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Abstract

The study of market microstructure has attracted increasing attention in recent years

owing to the availability of high frequency data. Two important empirical predictions

about how asset prices in financial markets evolve over time highlighted by market mi-

crostructure theory are: (1) trades convey information that contributes to security price

movements; and (2) intensified trading activity by investors increases price volatility.

This thesis provides three essays that develop new empirical models for high frequency

returns, volatility, trading volumes and trade durations in order to test these two em-

pirical predictions and provide additional insights into the interdependence between

these variables.

The first essay, presented in Chapter 2, tests the first empirical prediction by inves-

tigating the information content of trades in explaining price dynamics. In this es-

say, we propose a nonlinear vector autoregressive model of trade durations, trade at-

tributes (signs and volumes) and returns that incorporates the dynamic interdepen-

dence amongst these variables and relaxes the exogeneity assumption that is often im-

posed on durations in previous studies. The new model is applied to examine the role

of durations and trade attributes in the price formation process for Australian bank-

ing stocks around interest rate announcements. The results show that durations are

not only correlated but also jointly determined with trade characteristics and returns.

Shorter durations are associated with an increase in the price impact and autocorre-

lation of trades. In addition, transactions executed within one minute around the an-

nouncements have shorter durations and larger impact on prices. Conditioning on an

average before-announcement history, the cumulative price impact of an unexpected
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trade tends to be higher (lower) following a negative (positive) duration shock if du-

rations are endogenous, yet it stays unchanged if durations are treated as exogenous.

Although informative about returns, shocks to durations contribute significantly less

to the forecast error variance of returns than do trade attribute shocks. This result sug-

gests that trade durations play a smaller role in explaining price dynamics than trade

attributes for Australian banking stocks.

The second essay, presented in Chapter 3, focuses on the interrelationship between

trading volume and price volatility implied by the second market microstructure em-

pirical prediction. This essay proposes a joint model for volume and returns that incor-

porates a bivariate stochastic process for the latent conditional expected volume and

instantaneous volatility. The latent process is assumed to evolve according to a first or-

der vector autoregression which accommodates both the contemporaneous and serial

cross-dependencies between the latent variables. Our proposed model is a bivariate

generalization of the popular stochastic volatility (SV) and stochastic conditional du-

ration (SCD) models in the literature, and to our knowledge it is the first time that (1)

an SCD model has been used to model trading volume; and (2) the SV and SCD mod-

els have been employed to jointly model volume and volatility. We establish several

statistical properties with regard to the moments and the correlation structures of the

volume and volatility processes implied by our model; these properties generalize and

are all consistent with those derived in previous studies for the univariate SV and SCD

models. We apply the proposed model to transaction data for one big and one small

market capitalization stock in the S&P/ASX200 index; the estimation is performed by

quasi maximum likelihood. We show that not only does our bivariate model success-

fully capture the stylized positive dynamic volume-volatility relation, it also provides

significant enhancements in fit relative to its single equation counterparts. Moreover,

an initial positive shock to either variable increases both the trading volumes and re-

turn volatility of future transactions, with larger responses and faster convergence

to the full-information equilibrium observed for the bigger and more heavily traded
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stock.

The third essay, presented in Chapter 4, looks into the volume-volatility relation more

deeply by investigating how the limit order book (LOB) information affects this re-

lation. Using a high frequency transaction dataset of the constituent stocks of the

S&P/ASX200 index, we find a strong positive dynamic relationship between return

volatility and trading volume, which is negatively (positively) related to the market

depth at the inner quotes and the LOB slope (the bid-ask spread). The impact of the

LOB characteristics on the return volatility of a trade depends on a stock’s liquid-

ity, and it is conveyed via two channels; a direct channel that is mostly attributable

to lagged LOB information, and an indirect channel that is transmitted through the

volume-volatility relation and is mainly contributed by the prevailing LOB informa-

tion right before the trade. Furthermore, there are significant asymmetries in the ef-

fects of the bid versus ask order books on return volatility and the volume-volatility

relation, with the order book of the opposite side to the direction of an incoming trade

being particularly informative. Amongst the LOB characteristics that we examine, the

LOB slope is the key driver of return volatility as well as the volume-volatility rela-

tion. We demonstrate the negative dependence of volatility and the volume-volatility

relation on the LOB slope with a simple intuitive graphical explanation.
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Chapter 1

Introduction

1.1 Background and motivation

The increased availability of high frequency data in recent years, due to considerable

improvements in storage and computational technologies, has offered an unprece-

dented opportunity to research financial market microstructure. With detailed records

of every transaction (including the times of trades that are precisely stamped to the

millisecond), the empirical study of how market microstructure variables such as re-

turns, price volatility, trading volumes and trade durations are interrelated and de-

termined has become feasible. Such empirical investigations are important because

they provide insights into the structure and operation of financial markets by exam-

ining the arrival of information in the market, the speed with which and the channels

through which information is disseminated by market traders, as well as the effects

information places on security prices (Karpoff, 1987, Hasbrouck, 1991a, Nolte, 2008).1

Furthermore, not only do investigations allow one to test the empirical predictions

implied by theory, but they may also shed light on the recurring patterns or relation-

ships that are observed in empirical data but lack theoretical explanations, providing

1Extensive research, both theoretical and empirical, has been carried out in the literature to investi-
gate one or several of these aspects. See Kyle (1985), Diamond and Verrecchia (1987), Hasbrouck (1988,
1991a,b), Easley and O’Hara (1992), Dufour and Engle (2000), Foucault et al. (2005), Manganelli (2005),
Xu et al. (2006), Nolte (2008), Goettler et al. (2009), Renault and Werker (2011), Renault et al. (2014),
Jondeau et al. (2015), Wei and Pelletier (2015), Benos and Sagade (2016), amongst many others.
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Chapter 1. Introduction

the basis for further theoretical developments. In terms of practical relevance, both

theoretical and empirical studies of market microstructure help investors better eval-

uate their trading performance as well as create optimal trading strategies, which are

different for different assets in different markets. This allows investors to optimize

their specific objective functions such as maximizing profits or minimizing trading

costs (e.g. Goettler et al., 2009, Duffie, 2010). More importantly, studies of market mi-

crostructure assist policy makers in designing market places that improve liquidity,

attenuate market friction and manipulation, and facilitate more efficient trading (e.g.

Dufour and Engle, 2000, Manganelli, 2005).

Theoretical market microstructure studies have put forward two important predic-

tions about the process of price formation in financial markets, which are: (1) trades

contain information that drives stock price adjustments (see, among others, Glosten

and Milgrom, 1985, Kyle, 1985, Diamond and Verrecchia, 1987, Easley and O’Hara,

1992, Duffie, 2010); and (2) there is a positive relationship between price volatility and

trading activity (e.g. Clark, 1973, Copeland, 1976, Kyle, 1985, Admati and Pfleiderer,

1988, Shalen, 1993, Andersen, 1996, Banerjee and Kremer, 2010, Banerjee, 2011).

With regard to the first prediction, Glosten and Milgrom (1985) develop a sequen-

tial trade framework in which a risk-neutral and competitive market maker sets bid

and ask prices for a risky asset and trades with other participants, some of whom are

informed about the true value of the risky asset while others are not. Trade occurs in

a sequential manner: at any point in time, only one trader who can be either informed

or uninformed is allowed to trade with the market maker at the quoted prices set by

the latter. The market maker may revise his quotes before continuing to trade with the

next trader. Glosten and Milgrom (1985) show that since the market maker faces an

adverse selection problem and incurs a loss when trading with the informed investors,

he will set a positive bid-ask spread to offset his loss, even when there are no other

explicit transaction costs such as commission fees, taxes and inventory holding costs.

Moreover, the market maker learns the information from trade with the informed in-

vestors; a buy may signal that the traders know good news while a sell may signal the

opposite. Consequently, he may revise his prices upward (downward) upon observing

2



Chapter 1. Introduction

a buy (sell).

Kyle (1985) also considers a model that features a risk neutral market maker and

informed and uninformed traders who trade a risky asset as in Glosten and Milgrom

(1985). However, in Kyle’s (1985) model, there is only one informed trader, and trade

is conducted via sequential auctions where, in each auction, both the single informed

investor and other noise traders submit their orders to the market maker. The market

maker only observes the aggregated order flow from all traders, but he does not know

how much of the total order flow comes from the informed investor. After observing

the total order flow, the market maker sets a single price for the asset to clear the mar-

ket. Kyle (1985) shows that there is an equilibrium in this sequential auction trading

model in which the informed trader strategically splits his order into a sequence of

small-sized trades in order to hide his identity and gradually make use of his private

information, whereas the market maker sets the equilibrium prices of the asset as a

linear function of the aggregated order flow in each auction. According to Kyle (1985),

asset prices are determined linearly from the aggregated trade size.

The frameworks of Glosten and Milgrom (1985) and Kyle (1985) provide the basis

for numerous extensions and modifications in the theoretical literature that examines

the information content of trades.2 For example, using an extension to the sequential

trade model of Glosten and Milgrom (1985) that allows for the endogeneity of trade

arrival times, Easley and O’Hara (1992) demonstrate that time between trades conveys

important information about price dynamics. In particular, the absence of trades or

long trade duration is a signal of no news events and the absence of informed traders in

the market, which leads to a narrower bid-ask spread and smaller price adjustments.

Meanwhile, by extending Kyle’s (1985) auction-trading framework to allow for a com-

petition between multiple informed traders, Holden and Subrahmanyam (1992) show

that the long-lived private information possessed by informed traders is incorporated

quickly and immediately into prices due to aggressive trading behaviours of the in-
2See, amongst many others, Diamond and Verrecchia (1987), Admati and Pfleiderer (1988), Foster

and Viswanathan (1990), Diamond and Verrecchia (1991), Easley and O’Hara (1992), Holden and Sub-
rahmanyam (1992), Easley et al. (1996), Easley et al. (1997), Kaniel and Liu (2006), Li (2017). Also
see textbooks of O’Hara (1995), Brunnermeier (2001), and Foucault et al. (2013), amongst others, for
a review of work that extends Glosten and Milgrom (1985) and Kyle (1985), and other related market
microstructure theories.
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formed traders who compete with one another to capitalize on the common piece of

private information. This is in contrast to the gradual revelation of private information

by the monopolistic informed investor in the original Kyle’s (1985) model.

There is also a rich theoretical literature that provides explanations for the positive

connection between price volatility and trading activity. Clark (1973), Epps and Epps

(1976), Tauchen and Pitts (1983), and Andersen (1996) develop and extend the Mixture

of Distribution Hypothesis (MDH) which postulates that the arrival of new informa-

tion is the key factor that drives the co-movements in both volumes and prices. As

the market reacts to new information to reach a new equilibrium, there is an increase

in trading activities and aggregated trading volumes, as well as upward (downward)

movements in prices if the new information is “good news” (“bad news”). As a re-

sult, volume and volatility are positively related. Meanwhile, the Sequential Arrival

of Information Hypothesis (SAIH) of Copeland (1976, 1977), Jennings et al. (1981),

and Jennings and Barry (1983) suggests that there is a lead-lag connection between

trading volume and price volatility, due to the sequential, rather than simultaneous,

dissemination of new information to different market participants. Sequential reac-

tions of market traders to the new information result in a series of intermediate equi-

libria, which comes with serial adjustments in trading volumes and prices, before a

final equilibrium where all traders have responded to the new information is reached.

