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Supplementary Materials and Methods 8 

Rearing, handling of flies and imaging of wings 9 

In both labs, each line was reared in vials for at least one generation in the experimental 10 
conditions prior to the start of the experiment, and then reared at low density.   11 

In the Houle lab, flies were reared in a series of 10 temporal blocks over a 14 month 12 
period. Twenty-four lines were reared and measured in two or more blocks.  Each vial was 13 
initiated with four parental males and females per vial, who were allowed to lay eggs for three to 14 

four days, until visual inspection suggested that a sufficient number of larvae had been obtained. 15 

The parents were discarded, and the experimental progeny were transferred to new vials 16 
containing no more than 20 adults to avoid wing damage due to overcrowding.  The dorsal 17 
surface of the left wings of live flies were imaged using the ‘Wingmachine’ system (Houle et al. 18 
2003) using Optem macroscopes with an integrated camera.  Annotation, scale information, 19 

images as grey-scale TIFF files and guide landmarks were recorded using Image-Pro Plus 20 

software (Versions 4, 5 and 6). We sought to obtain images from at least 40 flies per line (20 of 21 

each sex).  After excluding damaged wings and unsplinable images, data was obtained for a total 22 
of 7878 wings from 182 lines, for a mean of 43.3 wings per line.  We obtained data from fewer 23 
than 40 wings in 23 lines, and from less than 30 wings for only four lines. 24 

In the Dworkin lab, flies were reared in an incomplete balanced block design.  Blocks 25 
consisted of two replicate bottles of each line reared using food made from the same batch. Each 26 
block contained lines that had been reared previously for comparison.  Media was physically 27 

scored and live yeast was added prior to introducing adult flies to promote egg-laying. Flies were 28 
reared separately at 24°C, 60% relative humidity at low density (10 pairs of adult flies per bottle) 29 

in a Percival incubator. After 3-5 days (depending on egg density) adults were transferred to new 30 
bottles. While eggs were not counted, density was controlled for qualitatively, by removing 31 
adults once the desired low egg density was approximately achieved. For those lines with low 32 

fecundity, adults were left a few days longer (up to 7 days). After 3-5 days in the second bottle, 33 
adult flies were discarded. Water, yeast and paper towel were added to bottles as needed to 34 
provide an optimal environment for the larvae. After eclosion and hardening of the cuticle, flies 35 

were stored in 70% ethanol at room temperature prior to dissection. Bottles were checked daily 36 
as needed until a sufficient number of flies was collected.  We dissected between 20–24 wings 37 
(left wing of each fly) for each replicate/sex/line. 38 

Dworkin lab wings were imaged at 40X magnification using an Olympus DP30BW 39 
camera mounted on an Olympus BX51 microscope and controlled with DP controller software 40 

V3.1.1. Images were saved in greyscale as TIFF files. We used the program ‘tpsDig2’ (Rohlf 41 
2011) to record annotation and the guide landmarks. After excluding damaged wings or 42 
unsplinable images, data was obtained for a total of 16,272 wings from 165 lines, for a mean 43 
number of wings/line of 98.6.  We obtained data from fewer than 40 wings in 9 lines, and from 44 

less than 30 wings for only four lines. 45 

 46 

Handling of morphometric data 47 

Once the data for the 66,890 wings was superimposed as described in Materials and 48 
Methods, outliers for the superimposed data were detected in CPR  (Márquez 2012-2014), and 49 

then re-examined in Wings 3.72 to allow us to determine whether they represented an unusual 50 

wing, or mis-splined specimens, which were corrected. Occasionally a very unusual wing was 51 
removed from the data set as an outlier.  In all cases, these outlier wings were more than 4 S.D. 52 



in Mahalanobis distance from the multivariate mean.  The positions of the semi-landmarks were 53 
slid along each wing vein (or margin) segment to minimize deviation along the segment. To put 54 
numerical results on a more convenient scale we multiplied shape (Procrustes) coordinates by 55 

100.  56 
The 96 superimposed x and y coordinates from the 48 points recorded generate less than 57 

96 dimensional data, for two reasons.  First, each semi-landmark is approximately constrained to 58 
lie on a 1-dimensional function, so contributes only 1 degree of freedom (df) to the data.  59 
Second, Procrustes superimposition uses 3 df for rotation and translation, and transfers size to a 60 

new 1 df variable, centroid size.  A 58=2 X 48 – (4+34) dimensional space thus captures shape 61 

variation.  The shape data was projected into a 58-dimensional space using principal components 62 
analysis of the combined DGRP and validation data, with no adjustment for the fixed sex and lab 63 
effects.  Thus, PC1 has a large contribution of variation due to the effects of sex.  The scores on 64 
the first 58 eigenvectors, plus ln centroid size were used for subsequent analyses. 65 

