# Supporting Information

# A carrier-less immobilization route for highly robust metal-organic hybrid enzymes

Andoni Rodríguez-Abetxuko, María Carmen Morant-Miñana, Mato Knez, Ana Beloqui

## **Supplemental Tables**

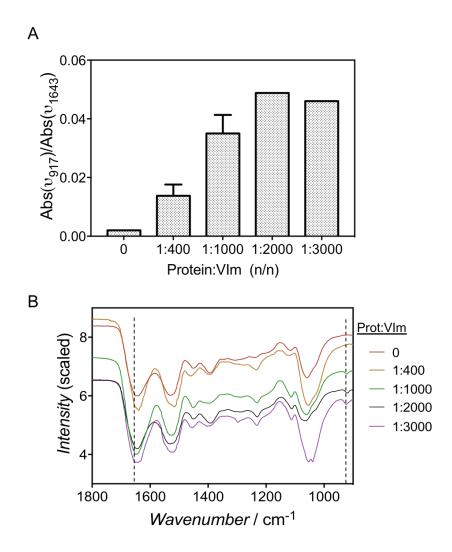
**Table S1.** Protein immobilization yields calculated for @Cu, @Co, @Zn, and @Ni MOEAs fabricated in Tris, phosphate, and acetate buffer, and water.

|                         | @Cu, % | @Co, % | @Zn, % | @Ni, % |
|-------------------------|--------|--------|--------|--------|
| Tris 30 mM, pH 7.0      | 100    | 95     | 100    | 100    |
| Phosphate 30 mM, pH 6.0 | 100    | 70     | 72     | 51     |
| Acetate 30 mM, pH 5.0   | 35     | n.d.   | n.d.   | n.d.   |
| Water                   | 48     | n.d.   | n.d.   | n.d.   |

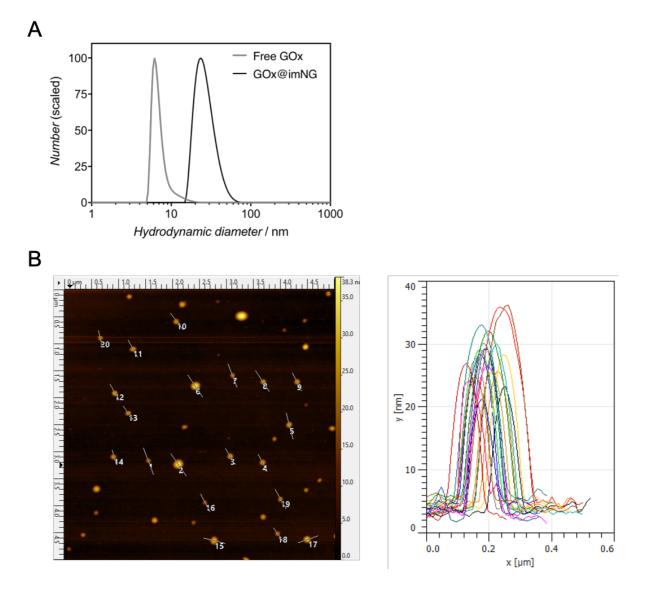
n.d.: not determined

Table S2. Enzyme loading (as w%) measured for each hybrid synthesized in this study.

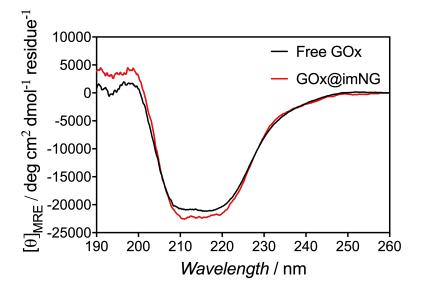
| @Cu  | @Zn | @Ni | @Co | ZIF-8#1 | ZIF-8#2 |
|------|-----|-----|-----|---------|---------|
| 43 % | 32% | 40% | 30% | 7.6%    | 4.2%    |