Thus, the SAIH theory predicts both a contemporaneous and lagged dependence be-

tween volume and volatility.

A positive volume-volatility relation is also featured in theoretical models of Grundy

and McNichols (1989), Kim and Verrecchia (1991), Shalen (1993), Harris and Raviv

(1993), Wang (1994), Banerjee and Kremer (2010), Banerjee (2011), amongst others. In

these models, traders differ in their information or belief sets, which may result from

either information asymmetry or disagreements in the interpretation of the common

public information. The over-response of one group of traders (such as speculators

who receive imperfect private signals, or responsive investors who place excessive em-

phasis on the common information) to an observed increase in trading activity leads

to a positive correlation between volume and volatility. In a related line of research,
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Kyle (1985), Admati and Pfleiderer (1988), Foster and Viswanathan (1990), Holden

and Subrahmanyam (1992), amongst others, show that in an information-asymmetric

trading environment, the strategic behaviors of the informed investors who split their

large orders into a series of smaller trades can give rise to a positive volume-volatility

relation.

On the empirical side, extensive effort has been devoted in the literature to test

the two aforementioned predictions. Regarding the first prediction, Hasbrouck (1988,

1991a,b) confirms the informativeness of trades highlighted by theory by showing that

trades result in a persistent impact on security prices in the sense that buyer-initiated

transactions lift prices up while seller-initiated trades push prices down, and prices

adjust more when trading volumes are larger and/or bid-ask spreads widen. A later

study by Dufour and Engle (2000) modifies Hasbrouck’s (1991a) framework to test the

empirical predictions of Diamond and Verrecchia (1987) and Easley and O’Hara (1992)

that trading frequency or the time duration between trades is informative about the

evolution of prices and trading behaviors. Dufour and Engle (2000) find that higher

trading intensity or shorter trade duration, which signifies the existence of news events

and the increased presence of informed traders in the market, is related not only to a

faster convergence of prices to a new equilibrium level but also to stronger positive

autocorrelation of trades.

Although theories (e.g. Diamond and Verrecchia, 1987, Easley and O’Hara, 1992)

suggest that trade durations should be determined jointly with trade attributes and

prices, they are assumed to be independent of the latter in Dufour and Engle’s (2000)

work, as well as in many other empirical applications. Nevertheless, the importance

of endogenizing trade durations has been highlighted in a small but fast growing lit-

erature (e.g. Russell and Engle, 2005, Renault and Werker, 2011, Pelletier and Zheng,

2013, Renault et al., 2014). For example, using an econometric technique that ac-

commodates the interdependence between price changes and trade durations, Russell

and Engle (2005) show that shorter durations increase the probability of a large price

change in the future, while upward movements in prices and/or big price adjustments

increase future trading activity and hence shorten subsequent trade durations.
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There are numerous empirical models that have been developed in the literature to

test the positive relationship between return volatility and trading activities. Building

on the MDH, Clark (1973), Tauchen and Pitts (1983) and Andersen (1996) propose

models that allow for the contemporaneous dependence of volatility on volume, and

they show that the variability in prices is positively related to trading volume. Later

studies (e.g. Jones et al., 1994, Chan and Fong, 2000, Ahn et al., 2001, Chan and Fong,

2006, Næs and Skjeltorp, 2006, Chevallier and Sévi, 2012, Wang and Wu, 2015, Boller-

slev et al., 2018) also document a positive contemporaneous volume-volatility relation.

In addition, these studies often find that the number of transactions contains signifi-

cantly more explanatory power in explaining price volatility than does trade size.

Even though the assumption that return volatility and trading volume are only

contemporaneously correlated has been useful in prior studies, it appears to be too re-

strictive. The SAIH of Copeland (1976, 1977) and Jennings et al. (1981) indicates that

in a market where information is sequentially disclosed to and circulated by traders,

volume and volatility exhibit a lead-lag dependence. Likewise, when investors have

heterogeneous beliefs about asset prices, due to either asymmetric private informa-

tion (Shalen, 1993) or differences of opinions about public information (Banerjee and

Kremer, 2010, Harris and Raviv, 1993), there are both contemporaneous and lagged

relationships between volume and volatility. Subsequent empirical work such as that

by Manganelli (2005), Xu et al. (2006), Nolte (2008), or Carlin et al. (2014) also finds

that these two variables are indeed contemporaneously and dynamically correlated,

lending support to the above theories.

The main objectives of this thesis are to document and understand (i) how the in-

formation content of time between trades interacts with price and price volatility, and

(ii) how trading volume and price volatility are related and what explains this relation.

This thesis develops new empirical models that incorporate trade durations, trading

volumes, returns and volatility that can be used to test the two aforementioned pre-

dictions implied by market microstructure theory and to provide additional insights

into the interrelationships amongst these variables. This thesis consists of three sep-

arate but related essays, of which the first one, presented in Chapter 2, investigates
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the information content of trades about price dynamics (i.e. the first empirical pre-

diction), whereas the latter two essays, presented in Chapters 3 and 4, examine the

relationship between trading volume and return volatility (i.e. the second empirical

prediction). All three papers exploit rich data sets of high frequency tick-by-tick data

on equity, which record the details of every single transaction of stocks under inves-

tigation. The use of transaction data is advantageous because (i) it is supported by

most theoretical studies that develop their analysis at a tick-by-tick level (e.g. Kyle,

1985, Hasbrouck, 1991a, Holden and Subrahmanyam, 1992); (ii) it enriches the un-

derstanding of how trades affect prices while avoiding a loss of information due to the

aggregation of trades and prices over a fixed time interval (Engle, 2000, Manganelli,

2005, Russell and Engle, 2005); and (iii) it is also consistent with a common practice

amongst studies that test the first market microstructure prediction, even though low

frequency data (daily or lower) is still dominantly used for research that examines the

second prediction.

1.2 Overview of the Thesis

Chapter 2 examines how trades impact security prices when they arrive at the market

at endogenously random times. The motivation of this study is rooted in the theoret-

ical work of Diamond and Verrecchia (1987) and Easley and O’Hara (1992), who find

that not only do the time durations between trades convey information about prices

since they signal whether there is a news release into the market, but they are also

correlated with other trade information such as trading volume. A subsequent study

by Dufour and Engle (2000) finds empirical evidence supportive of these theories.

However, like many other studies in the literature, Dufour and Engle (2000) assume

that trade durations are generated from a stochastic process that is strictly exogenous

to prices and trade attributes such as signs and volumes. This chapter extends the

analysis of Dufour and Engle (2000) to relax the strict exogeneity assumption of trade

durations, as suggested by Diamond and Verrecchia’s (1987) and Easley and O’Hara’s

(1992) theories. To this end, we propose a nonlinear vector autoregression (VAR) for
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trade durations, trade attributes (signs and volumes) and returns that allows for their

dynamic interdependence. We apply the proposed model to investigate the impact of

trades on the prices of Australian banking stocks around interest rate announcements.

We examine the following questions: (i) are trade durations correlated with prices and

trade attributes, and if so, how?; (ii) how do trade durations affect the absorption of

new information into prices?; (iii) how do the announcements of monetary policy deci-

sions influence the trading intensity and price adjustments of these stocks?; and (iv) do

trade durations or trade attributes (signs and volumes) play a bigger role in explaining

the variations in prices of the Australian banking stocks?

The results from Chapter 2 show that trade durations are indeed correlated with

prices and trade characteristics. They are positively related to past volatility and neg-

atively associated with past trading volumes. Shorter trade durations are associated

with trades that have higher impact on prices and are more positively serially corre-

lated. The one minute period around interest rate announcements is very active, with

significantly higher trading intensity and larger price impact. Conditioning on the av-

erage history before the announcements, an unexpected transaction results in a higher

(lower) cumulative impact on prices of Australian banking stocks after a negative (pos-

itive) duration shock only if trade durations are endogenously modeled; whereas, the

cumulative price impact of the unanticipated trade is similar if durations are assumed

to be exogenous. Finally, shocks to durations only account for a minor portion of the

forecast error variance of returns of the Australian banking stocks, which is signifi-

cantly smaller than that explained by trade attribute shocks. Thus, trade durations are

less informative about price dynamics than trade characteristics for these stocks.

Chapter 3 proposes a new modeling methodology to investigate the interrelation-

ship between trading volume and return volatility. This chapter is motivated by the

fact that although finance and market microstructure theory advocates the endogene-

ity and joint determination of volume and volatility (e.g. Clark, 1973, Admati and

Pfleiderer, 1988, Andersen, 1996), the empirical literature primarily studies their rela-

tionship using single-equation or univariate time series approaches that do not allow

for the feedback effects between these two variables (e.g. Ahn et al., 2001, Chan and
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Fong, 2006, Chevallier and Sévi, 2012, Wang and Wu, 2015). A few studies that accom-

modate joint modeling employ either multivariate GARCH-type or VAR-type models

that impose a conditional deterministic assumption: the conditional mean of a quan-

tity of interest (e.g. volume) is expressed as some assumed function of past information

and hence is entirely known after conditioning on the past information.3 This chapter

relaxes this conditional deterministic feature by developing a joint model for volume

and returns that incorporates a bivariate stochastic process for the latent conditional

expected volume and instantaneous volatility, which is assumed to follow a first order

VAR that accommodates the dynamic feedback effects between these variables. The

proposed model is a bivariate generalization of the popular stochastic volatility (SV)

and stochastic conditional duration (SCD) models in the literature. Several statistical

properties of our model are established. We apply the proposed model to the transac-

tion dataset of one big and one small stock in the Australian market, and we examine

the following questions: (i) how are trading volume and return volatility interrelated?;

(ii) does the proposed bivariate model outperform its univariate counterparts in terms

of model fit?; and (iii) how do volume and volatility respond to a shock to either vari-

able?

Chapter 3 finds a positive dynamic interdependence between trading volume and

return volatility, which supports market microstructure theory. However, the effects

of volume on volatility are much more sizable than those of the reverse. By accom-

modating the joint determination of volume and volatility, our bivariate model fits

empirical data significantly better than its univariate counterparts. Finally, following

a positive shock to either variable, both trading volumes and return volatility increase

significantly, then they converge gradually to their new long run levels, with a faster

convergence rate realized for the bigger and more intensively traded stock.

Chapter 4 provides a deeper investigation of the volume-volatility relation by ex-

amining whether this relationship varies with limit order book (LOB) information,

and if so, how. While theoretical market microstructure studies suggest several factors
3A standard VAR model does not include a separate latent structure for the expected quantities as

in a GARCH-type model. Nevertheless, the expectation of a variable in the VAR system, for example
volume, conditioning on the past information is still a linear function of the past values of all variables
in the system.
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that explain and change this relation (e.g. Clark, 1973, Holden and Subrahmanyam,

1992, Shalen, 1993, Banerjee and Kremer, 2010), most empirical work documents the

determinants of volatility, rather than the volume-volatility relation. This is because

the effects of volume on volatility are assumed to be constant over time and do not

vary with other factors. See, for example, Chan and Fong (2000), Pascual and Veredas

(2010), Haugom et al. (2014), Clements and Todorova (2016). Unlike the majority of

previous studies, this chapter accommodates the time-varying feature of the volume-

volatility relation, and it allows the dependence of volatility on volume to vary with

the LOB characteristics, which include the bid-ask spread, market depth at the inner

quotes, and the slope of the LOB. The analysis is conducted for stocks listed on the

S&P/ASX200 index, and we examine the following questions: (i) how does LOB in-

formation affect the volume-volatility relation and return volatility?; (ii) what are the

channels through which LOB information explains volatility?; (iii) which side of the

LOB is more informative about the volume-volatility relation and volatility?; and (iv)

which LOB information is the driving determinant of the volume-volatility relation

and volatility?

