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Abstract
The HP behavior of the natural zeolite yugawaralite and of the synthetic zeolite Na-A was 
studied by in situ synchrotron X-ray powder diffraction, using a non-penetrating 
P-transmitting medium. The unit-cell parameters of yugawaralite were refined up to the 
pressure of 10 GPa, at which reductions were found of about 7, 2.4, 7, 1.3, and 15% for 
a, b, c, β, and V, respectively. Contractions of 6.5 and 18.4% were found for a and V, 
respectively, for zeolite Na-A in the range 10−4 to 6.8 GPa. Diffraction patterns collected 
during decompression show that the effects induced by high pressure on both samples 
are almost completely reversible. These results are compared with those obtained under 
similar experimental conditions for other natural zeolites, with the aim of rationalizing 
the deformation mechanisms of these porous materials and comparing their flexibility 
under high-pressure and high-temperature conditions.
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sample [Na12(Al12Si12O48)·27H2O].
The XRPD experiments were performed using the ID09

beamline at ESRF (European Synchrotron Radiation Facility,
Grenoble), at a fixed wavelength of 0.41782 Å, using a dia-
mond anvil cell and silicon oil as non-penetrating pressure-
transmitting medium (Gillet et al. 1996). The choice of
non-penetrating pressure-transmitting medium used in the high-
pressure studies of porous materials is always a compromise
between the molecule dimensions, which must be larger than
those of the pores, and the degree of hydrostaticity. It is well
known that these media can suffer from a lack of hydrostaticity
at high pressure. The hydrostaticity of silicon oil can be con-
sidered satisfactory at least up to about 5 GPa, on the basis of
the close agreement between the results obtained from single
crystals of heulandite and bikitaite using glycerol (Comodi et
al. 2001, 2003) and silicon oil on powders (Vezzalini et al.
2001; Ferro et al. 2002). Moreover, Le Bihan et al. (1996)
studied several intermetallic uranium compounds under high
pressure with different pressure-transmitting media (silicon oil,
ethanol-methanol-water, and liquid argon) and observed a stress
due to the solidification of silicon oil at about 9 GPa. However,
at lower pressure no significant difference was observed with re-
spect to the other pressure transmitting media. Above 5 GPa we
cannot, however, rule out a contribution of deviatoric stress to the
peak broadening of our powder diffraction spectra.

The pressures were measured by the ruby fluorescence
method (Forman et al. 1972) on the non-linear hydrostatic pres-
sure scale (Mao et al. 1986). The estimated error in the pres-
sure values is 0.1 GPa. The experiments were performed from
10–4 up to 11 and 6.8 GPa, for YUGA and ZEOA, respectively,
with pressure increments of 0.5–1 GPa. Some other patterns
were collected during decompression. A MAR345 detector
(pixel dimension 100 mm) was used at a fixed distance of 446.72
mm from the samples; the exposure time was 34 s for each
pressure. The samples were rocked by ±3  in w to reduce tex-
ture in the diffraction images. One-dimensional diffraction pat-
terns were obtained in the range 0–22  2q (YUGA) by
integrating the two dimensional images with the program FIT2D
(Hammersley et al. 1996) and are reported in Figures 1 and 2
for YUGA and ZEOA, respectively.

The unit-cell refinements were carried out in the 2q range 2–
20  up to 10 and 6.8 GPa for YUGA and ZEOA, respectively, by
means of the GSAS program (Larson and Von Dreele 1994) using
the Rietveld method for YUGA and the Le Bail method for ZEOA.
The atomic coordinates of the structural models are from Kvick et
al. (1986) and Gramlich and Meier (1971) for YUGA and ZEOA,
respectively. The background curves were fitted by a Chebyshev
polynomial with 22 and 20 coefficients for YUGA and ZEOA,
respectively. The pseudo-Voight profile function proposed by
Thomson et al. (1987) was used with refined Gaussian (GW) and
Lorentzian (LX) terms for YUGA, while for ZEOA LY was also
refined above 3.1 GPa. An asymmetry correction from Finger et
al. (1994) was used for YUGA. The refined cell parameters as a
function of pressure are reported in Tables 1 and 2, and in Figures
3 and 4, for YUGA and ZEOA, respectively. The isothermal bulk
modulus of all the zeolites studied here were determined with the
EOS-FIT program (Angel 2001) using a second- or third-order
Birch-Murnaghan equation of state (Birch 1952).