**Table S3.** Experimental values obtained from ICP-MS and XPS measurements for GOx@Cu-P and GOx@Cu samples.

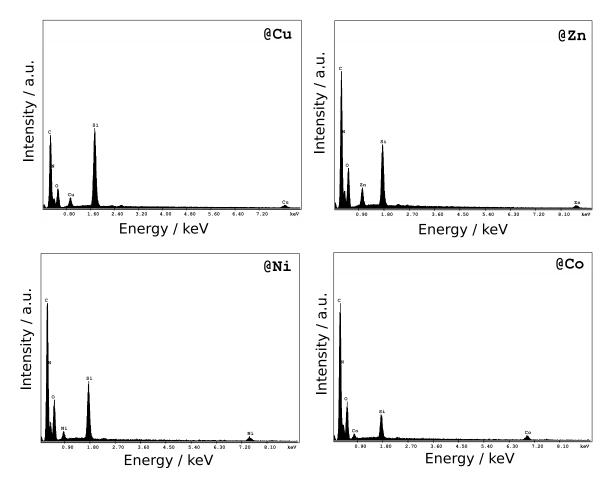
|          | Cu:prot (n/n) | N at% | P at% | Cu at% | C at% | O at% |
|----------|---------------|-------|-------|--------|-------|-------|
| GOx@Cu-P | 30780         | 8.1   | 6.0   | 4.8    | 51.6  | 29.5  |
| GOx@Cu   | 400           | 10.3  | 0.0   | 0.2    | 72.0  | 17.5  |


### **Supplemental Figures**

**Figure S1**. Relative concentration quantification (A) of the imidazole content within protein nanogels expressed as the ratio of the intensity given by the bands from the imidazole ( $\upsilon$  917 cm<sup>-1</sup>) and protein ( $\upsilon$  1647 cm<sup>-1</sup>) taken from the spectra in B. Higher Abs( $\upsilon$  917)/Abs ( $\upsilon$  1647) ratios were attributed to nanogels with higher imidazole:protein content.

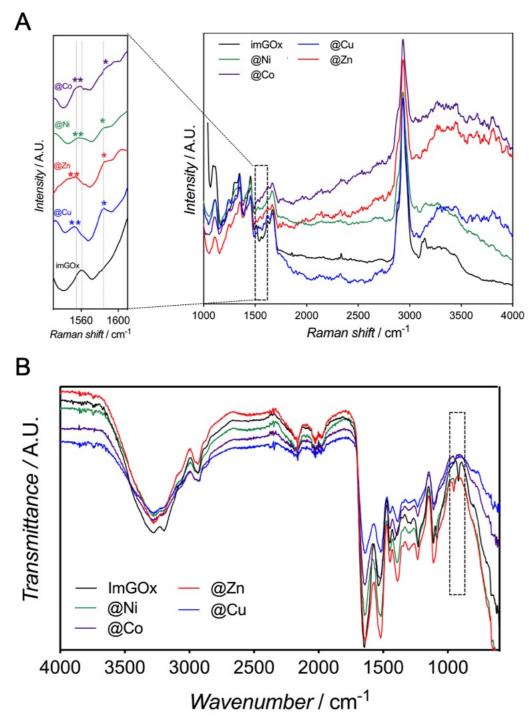

Protein:VIm molar ratios of 1:2000 and 1:3000 were discarded for this study as they led to the formation of insoluble aggregates in the synthesis procedure.



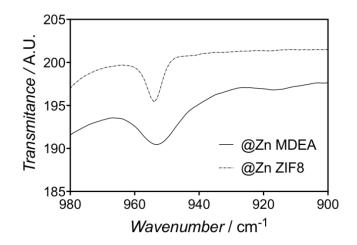

**Figure S2**. Measurement of the averaged size of free GOx and GOx@imNG nanogels by DLS (A) and AFM (B). Z-profile was extracted from AFM image for size measurement.



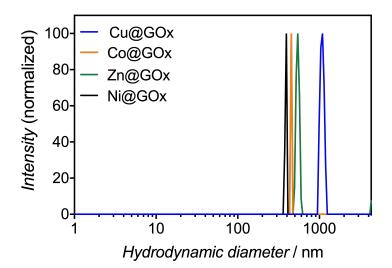
**Figure S3.** Normalized circular dichroism spectra of free GOx and GOx-polymer nanoconjugate (GOx@imNG).



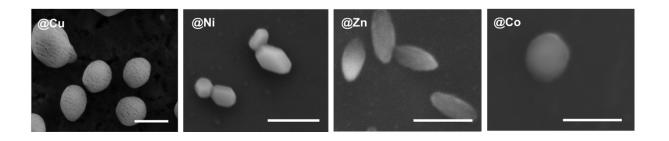

**Figure S4.** EDX spectra of @Cu, @Zn, @Ni, and @Co MOEAs. Metal cations are clearly observed in EDX spectra of respective MOEAs together with C, O, N signals from the protein-polymer nanoconjugates and Si signal coming from the substrate in which the MOEAs were deposited for the measurement.