The results from Chapter 4 document a positive dynamic dependence of return

volatility on trading volume, which is strongly related to the LOB information: larger

market depth and/or a steeper LOB right before a transaction weakens the positive

volume-volatility relation, whereas wider bid-ask spreads strengthen it. LOB charac-

teristics affect return volatility via two channels: a direct channel that is primarily

explained by the lagged LOB information, and an indirect channel that is conveyed

through the volume-volatility relation and is mostly accounted for by the prevailing

LOB information immediately before a trade. Moreover, two sides of the LOB convey

asymmetric information about the volume-volatility relation and return volatility, and

it is the opposite side order book (to the direction of an upcoming trade) that is more

informative. Finally, by incorporating the information from the bid-ask spread and

market depth at the best quotes, the LOB slope dominates the former in explaining

return volatility and the volume-volatility relation.
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1.3 Outline of the Thesis

This thesis is structured as follows. Following this introductory chapter, Chapter 2

investigates the impact of trades on the prices of Australian banking stocks around

the releases of monetary policy decisions, allowing for the endogeneity of trade ar-

rival times. Chapter 3 focuses on the interrelationship between trading volume and

return volatility by developing a bivariate stochastic conditional model for these two

variables. Chapter 4 analyzes the information content of the limit order book in ex-

plaining return volatility and the volume-volatility relation. Chapter 5 concludes the

thesis by providing a summary of the key findings in the previous chapters and sug-

gesting some directions for future research. A list of abbreviations for commonly used

terms in this thesis is provided on page xvii.
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Chapter 2

Time and the price impact of trades in

Australian banking stocks around

interest rate announcements

2.1 Introduction

Research into market microstructure has flourished in recent years as a consequence of

increased accessibility of high frequency data and significant computational advance-

ments. One big strand in market microstructure studies has focused on identifying

factors that influence asset prices and examining how prices evolve in reaction to new

information. Previous research has documented that trade attributes, such as direc-

tion and volume, and bid-ask spreads are important pieces of information that drive

the price formation process (Hasbrouck, 1988, 1991a,b). In particular, unexpected

trades result in a persistent impact on security prices; the larger the volume of a trade

and/or the wider the bid-ask spread, the bigger the price adjustment.

Time of trade arrivals has also been shown to play an important role in explaining

price dynamics. Theoretical studies by Diamond and Verrecchia (1987) and Easley

and O’Hara (1992) highlight the informativeness of trade arrival times and their joint
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determination with the process of trade generation and price formation. Specifically,

Diamond and Verrecchia (1987) hypothesize that long time intervals between trades,

or, equivalently, low levels of trading activities, are signals of bad news being revealed

to the market, which subsequently lead to a decrease in prices. Meanwhile, Easley

and O’Hara (1992) relate long trade durations to a lack of news events and show that

trading intensity is positively dependent on the proportion of informed investors in the

market. Consequently, the longer the time between trades, the narrower the bid-ask

spread and the smaller the price adjustment. Dufour and Engle (2000) lend support

to these theories by empirically showing that more frequent trade arrivals or shorter

trade durations are associated with not only stronger positive autocorrelation of trade

directions but also a quicker convergence of prices to the equilibrium level. Likewise,

higher trading intensity leads to higher price volatility (Engle, 2000) and is related to

a stronger dependence of price volatility on trade sizes (Xu et al., 2006).

Despite the theoretical suggestion of the joint determination of trade durations and

other variables such as prices and trade attributes (e.g. Diamond and Verrecchia, 1987,

Easley and O’Hara, 1992), Dufour and Engle (2000), Engle (2000) and Xu et al. (2006)

all assume that trade durations are strictly exogenous. That is, the time between trades

is assumed to be only dependent upon previous durations but independent of past tra-

jectories of prices and trade attributes. Nevertheless, Dufour and Engle (2000) conduct

a formal test of the validity of the strict exogeneity assumption (which is often imposed

on durations in previous studies) and find that it is strongly rejected. They suggest that

“incorporating [the] feedback effects of returns, trades and volume on time durations

may improve the in-sample performance of the model” (p. 2496). Although they do

not pursue the relaxation of this assumption, these authors emphasize the importance

of endogenizing trade durations since it “could ultimately provide more accurate im-

pulse response functions” (p. 2496), i.e. it could enable a more accurate assessment

of the price impact of trades. Motivated by the Dufour and Engle’s suggestion, this

chapter aims to build a model for returns, trade characteristics (signs and volumes)

and durations that relaxes the strong exogeneity assumption of trade durations, and

we use this framework to examine how trades impact prices when trade arrival times
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are endogenous.

Our econometric framework is built upon the general modeling approach of Engle

(2000) that decomposes the joint distribution of trade durations and other variables of

interest such as returns and trade attributes into the product of the marginal density

of durations and the conditional density of the other variables. By incorporating the

past histories of returns, trade characteristics and durations into both the marginal and

conditional densities, we allow for feedback effects amongst these variables in the joint

system. In particular, we follow Hasbrouck (1991a) and Dufour and Engle (2000) in

modeling returns and trade characteristics with a vector autoregression (VAR) that is

non-linearly related to trade durations. Meanwhile, we model durations in two ways,

both of which take into account the dependence of durations on lagged returns and

trade characteristics. The first way is to make durations another endogenous variable

that evolves according to an autoregressive structure similar to returns and trade at-

tributes in the VAR system, which is a natural extension of Hasbrouck’s (1991a) frame-

work to endogenize trade durations. The second way is to employ an autoregressive

conditional duration (ACD) model for durations that incorporates past returns and

trade characteristics.

There is a small but growing body of literature that accommodates the endogeneity

of trade durations in a multivariate system (Grammig and Wellner, 2002, Manganelli,

2005, Renault and Werker, 2011, Pelletier and Zheng, 2013, Renault et al., 2014, Wei

and Pelletier, 2015). Unlike these studies whose main objective is to examine the in-

terdependence between duration and volatility (i.e. the second moment of returns),

this chapter focuses on the dynamics of the first moment of returns. In addition, our

proposed nonlinear VAR model incorporates trade direction, which is shown to be an

important determinant of the price formation process (Hasbrouck, 1991a, Dufour and

Engle, 2000, Barclay et al., 2003) but which is often excluded from the aforementioned

studies due to its binary nature (i.e. trade direction can only take two values: 1 if a

trade is a purchase and -1 if it is a sale). Our work also differs from another related

work by Russell and Engle (2005) in that instead of studying discrete tick-size price

changes with an autoregressive conditional multinomial model, we examine returns -
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a widely-used and continuous relative measure of price changes which facilitates com-

parison amongst stocks of different capitalizations.

We apply the proposed model to study the role of durations and trade attributes

in the process of price formation for Australian banking stocks. In addition, we in-

vestigate how the Reserve Bank of Australia (RBA) interest rate announcements affect

the arrival time and the price impact of trades in these stocks. Effectively, the release

of monetary policy news is treated as an exogenous event to the joint framework on

which we condition our analysis. We focus on banking stocks because they are liquid

and very sensitive to interest rate news. With the joint model, we examine several

important issues in the microstructure literature. The first issue relates to theoretical

predictions about the endogeneity of trade durations and their informativeness about

price dynamics (e.g. Easley and O’Hara, 1992). Specifically, are durations correlated

with prices and trade attributes, and if so, how? Also, how do trade durations affect

the adjustment of security prices to new information? The second issue concerns how

the occurrence of exogenous news events such as RBA announcements affect the trade

generation and price formation processes. Do interest rate announcements intensify

the trading frequency and the price impact of trades of Australian banking stocks?

The third issue compares the relative importance of durations and trade attributes

(signs and volumes) to price dynamics. Although there are theoretical justifications

and empirical evidence of the informativeness of both trade arrival times and trade at-

tributes about price adjustment, there is little guidance, either theoretical or empirical,

on which of the two possess a bigger informational content. In this chapter, we em-

pirically investigate whether durations or trade characteristics play a dominant role in

explaining the behavior of prices of the Australian banking stocks under examination.

Our study contributes to the literature in several ways. First, we provide a general

model to study the dynamics of returns jointly with durations and trade characteristics

that relaxes the strict exogeneity of durations that is often assumed in previous studies.

Using a sample of major Australian banking stocks, we find that durations are not only

correlated but also jointly determined with trade attributes and returns, supporting

Easley and O’Hara’s (1992) theory. Specifically, while larger price adjustments tend
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to increase future trade durations (which is consistent with Admati and Pfleiderer

(1988), Grammig and Wellner (2002)), larger past trading volumes tend to shorten

the durations of incoming transactions (which supports Easley and O’Hara (1992),

Manganelli (2005), Nowak and Anderson (2014)). In conformance with Dufour and

Engle (2000), trades that have shorter durations are associated with stronger impact

on price and more positive autocorrelation in trades.

Second, we provide evidence that monetary policy announcements affect the trad-

ing intensity and the price impact of trades in banking stocks. Our work differs from

most existing studies that investigate how financial markets react to interest rate news

because (i) we study how the news impacts trading frequency, in addition to how it

impacts returns; and (ii) our study is conducted using tick-by-tick transaction data

which helps avoid a loss of information that might bias the analysis (Engle, 2000, Rus-

sell and Engle, 2005), whereas most previous studies employ data of lower frequencies

such as 5 minutes (e.g. Smales, 2012), daily (Bomfim, 2003, Gasbarro and Monroe,

2004, Kim and Nguyen, 2008), or monthly (Bernanke and Kuttner, 2005, Diggle and

Brooks, 2007, Bjørnland and Leitemo, 2009). Using a dataset for major Australian

banking stocks, we find that trades transacted within one minute around the RBA an-

nouncements have shorter durations and larger impacts on prices. Conditioning on

an average history prior to the RBA announcements, the cumulative price impact of

an unexpected trade is higher (lower) when the trade occurs faster (slower) if dura-

tions are endogenous, yet it stays unchanged if durations are treated as exogenous.

The latter result highlights the importance of endogenizing trade durations, confirm-

ing Dufour and Engle’s (2000) suggestion that allowing for the endogeneity of time

between trades could provide a more accurate picture of how trades drive prices.

Third, to the best of our knowledge, this is the first study to compare the rela-

tive informativeness of durations and trade attributes (signs and volumes) about the

price formation process. Using the generalized forecast error variance decomposition

(GFEVD) proposed by Lanne and Nyberg (2016), we find that shocks to durations

contribute significantly less to the forecast error variance (FEV) of returns of major

Australian banking stocks than other trade attribute shocks. The relative importance
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of duration shocks to returns is less than 9% while that of other trade attribute inno-

vations is typically above 50%. The contributions of both shocks to the returns’ FEV

are larger on days with interest rate releases, and that of duration shocks is also larger

when durations are endogenously modeled. Based on a sample of major Australian

banking stocks, the results suggest that although trade durations carry important in-

formational content about prices (Easley and O’Hara, 1992, Dufour and Engle, 2000),

they play a minor role in explaining the price dynamics of these stocks compared to

trade attributes (signs and volumes). Given a lack of theoretical explanations, this

empirical observation might provide an interesting venue for further theoretical ex-

ploration.

