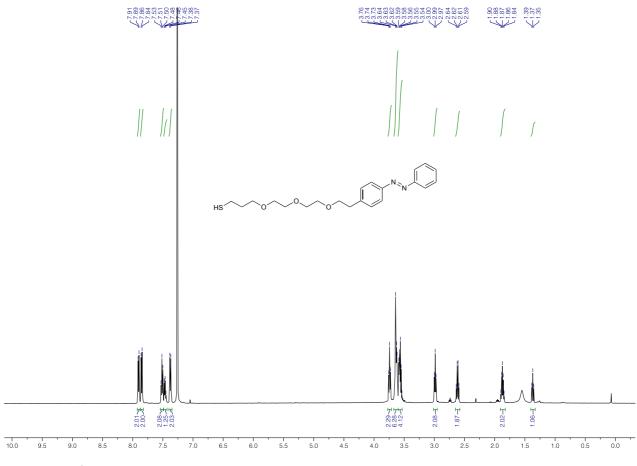
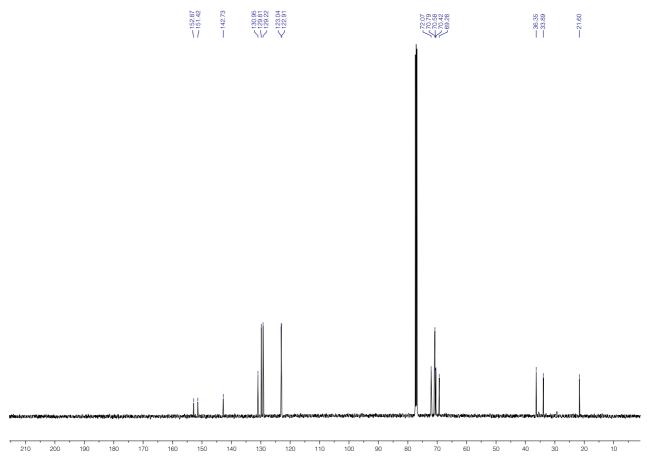
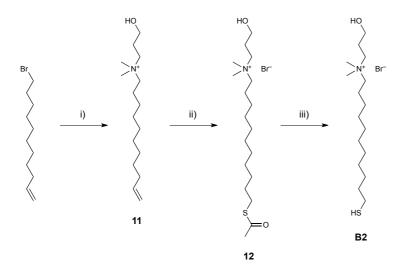


Figure S21. ¹H NMR spectrum of A6 (500 MHz, CDCl₃).




Figure S22. ¹³C NMR spectrum of A6 (125 MHz, CDCl₃).

3. Synthesis and characterization of background ligands B1-B9

3.1. Background ligand B1

11-mercapto-*N***,***N***,***N***-trimethylundecan-1-aminium bromide** (**B1**) was synthesized based on a previously reported literature procedure.⁵

3.2. Background ligand B2

Scheme S4. Synthetic route for ligand B2. Reagents and conditions: i) 3-(dimethylamino)propan-1-ol, EtOAc, reflux, 8 h, 22%; ii) CH₃COSH, DCM, UVB, overnight, quantitative; iii) HCl/MeOH, reflux, 6 h, quantitative.

N-(3-hydroxypropyl)-*N*,*N*-dimethylundec-10-en-1-aminium bromide (11): 11-bromo-1-undecene (373 mg; 1.60 mmol) and 3-dimethylamino-1-propanol (236 μ L; 206 mg; 2.00 mmol) were dissolved in dry EtOAc and the solution was refluxed for 8 h. Then, the reaction mixture was cooled to room temperature, resulting in precipitation of the crude product. The precipitate was washed with diethyl ether and dried under vacuum to afford 120 mg of 11 (22%).

¹**H** NMR (400 MHz, D₂O): δ = 5.99–5.88 (m, 1H), 5.08–4.97 (m, 2H), 3.70 (t, 2H), 3.41–3.37 (m, 2H), 3.32–3.28 (m, 2H), 3.08 (s, 6H), 2.09–1.97 (m, 4H), 1.80–1.73 (m, 2H), 1.41–1.32 (m, 12H). ¹³**C** NMR (100 MHz, D₂O): δ = 140.44, 113.91, 64.22, 61.37, 58.15, 50.57, 33.08, 28.34, 28.29, 28.20, 28.08, 28.05, 25.36, 24.86, 21.73. **HRMS** calcd for C₁₆H₃₄NO [M – Br]⁺, m/z = 256.2640; found, 256.2639.

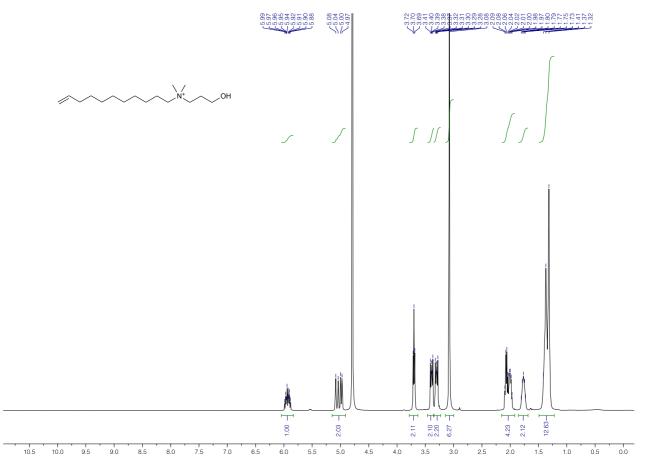
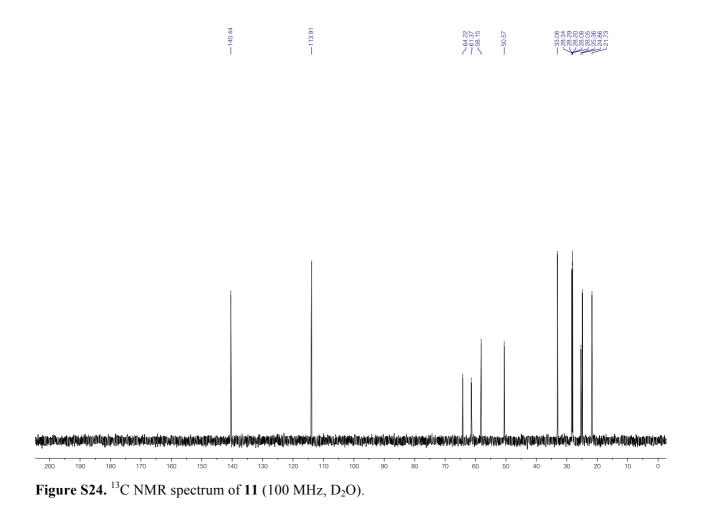



Figure S23. ¹H NMR spectrum of 11 (400 MHz, D_2O).

11-(acetylthio)-*N*-(**3-hydroxypropyl)**-*N*,*N*-dimethylundecan-1-aminium bromide (12): A solution of **11** (90 mg; 0.27 mmol) and thioacetic acid (72 μ L; 77 mg, 1.01 mmol) in DCM (5 mL) was stirred at room temperature under UVB light overnight. Then, the reaction mixture was concentrated *in vacuo* to afford **12** in a quantitative yield.

¹**H** NMR (400 MHz, D₂O): δ = 3.70 (t, 2H), 3.41–3.37 (m, 2H), 3.33–3.28 (m, 2H), 3.08 (s, 6H), 2.90 (t, 2H), 2.38 (s, 3H), 2.04–1.97 (m, 2H), 1.79–1.75 (m, 2H), 1.61–1.55 (m, 2H), 1.37–1.30 (m, 14H). ¹³**C** NMR (100 MHz, D₂O): δ = 202.38, 64.23, 61.40, 58.16, 50.60, 30.05, 28.98, 28.54, 28.47, 28.44, 28.36, 28.13, 28.11, 27.80, 25.41, 24.88, 21.77. **HRMS** calcd for C₁₈H₃₈NO₂S [M – Br]⁺, m/z = 332.2623; found, 332.2612.

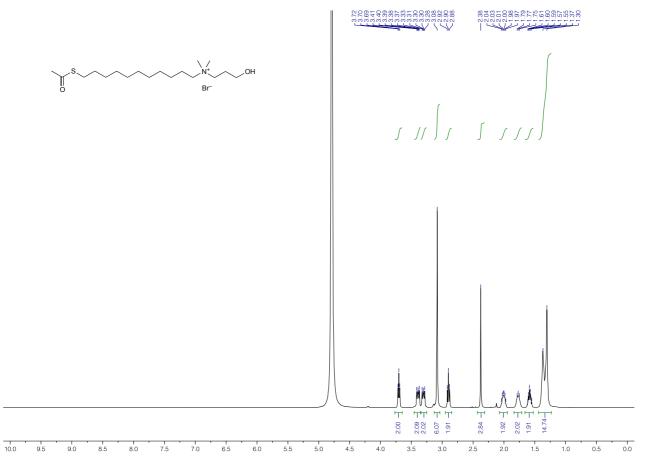
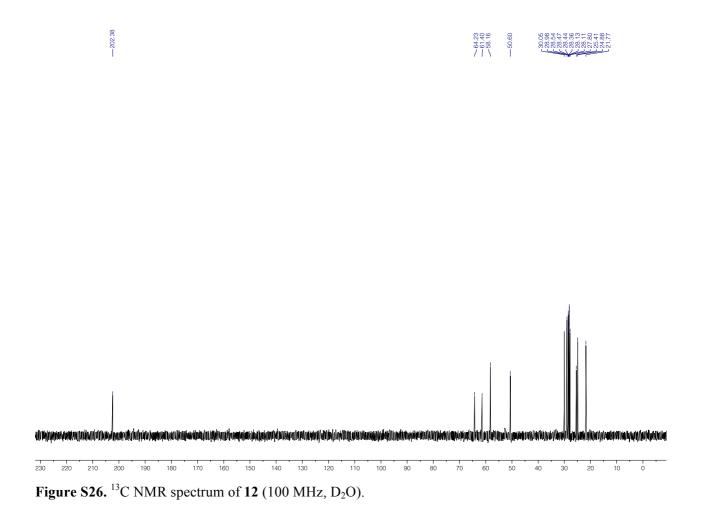



Figure S25. ¹H NMR spectrum of 12 (400 MHz, D_2O).

N-(3-hydroxypropyl)-11-mercapto-*N*,*N*-dimethylundecan-1-aminium bromide (B2): A solution of 12 (70 mg; 0.17 mmol) in methanol (5 mL) was degassed by bubbling with nitrogen for 15 min. Then, 0.6 mL of 1.25 M methanolic HCl solution was added and the resulting solution was refluxed for 6 h. The reaction mixture was cooled down to room temperature and the solvent was evaporated *in vacuo* to afford **B2** in a quantitative yield.

¹**H** NMR (500 MHz, D₂O): δ = 3.63 (t, 2H), 3.34–3.31 (m, 2H), 3.26–3.22 (m, 2H), 3.01 (s, 6H), 2.49 (t, 2H), 1.96–1.90 (m, 2H), 1.73–1.67 (m, 2H), 1.57–1.51 (m, 2H), 1.34–1.24 (m, 14H). ¹³**C** NMR (125 MHz, D₂O): δ = 64.10, 61.29, 58.06, 50.54, 33.08, 28.63, 28.56, 28.45, 28.19, 28.18, 27.51, 25.41, 24.82, 23.82, 21.76. **HRMS** calcd for $C_{16}H_{36}NOS [M - Br]^+$, m/z = 290.2518; found, 290.2517.

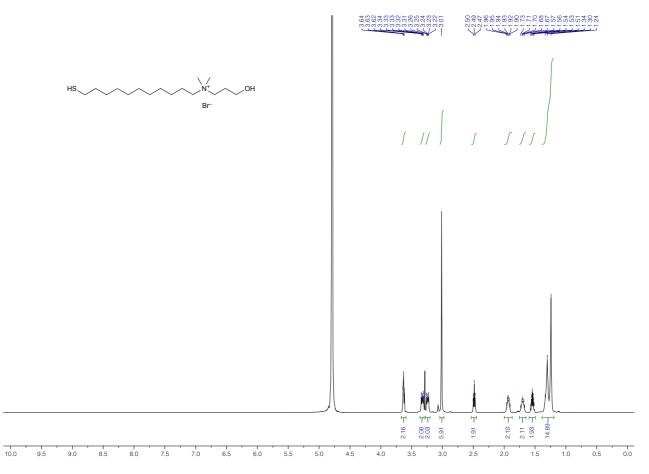


Figure S27. ¹H NMR spectrum of B2 (500 MHz, D_2O).

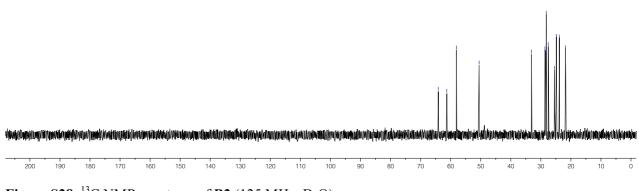
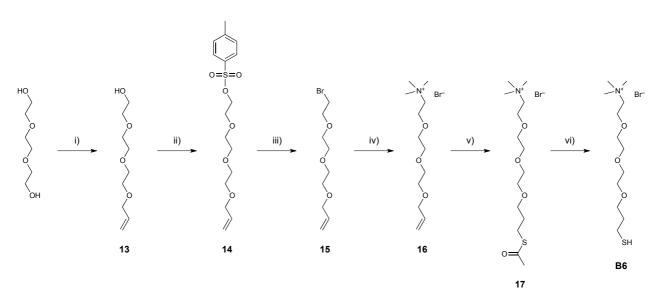


Figure S28. ¹³C NMR spectrum of B2 (125 MHz, D_2O).

3.3. Background ligand B3

Tetramethylammonium 3-mercaptopropanoate (B3) was obtained by neutralizing the commercially available 3-mercaptopropionic acid with tetramethylammonium hydroxide after adsorption onto nanoparticles.


3.4. Background ligand B4

6-mercapto-*N***,***N***,***N***-trimethylhexan-1-aminium bromide** (**B4**) was synthesized based on a previously reported literature procedure.⁶

3.5. Background ligand B5

Tetramethylammonium 3-mercaptoundecanoate (B5) was obtained by neutralizing the commercially available 11-mercaptoundecanoic acid with tetramethylammonium hydroxide after adsorption onto nanoparticles.