Univariate residuals for shape were generally heavy-tailed (average kurtosis=2.7, 66 
defining the kurtosis of a normal distribution as 0).  Residuals for principal components 1 and 2 67 

were slightly right-skewed (skew 0.22 and 0.16 respectively), while the remaining shape 68 
variables showed no notable skew.  Sex-specific ln(centroid size) was heavy tailed 69 
(kurtosis=0.63) and left-skewed (skew=-0.53).  Tests for normality of univariate residuals always 70 

rejected the normal distribution, which is expected given the large sample size. Association 71 
analyses were done on lab, sex and block means, so these departures from normality should have 72 

no effect on our results. 73 
 74 

Clustering significant SNPs 75 

We quantified LD as the squared gametic correlation between sites  76 
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where p1, p2, q1, and q2 are the major and minor allele frequencies at the two sites, and 78 

11 1 1D x p q= − , where x11 is the frequency of gametes carrying both the alleles indexed by the 79 

frequencies  alleles p1 and q1 (Weir 1996).   80 
We performed an LD-based cluster analysis on the 2,396 SNPs judged to be significant in 81 

our MANOVA-based association tests.  To find an initial set of clusters, we used the 82 

SAS/FASTCLUS Procedure (SAS 9.3), which uses q vectors of SNP genotypes as seeds to 83 

group input SNPs into up to k clusters with a radial spread equal to R, where k and R are user-84 
defined parameters. In a first run, we had FASTCLUS impute missing genotype data, and 85 
instructed it to choose a large number of groups k=2000.  In a second run, we submitted the 86 
previously imputed data to FASTCLUS, and save the output as seeds for subsequent iterations of 87 

the same algorithm. We then iterated this step until both the number of clusters and a least 88 

squares optimization criterion plateaued.  We chose the radius R for our clusters to match the 89 
r2>0.5 cutoff.  From the law of cosines, the distance, d, between two SNP vectors is related to 90 

their correlation by ( )2 1 ,d r= −  leading to R = 0.7654.  91 

The above algorithm does not ensure that the clusters identified are discrete.  To 92 
compensate for this, we carried out a second, refinement phase.  This phase consists of three 93 

steps: first, we scan each non-singleton cluster to determine whether any of its members do not 94 

conform to the clustering criterion (i.e., its squared correlation with every other member of the 95 
cluster does not equal or exceed 0.5). SNPs that violate the criterion are marked as singletons for 96 



subsequent processing; second, squared correlations between singleton and all other SNPs are 97 
computed to allow for orphan SNPs to join established clusters, or for pairs of singletons to 98 
cluster when the r2 > 0.5 criterion is met. If a SNP is correlated with more than one cluster, it is 99 

allowed to join the cluster with the most members; finally, the last step merges clusters with 100 
highly correlated SNPs. Specifically, two clusters were combined into a single cluster when the 101 
minimum of the maximum squared correlations computed between all pairs of members of 102 
different clusters exceeds 0.5. All of these steps were iterated until convergence.  The result from 103 
our algorithm is a series of clusters comprising SNPs each satisfying the correlation criteria r2 ≥ 104 

0.5 with at least some other SNPs within the cluster, and r2 < 0.5 with every SNP that does not 105 

belong in the same cluster.  106 
For the analyses below for the MANOVAs, they were written in SAS macros and were 107 

run at the High Performance Computing facility at North Carolina State University, the Research 108 
Computing Center at Florida State University, and a standalone Linux server at the Biological 109 

Science Department at Florida State University.  110 
 111 

Testing significance in the MANOVAs  112 

To approximate the mixed model tests in the MANOVA analyses, we used the following 113 
procedure.  We first estimated the sum of squares and cross-products (SSCP) matrices using a 114 
least squares method in SAS Proc GLM, designating terms involving line nested in SNP as 115 

random with variates weighted by their sample sizes. Because sample sizes over labs and sexes 116 
were always unbalanced, the denominators of within-group SSCP matrices, W, were assembled 117 

as weighted averages of the SSCP matrices obtained in this first analysis.  The weights were 118 
obtained from the coefficients of the expected mean squares calculated in a univariate analysis of 119 
the same SNP in SAS Proc GLM using the Random/Test option.   We assessed the statistical 120 
significance of model terms using an F-distributed statistic based on Wilks’ Λ (Rao 1973), 121 

computed as  Λ = 1 det⁡(𝐈 + 𝑾−1𝑩)⁄ , where B is the between-group SSCP matrix.    122 