Our findings are potentially of interest to market participants and policy makers

because they shed light on how quickly new information, for example interest rate

news, is processed and how, how this news is disseminated and incorporated into se-

curity prices, as well as how policy-making influences this information dissemination

process. In addition, as price impact is known to be the biggest component of trading

cost (Keim and Madhavan, 1996, 1998), our findings have relevant practical implica-

tions for designing optimal strategies that minimize the cost of trading in financial

markets.

The rest of this chapter is organized as follows. Section 2.2 introduces a nonlin-

ear VAR framework for trade arrival times, trade attributes and returns advocated in

this chapter. It also discusses how the information content of monetary policy an-

nouncements is incorporated into the model. Section 2.3 describes the data. Model

estimates and further analyses such as impulse response and forecast error variance

decomposition for Australian banking stocks are presented in Section 2.4, and Section

2.5 concludes.
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2.2 A joint model of durations, trade attributes and

returns

Transactions data are conventionally characterized by a sequence of their arrival times

that follow a point process and the associated quantities called “marks” that are re-

vealed to the market at those times (Engle, 2000, Manganelli, 2005, Russell and Engle,

2005). Marks are typically a vector of random variables such as the price, the direction

and the volume of a transaction which, together with the trade’s arrival time, are as-

sumed to be jointly determined by some unknown data generating process (DGP). In

order to estimate the true joint distribution, Engle (2000) factorizes it into the prod-

uct of the conditional density of the marks and the marginal density of the arrival

time, and then proposes a model for each component density. This approach has been

widely utilized in various market microstructure studies such as Grammig and Well-

ner (2002), Manganelli (2005), and Russell and Engle (2005).

To formulate the idea of Engle (2000) statistically, let Tt = zt − zt−1 be the time in-

terval, measured in seconds, between two successive transactions, where zt denotes

the time at which the t-th trade is executed. At time zt, market participants ob-

serve a vector of marks yt. Each pair (Tt, yt) is assumed to follow a joint distribution

f (Tt, yt |It−1;µ), where It−1 denotes the past information and µ is a vector of parameters

underlying the joint process. Engle (2000) decomposes the joint density f (Tt, yt |It−1;µ)

as

f (Tt, yt |It−1;µ) = g(yt |Tt,It−1;µy)× h(Tt |It−1;µT ), (2.1)

where g(·) denotes the conditional density of the marks yt given the current trade du-

ration Tt, and h(·) denotes the marginal density of Tt. Prior studies in the literature

have primarily focused on modeling the h(·) function only (e.g. Engle and Russell,

1998, Bauwens and Giot, 2000, Knight and Ning, 2008, Xu et al., 2011). A few stud-

ies that accommodate joint modeling typically assume that trade durations are strictly

exogenous (e.g. Engle, 2000, Dufour and Engle, 2000, Xu et al., 2006). In other words,

these studies assume that the past information set It−1 in the h(·) function only in-
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cludes lagged trade durations but excludes the information from previous marks, even

though these studies allow both past durations and marks to be included in the g(·)

function.

We relax this strict exogeneity of trade durations by incorporating the past trajec-

tories of durations and marks into both g(·) and h(·) functions, which explicitly allows

for the dynamic interdependence between the variables. The decomposition (2.1) as-

sumes that there is instantaneous Granger-causality running from Tt to yt while the

latter does not contemporaneously Granger-cause the former. This is because Tt mea-

sures the time interval between the (t −1)-th and the t-th transactions and thus poten-

tially conveys relevant information that has been accumulated during the time period

(Easley and O’Hara, 1992), while yt is only realized once the t-th trade is completed.

Therefore, the parameterization (2.1) appears natural and plausible.

This study aims to develop a joint modeling framework for tick-by-tick returns or

quote revisions, trade characteristics (signs and volumes) and trade durations, based

on which the effects of the interest rate announcements on the role of durations and

trade characteristics in explaining the price dynamics will be examined. Thus, the

marks of interest include (i) quote revision rt, defined as the natural logarithmic change

in the midquote price following the t-th trade and quoted in basis points (bps), i.e.

rt = 10,000 ∗ (ln(qt+1) − ln(qt)), where qt is the midpoint of the bid and ask quotes

immediately before the t-th trade;4 (ii) trade sign x0
t , which equals 1 (-1) for buyer-

(seller-) initiated transactions; and (iii) signed volume vt, defined as the signed natural

logarithm of the ratio of the actual share volume (Vt) of the t-th trade to the prevailing

quoted depth (deptht) at the best opposite-side quote immediately before that trade,5

i.e. vt = x0
t ln(Vt/deptht). The use of the volume to depth ratio, rather than the actual

share volume, is motivated by work of Chan and Fong (2000), Engle and Lange (2001),

Brogaard et al. (2015), and Pham et al. (2017), who show that for a given share volume,

trades have a bigger impact on prices if the prevailing depths prior to these trades are

4Measuring prices as the mid-point of bid and ask quotes is standard practice in the microstructure
literature to circumvent the bid-ask bounce problem (e.g. Hasbrouck, 1988, Manganelli, 2005). The
factor of 10,000 enables returns to be measured in basis points.

5If the t-th trade is a purchase (sale), deptht is defined as the number of shares available at the best
ask (bid) price right before the trade.
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smaller (i.e. if the market is less liquid). Thus, a trade is considered big if it has a large

volume to depth ratio, and this measure not only incorporates the effects of trade sizes,

but also market liquidity. We need to model the conditional density of the marks g(·)

and the marginal density of trade durations h(·) to capture the joint distribution of the

variables of interest, and these are discussed in the next subsections.

2.2.1 Modeling returns and trade attributes given trade durations

Building on Hasbrouck (1991a) and Dufour and Engle (2000), this chapter models

the joint dynamics of quote revisions, trade signs and signed volumes, conditional on

trade arrival times (i.e. g(yt |Tt,It−1;µy) where yt = (rt,x
0
t ,vt)

′), with the following VAR

framework:

rt=α
r+βropent+

p∑
i=1

bri |rt−i |+


p∑
i=1

ari rt−i+λ
ropentxt+

p∑
i=0

[
γri +δri ln(Tt−i)

]
xt−i

+urt ,

xt=α
x+βxopent+

p∑
i=1

bxi |rt−i |+


p∑
i=1

axi rt−i+λ
xopent−1xt−1+

p∑
i=1

[
γxi +δxi ln(Tt−i)

]
xt−i

+uxt ,

(2.2)

where xt = (x0
t ,vt)

′; opent is a dummy variable that equals 1 for trades executed within

the first 30 minutes of a trading day, and 0 otherwise; α’s, β’s, b’s, a’s λ’s, γ ’s, and

δ’s are conformable matrices of coefficients. This VAR framework is similar, but not

identical to the original Dufour and Engle (2000) specification, which only investigates

returns rt and trade signs x0
t and includes components in braces of equation (2.2). The

extension of the original Dufour and Engle (2000) VAR system to incorporate trading

volume is motivated by the findings of Easley and O’Hara (1987), Hasbrouck (1988),

O’Hara et al. (2014), among others, that there is a significant price-quantity relation-

ship. Likewise, the inclusion of |rt−i | is to capture the effects of stock volatility on

returns and trade attributes (e.g. Xu et al., 2006).

In conformance with Hasbrouck (1991a) and Dufour and Engle (2000), the VAR

specification in (2.2) assumes that conditioning on the time of trade arrivals, there

are two sources of information affecting price dynamics. One is the public or trade-

unrelated information, urt , and the other is the private information induced by unan-

ticipated trades, uxt . These two informational innovations are assumed to have zero
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means and to be jointly and serially uncorrelated.6 After observing a new trade, the

market maker learns the information conveyed by the trade and then revises the quotes

to take into account the new information. Thus, the trade contemporaneously affects

the quote revision, but not vice versa. This fact is reflected by the inclusion of the con-

temporaneous value of xt in the quote revision equation, and thus it is assumed that

E(urtu
x
t ) = 0.

As in Dufour and Engle (2000), the VAR setting in (2.2) allows the impact of trades

on prices and future transactions to be nonlinearly dependent upon trade durations.

Furthermore, trades transacted at the market open (i.e. first 30 minutes) are allowed

to have different impact from those executed later in the trading day. This time-

augmented structure enables one to empirically test the theoretical conjectures in the

microstructure literature that the arrival times of trades possess an information con-

tent that significantly contributes to the price formation and trade generation pro-

cesses (Diamond and Verrecchia, 1987, Easley and O’Hara, 1992). In the parame-

terization (2.2), the effects of trades on the price evolution and the autocorrelation

amongst transactions that are contributed by trading intensity are measured by the

δ’s, while the additional impact of trades executed at the beginning of the trading day

is quantified by the λ’s. The joint significance of the δ’s and λ’s will ascertain the in-

formativeness of trade arrival times in driving price dynamics. We also include the

indicator variable opent in each equation to account for additional opening variations

that might come from other sources of information other than trades.

2.2.2 Modeling trade durations

A critical assumption that Dufour and Engle (2000) impose on their bivariate VAR

framework is that trade arrivals are strongly exogenous; that is, the times of trade ar-

rivals are not influenced by the past histories of prices and trade characteristics but

only depend on previous arrival times. Although the strict exogeneity assumption of

trade durations is often imposed in the duration modeling literature (e.g. Engle 2000,

Xu et al. 2006, Xu et al. 2011, Knight and Ning 2008), it is too restrictive. Theoreti-

6That is, E(urt ) = 0,E(uxt ) = 0, and E(urt u
r
s ) = 0,E(urt u

x
s ) = 0,E(uxt u

x
s
′) = 0 for s , t.

22



Chapter 2. Time and the price impact around interest rate announcements

cal frameworks of Diamond and Verrecchia (1987) and Easley and O’Hara (1992) are

built on the notion that time durations between trades are correlated with prices and

volumes. Other empirical studies also document that returns, volume and volatil-

ity are significant predictors of trade durations (Engle and Russell, 1997, Manganelli,

2005, Russell and Engle, 2005, Nowak and Anderson, 2014). Formally testing the strict

exogeneity assumption, Dufour and Engle (2000) also provide strong evidence of its

rejection, and thus accentuate the importance of relaxing it, even though they do not

attempt to do so.

