Appendix 1

Detailed expression for the first term ofB6 (u,v) given by formula (72) :
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Appendix 2

In this section, we give the justification of the estimate given by formula

Error! Reference source not found. valid in linear elasticity (section 4.2).

The method wused here consist to compute the wupper bound of formula
Error! Reference source not found. for the exact expression of the displacement field and then
to deduce that for the linear model of section 4.2 obtained by truncation of the potential energy at
seventh order (linear model of section 3), the estimate Error! Reference source not found..

For the expression of the exact expression of the potential energy obtained with no truncation of
the displacement field Error! Reference source not found. (we assume that u has a convergent
infinite series), by using integration by part , we can obtain:
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From (1), we obtain the exact Euler-Lagrange equations associated to the complete expression of
the potential energy :
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Now we have to express the dual energy (25) (Ed(c) = Ei(é)) in terms of curvilinear
coordinates:
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inwhich D, are the covariant components of the compliance tensor.

Let u be a displacement field that is associared with & (s’ ( ) E™uy ), if we insert the series

kHl
expansion for u in Error! Reference source not found. and by using integration by part,
expression (5) of the dual energy becomes:
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Now we want to vanish the first variation of the dual energy (variational formulation). We note
that the variation of the stress tensor have to fulfill the condition associated with the three-
dimensional equilibrium condition with vanishing body force and the three dimensional stress
boundary condition with free traction. The displacement field v associated to this stress tensor has
a complete expansion of the type Error! Reference source not found. with no truncation:
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In other words this variational formulation gives the Dirichlet boundary conditionats =1L :
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Now by combining (1)-(6), we see that the upper bound of Error! Reference source not found.
becomes :
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In expression (11), we can observe in the first, second and third term of its right-hand side
respectively appears the left hand side term of the Euler-Lagrange equation (3), (4) and (10)
respectively. So for the exact solution E , (u,,,)— E,(o(u,,)) vanishes.
Now we consider the complete potential energy associated with the the truncated displacement
field Error! Reference source not found.. Let u cbe the solution of minimization of this

complete potential energy, we see that Euler-Lagrange equations of this model can be written as
follows :
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We can observe that the difference between equations (12)-(13) and equations

Error! Reference source not found.-Error! Reference source not found. are the terms O(p’)

and represents the additional terms which appear when we consider the complete expression of the
potential energy. For our purpose, it is not necessary to give their complete expression here.

Now we rewrite (11) by separating the terms of order of magnitude strictly greater than p’ and
the other ones for which obviously the order of magnitude is less than p7 :
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If we consider equation (14) for u = u _,, equation (12) is satisfied and the summation of the five
first terms of right hand side of equation (14) is of order of magnitude O(p’); equation (13) is
satisfied and the sixth term of the right-hand side of equation (14) is also of order of magnitude
O(p’) and finally u(" * ")(L) e ")(L) is satisfied and the last term of the right-hand side of
equation (14) vanishes and finally we obtain :
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Since the stress tensor associated withu . satisfies the equilibrium equation and the Neumann

boundary condition, then Error! Reference source not found. is valid for u . Finally by

combining Error! Reference source not found., Error! Reference source not found. and (15),
we obtain the estimate Error! Reference source not found..

We subtract equation Error! Reference source not found. from equation (12) and equation
Error! Reference source not found. from equation (13), we obtain :
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Appendix 3

Detailed expression for the first term of ¥, (xx) given by formula (111):

b 4 4 2
ZZZIOL Sl [xk(q " q)](S)A;okl{u} (S)dS = ZZZILXI:,(ZYU_(])AJOM{”}( )d

0
0=0 ¢=0 u=1 0=0 ¢=0 u=1
L

2
A(o-a)i. K47 (5)as

qo-1

Qo

S 83 b it 5
raaaqg IR (s)ds +&