 123 

LASSO regressions 124 

For the fth focal SNP, we included as predictors the family of t SNP variants confounded with 125 

the focal SNP due to proximity or LD, plus scores on the 13 significant population structure 126 

principal components. Thus, the total number of predictors is p= t+14. The median t is 65, and 127 
the range is from 0 to 5291. The total number of SNPs considered in each model (including the 128 
focal SNP) is shown in Column W “N SNPs  considered” in File S3. Missing genotype calls 129 
were not imputed at focal SNP f,  but missing calls in all t non-focal SNPs were imputed to the 130 

allele frequency of the tth SNP.   Correspondingly, the dependent variable matrix, hY
, includes 131 

only the least-squares line means for wing shape and size for lines with non-missing data for 132 

SNP f.  133 
The LASSO algorithm solves  134 
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   136 

where n is the number of DGRP lines with genotype data for the fth focal SNP, ,  Xh is the vector 137 

of p predictor variables for DGRP line h,  βf0 is the fitted intercept vector, fβ  is the p-predictor 138 



by 59-phenotype matrix of regression coefficients, 
f jβ  is the L1 norm of the vector of 139 

coefficients for the jth predictor variable, and λf is a penalty factor that determines the amount of 140 
shrinkage from the least-squares solution that is imposed for SNP model f.  The L1 norm is the 141 

sum of the absolute values of the coefficients. 142 

The first term in brackets in equation (2) is standard least-squares measure of fit, while 143 
the second term shrinks the lengths of the inferred vectors to a degree dependent on the 144 
magnitude of λf .  For each SNP model, a value of λf was chosen by 5-fold cross-validation.  The 145 

choice of the L1 norm shrinks the vectors f jβ  non-uniformly, such that for sufficiently large 146 

values of λ some, or even all, prediction vectors f jβ  have 0 length, resulting in variable 147 

selection as well as shrinkage.   148 
To check the stability of the LASSO solutions we used an elastic net regularization  (Zou 149 

and Hastie 2005) with α=0.95 (95% of the weight on the L1 norm and 5% on the L2  norm).   150 
 151 

Geneswitch knockdowns 152 

We backcrossed the Tub-5 GS construct into a wild-type Oregon R (OreR+) background 153 
before these experiments. The Tub-5 GS driver used in these experiments is strongly inducible 154 
by mifepristone, although there is some residual Gal4 activity in the absence of Mifepristone.  155 

For each concentration of mifepristone, four replicate vials were set up; a fifth replicate was set 156 
up for 2.7 µM due to low survivorship in many experiments. We placed ten virgin females with 157 

five males in each vial. 158 
Three different control crosses with their respective reciprocals were also set up: Tub-159 

5GS x the appropriate RNAi background (either yv or w1118), UAS-[GOI]RNAi x OreR+, and 160 

RNAi background (either yv or w1118) x OreR+. Reciprocal and control crosses were set up at the 161 
same time on medium from the same batch. After six days, all the parents were moved to fresh 162 
vials with the appropriate mifepristone concentration, and then discarded after an additional six 163 

days. Offspring were moved to vials with fresh food without mifepristone, sorted by sex, and 164 
their wings were imaged at least two days after eclosion.  We imaged wings from 20 F1 females 165 

and males from each treatment in each reciprocal cross.  166 
The distribution of within reciprocal, sex and treatment data was frequently 167 

heteroscedastic; higher mifepristone RNAi treatments generally had higher variance, often 168 

showing outliers along the major axis of RNAi effects.  Consequently, we analyzed the within-169 
sex-treatment-reciprocal medians. Further analyses (in prep.) of control and experimental data 170 

suggests that mifepristone has background-specific effects on wing shape across UAS-171 
[GOI]RNAi crosses, and data were adjusted for these effects before further analyses. Finally, we 172 
calculated the linear effect of mifepristone on the 58 shape dimensions in a linear model with sex 173 
and reciprocal as categorical effects and mifepristone as a continuous predictor.  In some cases, 174 

the reciprocals differed significantly in their effects, and were analyzed separately. These are 175 

designated by the sex of the Tub-5 GS parent in File S4. The parameters of the multivariate 176 
regression of mifepristone were retained as the effect vector of the manipulated gene of interest. 177 