3.6. Background ligand **B6**

Scheme S5. Synthetic route for ligand B6. Reagents and conditions: i) NaOH/H₂O, allyl bromide, 100 °C, 15 min, 88%; ii) Et₃N, TsCl, DCM, RT, overnight, 89%; iii) LiBr, acetone, reflux, overnight, 99%; iv) Me₃N/EtOH, RT, 2 d, quantitative; v) CH₃COSH, MeOH, UVB, overnight, quantitative; vi) HCl/MeOH, reflux, 6 h, quantitative.

2-(2-(2-(allyloxy)ethoxy)ethoxy)ethanol (13): Triethylene glycol (18.47 g; 123.0 mmol) was added to a solution of NaOH (1.32 g; 33.0 mmol) in water (1.5 mL). The resulting solution was stirred at 100 °C for 30 min. Then, allyl bromide (3.63 g; 30.0 mmol) was added. After 15 min, the reaction mixture was cooled to room temperature and the crude product was extracted with CH_2Cl_2 (150 mL). The organic phase was washed with brine (75 mL × 2), dried over MgSO₄, filtered, and finally concentrated *in vacuo* to afford 5.01 g of 13 (yield = 88%).

¹**H** NMR (400 MHz, CDCl₃): δ = 5.96–5.87 (m, 1H), 5.29–5.17 (m, 2H), 4.03–4.01 (d, 2H), 3.73–3.59 (m, 12H). ¹³**C** NMR (100 MHz, CDCl₃): δ = 134.78, 117.38, 72.64, 72.41, 70.78, 70.74, 70.49, 69.51, 61.90.

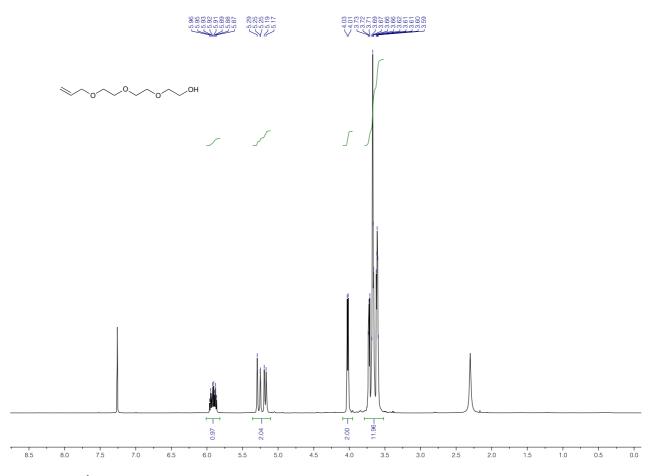


Figure S29. ¹H NMR spectrum of 13 (400 MHz, CDCl₃).

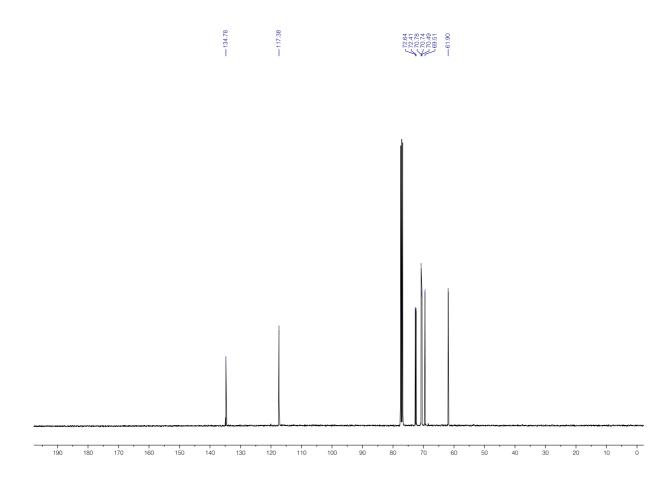


Figure S30. ¹³C NMR spectrum of 13 (100 MHz, CDCl₃).

2-(2-(allyloxy)ethoxy)ethoy)ethyl 4-methylbenzenesulfonate (14): To a magnetically stirred solution of **13** (3.044 g, 16.00 mmol) and Et₃N (5.58 mL; 4.11 g; 40.6 mmol) in DCM (50 mL) at 0 °C was added dropwise a solution of TsCl (9.15 g, 48.00 mmol) in DCM (30 mL). The reaction mixture was kept stirred at room temperature overnight and then washed with a saturated solution of NaHCO₃ in water (100 mL). The organic phase was collected and the crude product was extracted from the aqueous phase using DCM (100 mL). The combined organic layers were washed with brine (100 mL × 2), dried over MgSO₄, and concentrated *in vacuo*. The obtained crude product was purified by silica gel column chromatography (eluent: from hexane/EtOAc = 3/1 to hexane/EtOAc = 1/1) to afford 4.92 g of **14** (yield = 89%).

¹**H NMR** (400 MHz, CDCl₃): δ = 7.81–7.79 (d, 2H), 7.35–7.33 (d, 2H), 5.95–5.86 (m, 1H), 5.29–5.16 (m, 2H), 4.16 (t, 2H), 4.02–4.00 (m, 2H), 3.69 (t, 2H), 3.64–3.56 (m, 8H), 2.44 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃): δ = 144.91, 134.87, 133.17, 129.95, 128.13, 117.28, 72.38, 70.91, 70.82, 70.72, 69.54, 69.38, 68.83, 21.79.

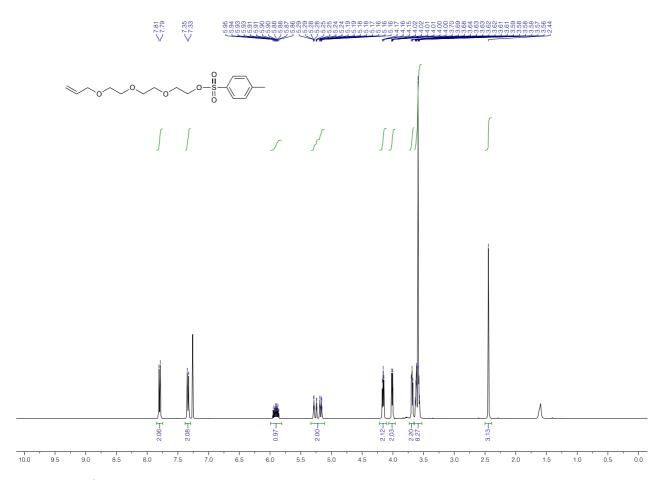


Figure S31. ¹H NMR spectrum of 14 (400 MHz, CDCl₃).

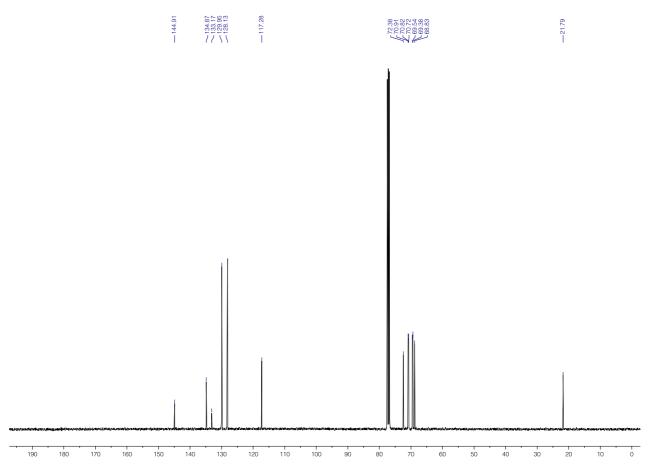


Figure S32. ¹³C NMR spectrum of 14 (100 MHz, CDCl₃).

3-(2-(2-(2-bromoethoxy)ethoxy)ethoxy)prop-1-ene (15): To a solution of 14 (1.180 g; 34.26 mmol) in acetone (30 mL) was added lithium bromide (2.941 g; 34.26 mmol), and the mixture was refluxed under nitrogen atmosphere overnight. Then, the solvent was removed *in vacuo*. DCM (150 mL) was added to dissolve the crude product and the insoluble solids were filtered off. The filtrate was washed with brine (100 mL × 4), dried over MgSO₄, and concentrated *in vacuo* to afford 0.852 g of 15 (yield = 99%).

¹**H NMR** (400 MHz, CDCl₃): $\delta = 5.97-5.87$ (m, 1H), 5.30–5.17 (m, 2H), 4.04–4.02 (d, 2H), 3.82 (t, 2H), 3.68–3.60 (m, 8H), 3.47 (t, 2H). ¹³**C NMR** (100 MHz, CDCl₃): $\delta = 134.89$, 117.28, 72.41, 71.38, 70.88, 70.81, 70.72, 69.58, 30.45.

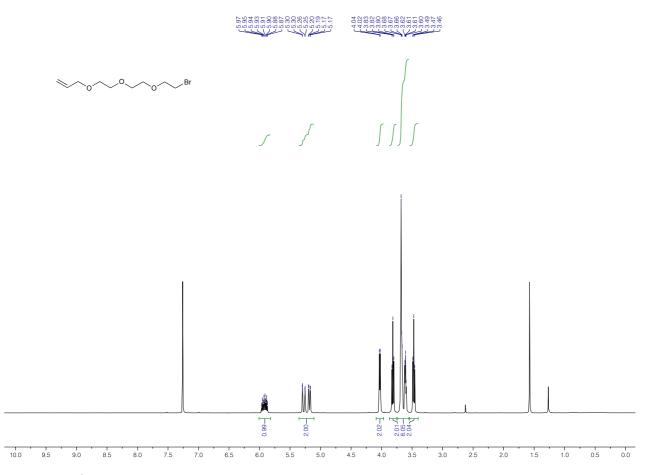


Figure S33. ¹H NMR spectrum of 15 (400 MHz, CDCl₃).

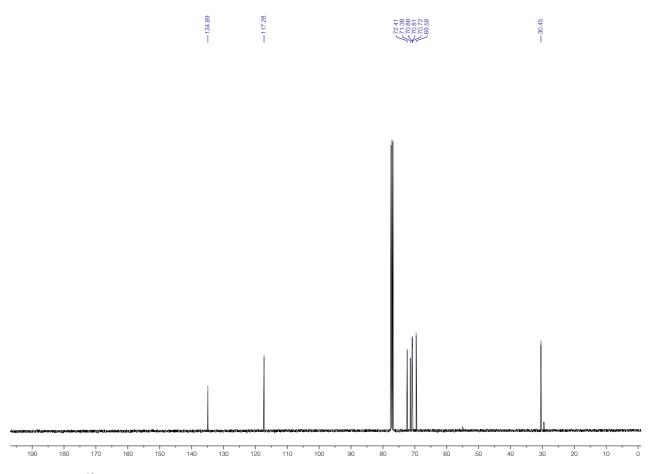


Figure S34. ¹³C NMR spectrum of 15 (100 MHz, CDCl₃).

2-(2-(2-(allyloxy)ethoxy)-*N*,*N*,*N*-**trimethylethanaminium bromide** (16): Compound 15 (852 mg; 3.37 mmol) was stirred in 4.0 mL of 33 wt. % ethanolic solution of trimethylamine at room temperature for 2 days, after which the reaction mixture was concentrated *in vacuo* to afford 16 in a quantitative yield.

¹**H** NMR (400 MHz, CDCl₃): $\delta = 5.93-5.83$ (m, 1H), 5.28–5.17 (m, 2H), 3.99–3.98 (m, 6H), 3.69–3.67 (m, 2H), 3.62–3.60 (m, 4H), 3.57–3.55 (m, 2H), 3.48 (s, 9H). ¹³**C** NMR (100 MHz, CDCl₃): $\delta = 134.71$, 117.50, 72.31, 70.63, 70.52, 70.34, 69.52, 65.81, 65.37, 54.88. **HRMS** calcd for C₁₂H₂₆NO₃ [M – Br]⁺, m/z = 232.1913; found, 232.1915.

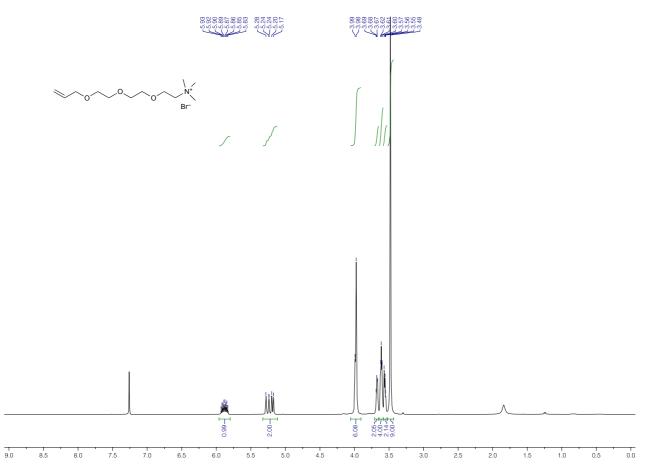


Figure S35. ¹H NMR spectrum of 16 (400 MHz, CDCl₃).



Figure S36. ¹³C NMR spectrum of 16 (100 MHz, CDCl₃).

N,*N*,*N*-trimethyl-14-oxo-3,6,9-trioxa-13-thiapentadecan-1-aminium bromide (17): A solution of 16 (1006 mg; 3.22 mmol) and thioacetic acid (680 μ L; 724 mg; 9.51 mmol) in degassed methanol (6 mL) was stirred under UVB light overnight. Then, the reaction mixture was concentrated *in vacuo* at room temperature to afford 17 in a quantitative yield.

¹**H** NMR (400 MHz, CDCl₃): δ = 4.00 (m, 4H), 3.69–3.47 (m, 19H), 2.92 (t, 2H), 2.33 (s, 3H), 1.86–1.79 (m, 2H). ¹³**C** NMR (100 MHz, CDCl₃): δ = 196.27, 70.62, 70.50, 70.38, 70.35, 69.83, 65.79, 65.36, 54.86, 30.85, 29.76, 26.20. **HRMS** calcd for C₁₄H₃₀NO₄S [M – Br]⁺, m/z = 308.1896; found, 308.1898.