The exogeneity test of Dufour and Engle (2000) suggests that trade durations should

be treated as an endogenous variable that needs to be determined concurrently with

quote revisions and trade characteristics. A natural way to endogenize durations is

to extend the VAR framework in (2.2) by adding another equation for durations as

below:7

rt=α
r+βropent+

p∑
i=1

ari rt−i+
p∑
i=1

bri |rt−i |+λ
ropentxt+

p∑
i=0

[
γri +δri ln(Tt−i)

]
xt−i+

p∑
i=1

cri ln(Tt−i)+u
r
t ,

xt=α
x+βxopent+

p∑
i=1

axi rt−i+
p∑
i=1

bxi |rt−i |+λ
xopent−1xt−1+

p∑
i=1

[
γxi +δxi ln(Tt−i)

]
xt−i+

p∑
i=1

cxi ln(Tt−i)+u
x
t ,

ln(Tt)=α
T+βT opent−1+

p∑
i=1

aTi rt−i+
p∑
i=1

bTi |rt−i |+λ
T opent−1xt−1+

p∑
i=1

[
γTi +δTi ln(Tt−i)

]
xt−i+

p∑
i=1

cTi ln(Tt−i)+u
T
t ,

(2.3)

where urt ,u
x
t and uTt are zero-mean, serially uncorrelated disturbances. Lags of dura-

tions,
∑p
i=1 c

T
i ln(Tt−i), are included in the duration equation to account for the auto-

correlation of durations. They are also incorporated into the quote revision and trade

attribute equations to capture the additional effects of durations. In this so-called

“Endo-VAR” specification, trade duration depends not only upon its lagged values but

also upon the past histories of quote changes and trade characteristics according to

an autoregressive structure. The Endo-VAR model, which provides a natural and nice

layout built upon Hasbrouck’s (1991a) framework to investigate the joint dynamics

of quote revisions, trade attributes and durations, can be estimated consistently by

ordinary least squares (OLS).

7We do not include the dummy variable opent , but use opent−1 instead, in the duration equation
because opent can only be observed simultaneously with Tt , and hence it is unknown given the past
information It−1.

23



Chapter 2. Time and the price impact around interest rate announcements

An alternative specification of the marginal distribution of durations, h(Tt |It−1;µT ),

is similar in spirit to an ACD model proposed by Engle and Russell (1998). These au-

thors show that the ACD model works well in capturing the dynamic structure of

trade durations such as duration clustering. The ACD model and a wide range of its

variations have been utilized intensively in the duration modeling literature (Bauwens

and Giot, 2000, Engle, 2000, Fernandes and Grammig, 2006, Pacurar, 2008). In their

analysis, Dufour and Engle (2000) also model time durations with an ACD setting.

However, by assuming that durations are strongly exogenous, they do not allow the

past dynamics of trade attributes and quote changes to enter the conditional duration

specification. This chapter relaxes this strict exogeneity assumption by allowing for

the dependence of time durations on lagged values of quote revisions and trade char-

acteristics within an ACD framework. Specifically, following Engle and Russell (1998)

we firstly remove the deterministic intra-day component of durations using a cubic

spline ϕ(t).8 The diurnally adjusted durations, T̃t = Tt/ϕ(t), are then fitted with the

following Weibull ACD (WACD) (p1,p2) model:

T̃t=[φtΓ (1+1/θ)]εt , εt
iid∼ Weibull

(
scale=

1
Γ (1+1/θ)

, shape=θ
)
, (2.4)

E(T̃t |It−1,θ)≡φtΓ (1+1/θ), (2.5)

ln(φt)=α
T +

p1∑
i=1

aTi rt−i+
p1∑
j=1

bTi |rt−i |+
p1∑
i=1

γTi xt−i+
p1∑
i=1

ρi ln(T̃t−i)+
p2∑
i=1

ζi ln(φt−i)+λ
T opent−1. (2.6)

We incorporate the opening dummy variable into equation (2.6) to see if there remains

any deterministic opening variation that cannot be fully removed by the diurnalization

procedure. Equation (2.6) explicitly allows for the effects of the past quote changes and

trade attributes on durations. Following Bauwens and Giot (2000) and Russell and

Engle (2005), we employ a logarithmic variation of the conditional duration equation

to ensure the positivity of the conditional expectation of trade durations, especially

when additional explanatory variables are included. With this parameterization, the

stationarity of the duration series is obtained if and only if
∑p1
j=1ρj +

∑p2
j=1ζj < 1.

8The cubic spline we employ is of the form ϕ(t) = β0 +β1zt +β2z
2
t +β3z

3
t +

∑k
j=1βj+3

[
(zt − cj )3 × Izt>cj

]
,

where zt is the clock time of the t−th trade, cj (j = 1, · · · , k) are the spline knots that we set at 10:30,
11:00, 11:30, 12:00, 12:30, 13:00, 13:30, 14:00, 14:30, 15:00, 15:30, 15:45 since the trading day in our
dataset runs from 10:10 to 16:00.
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Replacing the duration equation of the Endo-VAR model with the WACD(p1,p2)

model gives us the following WACD-VAR system:

rt=α
r+βropent+

p∑
i=1

ari rt−i+
p∑
i=1

bri |rt−i |+λ
ropentxt+

p∑
i=0

[
γri +δri ln(Tt−i)

]
xt−i+

p∑
i=i

cri ln(Tt−i)+u
r
t ,

xt=α
x+βxopent+

p∑
i=1

axi rt−i+
p∑
i=1

bxi |rt−i |+λ
xopent−1xt−1+

p∑
i=1

[
γxi +δxi ln(Tt−i)

]
xt−i+

p∑
i=i

cxi ln(Tt−i)+u
x
t ,

T̃t=Tt/ϕ(t)=[φtΓ (1+1/θ)]εt , (2.7)

ln(φt)=α
T +

p1∑
i=1

aTi rt−i+
p1∑
i=1

bTi |rt−i |+
p1∑
i=1

γTi xt−i+
p1∑
i=1

ρi ln(T̃t−i)+
p2∑
i=1

ζi ln(φt−i)+λ
T opent−1.

The estimation of the WACD-VAR model is obtained by OLS for the marks (i.e. (rt,x′t)
′)

and by maximum likelihood for trade durations.

2.2.3 Modeling the impact of RBA interest rate announcements

Each year, there are eleven scheduled RBA board meetings on the first Tuesday of every

month except in January. Since December 2007, the RBA board’s decision to change

or keep the interest rate has been released to the media at 14:30:00 Australian Eastern

Standard Time (GMT + 10) on the same day of the meeting (Smales, 2012). In order to

examine how the RBA target rate announcements influence the role of durations and

trade attributes in the process of price formation for Australian banking stocks, we

modify the Endo-VAR model in (2.3) and the WACD-VAR model in (2.7) to incorporate

the information contained by the RBA monetary policy releases. It would be of inter-

est to examine the effects of the surprise or unexpected component of the news, as in

Balduzzi et al. (2001), Kuttner (2001), Andersen et al. (2003), Kim and Nguyen (2008),

Smales (2012), among others. In these studies, the unexpected news is calculated as

the difference between the actual announcement and the expected component, where

the latter is either proxied by the median analyst forecasts (Balduzzi et al., 2001, An-

dersen et al., 2003) or inferred from interest rate futures prices (Kuttner, 2001, Kim

and Nguyen, 2008, Smales, 2012). In addition, since news events are released at some

particular point in (calendar) time (e.g. 14:30:00) at which there might not be any

transaction being executed, prior research in the literature normally converts transac-

tion time or tick-by-tick data into calendar time data by aggregating trades over some
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fixed time interval such as a day or 5 minutes to match the occurrence of the news

announcements. However, such an aggregation procedure inevitably results in a loss

of information and may potentially bias the analysis (Engle, 2000, Russell and Engle,

2005), because, as highlighted in the theoretical work by Easley and O’Hara (1992)

and Diamond and Verrecchia (1987), the existence or absence of each individual trade

is informative about the price formation process.

Our analysis is conducted in transaction time. This circumvents the information

loss coming from trade aggregation, but this makes it difficult to incorporate informa-

tion that is released in calendar time at which there are usually no trades (Hamilton

and Jordà, 2002, Nowak and Anderson, 2014). To address this issue, we adopt a sim-

ple approach that is along a similar line to Ederington and Lee (2001) and Nowak

and Anderson (2014) to match calendar time with transaction time. This accounts

for the effects of the RBA announcements in our Endo-VAR and WCAD-VAR specifi-

cations by including three announcement indicator variables that record the occur-

rence of the news events. These dummies, denoted by beft, arot and aftt, respec-

tively identify transactions executed five minutes before (i.e. 14:24:30-14:29:30), one

minute around (14:29:30-14:30:30), and ten minutes after (14:30:30-14:40:30) the RBA

announcements. The length of the event windows chosen in this chapter is suggested

by Simonsen (2006) and Nowak and Anderson (2014). The modified models that in-

corporate the effects of RBA announcements are given by

rt=α
r+βrDt+

p∑
i=1

ari rt−i+
p∑
i=1

bri |rt−i |+λ
rDt⊗xt+

p∑
i=0

[
γri +δri ln(Tt−i)

]
xt−i+

p∑
i=1

cri ln(Tt−i)+u
r
t ,

xt=α
x+βxDt+

p∑
i=1

axi rt−i+
p∑
i=1

bxi |rt−i |+λ
xDt−1⊗xt−1+

p∑
i=1

[
γxi +δxi ln(Tt−i)

]
xt−i+

p∑
i=1

cxi ln(Tt−i)+u
x
t , (2.8)

ln(Tt)=α
T+βTDt−1+

p∑
i=1

aTi rt−i+
p∑
i=1

bTi |rt−i |+λ
TDt−1⊗xt−1+

p∑
i=1

[
γTi +δTi ln(Tt−i)

]
xt−i+

p∑
i=1

cTi ln(Tt−i)+u
T
t ,

and
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rt=α
r+βrDt+

p∑
i=1

ari rt−i+
p∑
i=1

bri |rt−i |+λ
rDt⊗xt+

p∑
i=0

[
γri +δri ln(Tt−i)

]
xt−i+

p∑
i=1

cri ln(Tt−i)+u
r
t ,

xt=α
x+βxDt+

p∑
i=1

axi rt−i+
p∑
i=1

bxi |rt−i |+λ
xDt−1⊗xt−1+

p∑
i=1

[
γxi +δxi ln(Tt−i)

]
xt−i+

p∑
i=1

cxi ln(Tt−i)+u
x
t ,

T̃t=Tt/ϕ(t)=[φtΓ (1+1/θ)]εt ,

ln(φt)=α
T+

p1∑
i=1

aTi rt−i+
p1∑
i=1

bTi |rt−i |+
p1∑
i=1

γTi xt−i+
p1∑
i=1

ρi ln(T̃t−i)+
p2∑
i=1

ζi ln(φt−i)+λ
TDt−1,

(2.9)

where Dt = (opent,beft,arot,aftt)′, β’s and λ’s are conformable matrices of associated

coefficients, and ⊗ denotes the Kronecker product.9

2.3 Data

This chapter focuses on all transactions for six major Australian banking stocks, namely

ANZ Banking Group (ANZ), Commonwealth Bank of Australia (CBA), National Aus-

tralia Bank (NAB), Westpac Banking Corporation (WBC), Macquarie Group (MQG)

and Bendigo and Adelaide Bank (BEN), in eleven weeks that contain the eleven RBA

interest rate announcement days in 2013, which were Feb 5, Mar 5, Apr 2, May 7, Jun

4, Jul 2, Aug 6, Sep 3, Oct 1, Nov 5 and Dec 3. Of these eleven announcements, two

reported an interest rate fall of 25 basis points (May 7, from 3% to 2.75% and Aug 6,

from 2.75% to 2.5%), and nine reported no changes in the cash rate. In total, there are

54 days in the sample.10

Most previous empirical microstructure work uses US data. In contrast, we work

with Australian data provided by the Securities Industry Research Centre of Asia-

Pacific (SIRCA). We choose the Australian market for several reasons. First, unlike

9Note that Dt ⊗ xt = (opentx
0
t ,beftx

0
t ,arotx

0
t ,afttx

0
t ,opentvt ,beftvt ,arotvt ,afttvt)′ . The quote revision

equation in models (2.8) and (2.9) has the following full expression:

rt=α
r+βropopent+β

r
bebeft+β

r
ararot+β

r
af aftt+

p∑
i=1

ari rt−i+
p∑
i=1

bri |rt−i |+λ
r
x0,op

opentx
0
t +λr

x0,be
beftx

0
t +λr

x0,ar
arotx

0
t

+λr
x0,af

afttx
0
t +

p∑
i=0

[
γr
x0,i

+δr
x0,i

ln(Tt−i )
]
x0
t−i+λ

r
v,opopentvt+λ

r
v,bebeftvt+λ

r
v,ararotvt+λ

r
v,af afttvt

+
p∑
i=0

[
γrv,i+δ

r
v,i ln(Tt−i )

]
vt−i+

p∑
i=1

cri ln(Tt−i )+u
r
t .