RESULTS

Figures 1 and 2 show powder patterns for YUGA and ZEOA,
respectively, as a function of pressure. For both samples, the
peak intensities decrease and the peak profiles become broader
with increasing pressure. These effects can be due to a number
of factors: an increase in the long-range structural disorder, a
reduction of the average crystallite size, or the presence of
microstrain caused by deviatoric stress in the quasi-hydrostatic
pressure-transmitting medium silicon oil (Yamanaka et al. 1997;
Weidner et al. 1998; Fei and Wang 2000; Lee et al. 2002). More-
over, we did not observe the appearance of peaks not due to the
YUGA and ZEOA space groups, thus ruling out any pressure-
induced change of the original symmetry.

The images of all the X-ray powder diffraction spectra col-
lected on the MAR345 image plate detector are characterized
by the presence of numerous spots caused by the poor statistics
of the diffraction data, resulting from the low mosaicity of the
crystallites and the small volume hit by the beam. These factors,
together with the low peak-to-background ratio, make it impos-
sible to refine the crystal structure of the zeolites. Hence, only the
unit-cell parameters were extracted from the powder patterns.

Yugawaralite

Yugawaralite is a Ca-zeolite (CaAl2Si6O16·4H2O, Z = 2); its
framework topology can be described by a pair of a five-mem-

TABLE 1. Experimental unit-cell parameters of yugawaralite at dif-
ferent pressures

P (GPa) a (Å) b (Å) c (Å) b ( ) V (Å3)
10–4 6.7239(5) 13.9952(7) 10.0482(8) 111.182(4) 881.7(1)
0.2 6.7060(6) 13.9809(9) 10.0262(9) 111.160(5) 876.6(1)
0.5 6.6813(7) 13.964(1) 9.987(1) 111.058(5) 869.6(1)
1.0 6.6515(6) 13.943(1) 9.9418(9) 110.974(5) 860.9(1)
1.5 6.6195(7) 13.917(1) 9.891(1) 110.882(5) 851.4(1)
2.0 6.561(1) 13.927(2) 9.759(2) 110.57(1) 835.0(3)
2.4 6.531(1) 13.926(2) 9.706(2) 110.46(1) 827.0(3)
3.1 6.503(2) 13.909(2) 9.648(2) 110.39(1) 818.0(3)
3.9 6.463(2) 13.873(3) 9.581(3) 110.32(2) 805.5(4)
5.3 6.390(2) 13.829(4) 9.489(3) 110.22(2) 786.8(5)
6.3 6.355(3) 13.802(5) 9.451(4) 110.17(3) 778.1(6)
7.6 6.310(3) 13.759(5) 9.402(5) 110.09(3) 766.7 (6)
8.8 6.264(4) 13.708(7) 9.364(6) 109.94(4) 755.9(8)
10 6.224(5) 13.655(8) 9.326(7) 109.73(5) 746.1(9)
4.3rev 6.363(5) 13.856(8) 9.604(7) 110.10(9) 795.1(1)
0.9rev 6.653(1) 14.040(2) 9.968(2) 110.96(1) 869.41(3)
0.8rev 6.6817(9) 14.019(1) 10.024(1) 111.165(8) 875.63(2)

TABLE 2. Experimental unit-cell parameters of zeolite Na-A at dif-
ferent pressures

P (GPa) a (Å) V (Å3)
10–4 24.590(2) 14869(4)
0.3 24.49(1) 14690(20)
0.4 24.45(1) 14614(10)
0.7 24.35(1) 14430(20)
1.3 24.14(1) 14077(21)
1.8 23.98(1) 13800(21)
2.2 23.87(1) 13610(21)
2.8 23.76(1) 13410(22)
3.1 23.66(2) 13240(30)
3.6 23.56(2) 13070(30)
4.1 23.44(3) 12880(50)
4.7 23.32(3) 12690(50)
5.3 23.21(3) 12510(50)
6.8 22.98(5) 12140(70)
4.4 23.16(4) 12420(70)
3.0 23.41(4) 12820(60)
0.0 24.59(2) 14864(40)