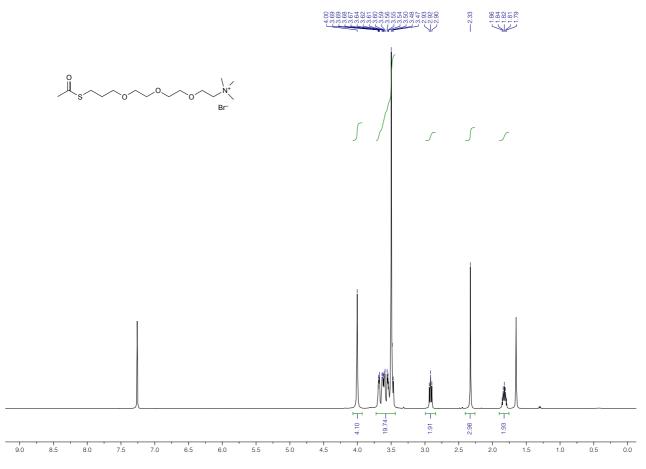


Figure S37. ¹H NMR spectrum of 17 (400 MHz, CDCl₃).

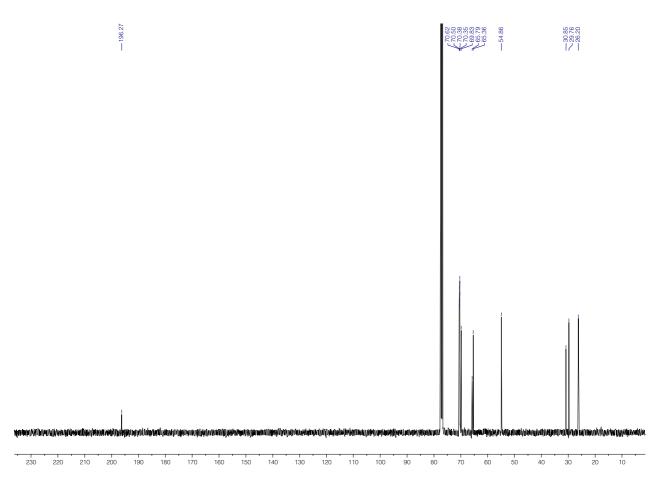
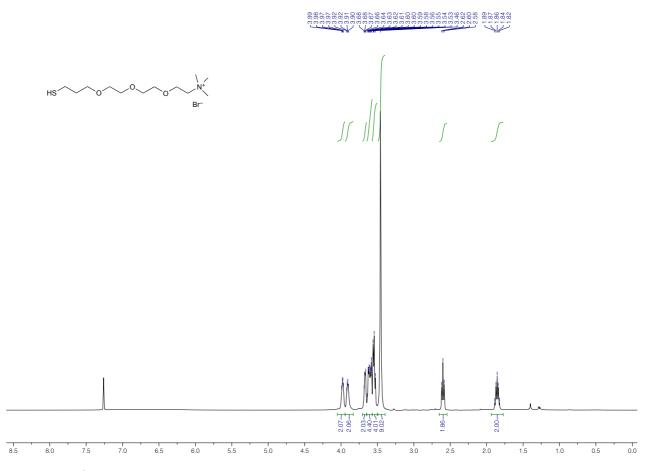
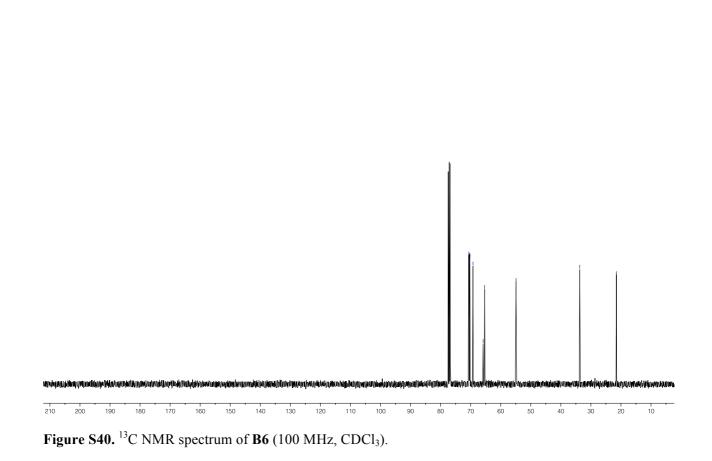
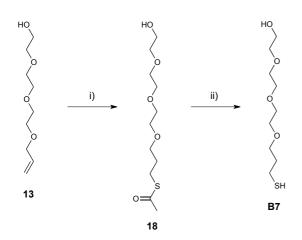


Figure S38. ¹³C NMR spectrum of 17 (100 MHz, CDCl₃).

2-(2-(3-mercaptopropoxy)ethoxy)-*N*,*N*,*N*-**trimethylethanaminium bromide (B6)**: A solution of **17** (272 mg, 0.70 mmol) in methanol (10 mL) was degassed by bubbling with nitrogen for 15 min. Then, 2.2 mL of 1.25 M methanolic HCl solution was added and the reaction mixture was refluxed for 6 h. The reaction mixture was cooled down to room temperature and the solvent was removed *in vacuo* to afford **B6** in a near-quantitative fashion.

¹**H NMR** (400 MHz, CDCl₃): δ = 3.99–3.90 (m, 4H), 3.68–3.66 (m, 2H), 3.64–3.58 (m, 4H), 3.56–3.53 (m, 4H), 3.46 (s, 9H), 2.60 (t, 2H), 1.89–1.82 (m, 2H). ¹³**C NMR** (100 MHz, CDCl₃): δ = 70.61, 70.55, 70.37, 70.29, 69.23, 65.87, 65.35, 54.90, 33.71, 21.52. **HRMS** calcd for C₁₂H₂₈NO₃S [M – Br]⁺, m/z = 266.1790; found, 266.1798.


Figure S39. ¹H NMR spectrum of B6 (400 MHz, CDCl₃).

-54.90

-21.52

3.7. Background ligand **B7**

Scheme S6. Synthetic route for ligand B7. Reagents and conditions: i) CH₃COSH, DCM, UVB, overnight, quantitative; ii) HCl/MeOH, reflux, 6 h, quantitative.

¹**H NMR** (400 MHz, CDCl₃): δ = 3.73 (t, 2H), 3.69–3.58 (m, 10H), 3.51 (t, 2H), 2.95 (t, 2H), 2.32 (s, 3H), 1.89–1.82 (m, 2H). ¹³**C NMR** (100 MHz, CDCl₃): δ = 196.09, 72.64, 70.81, 70.70, 70.53, 70.33, 69.76, 61.93, 30.77, 29.68, 26.13.

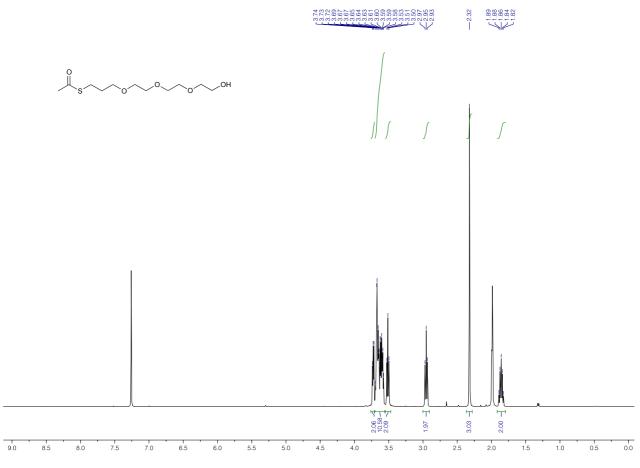


Figure S41. ¹H NMR spectrum of 18 (400 MHz, CDCl₃).

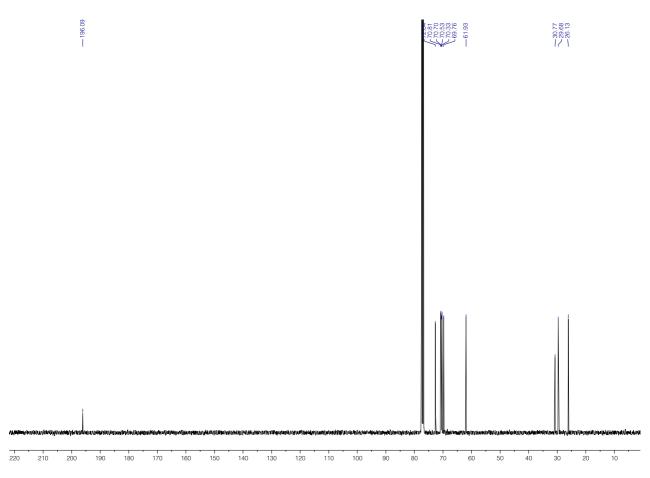


Figure S42. ¹³C NMR spectrum of 18 (100 MHz, CDCl₃).

2-(2-(2-(3-mercaptopropoxy)ethoxy)ethoxy)ethanol (**B**7): A solution of **18** (266 mg; 1.00 mmol) in 10 mL of methanol was degassed by bubbling nitrogen for 15 min. Then, 5 mL of 1.25 M methanolic HCl solution was added and the reaction mixture was refluxed for 6 h. The reaction mixture was cooled down to room temperature and the solvent was evaporated *in vacuo* to afford **B7** in a quantitative yield.

¹**H** NMR (400 MHz, CDCl₃): $\delta = 3.73 - 3.56$ (m, 14H), 2.65–2.61 (q, 2H), 1.91–1.85 (m, 2H), 1.40 (t, 1H). ¹³**C** NMR (100 MHz, CDCl₃): $\delta = 72.65$, 70.79, 70.69, 70.51, 70.32, 69.26, 61.92, 33.78, 21.56. **HRMS** calcd for C₉H₂₀NaO₄S [M + Na]⁺, m/z = 247.0980; found, 247.0983.

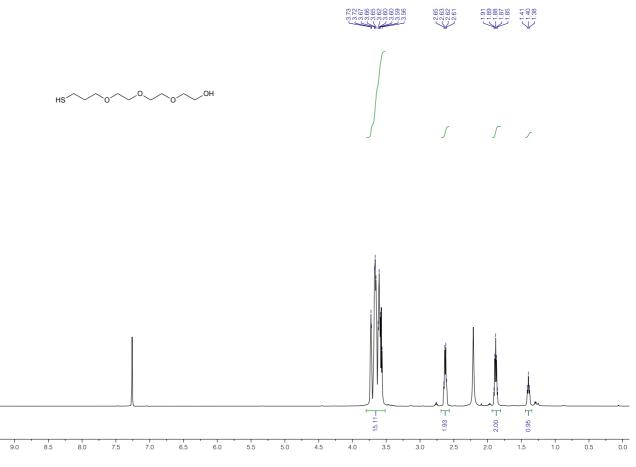


Figure S43. ¹H NMR spectrum of B7 (400 MHz, CDCl₃).

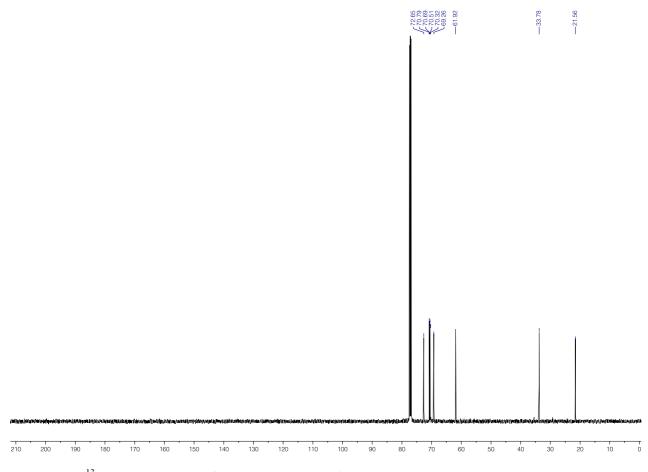
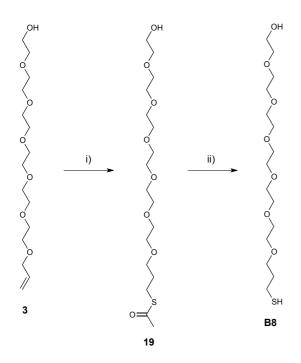



Figure S44. ¹³C NMR spectrum of B7 (100 MHz, CDCl₃).

3.8. Background ligand **B8**

Scheme S7. Synthetic route for ligand B8. Reagents and conditions: i) CH₃COSH, DCM, UVB, overnight, quantitative; ii) HCl/MeOH, reflux, 6 h, quantitative.

S-(1-hydroxy-3,6,9,12,15,18-hexaoxahenicosan-21-yl) ethanethioate (19): A solution of 3 (synthesized according to Scheme S2) (1.29 g; 4.00 mmol) and thioacetic acid (1,000 μ L; 1.065 g; 13.99 mmol) in DCM (6 mL) was stirred at room temperature under UVB light overnight. Then, the reaction mixture was concentrated *in vacuo* to afford 19 in a quantitative yield.

¹**H** NMR (400 MHz, CDCl₃): δ = 3.73–3.70 (m, 2H), 3.66–3.56 (m, 22H), 3.50 (t, 2H), 2.94 (t, 2H), 2.53 (s, 1H), 2.32 (s, 3H), 1.88–1.82 (m, 2H). ¹³**C** NMR (100 MHz, CDCl₃): δ = 196.02, 72.65, 70.78, 70.77, 70.75, 70.72, 70.53, 70.37, 69.74, 61.93, 30.77, 29.72, 26.15.

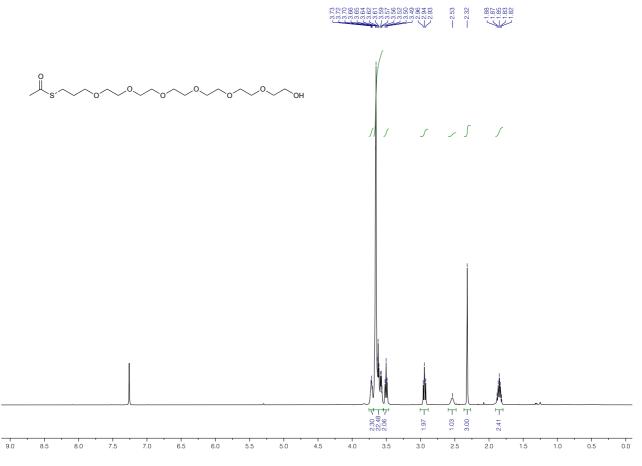


Figure S45. ¹H NMR spectrum of 19 (400 MHz, CDCl₃).