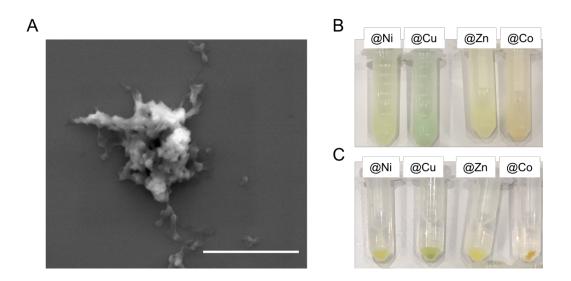

**Figure S5.** Metal-imidazole assessment by Raman and Infrared spectroscopy. A) Raman spectra of imGOx and MOEAs. The spectral region between 1530 and 1610 cm<sup>-1</sup> is zoomed-in for details. In absence of metal ions, i.e. imGOx sample, a characteristic Raman peak at ~1560 cm<sup>-1</sup> is observed and assigned to the deprotonated N $\tau$ -H form of imidazole. @Cu, @Zn, @Ni, and @Co MOEAs show a new band that is shifted to ~1584 – ~1589 cm<sup>-1</sup> range (with one asterisk in the Figure). These new bands are characteristic of the presence of the imidazole-metal tautomer [N $\tau$ -M; N $\pi$ -M]. Moreover, a new band at ~1555 cm<sup>-1</sup> (with two asterisks in the Figure), which may indicate the presence of metal-bridging imidazolate form (M-Im-M), is present in all MOEA samples.<sup>1,2</sup>


B) FTIR spectra of same samples. The spectral region showed in Figure 1C is highlighted within the box.

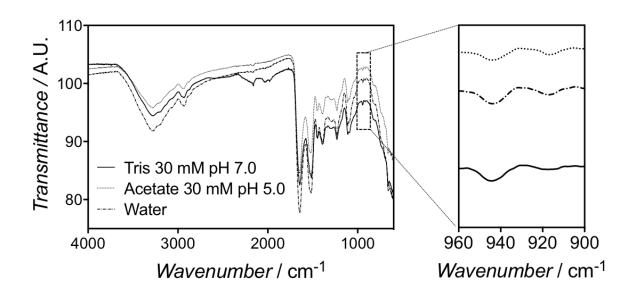



**Figure S6.** ATR-FTIR of GOx@Zn MOEA compared to GOx@Zn ZIF-8 composites in the 900-980 cm<sup>-1</sup> spectral window. The peak at 956 cm<sup>-1</sup>, which correspond to Zn-imidazole interaction, coincides in both hybrids. In this case, as the synthesis of @Zn MOEA was prolonged for 72h, the peak at 917 cm<sup>-1</sup> (uncoordinated imidazole) has almost disappeared.

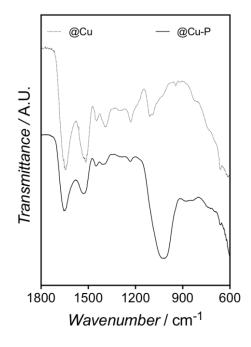



**Figure S7.** Statistical size distribution of @Cu, @Co, @Zn, and @Ni MOEA hybrids by Dynamic Light Scattering (DLS). Average sizes of ~1100, 550, 450, and 400 nm were measured for @Cu, @Zn, @Co, and @Ni MOEAs, respectively. A DLS-polydispersity value of 0.1 was obtained.

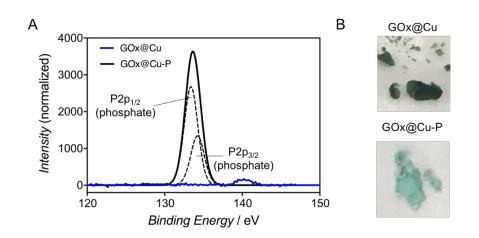



**Figure S8.** Detailed pictographs of GOx@Cu, GOx@Ni, GOx@Zn, and GOx@Co MOEA nanoparticles revealed by ESEM. (Scale bar: 600 nm).

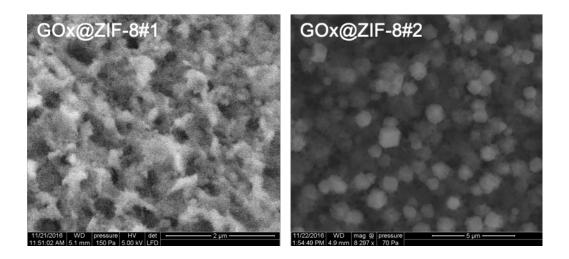



**Figure S9.** MOEAs synthesized at high protein concentration. A) ESEM pictograph of GOx@Cu aggregates synthesized with 0.5 mg ml<sup>-1</sup> of GOx@imNG and 5 mM of Cu(SO<sub>4</sub>)<sub>2</sub> in Tris buffer (30 mM, pH 7.0) (scale bar: 2  $\mu$ m). B) MOEA hybrids synthesized with 2 mg ml<sup>-1</sup> of GOx@imNG and 5 mM of respective metal salts dispersed in water. C) MOEA pellets (2 mg ml<sup>-1</sup> of GOx@imNG and 0.5 mM of respective metal salts) could not be dispersed and are decanted on the bottom of the vial.