American Mineralogist 2003, 88, 1416-1422                         https://doi.org/10.2138/am-2003-1004

RESULTS



ARLETTI ET AL.: STRUCTURAL DEFORMATION MECHANISMS OF ZEOLITES UNDER PRESSURE1418

bered rings sharing an edge. These units share one branch, thus
forming chains running parallel to a; each chain is connected
to the adjacent one forming sheets in the ac plane. The sheets
are superposed to form channels parallel to [100] and [001]
limited by eight-rings (Fig. 5). The topological symmetry C2/
m is reduced to the real symmetry Pc by (Si,Al) ordering; the
unit-cell parameters become a = 6.700(1), b = 13.972(2), c =
10.039(5) Å, b = 111.07(2)  (Kvick et al. 1986).

Figure 1 shows that the YUGA structure is very stable up to the
highest investigated pressures and that no X-ray amorphization is
observed up to 11 GPa. Moreover, the features of the ambient pres-
sure pattern are almost completely recovered upon decompression.

Table 1 and Figure 3a show the refined cell parameters as a
function of pressure. The largest contraction in the range 0–10
GPa is observed for cell volume (15%); a and c contract by
about 7%, while very minor variations affect the b (2.4%) and
b (1.3%) parameters. All cell parameters show two
discontinuites between 1.5 and 2 GPa (Fig. 3b) and between
3.9 and 5.3 GPa (Fig. 3a). The corresponding decrease in the
compressibilities (Table 3) suggests a change in the compression
mechanism. The isothermal bulk modulus determined up to 4 GPa
using a second-order Birch-Murnaghan equation of state gives K0

= 34(1) GPa. The empty circles in Figure 3a represent the cell
volumes derived from three patterns collected during decompres-
sion. Their close agreement with the original values indicates that

the pressure-induced deformations are reversible.
As reported above, the contraction of the a and c param-

eters is three times greater than that of b. The interpretation of
this different compressibility can be based on the geometry and
position of the extra-framework cation polyhedron. At room
pressure the Ca atom is located on one side of the channels
(Figs. 5a and 5b) and is asymmetrically bonded to four frame-
work O atoms and to four water molecules (Kvick et al. 1986).
In reality, the coordination of Ca is complicated by the pres-
ence of two water molecules located at two partially and alter-
natively occupied positions (not shown in Fig. 5). It is evident
from the two projections along a and c that the compression of
the framework along b is hindered by the presence of Ca-Oframe

bonds, which are mainly oriented in this direction. These bonds,
pointing toward opposite channel walls, brace the channel ap-
ertures, whereas the mobile water molecules allow a greater
compressibility along a and c. To assess this proposed mecha-

FIGURE 1. Selected integrated powder patterns of yugawaralite as
a function of pressure. The two powder patterns at the top of the figure
were collected during decompression.

FIGURE 2. Selected integrated powder patterns of hydrated zeolite
Na-A as a function of pressure. The powder pattern at the top of the
figure was collected during decompression.

TABLE 3. Mean axial compressibility of the yugawaralite unit-cell
parameters calculated in different pressure ranges

Mean axial Pressure ranges
compressibility 10–4–1.5 (GPa) 2.0–4.3 (GPa) 5.3–10 (GPa)
ba 1.05 (8) 10–2 7.4 (6) 10–3 5.29 (1) 10–3

bb 3.75 (3) 10–3 2.1 (4) 10–3 2.7 (1) 10–3

bc 1.07 (7) 10–2 9.1 (6) 10–3 3.4 (1) 10–3

b b 1.92 (1) 10–3 1.1 (2) 10–3 9 (1) 10–4
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nism, molecular dynamics computations, based on the experi-
mentally determined cell parameters of YUGA under pressure,
are in progress.

Zeolite Na-A

The structure of the synthetic hydrated zeolite Na-A
(Na12Al12Si12O48·27H2O, Z = 8, Fm3–c; Gramlich and Meier
1971) can be described in terms of cuboctahedral cages (b

cages) that are connected by double four-membered rings to
form larger a cages. The silica and alumina tetrahedra alter-
nate in an ordered arrangement. The cation sites, refined by
Pluth and Smith (1980) from dehydrated Na-A, are: Na1, near the
center of six-rings; Na2 in the plane of the eight-membered rings;
and Na3 in the large cavity opposite a four-membered ring.