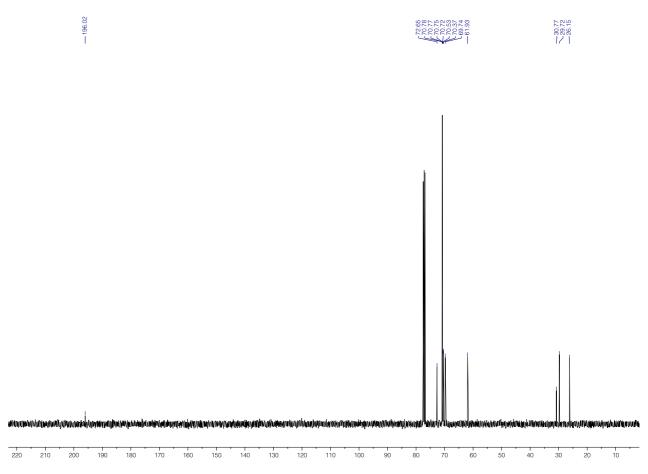


Figure S46. ¹³C NMR spectrum of 19 (100 MHz, CDCl₃).

2-(2-(2-(3-mercaptopropoxy)ethoxy)ethoxy)ethanol (**B8**): A solution of **19** (199 mg; 0.50 mmol) in 10 mL of methanol was degassed by bubbling nitrogen for 15 min. Then, 3 mL of 1.25 M methanolic HCl solution was added and the reaction mixture was refluxed for 6 h. The reaction mixture was cooled down to room temperature and the solvent was evaporated *in vacuo* to afford **B8** in a quantitative yield.

¹**H** NMR (400 MHz, CDCl₃): $\delta = 3.74-3.71$ (m, 2H), 3.66–3.55 (m, 24H), 2.65–2.59 (q, 2H), 1.91–1.84 (m, 2H), 1.38 (t, 1H). ¹³**C** NMR (100 MHz, CDCl₃): $\delta = 77.16$, 72.66, 70.77, 70.76, 70.74, 70.70, 70.50, 70.37, 69.25, 61.91, 33.88, 21.58. **HRMS** calcd for C₁₅H₃₂NaO₇S [M + Na]⁺, m/z = 379.1766; found, 379.1764.

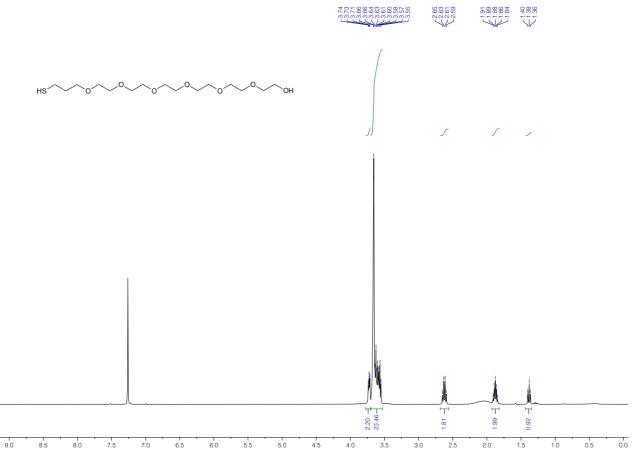


Figure S47. ¹H NMR spectrum of B8 (400 MHz, CDCl₃).

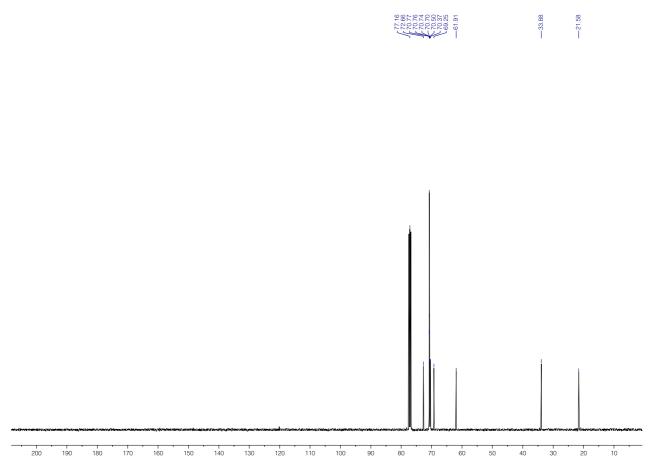
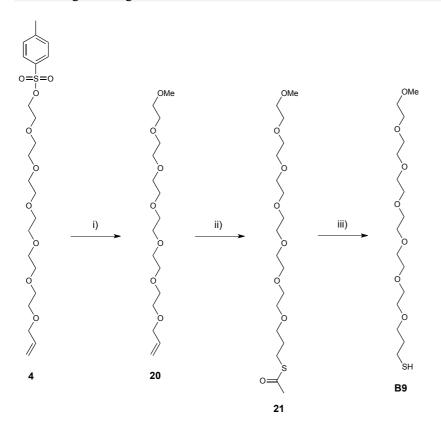



Figure S48. ¹³C NMR spectrum of B8 (100 MHz, CDCl₃).

Scheme S8. Synthetic route for ligand **B9**. Reagents and conditions: i) NaH/MeOH/THF, 50 °C, overnight, 80%; ii) CH₃COSH, DCM, UVB, overnight, quantitative; iii) HCl/MeOH, reflux, 6 h, quantitative.

2,5,8,11,14,17,20-heptaoxatricos-22-ene (**20**): A round-bottom flask containing a mixture of dry methanol (5 mL) and dry THF (5 mL) at 0 °C was charged with 60% NaH (80 mg; 2 mmol) in oil. After ca. 10 min, a solution compound **4** (obtained according to Scheme S2) (190.6 mg, 0.40 mmol) in dry THF (5 mL) was added dropwise. The reaction mixture was heated to 50 °C and stirred at this temperature overnight. Then, the solvent was removed *in vacuo*; the residue was dissolved in CHCl₃ (50 mL), the resulting solution was washed with brine (100 mL \times 2), dried over Na₂SO₄, and finally concentrated *in vacuo*. The crude product was purified by silica gel column chromatography (eluent: from Hexane to CHCl₃) to afford 108 mg of **20** (yield = 80%).

¹**H NMR** (400 MHz, CDCl₃): δ = 5.96–5.87 (m, 1H), 5.29–5.16 (m, 2H), 4.03–4.02 (d, 2H), 3.66–3.59 (m, 22H), 3.56–3.54 (m, 2H), 3.38 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃): δ = 134.92, 117.24, 72.40, 72.10, 70.79, 70.77, 70.75, 70.68, 69.58, 59.19.

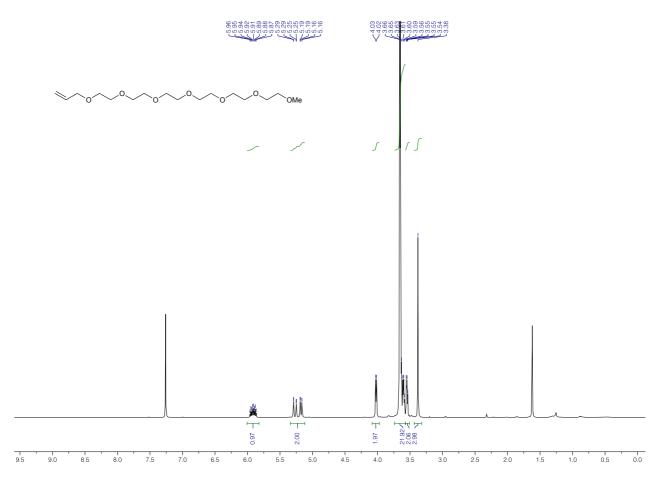


Figure S49. ¹H NMR spectrum of 20 (400 MHz, CDCl₃).

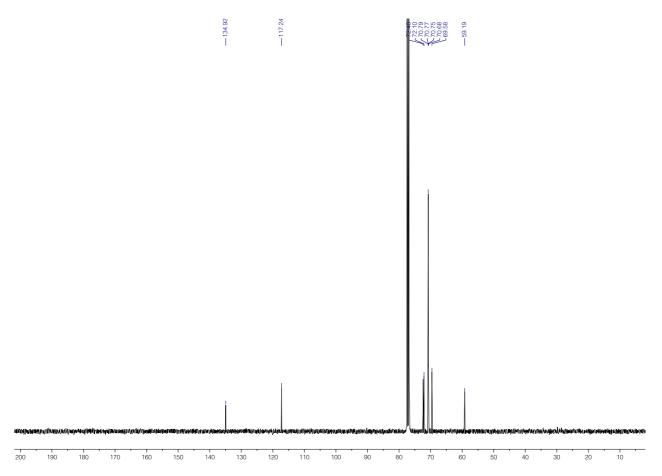


Figure S50. ¹³C NMR spectrum of 20 (100 MHz, CDCl₃).

S-2,5,8,11,14,17,20-heptaoxatricosan-23-yl ethanethioate (21): A solution of 20 (100 mg; 0.30 mmol) and thioacetic acid (214 μ L; 228 mg; 3.0 mmol) in DCM (6 mL) was stirred at room temperature under UVB light overnight. Then, the reaction mixture was concentrated *in vacuo* to afford 21 in a quantitative yield.

¹**H** NMR (400 MHz, CDCl₃): δ = 3.66–3.49 (m, 26H), 3.38 (s, 3H), 2.95 (t, 2H), 2.32 (s, 3H), 1.89–1.82 (m, 2H). ¹³**C** NMR (100 MHz, CDCl₃): δ = 196.02, 72.10, 70.77, 70.74, 70.68, 69.74, 59.19, 30.78, 29.73, 26.15. **HRMS** calcd for C₁₈H₃₆NaO₈S [M + Na]⁺, m/z = 435.2029; found, 435.2030.

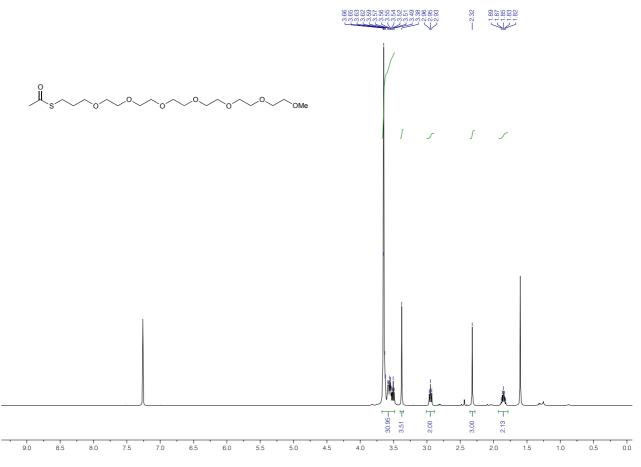


Figure S51. ¹H NMR spectrum of 21 (400 MHz, CDCl₃).

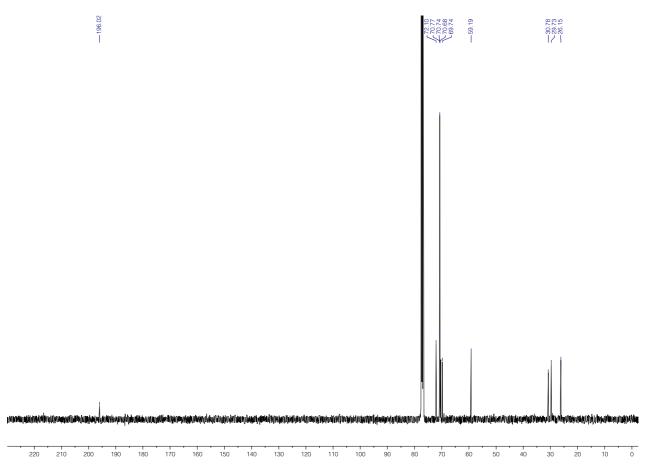


Figure S52. ¹³C NMR spectrum of 21 (100 MHz, CDCl₃).

2,5,8,11,14,17,20-heptaoxatricosane-23-thiol (B9): A solution of **21** (82.5 mg; 0.20 mmol) in 10 mL of methanol was degassed by bubbling nitrogen for 15 min. Then, 1.2 mL of 1.25 M methanolic HCl solution was added and the reaction mixture was refluxed for 6 h. Finally, the reaction mixture was cooled down to room temperature and the solvent was evaporated *in vacuo* to afford **B9** in a quantitative yield.

¹**H** NMR (400 MHz, CDCl₃): δ = 3.65–3.38 (m, 26H), 3.38 (s, 3H), 2.65–2.59 (q, 2H), 1.91–1.84 (m, 2H), 1.38 (t, 1H). ¹³**C** NMR (100 MHz, CDCl₃): δ = 72.10, 70.74, 70.68, 70.39, 69.26, 59.19, 33.89, 21.59. **HRMS** calcd for C₁₆H₃₄NaO₇S [M + Na]⁺, m/z = 393.1923; found, 393.1920.

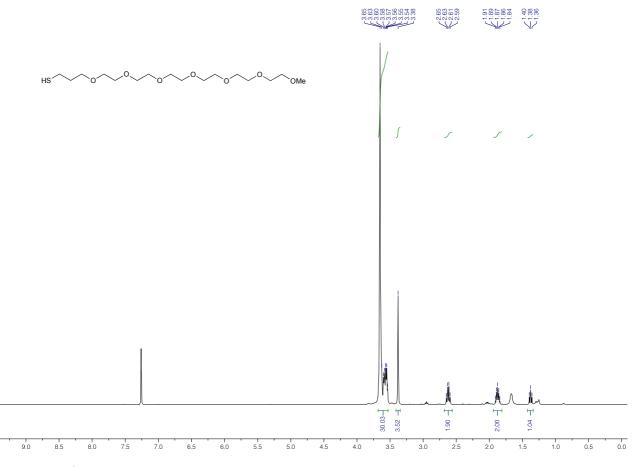


Figure S53. ¹H NMR spectrum of B9 (400 MHz, CDCl₃).