Full expressions for trade attribute and time duration equations are similarly obtained.
10Normally, there are five trading days in a typical week, so we might expect the sample to consist of

55 days. However, Apr 1, 2013, the day before the cash rate announcement in April, was Easter Monday
on which the market was closed, which consequently leaves us with a sample of 54 trading days.
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the US stock market which has a high degree of market fragmentation with 11 eq-

uity exchanges and many alternative trading systems (O’Hara, 2015), the Australian

stock market is much less fragmented, which enables a more complete investigation of

the joint dynamics of returns, trade attributes and durations. Second, the information

about trade direction (which is shown to be an important determinant of the price dy-

namics (Hasbrouck, 1991a, Dufour and Engle, 2000)) is directly available to traders in

Australia but concealed in the US markets. This helps avoid the need to use an indirect

procedure to classify buys and sells such as the widely used Lee and Ready’s (1991)

algorithm which has an accuracy rate of only about 85% (Odders-White, 2000, Lillo

et al., 2003). Finally, since the Australian stock market is a limit order book market

and so are most major financial markets around the globe (Næs and Skjeltorp, 2006,

Goettler et al., 2009, Malinova and Park, 2013), our findings may provide implications

for these similarly structured markets.

We collect two datasets from the SIRCA database. The first dataset records details

on every order submitted to the central limit order book, including stock code, order

type (order submission, order revision, order cancellation and execution), date and

time, order price, order volume (number of shares), order value (dollar value), and

order direction (buy or sell order). We extract information for all transactions (order

executions) in the continuous trading session (from 10:10:00 to 16:00:00) and discard

all trades that are performed in the opening auction (10:00:00-10:10:00). We extract

buyer-initiated and seller-initiated trades based on the directions of the (marketable)

orders that initiate each trade.

The second dataset contains information on the intra-day bid and ask quotes, in-

cluding stock code, date, time (precise to the millisecond), and the best bid-ask quotes

and volumes in the limit order book. We remove all observations with negative bid or

ask quote, with zero volume, and with a bid quote higher than ask quote. We merge

the transaction data with the bid-ask quote data to work out the bid-ask midpoint and

the prevailing depth before each transaction. Since one large buy (sell) order can be

matched against several orders on the sell (buy) side and result in multiple transac-

tions, we aggregate trades executed at the same time and initiated by the same order
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into one “large” trade by summing up the volumes of the simultaneous trades. This

aggregation approach, which is standard in the literature (see, amongst others, Has-

brouck, 1991a, Dufour and Engle, 2000, Nowak and Anderson, 2014), leaves us with

nearly 900,000 trades for all six stocks during the sample period. All continuous vari-

ables in this chapter are winsorized at the 0.5th and 99.5th quantiles to avoid the

effects of outliers.

Table 2.1 provides the market capitalization, as at the beginning of 2013, and some

summary statistics for the six banking stocks in 11 RBA announcement weeks (Panel

A), on 11 RBA announcement days (Panel B) and on the remaining 43 non-RBA an-

nouncement days (Panel C). For the whole sample, the averages of absolute quote revi-

sions, share volumes, volume to prevailing depth ratios and trade durations, together

with the number of transactions, for each stock are reported. For smaller subsamples

(Panels B and C), the summary is further categorized into five different time intervals,

namely opening 30 minutes of the trading day (10:10:00-10:40:00), 5 minutes before

the RBA announcement time (14:24:30-14:29:30), one minute around the announce-

ments (14:29:30-14:30:30), 10 minutes after the announcements (14:30:30-14:40:30),

and the remaining trading period (10:40:00-14:24:30 and 14:40:30-16:00:00). An aster-

isk (*) signifies that the average of a quantity of interest in a time interval is statistically

significantly different from that of the “Remaining” period at a 5% significance level.11

The big four Australian banks, namely CBA, WBC, ANZ and NAB, are much larger

and more heavily traded than the other two banks, with an average trade duration

between 5.2 and 6.9 seconds. MQG, despite being relatively small, is traded quite

intensively at every 8.3 seconds. Trades in the smallest stock, BEN, are much more

dispersed and occur once in every 24.9 seconds on average. The majority of transac-

tions in the six banking stocks are of smaller size than the prevailing quoted depths

available right before these trades (which, in theory, should not move the best bid or

ask levels), since the average volume to depth ratios for all stocks are significantly less

11Strictly speaking, reference made to the release time of the monetary policy decisions, such as
“before”, “around” and “after” the announcements, is only applicable to days on which such decisions
are announced. However, to obtain an overall picture of how the cash rate announcements affect trades
and prices, we also examine the same time windows on the non-RBA announcement days as those on
the announcement days.
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than unity. This is consistent with an observation by Dufour and Engle (2000) and

Pham et al. (2017) that the majority of trades in their samples do not result in any

quote revisions. For all stocks, an average transaction has a volume of 78.8 to 244.8

shares and moves quotes by 0.65 to 2.63 basis points (bps) (see Panel A). In general,

the summary statistics are in agreement with the conventional wisdom that trades in

more liquid stocks are more frequent and have less impact on prices (e.g. Dufour and

Engle, 2000, Lillo et al., 2003).
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Table 2.1: Descriptive statistics for Australian banking stocks

ANZ CBA NAB WBC MQG BEN

Market cap ($AUD bn) 68.727 100.059 58.555 80.821 12.037 3.420

Panel A: Whole sample
Absolute Quote Revision (bps) 1.033 0.658 1.298 1.127 1.342 2.634
Volume (shares) 207.92 105.90 233.43 244.84 78.86 150.95
Volume/depth 0.370 0.525 0.417 0.460 0.496 0.256
Duration (seconds) 6.139 5.205 6.906 6.756 8.266 24.924
Observations 178,545 211,088 159,316 162,725 132,867 43,958

Panel B: RBA announcement days

Absolute Quote Revision (bps)
Open (10:10:00-10:40:00) 1.615* 1.118* 1.888* 1.527* 2.035* 3.135*
Before (14:24:30-14:29:30) 0.928 0.523 1.037* 0.955 0.975 1.795*
Around (14:29:30-14:30:30) 1.657* 0.898* 2.522* 1.838* 2.000* 4.809*
After(14:30:30-14:40:30) 1.245* 0.742* 1.598* 1.270* 1.482* 2.820
Remaining 0.946 0.576 1.354 1.011 1.143 2.516

Volume (shares)
Open (10:10:00-10:40:00) 258.06* 129.99* 307.76* 279.15* 101.19* 168.77
Before (14:24:30-14:29:30) 202.43 85.18* 231.10 148.10* 51.78* 130.54
Around (14:29:30-14:30:30) 199.43 126.07 273.02 334.26* 83.58 228.24
After(14:30:30-14:40:30) 222.40* 139.25* 248.32 273.02* 91.15* 138.72
Remaining 173.96 106.62 218.21 220.35 66.94 143.74

Volume/depth
Open (10:10:00-10:40:00) 0.480* 0.526* 0.502* 0.429* 0.603* 0.274*
Before (14:24:30-14:29:30) 0.327 0.529 0.354* 0.371 0.386 0.241
Around (14:29:30-14:30:30) 0.496* 0.509 0.531* 0.503* 0.524 0.276
After(14:30:30-14:40:30) 0.400* 0.520 0.460 0.446* 0.470 0.275*
Remaining 0.334 0.491 0.422 0.367 0.441 0.216

Duration (seconds)
Open (10:10:00-10:40:00) 4.710* 4.422* 5.267* 4.836* 5.507* 19.826*
Before (14:24:30-14:29:30) 7.800* 5.826 8.033 8.043 10.607 23.966
Around (14:29:30-14:30:30) 2.856* 3.984* 5.197* 3.660* 3.931* 25.136
After(14:30:30-14:40:30) 5.025* 4.855* 6.339* 5.918* 7.327 23.282
Remaining 6.111 5.594 7.593 7.202 8.157 23.720

Observations
Open (10:10:00-10:40:00) 4,153 4,400 3,728 4,065 3,518 966
Before (14:24:30-14:29:30) 412 549 401 410 320 130
Around (14:29:30-14:30:30) 198 184 132 188 173 37
After(14:30:30-14:40:30) 1,305 1,326 1,000 1,104 882 278
Remaining 31,940 35,204 25,892 27,358 24,186 8,358

Panel C: Non RBA announcement days

Absolute Quote Revision (bps)
Open (10:10:00-10:40:00) 1.579* 1.132* 1.653* 1.652* 2.157* 3.845*
(14:24:30-14:29:30) 0.846* 0.523* 0.994* 0.844* 1.055* 1.897*
(14:29:30-14:30:30) 0.850 0.580 1.106 0.936 1.541 2.210
(14:30:30-14:40:30) 0.869* 0.491* 1.030* 0.906* 1.178 2.231
Remaining 0.960 0.607 1.218 1.067 1.263 2.550

Volume (shares)
Open (10:10:00-10:40:00) 257.29* 136.14* 303.15* 304.85* 103.69* 218.12*
(14:24:30-14:29:30) 169.27* 76.75* 209.86 183.09* 75.99 149.94
(14:29:30-14:30:30) 172.16 86.03 168.93* 267.36 73.40 108.36
(14:30:30-14:40:30) 208.13 102.22 210.87 245.03 77.16 115.95*
Remaining 208.56 101.20 224.65 241.02 77.90 146.72

Volume/depth
Open (10:10:00-10:40:00) 0.461* 0.554* 0.475* 0.469 0.616* 0.350*
(14:24:30-14:29:30) 0.324* 0.489 0.390 0.516 0.473 0.239
(14:29:30-14:30:30) 0.367 0.450* 0.432 0.331* 0.479 0.281
(14:30:30-14:40:30) 0.344 0.501 0.371* 0.626 0.449* 0.273
Remaining 0.364 0.531 0.406 0.479 0.492 0.257

Duration (seconds)
Open (10:10:00-10:40:00) 4.418* 3.943* 4.581* 4.500* 6.241* 23.047*
(14:24:30-14:29:30) 7.965* 6.508* 7.530 8.135* 9.617 23.657
(14:29:30-14:30:30) 7.985* 6.989* 7.466 9.504* 9.727 26.785
(14:30:30-14:40:30) 7.157* 5.983* 7.449 8.303* 10.600* 25.254
Remaining 6.405 5.262 7.137 7.011 8.607 25.654