The compressibility of ZEOA was first studied by Hazen
(1983) and Hazen and Finger (1984) up to 4 GPa by single-
crystal X-ray diffraction, using different penetrating and non-
penetrating pressure-transmitting media. They found that the
compressibility was significantly higher when non-penetrat-

a

b

FIGURE 3. Experimental unit-cell parameters of yugawaralite,
normalized to room condition values vs. pressure. The data reported in
(a) are relative to the complete investigated pressure range and those
reported in (b) to the partial range10–4 to 4 GPa. The errors associated
with the cell parameters are smaller than the symbols used.

FIGURE 4. Experimental unit-cell parameters of hydrated zeolite
Na-A normalized to room condition values vs. pressure. The errors
associated with the cell parameters are smaller than the symbols used.
The regression line equation is reported at the top of the figure.

FIGURE 5. Yugawaralite structure at room pressure projected along
[100] (a) and [001] (b) directions.

ing pressure-transmitting media were used. The bulk modulus
obtained on data up to 2 GPa using glycerol and FC-75 was 21
GPa. More recent work on ZEOA, in different exchanged forms,
has mainly focused on pressure-induced amorphization and its
reversibility (Huang 1998; Secco and Huang 1999; Huang and
Havenga 2001; Rutter et al. 2001). Particular attention was de-
voted to the study of pressure effects on ionic conduction in
these phases (Rutter et al. 2000), since an anomalous increase
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in ionic conductivity was observed up to 1.8 GPa, as a result of
the increased structural disorder. Upon decompression, con-
ductivity maintained a value higher than that at room pressure.

We now discuss new high-pressure data for hydrated ZEOA
collected in the pressure range 10–4 to 6.8 GPa by means of in
situ synchrotron XRPD. The powder patterns shown in Figure
2 indicate that no X-ray amorphization occurs up to about 7
GPa. However, a residual peak broadening and a low peak-to-
background ratio characterize the patterns collected after de-
compression. This partial reversibility is in agreement with the
data of Secco and Huang (1999) and Rutter et al. (2000) and
could be the origin of the enhanced ionic conductivity retained
by the material after decompression.

Table 2 and Figure 4 show the variation of cell parameters
as a function of pressure. In the investigated pressure range,
the reductions of a and V parameters (6.5 and 18.4%, respec-
tively) are not linear. The linear regression line equation for
the normalized P-V dependence is shown in Figure 4. The vol-
ume compression data, the isothermal bulk modulus K0, and its
pressure derivative K0' were fitted up to 6.8 GPa with a third-
order Birch-Murnaghan equation of state. The refined values
are V0= 14899(20) Å3, K0 = 19.6(6) GPa, and K0' = 5.1(3). If the
data are fitted to a second-order equation, K0 becomes 22.1(3)
GPa. Both bulk modulus values are in close agreement with
the K0 = 21 GPa obtained by Hazen and Finger (1984).

The same authors, in their study of ZEOA using single crys-
tals and different non-penetrating pressure-transmitting media,
reported a volume discontinuity at about 1 GPa. Limiting our
data to the pressure range 10–4 to 2 GPa and using a linear fit,
we also observed a very slightly decreasing slope for the vol-
ume P-dependence at a similar pressure value.

The data extracted from three XRPD patterns collected dur-
ing the decompression of the sample are reported in Table 2
and Figure 4. The values corresponding to room pressure indi-
cate that the original unit-cell parameters are completely re-
covered after decompression; however the reverse path shows
a hysteresis effect with respect to the forward one.

COMPARATIVE DISCUSSION

Below we compare the high-pressure behavior of the zeo-
lites studied in this paper with that of other natural zeolites
studied under similar experimental conditions (heulandite:
HEUL, Vezzalini et al. 2001; scolecite: SCOL, Ballone et al.
2002; bikitaite: BIKI, Ferro et al. 2002) and, in general, with
the available literature data obtained with non-penetrating P-
transmitting media. The deformation mechanisms induced by
HP and HT in these porous materials are also compared.