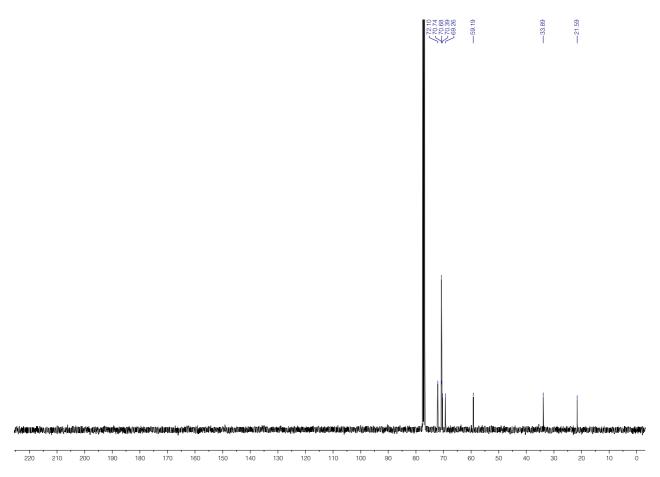


Figure S54. ¹³C NMR spectrum of B9 (100 MHz, CDCl₃).

4. Synthesis and functionalization of gold nanoparticles

4.1. Synthesis of 2.5 nm gold nanoparticles

Gold nanoparticles with an average diameter of 2.5 nm were prepared by reducing HAuCl₄ with tetrabutylammonium borohydride (TBAB) in toluene in the presence of dodecylamine (DDA) and didodecyldimethylammonium bromide (DDAB) as the surfactants, according to a previously reported procedure.^{2,7} Specifically, DDAB stock solution was first prepared by dissolving DDAB (925 mg; 2.00 mmol) in toluene (20 mL) with ultrasonication. DDA (450 mg; 2.43 mmol) and HAuCl₄·3H₂O (50 mg; 127 µmol) were then added to 12.5 mL of the stock solution and sonicated until completely dissolved. Gold(III) was then reduced by rapidly injecting a solution of tetrabutylammonium borohydride (TBAB) (125 mg; 486 µmol) in 5 mL of the DDAB stock solution under vigorous stirring. Gentle stirring was continued for an additional 2–3 h.

4.1.1. Functionalization of 2.5 nm gold nanoparticles by the simultaneous addition of two thiols

A mixture of desired thiolated azobenzene Am (m = 1-5) and background ligand Bn (n = 1-9) (dissolved in DMSO, DMF, or MeOH) was added to a solution of 2.5 nm gold NPs under gentle stirring. The total amount of thiols corresponded to a 10-fold excess with respect to the number of the binding sites on Au (calculated assuming that a single thiolate moiety occupies an area of 0.214 nm² on the surface of gold⁸). The mixture was shaken on an orbital shaker for 4 h, resulting in the precipitation of NPs (in rare cases, the NPs remained colloidally stable; they were then precipitated with the help of a non-solvent). Then, the supernatant was discarded and the NPs were washed repeatedly with DCM. Finally, gold NPs were dried under ambient pressure and dissolved in deionized water.

4.1.2. Functionalization of 2.5 nm gold nanoparticles by the consecutive addition of two thiols

Thiolated azobenzene Am (m = 1-5) (θ equivalents; $\theta < 1$; equiv with respect to the number of binding sites on Au) dissolved in either DMF or DMSO was added dropwise to a fresh toluene solution of 2.5 nm Au NPs under vigorous stirring. After having been shaken on an orbital shaker for 1 h, background ligand **B**n (n = 1-9) (y equiv, where $y = 1 - \theta$) dissolved in either DMSO or MeOH was introduced. After having been shaken on an orbital shaker for an additional 2 h, a solution mixture of θ equiv of **A**m and y equiv of **B**n was added and the system was allowed to equilibrate for another ~1 h. Surface functionalization of NPs resulted in precipitation from the solution; if no precipitation occurred spontaneously, it was induced with a non-solvent. Then the supernatant was discarded and the NPs were washed repeatedly with DCM. Finally, the functionalized gold NPs were dried under ambient pressure and finally dissolved in deionized water.

4.2. Synthesis of 5.5 nm gold nanoparticles

Gold nanoparticles with an average diameter of 5.5 nm were synthesized based on a previously reported procedure.^{2,7} First, 2.5 nm NPs ("seeds") were prepared as described above (Section 4.1) and left on an orbital shaker for 24 h. Growth solution was prepared by adding to 50 mL of toluene in the following order: DDAB (1.00 g), DDA (1.85 g), HAuCl₄·3H₂O (200 mg), and the seed solution (7.0 mL). Finally, 131 μ L of hydrazine dissolved (with ultrasonication) in 20 mL of the DDAB stock solution was added dropwise (~1 drop/sec) to the growth solution under vigorous stirring and the resulting solution was stirred overnight.

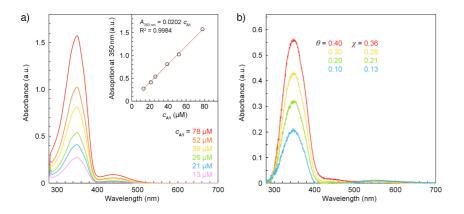
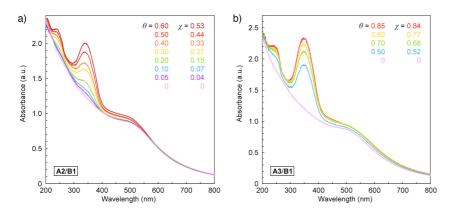
4.2.1. Functionalization of 5.5 nm gold nanoparticles

Prior to functionalization, gold NPs were purified from an excess of surfactants. A toluene solution of gold NPs was mixed with the same volume of methanol and the resulting black precipitate was collected (ca. 1 h after adding methanol) by decantation. The precipitate was washed with methanol once and dissolved in pure toluene. Ligand exchange was carried out as described for 2.5 nm NPs (Sections 4.1.1 and 4.1.2).

5. Determining the values of χ on Am-functionalized gold nanoparticles

The values of χ for all combinations of thiolated azobenzene Am and backgroud thiol Bn were determined as described here for the A1/B1 system.

First, we determined the molar absorptivity of A1 by recording a series of UV/Vis absorption spectra of solutions of A1 in an organic solvent (toluene or DMSO, depending on azobenzene; here, toluene) at different concentrations (Figure S55a; $\varepsilon = 2.02 \cdot 10^4 \text{ M}^{-1} \text{ cm}^{-1}$). Next, we subtracted the spectrum of B1-functionalized 2.5 nm NPs from the spectra of A1B1-functionalized NPs of the same size (see Figure 2c in the main text) – the resulting spectra are shown in Figure S55b. The values of χ were determined based on the assumption that a single thiol ligand (either A1 or B1) occupies a surface area of 0.214 nm² on the surface of gold.⁸

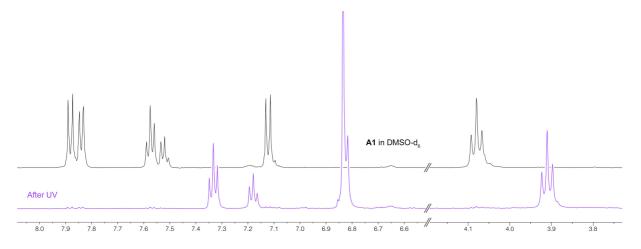
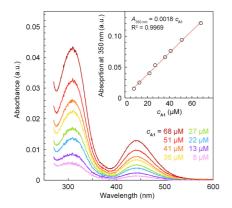

Figure S55. (a) UV/Vis absorption spectra of toluene solutions of A1 at different concentrations of A1. (b) UV/Vis absorption spectra of four batches of A1/B1-functionalized 2.5 nm Au NPs obtained with increasing molar fractions of A1, θ , after subtracting the spectrum of B1-functionalized NPs of the same size. The concentration of NPs in all samples amounted to 0.40 mM (concentration in terms of gold atoms). Light path length = 10 mm.

Figure S56. UV/Vis absorption spectra of (a) A2/B1- and (b) A3/B1-functionalized 2.5 nm gold NPs obtained using various molar fractions of azobenzenes A2 and A3 (θ). The resulting molar fractions of A2 and A3 on the NPs are denoted as χ . The highest χ values for NPs colloidally stable in pure water corresponded to 0.53 for A2/B1-functionalized NPs and 0.84 for A3/B1-functionalized NPs.


6. Determining the photoisomerization yield of azobenzene on gold nanoparticles

We used a combination of UV/Vis absorption spectroscopy and NMR spectroscopy to accurately determine the composition of *trans/cis* mixtures on NP surfaces. The procedure is described here for A1/B1-functionalized 2.5 nm gold NPs as an example. UV irradiation of these NPs leads to decreased absorbance at 350 nm due to the $\pi \rightarrow \pi^*$ transition in *trans*-A1. However, the extent of this decrease is not directly proportional to the isomerization yield because *cis*-A1 also absorbs at this wavelength. Having determined the molar absorptivity of *trans*-A1 at 350 nm as $\varepsilon_{trans} = 2.02 \cdot 10^4 \text{ M}^{-1} \text{cm}^{-1}$ (see Supporting Information, Section 5), we therefore proceeded to estimate the absorptivity of *cis*-A1. First, we generated a *cis*-rich solution of A1 in DMSO-d₆ by exposure to UV light until the system reached a photostationary state (PSS). Integrating the signals due to *trans*- and *cis*-A1 allowed us to estimate the composition of PSS as 2.1% *trans* and 97.9% *cis* (Figure S57).

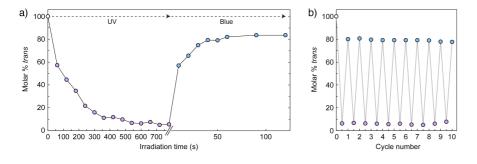
Figure S57. Partial ¹H NMR spectrum of A1 in DMSO-d₆ (c = 2.4 mM) before (black) and after (purple) exposure to UV light for 20 min (500 MHz).

To determine the molar absorptivity of PSS at 350 nm, we rapidly diluted the UV-irradiated solution with DMSO and recorded a series of UV/Vis spectra (see Figure S58) (we verified that the rate of thermal back-isomerization in DMSO was such that the composition of PSS changed by only ~1% within 20 min after exposure to UV light). We found that $\varepsilon_{PSS} = 0.18 \cdot 10^4 \text{ M}^{-1} \text{cm}^{-1}$, which, provided that the composition of PSS is known, allowed us to estimate ε_{cis} as $0.14 \cdot 10^4 \text{ M}^{-1} \text{cm}^{-1}$.

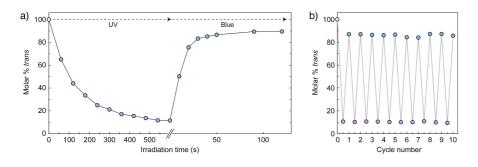
Figure S58. UV/Vis absorption spectra of DMSO solutions of **A1** pre-exposed to UV at different concentrations of **A1**. Light path length = 10 mm.

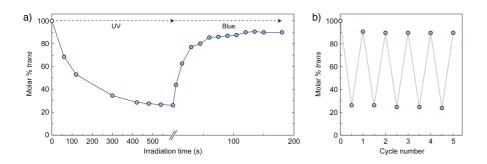

Therefore, the molar fraction of the trans isomer in the PSS can be calculated as,

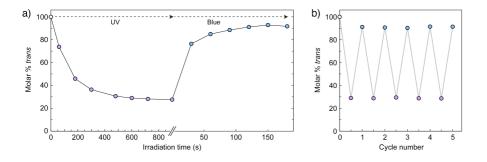
Molar % trans =
$$\frac{A - A_{B1} - l \cdot c_{\text{total}} \cdot \varepsilon_{cis}}{l \cdot c_{\text{total}} \cdot (\varepsilon_{trans} - \varepsilon_{cis})} \cdot 100\%$$
,

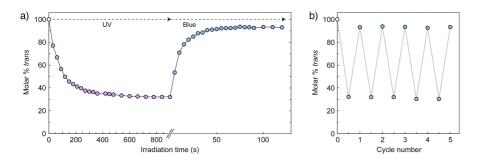

where A = absorbance of A1/B1-functionalized 2.5 nm Au NPs at 350 nm after exposure to light, $A_{B1} =$ absorbance at 350 nm of a solution of B1-functionalized 2.5 nm Au NPs at the same NP concentration, l = light path length, and $c_{\text{total}} =$ total concentration of azobenzene A1.

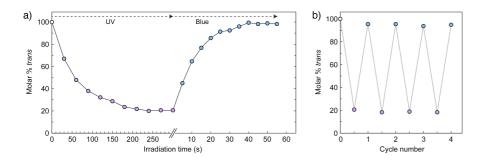
The same procedure was adopted for azobenzenes A2-A5, for which molar absorptivities were independently determined (none of background ligands **B1–B9** absorbs at 350 nm). These considerations assume that the molar absorptivity of azobenzene is solvent independent.

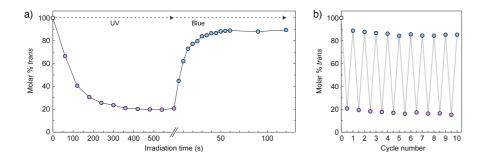

7. Azobenzene photoisomerization and thermal relaxation on water-soluble gold nanoparticles


Figure S59. Photoswitching of azobenzene A1 on A1/B1-functionalized 2.5 nm gold NPs at $\chi = 0.17$. (a) Fraction of the *trans* isomer as a function of irradiation time with UV and blue light. (b) Reversible switching for five cycles (10 min of UV and 1 min of blue light irradiation were applied). The photostationary state (PSS) under UV light comprises 7±2 % of the *trans* isomer. The PSS under blue light comprises 84±2 % of the *trans* isomer.


Figure S60. Photoswitching of azobenzene A1 on A1/B1-functionalized 2.5 nm gold NPs at $\chi = 0.28$. (a) Fraction of the *trans* isomer as a function of irradiation time with UV and blue light. (b) Reversible switching for five cycles (10 min of UV and 1 min of blue light irradiation were applied). The PSS under UV light comprises 6 ± 1 % of the *trans* isomer. The PSS under blue light comprises 79 ± 1 % of the *trans* isomer.


Figure S61. Photoswitching of azobenzene A1 on A1/B1-functionalized 2.5 nm gold NPs at $\chi = 0.36$. (a) Fraction of the *trans* isomer as a function of irradiation time with UV and blue light. (b) Reversible switching for five cycles (10 min of UV and 1 min of blue light irradiation were applied) (replotted from Figure 3e in the main text). The PSS under UV light comprises 10 ± 1 % of the *trans* isomer. The PSS under blue light comprises 86 ± 1 % of the *trans* isomer.