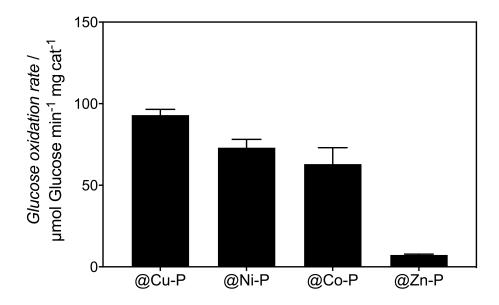



**Figure S10.** ATR-FTIR spectra comparison of @Cu MOEAs fabricated in Tris buffer (30 mM, pH 7.0), acetate buffer (30 mM, pH 5.0), and water. Zoomed region (960-900 cm-1) evidences a more effective coordination of imidazole molecules when Tris buffer is used (it shows a higher  $\upsilon_{953}$ : $\upsilon_{917}$  ratio).

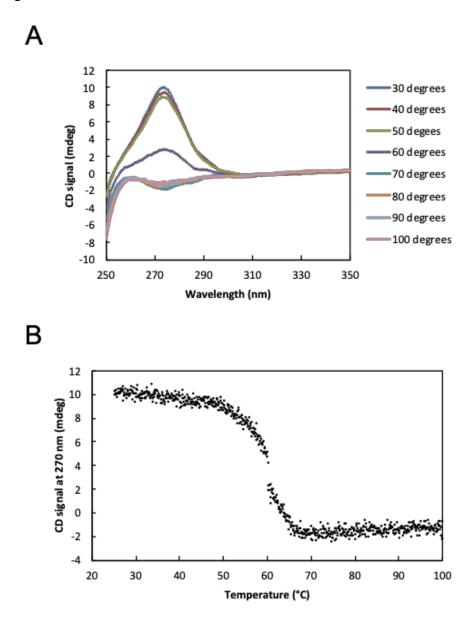



**Figure S11.** ATR-FTIR normalized spectra of GOx@Cu MOEAs fabricated in Tris buffer (@Cu) and phosphate buffer (@Cu-P).




**Figure S12.** A) Magnified XPS spectra of the region corresponding to phosphorus measured from GOx MOEAs fabricated in Tris (GOx@Cu) and phosphate (GOx@Cu-P) buffer. B) Photographs showing the color of the solid precipitates obtained from GOx@Cu and GOx@Cu-P samples.




**Figure S13.** ESEM pictographs of GOx@ZIF-8#1 and GOx@ZIF-8#2 composites synthesized following published protocols.<sup>3,4</sup> An average particle size of 300 nm and 1.1 μm were measured by DLS for GOx@ZIF-8#1 and GOx@ZIF-8#2 samples, respectively.



**Figure S14.** Glucose oxidation catalytic rates expressed as U per mg of solid measured for @Cu, @Ni, @Co, and @Zn assemblies fabricated in presence of phosphate buffer.



**Figure S15.** The loss of the tertiary structure of the protein is demonstrated by circular dichroism. Near-UV CD spectra (A) and traces of the CD signal at 270 nm (B) of GOx at a temperature gradient from 30 to 100°C.



#### REFERENCES

- (1) H. Takeuchi, "Raman structural markers of tryptophan and histidine side chains in proteins," *Biopolym. Biospectroscopy Sect.*, **2003**, *72*, 305–317.
- (2) F. Jehle, P. Fratzl, and M. J. Harrington, "Metal-Tunable Self-Assembly of Hierarchical Structure in Mussel-Inspired Peptide Films," *ACS Nano*, 2018, *12*, 2160– 2168.
- (3) Lyu, F.; Zhang, Y.; Zare, R. N.; Ge, J.; Liu, Z. One-Pot Synthesis of Protein-Embedded Metal-Organic Frameworks with Enhanced Biological Activities. *Nano Lett.* 2014, 14, 5761–5765.
- (4) Chulkaivalsucharit, P.; Wu, X.; Ge, J. Synthesis of Enzyme-Embedded Metal-Organic
  Framework Nanocrystals in Reverse Micelles. *RSC Adv.* 2015, *5*, 101293–101296.