Compressibility

In Figure 6 we compare the pressure dependence of the lat-
tice volumes of YUGA and ZEOA with that of the other zeo-

FIGURE 6. Unit-cell volumes, normalized to room condition values,
vs. pressure for YUGA and ZEOA (this work), heulandite (Vezzalini
et al. 2001), scolecite (Ballone et al. 2002), and bikitaite (Ferro et al.
2002). The bulk modulus was calculated up to 6.8, 3.5, 4.0, 5.7, and
5.0 GPa for ZEOA, heulandite, YUGA, bikitaite, and scolecite,
respectively.

▲
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lites studied under the same experimental conditions. We can
single out three different trends in compressibility: with increas-
ing pressure HEUL, YUGA, and ZEOA show a compressibil-
ity decrease, and SCOL an increase, while the compressibility
of BIKI does not vary with pressure. The unusual behavior of
SCOL, rarely occurring in silicate minerals, was, however, also
observed for gillespite-type phases (Miletich 2000) and was inter-
preted by Ballone et al. (2002), on the basis of ab initio molecular
dynamics calculations, as due to a phase transition involving struc-
tural modifications in the extra-framework water system.

All the bulk modulus values available for zeolites com-
pressed with non-penetrating media are plotted in Figure 7
against the so called framework density (FD) (Baerlocher et
al. 2001), i.e., the number of tetrahedrally coordinated atoms
per 1000 Å3. These K0 cover a large variability range from the
minimum for ZEOA (22.1 GPa) to the maximum for SCOL
(61 GPa); however, in general, zeolites turn out to be easily
collapsible under pressure, as expected for this type of very
open structures. The triangles represent the samples studied by
synchrotron XRPD, while the squares are K0 values reported in
the literature for zeolites studied by single-crystal X-ray dif-
fraction. The close agreement between the results of the two
techniques should be noted.

From Figure 7 no clear correlation can be singled out be-
tween FD and K0 for all the topologies. This could be ascribed
to the fact that the compressibility of these complex structures
is certainly strongly influenced not only by the framework den-
sity, but also by the type, amount, and location of the
extraframework cations and water molecules.

Comparison between the deformation mechanisms

induced by high pressure or high temperature

As the high-temperature behavior of the zeolites discussed in
this work is known in details, we can compare the deformation
mechanisms of these different frameworks under high-pressure
and high-temperature conditions. Contrary to the behavior observed
under compression, dehydration processes in zeolites involve wa-
ter loss and extra-framework cation rearrangements, and there-
fore we will focus our attention on the framework distortions.

The flexibility of zeolites was rationalized on the basis of
the Rigid Unit Mode model (Dove et al. 1995; Hammonds et
al. 1997, 1998), which described the zeolites as frameworks of
corner-linked rigid tetrahedra, able to distort by modifying their
internal T-O-T angles. Following Baur (1992a,b, 1995), zeo-
lite frameworks can be defined as “flexible” or “inflexible”
upon changes of the physico-chemical conditions. The flexible
structures are classified as collapsible or non-collapsible; in col-
lapsible frameworks the T-O-T hinges co-rotate, while in the non-
collapsible ones the hinges anti-rotate, preventing cell volume
changes.

On the basis of the observed cell parameter variations,
YUGA is collapsible to quite a similar extent under both HT

(Alberti et al. 1996) and HP. In particular, the cell volume con-
traction of YUGA at HP (15%) is slightly higher than that at
HT (12%). Moreover, the extent of contraction of each unit-
cell parameter under the two conditions is significantly differ-
ent, suggesting different deformation mechanisms.

In contrast, ZEOA is not collapsible at high temperature
(Pluth and Smith 1980), but is highly compressible under high
pressure. A similar behavior was also observed for bikitaite
(Ferro et al. 2002; Quartieri et al. 2002). The anomalously low
collapsibility of ZEOA and bikitaite under high temperature
was interpreted on the basis of the model proposed by Baur
(1992a,b), i.e., anti-rotation of the T-O-T angles. Concerning
bikitaite, the analysis of the computational results for its defor-
mation mechanism at high pressure revealed that, contrary to
that observed at high temperature, all T-O-T angles co-rotate
and decrease as a function of pressure. As a consequence the
volume decrease under these conditions is about one order of
magnitude higher than that observed at high temperature.
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