Figure S62. Photoswitching of azobenzene A2 on A2/B1-functionalized 2.5 nm gold NPs at $\chi = 0.15$. (a) Fraction of the *trans* isomer as a function of irradiation time with UV and blue light. (b) Reversible switching for five cycles (10 min of UV and 2 min of blue light irradiation were applied). The PSS under UV light comprises 25 ± 1 % of the *trans* isomer. The PSS under blue light comprises 90 ± 1 % of the *trans* isomer.


Figure S63. Photoswitching of azobenzene A2 on A2/B1-functionalized 2.5 nm gold NPs at $\chi = 0.44$. (a) Fraction of the *trans* isomer as a function of irradiation time with UV and blue light. (b) Reversible switching for five cycles (10 min of UV and 2 min of blue light irradiation were applied). The PSS under UV light comprises 30 ± 1 % of the *trans* isomer. The PSS under blue light comprises 91 ± 1 % of the *trans* isomer.

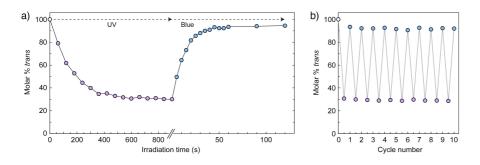

Figure S64. Photoswitching of azobenzene A2 on A2/B1-functionalized 2.5 nm gold NPs at $\chi = 0.53$. (a) Fraction of the *trans* isomer as a function of irradiation time with UV and blue light. (b) Reversible switching for five cycles (10 min of UV and 2 min of blue light irradiation were applied). The PSS under UV light comprises 31 ± 1 % of the *trans* isomer. The PSS under blue light comprises 93 ± 1 % of the *trans* isomer.

Figure S65. Photoswitching of azobenzene A3 on A3/B1-functionalized 2.5 nm gold NPs at $\chi = 0.16$. (a) Fraction of the *trans* isomer as a function of irradiation time with UV and blue light. (b) Reversible switching for five cycles (5 min of UV and 1 min of blue light irradiation were applied). The PSS under UV light comprises 19 ± 1 % of the *trans* isomer. The PSS under blue light comprises 95 ± 1 % of the *trans* isomer.

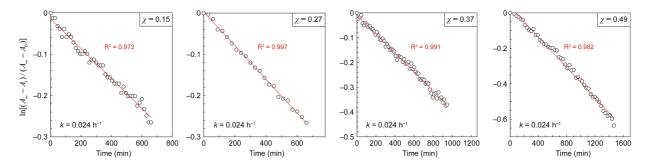
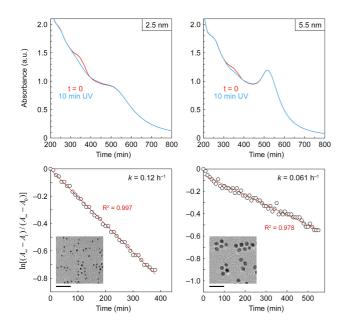
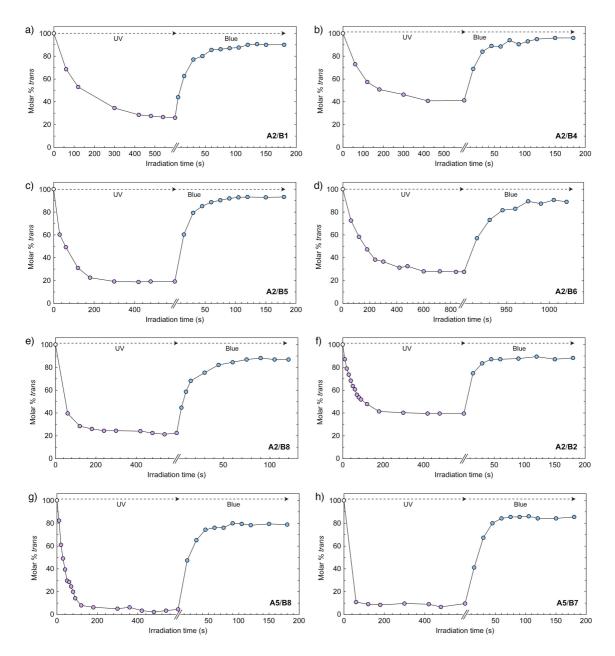
Figure S66. Photoswitching of azobenzene A3 on A3/B1-functionalized 2.5 nm gold NPs at $\chi = 0.52$. (a) Fraction of the *trans* isomer as a function of irradiation time with UV and blue light. (b) Reversible switching for ten cycles (10 min of UV and 1 min of blue light irradiation were applied). The PSS under UV light comprises 17 ± 2 % of the *trans* isomer. The PSS under blue light comprises 86 ± 2 % of the *trans* isomer.

Figure S67. Photoswitching of azobenzene A3 on A3/B1-functionalized 2.5 nm gold NPs at $\chi = 0.84$. (a) Fraction of the *trans* isomer as a function of irradiation time with UV and blue light. (b) Reversible switching for ten cycles (10 min of UV and 1 min of blue light irradiation were applied). The PSS under UV light comprises 29 ± 1 % of the *trans* isomer. The PSS under blue light comprises 92 ± 1 % of the *trans* isomer.

In all cases, thermal relaxation of *cis*-azobenzene followed first-order kinetics, which can be described as^{9,10}:

$$\ln\frac{A_{\infty}-A_t}{A_{\infty}-A_0}=-kt,$$

where A_{∞} is the absorbance at λ_{\max} (typically ~350 nm) before irradiation (i.e., pure *trans*), A_0 – absorbance immediately after extended exposure to UV light, A_t – absorbance after thermal (dark) relaxation for time *t*, and *k* is the rate constant.

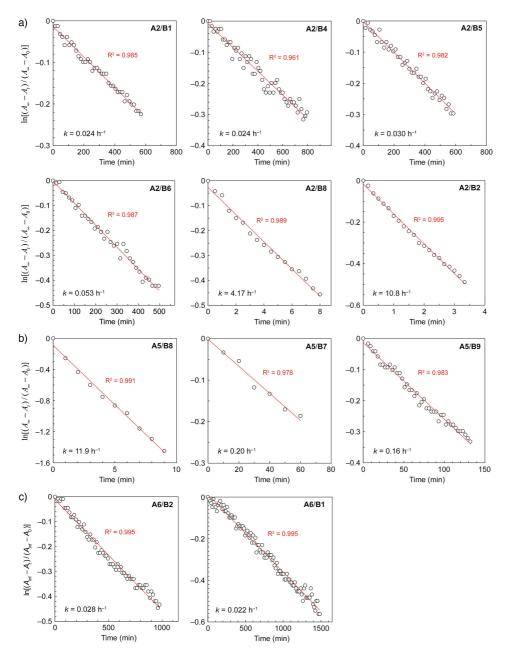

Figure S68. Kinetics of the thermal back-isomerization of A2 on A2/B1-functionalized 2.5 nm gold NPs as a function of χ .

Figure S69. *Top*: UV/Vis spectra of **A2/B2**-functionalized 2.5 nm gold NPs (left; $\chi = 0.13$) and 5.5 nm gold NPs (right; $\chi = 0.15$) before (red) and after (blue) exposure to UV light. *Bottom*: Kinetics of the thermal back-isomerization of **A2** on **A2/B2**-functionalized 2.5 nm gold NPs (left) and 5.5 nm gold NPs (right). The insets show representative TEM images of **A2/B2**-coated 2.5 nm and 5.5 nm NPs (scale bars correspond to 20 nm). Solvent = 9:1 ν/ν water-methanol.

Figure S70. Reversible photoswitching of azobenzenes A2 and A5 co-adsorbed on 2.5 nm Au NPs with different background ligands (all at $\chi \approx 0.15$)

Figure S71. (a) Kinetics of the thermal back-isomerization of A2 on A2/B*n*-functionalized 2.5 nm gold NPs (all at $\chi \approx 0.15$) in water. (b) Kinetics of the thermal back-isomerization of A5 on A5/B*n*-functionalized 2.5 nm gold NPs (all at $\chi \approx 0.15$) in water. (c) Kinetics of the thermal back-isomerization of A6 on A6/B*n*-coated 2.5 nm gold NPs (both at $\chi \approx 0.15$) in water.

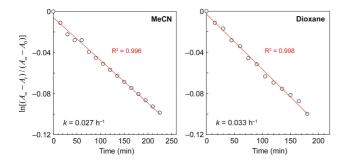
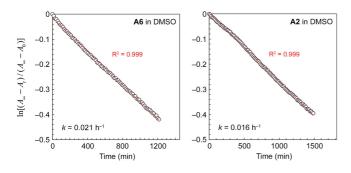
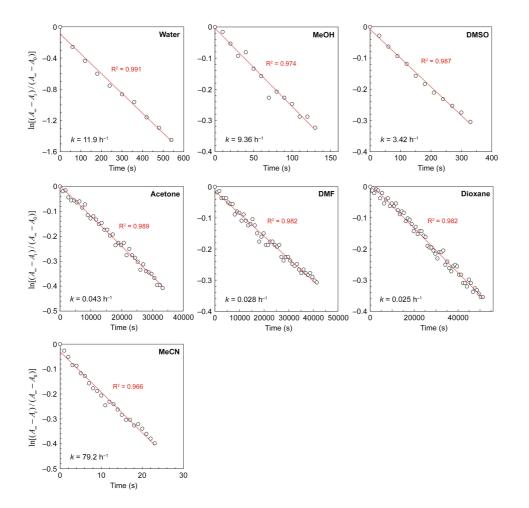
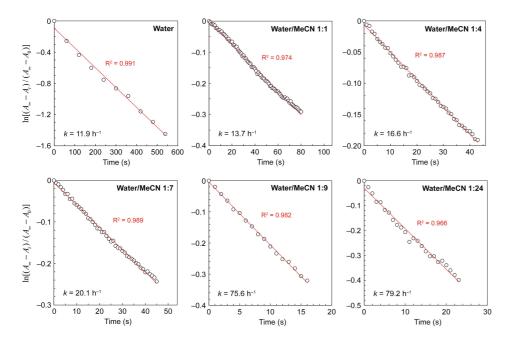


Figure S72. Kinetics of the thermal back-isomerization of free A5 in acetonitrile (left) and dioxane (right).

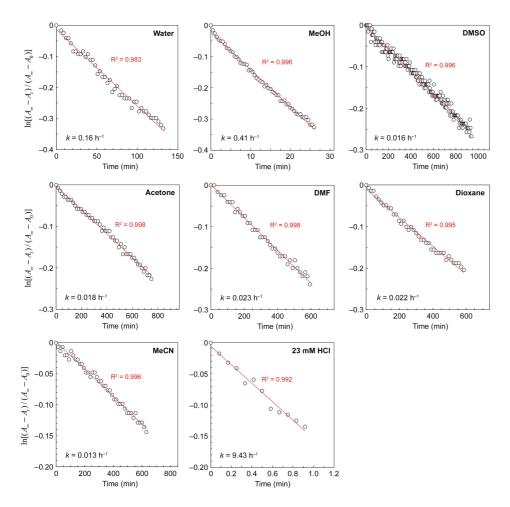

Figure S73. Kinetics of the thermal back-isomerization of free A6 (left) and A2 (right) in DMSO.

Figure S74. Kinetics of the thermal back-isomerization of A5 on A5/B8-functionalized 2.5 nm gold NPs ($\chi \approx 0.15$) in different 1:24 water-solvent mixtures, where the solvent is indicated in the plots.

Figure S75. Kinetics of the thermal back-isomerization of A5 on A5/B8-functionalized 2.5 nm gold NPs ($\chi \approx 0.15$) in different water-acetonitrile mixtures.

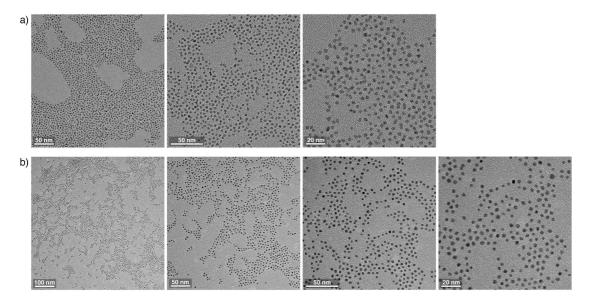


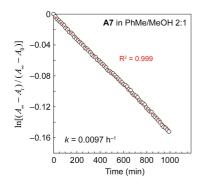
Figure S76. Kinetics of the thermal back-isomerization of A5 on A5/B9-functionalized 2.5 nm gold NPs ($\chi \approx 0.15$) in different 1:24 water–organic solvent mixtures, where the solvent is indicated in the plots. Bottom center: aqueous solution containing 23 mM HCl.

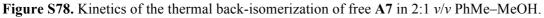
8. Synthesis and functionalization of 3.5 nm palladium nanoparticles

Synthesis: Palladium nanoparticles were prepared by reducing $PdCl_2$ with *tert*-butylamine–borane complex, based on the method described by Sun and coworkers.¹¹ Briefly, 50 mg of $PdCl_2$ was dissolved in 4 mL of a mixed solvent composed of toluene and oleylamine (1:1 v/v) under nitrogen atmosphere. The mixture was heated at 80 °C until a clear (slightly yellow) solution was obtained. To this mixture, a solution of 100 mg of the *tert*-butylamine–borane complex in a 1:1 (v/v) mixture of toluene and oleylamine was rapidly injected under vigorous stirring. The color turned black within 5 seconds and stirring was continued for an additional 30 minutes. Then, the solution was cooled to room temperature and 10 mL of ethanol was added to induce NP flocculation. The NPs were collected by centrifugation, redispersed in 2 mL of toluene, precipitated with ethanol (10 mL), once again redispersed in 2 mL of toluene and precipitated with ethanol (10 mL), and finally redispersed in 20 mL of toluene.