Observations
Open (10:10:00-10:40:00) 17,350 19,320 16,725 16,985 12,073 3,110
(14:24:30-14:29:30) 1,536 1,868 1,644 1,493 1,292 521
(14:29:30-14:30:30) 322 385 346 283 261 113
(14:30:30-14:40:30) 3,387 4,121 3,317 2,979 2,342 928
Remaining 117,942 143,731 106,131 107,860 87,820 29,517

Continued on next page
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Table 2.1 – continued from previous page

This table reports summary statistics for six Australian banks. The sample consists of trades occurring
between 10:10:00 and 16:00:00 in eleven weeks that contain eleven RBA interest rate announcement
days in 2013. Market capitalization for each stock is at the beginning of 2013. Panels A, B and C
respectively provide the summary for the whole sample (eleven weeks), the eleven RBA announcement
days and the remaining non-RBA announcement days. For the latter two subsamples (Panels B and C),
descriptive statistics over different time intervals for absolute quote revision, volume, volume divided
by prevailing depth, duration and number of transactions are reported. These time intervals include
“Open” which covers the first 30 minutes of the trading day (10:10:00-10:40:00), “Before” which covers
5 minutes before the RBA announcement time (14:24:30-14:29:30), “Around” which covers one minute
during the RBA announcement time (14:29:30-14:30:30), “After” which covers 10 minutes after the RBA
announcement time (14:30:30-14:40:30), and “Remaining” which covers the remaining time of a trading
day. Except for “Observations” and “Market capitalization”, all other numbers are averages. Asterisks
(*) denote statistically significant difference from the averages for the “Remaining” period at a 5% level.
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More interesting features are observed when the whole sample is partitioned into

RBA and non-RBA announcement days, as shown in Panels B and C. In both sub-

samples, stocks are traded much more frequently at the market open than during the

reference (“Remaining”) time period. Moreover, trades performed in the first 30 min-

utes of the day have significantly larger sizes and volume to depth ratios and result in

bigger price adjustments. This observation is in conformance with Anand et al. (2005),

Bloomfield et al. (2005), and Duong et al. (2009), who show that higher trading in-

tensity observed at the market open is driven by an increased engagement of informed

investors whose transactions, according to Easley and O’Hara’s (1992) theory, normally

have a large volume and big impact on prices.

On the eleven days when the RBA announces its monetary policy stance, trades are

performed with very short durations during the one minute around the announcement

time (see Panel B). With the exception of stock BEN regarding time durations, such

trades have remarkably smaller durations, larger volumes, larger volume to depth ra-

tios and bigger price impact than those transacted in the reference period, and even

bigger than those executed at the market open in some cases. Similar features (al-

though less noticeable) are also observed for transactions performed within 10 minutes

after the news release in comparison to those in the base period, whereas trades that

are executed during 5 minutes before the announcement often exhibit opposite char-

acteristics. The summary statistics seem to suggest a relatively tranquil market before

the announcement, while market participants are awaiting the RBA interest rate deci-

sion. Near the announcement time, the market becomes more active and is very active

for one minute around the release of the decision, possibly due to the heightened ac-

tivities of informed investors. The high trading intensity gradually attenuates as more

time elapses after the announcement.

The above trading pattern, however, is not observed on non-RBA announcement

days (see Panel C). In particular, transactions executed during the same time inter-

vals (i.e. between 14:24:30 and 14:40:30) typically have larger durations, smaller vol-

umes, smaller volume to depth ratios and less price impact than those performed out-

side these times, with statistical significance realized in many cases. Most noticeably,
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trades transacted within one minute around the RBA announcements typically lead to

a price impact that is twice as large as that resulting from trades during the same time

period on a non-RBA day, while their durations are often a half of the latter’s (except

for BEN). The contrasting results between RBA and non-RBA announcement samples

suggest that the release of the RBA monetary policy decisions has significant effects on

the dynamic behaviors of prices, trade attributes and trade arrival times of the major

Australian banking stocks. Such effects are formally investigated in the next section.

2.4 Results and discussion

In this section, we empirically investigate the joint dynamics of returns, trade at-

tributes (signs and volumes), and trade durations for 6 major Australian banking

stocks around interest rate announcements in 2013. We begin with a description of the

estimated results for the two joint models, namely Endo-VAR and WACD-VAR, which

are proposed in Section 2.2 of this chapter (subsection 2.4.1). We then conduct an im-

pulse response analysis to study how the prices of the banking stocks change when

there are shocks to the joint system and how the reactions of prices to the shocks de-

pend on the occurrence of an exogenous monetary policy announcement (subsection

2.4.2). We also provide detailed forecast error variance decomposition that compares

the relative importance of trade durations and trade attributes to the explanation of

price dynamics (subsection 2.4.3).

2.4.1 Estimation results

Endo-VARmodels

We begin with the estimation of the Endo-VAR model (2.8) for a representative stock

NAB and discuss this in detail before presenting results for the remaining five stocks.

Since one of the main objectives of this chapter is to relax the strict exogeneity assump-

tion that is often imposed on durations in previous studies (e.g. Dufour and Engle,

2000, Engle, 2000, Xu et al., 2006), we draw attention to the duration equation of the
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estimated Endo-VAR model, reported in Table 2.2 using the whole sample period of

eleven RBA announcement weeks. We compute Student’s t (in parentheses) and Wald

statistics using the Newey and West (1994) robust standard errors, and use bold for-

mat to signify statistical significance at a 5% level. As expected, trade durations are

positively and persistently autocorrelated (see coefficients on ln(Tt−i)), which implies

the clustering feature inherent in the duration process: long (short) durations tend to

follow long (short) durations. This stylized fact is widely seen and documented in nu-

merous empirical studies on durations (Engle and Russell, 1998, Engle, 2000, Russell

and Engle, 2005).

The observation that trade durations are correlated with price adjustments and

trade attributes is of particular interest here, given the focus on the possible endo-

geneity of the time between trades. We find that the magnitude of price changes or the

variation in prices, rather than the direction of price moves, is informative about the

durations of future trades since the coefficients of absolute returns, |rt−i |, are highly sig-

nificant, whereas those of raw returns, rt−i , are not. A positive coefficient sum of past

absolute returns implies that larger price adjustments tend to increase future trade du-

rations. This is in conformance with the predictions from the Admati and Pfleiderer’s

(1988) theoretical model and the empirical findings of Grammig and Wellner (2002)

and Wei and Pelletier (2015) that show a positive feedback effect of past volatility on

future durations. However, it appears to be inconsistent with Manganelli (2005) and

Russell and Engle (2005), who document an opposite result. If big variation in quote

midpoints is interpreted by market participants as a result of informed trades, then

the presence of informed agents in the market might discourage uninformed investors

from trading and reduce the likelihood of trades (Admati and Pfleiderer, 1988, Gram-

mig and Wellner, 2002). Consequently, trade durations might be longer following large

price changes.

35



Chapter 2. Time and the price impact around interest rate announcements

Table 2.2: Estimated trade duration equation of the Endo-VAR model for stock NAB
in eleven RBA announcement weeks in 2013

Coef. t-stat Coef. t-stat

const -0.083 (-7.88) vt−1 -0.014 (-4.62)
opent−1 -0.163 (-8.61) vt−2 -0.010 (-3.21)
beft−1 0.082 (0.73)

∑5
i=1 vt−i -0.023 (-4.85)

arot−1 -0.410 (-1.81) vt−1opent−1 -0.027 (-3.21)
aftt−1 -0.120 (-1.55) vt−1beft−1 0.057 (1.02)
rt−1 -0.004 (-1.53) vt−1arot−1 -0.047 (-0.36)
rt−2 0.006 (1.50) vt−1aftt−1 -0.016 (-0.39)∑5
i=1 rt−i -0.002 (-0.28) vt−1 ln(Tt−1) 0.002 (1.77)
|rt−1| 0.281 (80.85) vt−2 ln(Tt−2) -0.002 (-2.23)
|rt−2| -0.204 (-53.39)

∑5
i=1 vt−i ln(Tt−i) 0.004 (1.79)∑5

i=1 |rt−i | 0.029 (4.62) ln(Tt−1) 0.174 (64.72)
x0
t−1 0.030 (2.50) ln(Tt−2) 0.067 (25.01)
x0
t−2 -0.026 (-2.20)

∑5
i=1 ln(Tt−i) 0.342 (70.94)∑5

i=1x
0
t−i 0.007 (0.39) Adj. R2 0.092 -

x0
t−1opent−1 -0.025 (-0.97) Walddiur 89.8 -
x0
t−1beft−1 0.014 (0.07) Waldtime 7124.0 -
x0
t−1arot−1 0.056 (0.17) Q15,raw 11897.6 -
x0
t−1aftt−1 -0.150 (-1.26) Q15,resid 670.5 -
x0
t−1 ln(Tt−1) 0.007 (2.06) JBresid 10373.8 -
x0
t−2 ln(Tt−2) 0.000 (0.10)∑5
i=1x

0
t−i ln(Tt−i) 0.010 (1.36)

This table reports the coefficient estimates and Newey and West (1994) heteroskedasticity and au-
tocorrelation consistent t-statistics (in parentheses) for the trade duration equation of the Endo-VAR
model specified in (2.8) for stock NAB.

ln(Tt)=α
T +βTDt−1+

p∑
i=1

aTi rt−i+
p∑
i=1

bTi |rt−i |+λ
TDt−1⊗xt−1+

p∑
i=1

[
γTi +δTi ln(Tt−i )

]
xt−i+

p∑
i=1

cTi ln(Tt−i )+u
T
t .

rt is the logarithmic change in midquotes following the t-th trade. xt is a column vector of trade signs
(x0
t , which equals 1 for buys and -1 for sells) and volumes (vt , defined as the signed logarithm of the

ratio of the share volume to the prevailing quoted depth) of the t-th trade. Tt is the time duration
between the (t − 1)-th and t-th trades. Dt = (opent ,beft ,arot ,aftt)′ is a vector of four diurnal dummy
variables including opent that marks the first 30 minutes of a trading day (i.e. 10:10:00-10:40:00), and
beft , arot and aftt that respectively identify trades executed 5 minutes before (14:24:30-14:29:30), one
minute around (14:29:30-14:30:30), and 10 minutes after (14:30:30-14:40:30) the RBA announcements.
⊗ denotes the Kronecker product.

The lag length p is set to p = 5. We only report the individual coefficients of the first two lags. Walddiur
is the Wald test statistic associated with the null hypothesis that the coefficients on all diurnal dummies
(i.e. opent , beft , arot and aftt) are jointly zero. Waldtime is the Wald test statistic associated with the
null hypothesis that the coefficients on all diurnal dummies and durations are jointly zero. Q15,raw
(Q15,resid) is the Ljung-Box statistic associated with the null hypothesis of no autocorrelation up to
order 15 in the raw (residual) series. JBresid is the Jarque-Bera statistic associated with the null that the
residuals are normally distributed. Bold format denotes statistical significance at a 5% level.
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Past trading volumes are also an important predictor of the time between trades.

Negative and strongly significant coefficients and coefficient sums of previous trade

sizes imply that larger transactions tend to shorten the duration of incoming trades.