 178 

Vector comparisons 179 

SNP effects and gene knockdowns result in vectors of phenotypic effects in phenotypic 180 

space.  We used vector correlations to compare the directions of vectors. The correlation of 181 

column vectors x and y is 182 
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where T indicates transpose and x  denotes the length (2-norm) of vector x.  Like all 184 

correlations, 1 1r−   .  The sign of the correlation is arbitrary, because we could take either the 185 
major or the minor allele as the reference, so we report the absolute value of vector correlations.  186 
A correlation of 1 means that the vectors point in the same direction, while r=0 means that the 187 

two vectors are orthogonal (at 90 degrees). 188 
 189 

Supplementary Results 190 

 191 

Relatedness among phenotyped lines 192 

Coancestries among the 184 phenotyped DGRP lines were estimated from the genomic data 193 
using a principal-component-based approach (Patterson et al. 2006).  Thirty-one of the nearly 194 
17,000 line pairs (0.2%) had coancestries of 0.2 or more, and probably reflect sampling of close 195 
relatives from the original population.  Four-hundred thirty-five line pairs (2.6%) have 196 

coancestries of 0.02 or more.  These are strongly enriched for pairs of lines that are both 197 
homozygous for the three common cosmopolitan inversions present in seven or more DGRP 198 

lines (In(2L)t, In(2R)NS, In(3R)Mo), and therefore probably represent pairs that share sub 199 
chromosome-arm scale haplotypes. 200 

The first 13 genomic principal components had eigenvalues that were significantly 201 

greater than the value from the Tracy-Widom distribution expected if lines were unrelated.  The 202 
contrast between lines carrying the common cosmopolitan inversions and those with the standard 203 
karyotype dominates the distribution on three of these PCs (eigenvectors).  The remaining PCs 204 

with significant variation are dominated by small groups of related lines.  Of the 31 pairs of lines 205 
with coancestries>0.2, twenty-five are clear outliers in bivariate plots of scores on the significant 206 

PCs. 207 
 208 

Linkage disequilibrium among phenotyped lines 209 

We enumerated all of the highly correlated (r2 ≥ 0.5) SNP pairs for the 184 phenotyped DGRP 210 
lines using the approach of Houle and Márquez (2015).   The average number of highly 211 
correlated SNPs with each MANOVA-significant SNP is very large at low MAF, but still 212 

substantial at high MAF, as shown in Figure S2.  The probability is greater than 0.5 that at least 213 
one other SNP in the genome is highly correlated with each significant SNP at all MAF, as 214 
shown in Figure S3.  More striking is the fact that SNPs with low MAF have a substantial 215 

probability of being correlated with SNPs more than 100kb distant.  While there is a difference 216 
in the mean number of correlated SNPs between regions inside and outside of inversions, the 217 

probability that there is at least one such correlation is affected very little by inversions (Houle 218 
and Márquez 2015).  Instead, we interpret the bulk of this LD as being due to ‘rarity 219 
disequilibrium’ (Houle and Márquez 2015) due to the large number of low MAF SNPs, and the 220 
relatively few combinations of line genotypes that can generate a low MAF as opposed to a high 221 

MAF.  Twenty-five percent of the SNPs that we analyzed have MAF<0.06, and 50% have 222 

MAF<0.137. 223 



Table S3 also includes several variables to help understand whether each SNP is likely to 224 
be a causal SNP, and whether the locus that is closest to that SNP is likely to be affected even if 225 
the wrong causal SNP was selected by the LASSO.  Most important are the number of perfectly 226 

correlated SNPs (nperfglm), their identities, and the maximum distance between these SNPs 227 
(maxpdist).  In most cases perfectly correlated SNPs map very close, so that even if the SNP is 228 
not causal, it will be annotated to the same gene.  Second, we give the size of the cluster of 229 
significant genes in high LD, and the maximum distance among the members of that cluster. 230 

 231 

Validating the LASSO 232 

We investigated the behavior of the LASSO as a tool for primary screening of SNPs as 233 
candidates by analyzing 2,396 MANOVA-insignificant SNPs chosen at random from >2.5 234 
million SNPs previously analyzed.   Eighty-eight percent of random SNPs had non-0 effects in a 235 
multiple regression with structure PC scores as covariates, while 48% retained non-zero effects 236 
when both the family of highly correlated SNPs and structure PC scores are included as 237 

covariates.  The effect size was median effect size following LASSO analysis was substantially 238 
smaller for random SNPs (median 0.13) than for MANOVA-significant SNPs (median 0.22).   239 
This indicates that the LASSO by itself is far more liberal than the MANOVA in implicating 240 
SNPs as potentially causal.  Consequently, we restrict its use to controlling effect sizes and 241 
compensating for population structure and LD.    242 

To check the numerical stability of the LASSO results on the MANOVA-significant 243 

SNPs, we compared those results to elastic net (Zou and Hastie 2005) results with a 0.95 weight 244 
on L1 and 0.05 on L2 norms.  The Spearman correlation of vector lengths for focal SNPs was 245 
0.93, and just 4% of focal predictors had a length>0 in one analysis and zero in the other.  This 246 
strong similarity indicates that LASSO estimates are numerically stable. 247 
 248 
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