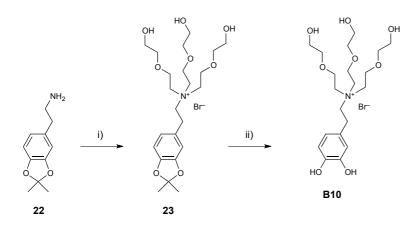
Functionalization: A solution of A2 (c = 16.5 mM) and B2 (c = 14.9 mM) in toluene (100 µL) was added to a stirred solution of Pd NPs in toluene (1 mL) obtained as described above. The mixture was stirred on an orbital shaker for 12 h, resulting in precipitation of functionalized NPs. The precipitate was collected, washed repeatedly with DCM, dried under ambient pressure, and redispersed in deionized water (1 mL). The fractional coverage of azobenzene on the resulting NPs was estimated as $\chi \approx 0.10$, assuming that a single thiol ligand occupies the same surface area on Pd than on Au (i.e., 0.214 nm²). However, it is most likely that the actual χ is higher due to the previously reported¹² oxidation of Pd NP surface to PdO, which decreases the overall density of thiolate ligands on Pd NPs.

Figure S77. Representative TEM images of (a) toluene-soluble, 3.5 nm Pd NPs capped with oleylamine and (b) water-soluble, 3.5 nm Pd NPs co-functionalized with a mixture of A2 and B2 ($\chi \approx 0.10$).


9. Synthesis and functionalization of 4.0 nm magnetite nanoparticles


9.1. Synthesis of 4.0 nm magnetite nanoparticles

Magnetite nanoparticles $(4.0 \pm 0.3 \text{ nm})$ were synthesized according to the procedure reported in Ref. 13.


9.2. Synthesis of azobenzene-terminated catechol A7

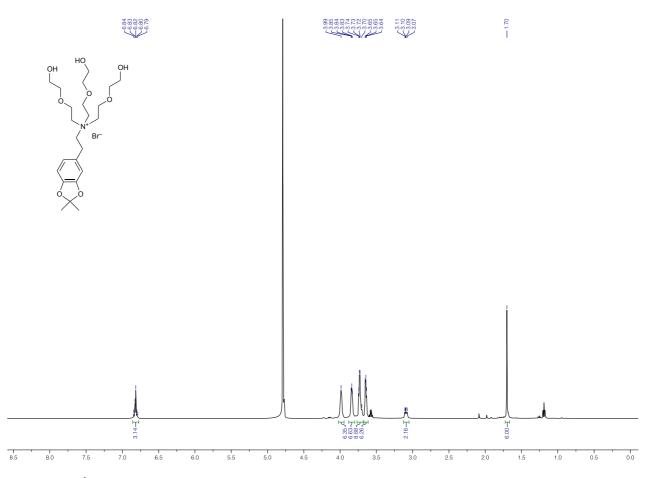
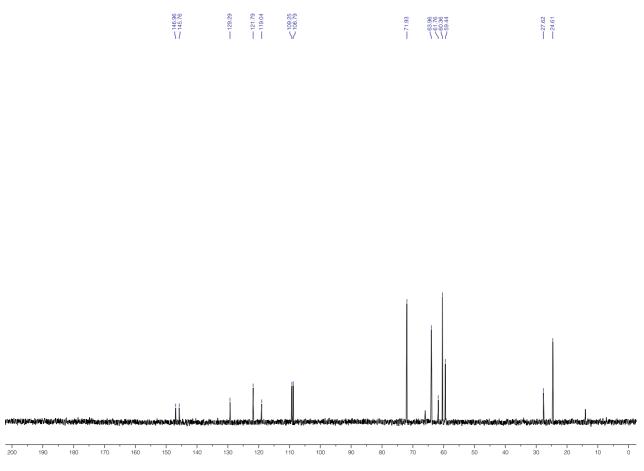
Compound A7 was synthesized according to the procedure reported in Ref. 14.

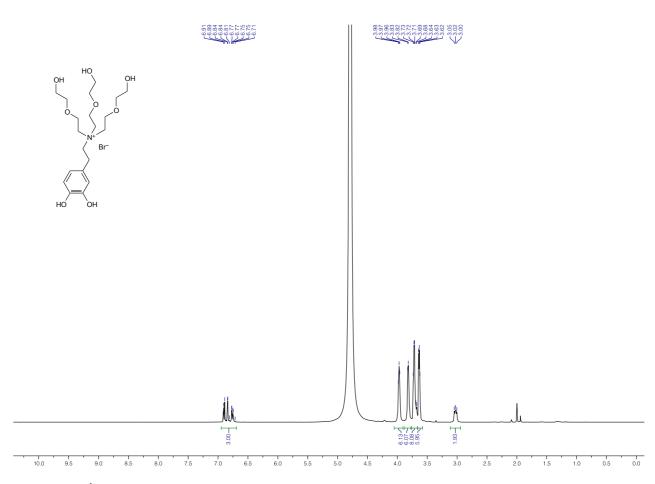
9.3. Synthesis of background ligand **B10**

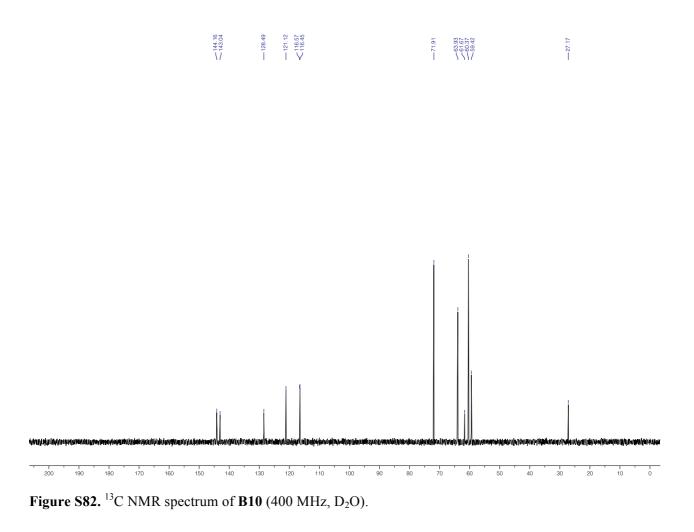
Scheme S9. Synthetic route for ligand B10. Reagents and conditions: i) 2-(2-bromoethoxy)ethanol, K₂CO₃, MeCN, reflux, 2d, 20%; ii) TFA, MeCN/CHCl₃, RT, 89%.

2-(2,2-dimethylbenzo[d][1,3]dioxol-5-yl)-*N,N,N***-tris(2-(2-hydroxyethoxy)ethyl)ethanaminium bromide** (23): 2-(2,2-dimethylbenzo[d][1,3]dioxol-5-yl)ethanamine 22 (220 mg; 1.14 mmol; synthesized according to the procedure reported Ref. 15 and purified by silica gel column chromatography using $2\rightarrow 6\%$ MeOH in DCM with 1% triethylamine) and 2-(2-bromoethoxy)ethanol (693 mg; 4.10 mmol; synthesized according to the procedure reported Ref. 16) were dissolved in 10 mL of acetonitrile in the presence of K₂CO₃ (315 mg; 2.28 mmol) and the mixture was refluxed for two days under nitrogen atmosphere. Then, the mixture was cooled to 4 °C, insoluble solids were removed by centrifugation and the supernatant was concentrated *in vacuo* (final volume ≈ 1 mL). Crude product was precipitated by the addition of 30 mL of 9:1 ν/ν Et₂O–EtOAc; it was washed with Et₂O (10 mL × 2) and dried to afford 120 mg of 23 (yield = 20%).

¹**H** NMR (500 MHz, D₂O): $\delta = 6.84-6.79$ (m, 3H), 3.99 (bs, 6H), 3.85–3.83 (m, 6H), 3.74–3.70 (m, 8H), 3.65–3.64 (m, 6H), 3.11–3.07 (m, 2H), 1.70 (s, 6H). ¹³**C** NMR (125 MHz, D₂O): $\delta = 146.96$, 145.76, 129.29, 121.79, 119.04, 109.25, 108.79, 71.93, 63.96, 61.76, 60.36, 59.44, 27.62, 24.61. **HRMS** calcd for C₂₃H₄₀NO₈ [M–Br]⁺, m/z = 458.2754; found, 458.2737.


Figure S79. ¹H NMR spectrum of 23 (500 MHz, D_2O).


Figure S80. ¹³C NMR spectrum of **23** (125 MHz, D₂O).

N-(3,4-dihydroxyphenethyl)-2-(2-hydroxyethoxy)-*N*,*N*-bis(2-(2-hydroxyethoxy)ethyl)ethanaminium bromide (B10): A solution of 23 (53.8 mg; 1.00 mmol) in 1:5 v/v MeCN–CHCl₃ (6 mL) was degassed. Degassed trifluoroacetic acid (1.5 mL) was added and the reaction mixture was stirred for six hours at room temperature under nitrogen atmosphere. Then, the solvent was removed *in vacuo*, the crude product was dissolved in water (10 mL), and washed with 9:1 v/v Et₂O–EtOAc (5 mL × 2). Finally, the aqueous phase was freeze-dried to afford 43.8 mg of B10 (yield = 89%).

¹**H** NMR (400 MHz, D₂O): $\delta = 6.91-6.71$ (m, 3H), 3.98–3.96 (m, 6H), 3.83–3.81 (m, 6H), 3.73–3.68 (m, 8H), 3.64–3.62 (m, 6H), 3.05–3.00 (m, 2H). ¹³C NMR (100 MHz, D₂O): $\delta = 144.16$, 143.04, 128.49, 121.12, 116.57, 116.45, 71.91, 63.93, 61.67, 60.37, 59.42, 27.17. **HRMS** calcd for C₂₀H₃₆NO₈ [M – Br]⁺, m/z = 418.2441; found, 418.2414.

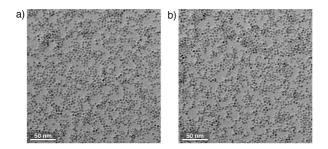


Figure S81. ¹H NMR spectrum of **B10** (400 MHz, D_2O).

9.4. Functionalization of 4.0 nm magnetite nanoparticles

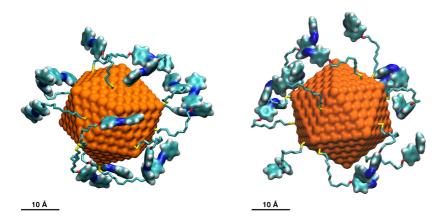

Functionalization of magnetite NPs with a mixture of A7 and B10: A solution of 4.0 nm magnetite NPs (3.0 mg) in toluene (2 mL) was mixed with a solution of **A7** in THF (43.1 μ L; *c* = 12.8 mM). The resulting solution was degassed by bubbling with argon and it was stirred at 45 °C under argon atmosphere for ten hours. Then, a solution of **B10** in degassed methanol (110 μ L; *c* = 20 mM) was added and the mixture was stirred at 45 °C under argon atmosphere for an additional 14 hours. Next, additional aliquots of **A7** (43.1 μ L; *c* = 10 mM in degassed THF) and **B10** (110 μ L; *c* = 20 mM in degassed methanol) were introduced and the mixture was stirred at 45 °C under argon atmosphere for an additional six hours (**A7/B10**-functionalized Fe₃O₄ NPs precipitated from the solution). The solution was cooled down to room temperature; the solids were collected by centrifugation, dissolved in methanol (100 μ L), precipitated with toluene (4 mL), collected by centrifugation, and finally dissolved in 2 mL of methanol. The surface coverage of azobenzene on the resulting NPs, χ (determined by UV/Vis absorption spectroscopy) corresponded to ~0.10.

Figure S83. Representative TEM images of (a) 4.0 nm Fe₃O₄ NPs capped with oleic acid and (b) Fe₃O₄ NPs co-functionalized with a mixture of A7 and B10 ($\chi \approx 0.10$).

10. Molecular dynamics simulations

A thiolated gold nanoparticle with a diameter of 2.5 nm was modeled as an icosahedron¹⁷⁻¹⁹ decorated with 91 ligands (14 thiolated azobenzenes **Am** and 77 background ligands **Bn**). We considered nine systems: *trans*-**A1/B1**-, *cis*-**A1/B1**-, *trans*-**A1/B3**-, *cis*-**A1/B3**-, *trans*-**A3/B1**-, and *cis*-**A3/B1**-, *trans*-**A5/B8**-, *cis*-**A5/B8**-, and *cis*-**A5/B9**-functionalized nanoparticle. The ligands were described by a force field used in our previous studies. Electric charges were calculated from the electrostatic potential fitting in the implicit solvent of water using GAUSSIAN 09.²⁰ The simulations were performed with NAMD²¹ in the NPT ensemble (p = 1 bar and T = 300 K), using Langevin dynamics ($\gamma_{Lang} = 1 \text{ ps}^{-1}$) with a time step of 2.0 fs. Initially, the simulated NPs were placed in water with counterions (in a box of $100 \times 100 \times 100$ Å³). The Particle Mesh Ewald (PME)²² method was used for evaluating long-range Coulombic interactions. After 2,000 steps of minimization, the equilibration of the functionalized NPs lasted for ~10-20 ns. The hydrogen bond numbers were analyzed by VMD²³ with a cutoff distance of 4 Å and an angle of 60°. The distance between the NP center and the N=N moiety was averaged over all the ligands. The local number of water molecules was averaged over the last 5 ns.

Figure S84. Snapshots from molecular dynamics (MD) simulations of a *trans*-A1/B1-coated 2.5 nm gold NP (left) and a *cis*-A1/B1-coated 2.5 nm NP (right) in water. Equilibration time = 20 ns. The images correspond to those shown in the main text's Figures 4a and b, respectively, except that background ligands B1 were removed for clarity. Color codes: C, cyan; N, blue; O, red; S, yellow.

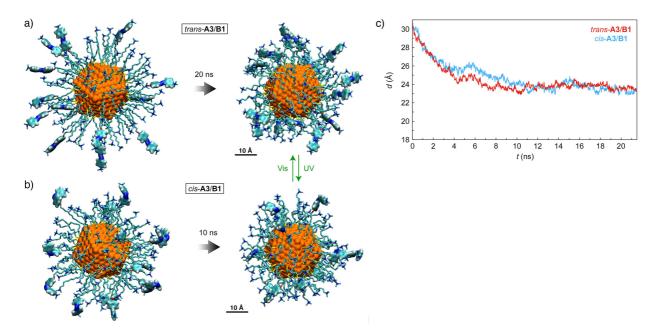


Figure S85. Snapshots from MD simulations of a *trans*-A3/B1-coated 2.5 nm gold NP (a) and a *cis*-A3/B1-coated 2.5 nm gold NP (b). (c) Average distance between the center of the NP and the center of mass of the N=N moiety of the *trans* (red) and *cis* (blue) isomer of A3 as a function of time. Note that over time, the average distance in both cases equilibrates to ~23.5 Å, which is similar to the distance between *cis*-A1's N=N moiety and the NP center, but considerably more than that between *trans*-A1's N=N moiety and the NP center (compare with Figure 4c in the main text).

Analysis of conformational freedom of azobenzene in ligands containing oligo(ethylene glycol) vs. alkyl chains: We found that azobenzene A2 co-adsorbed with background thiol B6 undergoes the $cis \rightarrow trans$ back-isomerization faster (k = 0.053 h⁻¹) than when co-adsorbed with B1 (k = 0.024 h⁻¹), which could be explained by the higher conformational flexibility of B6's oligo(ethylene glycol) linker and consequently less congested environment. To substantiate this claim, we performed MD simulations of cis-A2/B1- and cis-A2/B6-functionalized 2.5 nm gold NPs and analyzed the position of the azobenzene group in time. To this end, we defined the root-mean-square deviation (RMSD) of the N=N moiety as,

$$\text{RMSD} = \sqrt{\frac{\sum_{i=1}^{N_{\text{atoms}}} (r_i(t_1) - r_i(t_2))^2}{N_{\text{atoms}}}}$$

where N_{atoms} is the number of atoms whose positions are being compared (in our case, the two nitrogen atoms of the azo moiety), and $r_i(t)$ is the position of atom *i* in a three-dimensional space at time *t*. As t_2 , we selected 10 ns as a time, at which equilibrium is most likely reached.

The results (Figure S86) confirm that the azobenzene group moves a larger distance (with respect to the 1-ns reference frame) in the presence of background ligand **B6**.

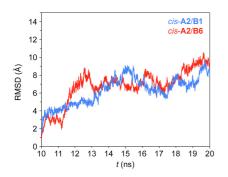
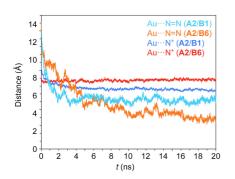



Figure S86. Root-mean-square deviation of the N=N moiety in *cis*-A2 co-adsorbed on 2.5 nm Au NPs with B1 (blue) and B6 (red).

This reasoning is further confirmed by analyzing the distance of the azobenzene group in *cis*-A2/B1- vs. *cis*-A2/B6-functionalized 2.5 nm Au NPs from the surface of gold. As Figure S87 shows, the average distance between the center of mass of the N=N moiety and the surface of gold is smaller for B6, indicating that this background ligand offers more room for the azobenzene groups.

Figure S87. Average distance of the center of mass of A2's N=N moiety from the surface of gold on *cis*-A2/B1-functionalized 2.5 nm Au NPs (cyan) vs. *cis*-A2/B6-functionalized 2.5 nm Au NPs (blue). For comparison, average distances between B1's and B6's ammonium N atoms and the gold surface are also plotted.

In Figure S89, we plotted the total number of atoms within an arbitrary distance (we selected 3 Å) of the A2 ligands. It can be seen that *cis*-A2 resides in a less congested environment on A2/B6-functionalized NPs compared with A2/B1-functionalized NPs.

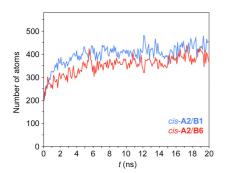
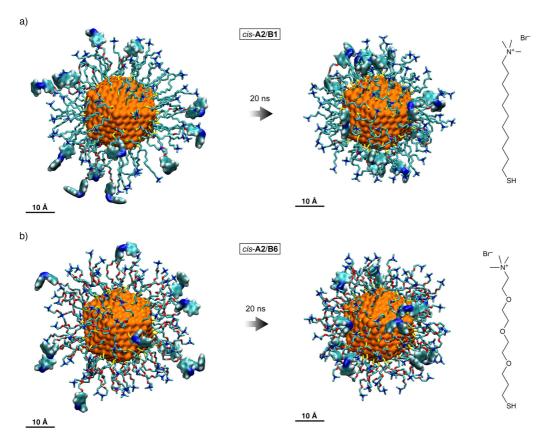



Figure S88. The total number of atoms present within 3 Å of A2 ligands on an A2/B1- vs. an A2/B6functionalized NP.

To verify that the different kinetics of back-isomerization in *cis*-A2/B1- and *cis*-A2/B6-coated Au NPs are not due to the different degrees of azobenzene aggregation, we analyzed the snapshots from the simulations at t = 20 ns (Figure S89). Indeed, we found that the aggregation was negligible in both cases (see also Figure S90).

Figure S89. (a) Snapshots from MD simulations of a *cis*-**A2/B1**-coated 2.5 nm gold NP. (b) Snapshots from MD simulations of a *cis*-**A2/B6**-coated 2.5 nm gold NP.

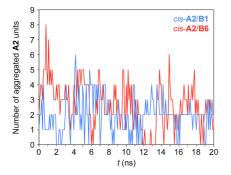
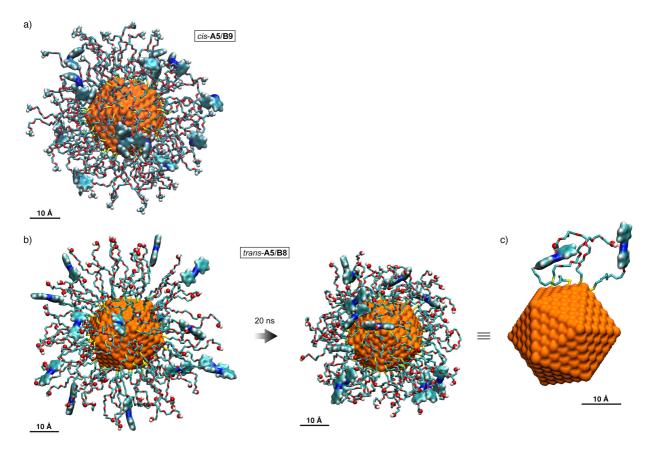



Figure S90. An attempt to quantify the aggregation of *cis*-A2 on an A2/B1- vs. an A2/B6-coated 2.5 nm Au NP. An azobenzene group of an A2 ligand is considered aggregated when there are at least six atoms of another A2's azobenzene group within a distance of 4 Å.

Figure S91. (a) Snapshot from MD simulations of a *cis*-**A5**/**B9**-coated 2.5 nm gold NP. (b), (c) Snapshots from MD simulations of a *trans*-**A5**/**B8**-coated 2.5 nm gold NP.

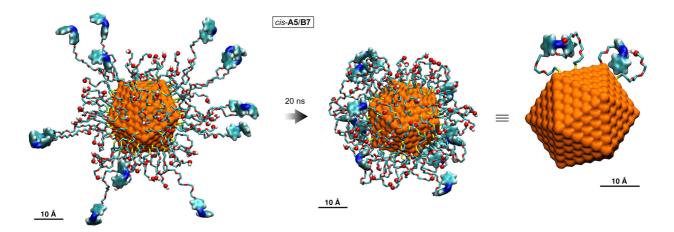


Figure S92. Snapshots from MD simulations of a *cis*-A5/B7-coated 2.5 nm gold NP.

11. Supporting movie captions

Supporting Movie 1: Simulation of a 5.5 nm gold NP co-functionalized with a densely packed binary monolayer of *trans*-A1 and B1 in water. In the first part of the movie, the system was allowed to relax for ca. 20 ns. In the second part of the movie, the relaxed NP is rotated about its vertical axis. In the third part of the movie, background ligands B1 were removed for clarity.

Supporting Movie 2: Simulation of a 5.5 nm gold NP co-functionalized with a densely packed binary monolayer of *cis*-A1 and B1 in water. In the first part of the movie, the system was allowed to relax for ca. 20 ns. In the second part of the movie, the relaxed NP is rotated about its vertical axis. In the third part of the movie, background ligands B1 were removed for clarity.

Supporting Movie 3: Simulation of a 5.5 nm gold NP co-functionalized with a densely packed binary monolayer of *trans*-A1 and B3 in water. In the first part of the movie, the system was allowed to relax for ca. 16 ns. In the second part of the movie, the relaxed NP is rotated about its vertical axis. In the third part of the movie, background ligands B3 were removed for clarity.

Supporting Movie 4: Simulation of a 5.5 nm gold NP co-functionalized with a densely packed binary monolayer of *cis*-A1 and B3 in water. In the first part of the movie, the system was allowed to relax for ca. 16 ns. In the second part of the movie, the relaxed NP is rotated about its vertical axis. In the third part of the movie, background ligands B3 were removed for clarity.

12. Supporting references

- (1) Chovnik, O.; Balgley, R.; Goldman, J. R.; Klajn, R. Dynamically Self-Assembling Carriers Enable Guiding of Diamagnetic Particles by Weak Magnets. J. Am. Chem. Soc. **2012**, 134, 19564–19567.
- (2) Zhao, H.; Sen, S.; Udayabhaskararao, T.; Sawczyk, M.; Kučanda, K.; Manna, D.; Kundu, P. K.; Lee, J.-W.; Král, P.; Klajn, R. Reversible Trapping and Reaction Acceleration within Dynamically Self-Assembling Nanoflasks. *Nat. Nanotech.* 2016, *11*, 82–88.
- (3) Manna, D.; Udayabhaskararao, T.; Zhao, H.; Klajn, R. Orthogonal Light-Induced Self-Assembly of Nanoparticles using Differently Substituted Azobenzenes. *Angew. Chem. Int. Ed.* **2015**, *54*, 12394–12397.
- (4) Yang, Y.; Velmurugan, B.; Liu, X.; Xing, B. NIR Photoresponsive Crosslinked Upconverting Nanocarriers Toward Selective Intracellular Drug Release. *Small* 2013, 9, 2937–2944.
- (5) Jong, L. I.; Abbott, N. L. Rate-Dependent Lowering of Surface Tension during Transformations of Water-Soluble Surfactants from Bolaform to Monomeric Structures. *Langmuir* **1998**, *14*, 2235–2237.
- (6) Chu, Z.; Han, Y.; Král, P.; Klajn, R. "Precipitation on Nanoparticles": Attractive Intermolecular Interactions Stabilize Specific Ligand Ratios on the Surfaces of Nanoparticles. *Angew. Chem. Int. Ed.* **2018**, *57*, 7023–7027.
- (7) Zdobinsky, T.; Maiti, P. S.; Klajn, R. Support Curvature and Conformational Freedom Control Chemical Reactivity of Immobilized Species. J. Am. Chem. Soc. 2014, 136, 2711–2714.
- (8) Strong, L.; Whitesides, G. M. Structures of Self-Assembled Monolayer Films of Organosulfur Compounds Adsorbed on Gold Single Crystals: Electron Diffraction Studies. *Langmuir* **1988**, *4*, 546–558.
- (9) Rosales, A. M.; Mabry, K. M.; Nehls, E. M.; Anseth, K. S. Photoresponsive Elastic Properties of Azobenzene-Containing Poly(ethylene-glycol)-Based Hydrogels. *Biomacromolecules* **2015**, *16*, 798–806.
- (10) Ruslim, C.; Ichimura, K. Spectroscopic and Thermal Isomerization Characteristics of 3,3'-Dialkoxy and Dialkanoyloxy Azobenzenes. J. Mater. Chem. 2000, 10, 2704–2707.
- (11) Ho, S. F.; Mendoza-Garcia, A.; Guo, S.; He, K.; Su, D.; Liu, S.; Metin, O.; Sun, S. A Facile Route to Monodisperse MPd (M = Co or Cu) Alloy Nanoparticles and their Catalysis for Electrooxidation of Formic Acid. *Nanoscale* 2014, *6*, 6970–6973.
- (12) Sharma, S.; Kim, B.; Lee, D. Water-Soluble Pd Nanoparticles Capped with Glutathione: Synthesis, Characterization, and Magnetic Properties. *Langmuir* **2012**, *28*, 15958–15965.
- (13) Ridelman, Y.; Singh, G.; Popovitz-Biro, R.; Wolf, S. G.; Das, S.; Klajn, R. Metallic Nanobowls by Galvanic Replacement Reaction on Heterodimeric Nanoparticles. *Small* **2012**, *8*, 654–660.
- (14) Das, S.; Ranjan, P.; Maiti, P. S.; Singh, G.; Leitus, G.; Klajn, R. Dual-Responsive Nanoparticles and their Self-Assembly. Adv. Mater. 2013, 25, 422–426.
- (15) Liu, Z.; Hu, B.; Messersmith, P. B. Acetonide protection of dopamine for the synthesis of highly pure *N*-docosahexaenoyldopamine. *Tetrahedron Lett.* **2010**, *51*, 2403–2405.

- (16) Yeo, W.-S.; Min, D.-H.; Hsieh, R. W.; Greene, G. L.; Mrksich, M. Label-free detection of protein-protein interactions on biochips. *Angew. Chem. Int. Ed.* **2005**, *44*, 5480–5483.
- (17) Heaven, M. W.; Dass, A.; White, P. S.; Holt, K. M.; Murray, R. W. Crystal Structure of the Gold Nanoparticle [N(C₈H₁₇)₄] [Au₂₅(SCH₂CH₂Ph)₁₈]. J. Am. Chem. Soc. 2008, 130, 3754–3755.
- (18) Zhu, M.; Lanni, E.; Garg, N.; Bier, M. E.; Jin, R. Kinetically Controlled, High-Yield Synthesis of Au₂₅ Clusters. J. Am. Chem. Soc. 2008, 130, 1138–1139.
- (19) Mori, T.; Hegmann, T. Determining the Composition of Gold Nanoparticles: A Compilation of Shapes, Sizes, and Calculations using Geometric Considerations. J. Nanopart. Res. 2016, 18, 295.
- (20) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. *Gaussian, Inc.* Wallingford, CT, 2009.
- (21) Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kalé, L.; Schulten, K. Scalable Molecular Dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781–1802.
- (22) Darden, T.; York, D.; Pedersen, L. Particle Mesh Ewald: An N·log(N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 1993, 98, 10089–10092.
- (23) Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. Model. 1996, 14, 33–38.