This lends support to Easley and O’Hara (1992), who hypothesize that large trades

are more likely to be initiated by informed traders who always trade to capitalize on

new information. Thus, large transactions are likely to lead to higher trading rates

and, consequently, shorter durations. The negative relationship between durations

and trading volumes is also found in previous empirical studies such as Bauwens and

Giot (2000), Manganelli (2005) and Nowak and Anderson (2014).

The positive coefficient on trade sign, x0
t−1, suggests that it likely takes longer time

for a trade to occur when it is preceded by a purchase than by a sale. Moreover, the

positive serial dependencies of time durations are stronger for buyer-initiated trades

but weaker for seller-initiated ones, as implied by the significantly positive coefficient

on x0
t−1 ln(Tt−1). However, the asymmetry in the autocorrelation of trade durations

between buys and sells appears short-lived, and so do the effects of trade signs on

future trade durations, as suggested by the insignificance of the coefficient sums of

x0
t−i ln(Tt−i) and x0

t−i , respectively. While there is evidence that trading intensifies at the

market open, no similar evidence is observed around the RBA announcements since

the coefficients on the RBA announcement dummies and their interactions with trade

characteristics are not significant, even though they are generally of expected signs and

are economically meaningful in comparison with the corresponding coefficients on the

opent dummy. This result is surprising, given the clear pattern shown in Table 2.1 that

durations between trades in stock NAB are significantly shorter during the one minute

around the RBA interest rate releases. Perhaps, however, the unconditional pattern in

trade durations around the RBA announcements simply reflects those in the marks (i.e.

returns and trade attributes) and thus disappears when one conditions on the latter.

We now examine the dynamics of prices by looking at the equation for quote re-

visions. The results are reported in Panel A of Table 2.3 that uses the whole eleven

RBA announcement week sample. Consistent with previous studies such as Hasbrouck

(1991a,b) and Dufour and Engle (2000), price changes are negatively serially corre-
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lated, as indicated by a negative first lag coefficient. Meanwhile, a signed trade pos-

itively affects prices in the sense that a buy leads to an upward adjustment in prices

while a sell drags prices down. The price impact of a trade in stock NAB is influenced

by both the direction (x0
t ) and volume (vt) of the trade, which is consistent with the

findings of Hasbrouck (1991a,b). Immediately following a purchase with an average

volume to depth ratio of 0.417 and an average duration of 6.906 seconds (i.e. an aver-

age purchase, see Table 2.1), the price of stock NAB is lifted up by 0.984 bps, assuming

that the purchase is executed during the reference time period (i.e. not at the market

open or during the 16-minute window around an RBA interest rate announcement).12

Meanwhile, the coefficients on lagged trade signs and lagged volumes are generally

negative but are much smaller in magnitude compared to the contemporaneous coef-

ficients, implying that the cumulative price impact of a buy remains strongly positive.

We find a significant role for the time of trade arrivals in the process of price for-

mation for stock NAB, lending support to Diamond and Verrecchia (1987), Easley and

O’Hara (1992), Dufour and Engle (2000) and Xu et al. (2006). As implied by the signif-

icantly negative contemporaneous coefficients and coefficient sums of the interactions

between trade attributes and durations, the price impact of a trade is negatively de-

pendent on its duration, suggesting that prices tend to adjust more following a trade

that has a shorter duration. The explanation is that shorter time between trades or

higher trading intensity is inferred by the market maker as a signal of more private

news being released to the market and the increased presence of informed traders to

exploit such information (Easley and O’Hara, 1992, Dufour and Engle, 2000). Since

a higher probability of informed trading discourages liquidity providers, possibly via

toxic order flows that adversely select the latter (Easley et al., 2011, 2012), trades result

in larger price adjustments. In addition, there is some positive direct impact of dura-

tions on price changes which suggests that prices tend to adjust upward after a long

time interval from a previous trade, as indicated by a positive sum of coefficients on

ln(Tt−i). However, this positive direct dependence is relatively weak and dominated by

12 0.984 = −0.002︸  ︷︷  ︸
const

+1.227︸︷︷︸
x0
t

−0.031× ln6.906︸              ︷︷              ︸
x0
t ln(Tt)

+0.219× ln0.417︸              ︷︷              ︸
vt

−0.006× ln0.417× ln6.906︸                            ︷︷                            ︸
vt ln(Tt)

. Note that vt

is calculated as the signed logarithm of the volume to depth ratio of the t-th transaction.
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the negative indirect influence of durations on prices (which is a portion of the price

impact of a trade captured by the interaction terms x0
t ln(Tt) and vt ln(Tt)), leading to an

overall negative relation between price changes and trade durations, which supports

Easley and O’Hara’s (1992) theory.

The price impact of a trade also exhibits a diurnal pattern. Purchases (sales) that

are performed within the first 30 minutes of a trading day on average raise (reduce)

prices markedly more than do those executed during the reference period, as shown

by the positive coefficients on x0
t opent and vtopent. This can be explained by higher

trading intensity induced by a larger proportion of informed traders who are trying

to capitalize on relatively more information that has accumulated overnight being re-

vealed to the market in the early morning (Anand et al., 2005, Bloomfield et al., 2005,

Duong et al., 2009, Pham et al., 2017). Since prices tend to move more with higher in-

formed trading rates, the price impact of a trade is likely to be higher at the beginning

of the trading day.
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Table 2.3: Estimated return equation of the Endo-VAR model for stock NAB

Panel A: Eleven RBA announcement weeks

Coef. t-stat Coef. t-stat Coef. t-stat Coef. t-stat

const -0.002 (-0.30) x0
t 1.227 (126.26) vt 0.219 (92.44) ln(Tt−1) 0.000 (-0.06)

opent -0.016 (-0.89) x0
t−1 -0.012 (-1.21) vt−1 -0.004 (-1.69) ln(Tt−2) 0.000 (0.21)

beft -0.039 (-0.42) x0
t−2 -0.045 (-4.48) vt−2 -0.014 (-5.91)

∑5
i=1 ln(Tt−i) 0.010 (2.80)

arot 0.182 (0.58)
∑5
i=0 x

0
t−i 1.099 (70.42)

∑5
i=0 vt−i 0.185 (47.37) Adj. R2 0.178 -

aftt 0.004 (0.05) x0
t opent 0.300 (11.30) vtopent 0.097 (11.27) Walddiur 169.8 -

rt−1 -0.027 (-7.56) x0
t beft -0.058 (-0.35) vtbeft -0.034 (-0.91) Waldtime 316.8 -

rt−2 0.010 (2.98) x0
t arot 1.310 (3.18) vtarot 0.327 (2.14) Q15,raw 4397.2 -∑5

i=1 rt−i 0.006 (0.73) x0
t aftt 0.319 (2.84) vtaftt 0.096 (2.77) Q15,resid 19.9 -

|rt−1| -0.009 (-2.76) x0
t ln(Tt) -0.031 (-11.16) vt ln(Tt) -0.006 (-8.03) JBresid 37992.9 -

|rt−2| -0.001 (-0.18) x0
t−1 ln(Tt−1) 0.000 (-0.13) vt−1 ln(Tt−1) -0.001 (-1.46)∑5

i=1 |rt−i | -0.009 (-1.58) x0
t−2 ln(Tt−2) 0.004 (1.46) vt−2 ln(Tt−2) 0.000 (0.62)∑5
i=0 x

0
t−i ln(Tt−i) -0.020 (-3.18)

∑5
i=0 vt−i ln(Tt−i) -0.004 (-2.35)

Panel B: Non RBA announcement days

Coef. t-stat Coef. t-stat Coef. t-stat Coef. t-stat

const 0.003 (0.33) x0
t 1.212 (110.53) vt 0.216 (81.97) ln(Tt−1) 0.002 (0.97)

opent -0.002 (-0.08) x0
t−1 -0.003 (-0.29) vt−1 -0.002 (-0.58) ln(Tt−2) 0.000 (0.18)

beft -0.059 (-1.41) x0
t−2 -0.048 (-4.36) vt−2 -0.016 (-6.22)

∑5
i=1 ln(Tt−i) 0.009 (2.39)

arot 0.105 (1.05)
∑5
i=0 x

0
t−i 1.093 (63.18)

∑5
i=0 vt−i 0.183 (42.57) Adj. R2 0.178 -

aftt 0.081 (2.69) x0
t opent 0.269 (9.29) vtopent 0.088 (9.46) Walddiur 155.6 -

rt−1 -0.031 (-7.81) x0
t beft -0.203 (-3.13) vtbeft -0.038 (-2.46) Waldtime 272.4 -

rt−2 0.008 (2.14) x0
t arot -0.257 (-1.83) vtarot -0.063 (-1.82) Q15,raw 3683.3 -∑5

i=1 rt−i -0.005 (-0.57) x0
t aftt -0.159 (-3.38) vtaftt -0.042 (-3.41) Q15,resid 21.1 -

|rt−1| -0.007 (-1.97) x0
t ln(Tt) -0.030 (-9.83) vt ln(Tt) -0.006 (-7.00) JBresid 32183.3 -

|rt−2| -0.003 (-0.68) x0
t−1 ln(Tt−1) -0.002 (-0.57) vt−1 ln(Tt−1) -0.001 (-1.65)∑5

i=1 |rt−i | -0.011 (-1.79) x0
t−2 ln(Tt−2) 0.002 (0.79) vt−2 ln(Tt−2) 0.000 (0.36)∑5
i=0 x

0
t−i ln(Tt−i) -0.028 (-3.92)

∑5
i=0 vt−i ln(Tt−i) -0.005 (-2.26)

This table reports the coefficient estimates and Newey and West (1994) heteroskedasticity and autocorrelation consistent t-statistics (in parentheses) for the return equation
of the Endo-VAR model specified in (2.8) for stock NAB in eleven RBA announcement weeks (Panel A) and on non-RBA announcement days (Panel B) in 2013.

rt = αr + βrDt +
p∑
i=1

ari rt−i +
p∑
i=1

bri |rt−i |+λ
rDt ⊗ xt +

p∑
i=0

[
γri + δri ln(Tt−i )

]
xt−i +

p∑
i=1

cri ln(Tt−i ) +urt .

See Table 2.2 notes for definitions of the variables. In Panel B, beft , arot and aftt are respectively indicator variables identifying trades performed within 14:24:30-14:29:30,
14:29:30-14:30:30 and 14:30:30-14:40:30 time periods (i.e. corresponding time intervals to those on the RBA announcement days).
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Chapter 2. Time and the price impact around interest rate announcements

The RBA monetary policy announcements significantly affect the price impact of a

trade, through both sign and size channels. While trades performed within five min-

utes before the release of monetary decisions result in a price impact that is statisti-

cally indistinguishable from that of those occurring during the reference time window,

trades executed within one minute around the announcement and during the subse-

quent ten minutes affect prices significantly more. Practically, an average buy in stock

NAB transacted one minute around (ten minute after) the announcements immedi-

ately raises the quote midpoint by about 1.206 bps (0.239 bps) higher than, or equiv-

alently 2.23 times (1.24 times) as high as, does a similar purchase arriving during the

reference time period.13 Trades around the announcements are even more informative

than those at the market open, suggesting a higher concentration of informed traders

during the one minute around the interest rate releases than at the market open. It ap-

pears that informed investors await the interest rate decisions from the RBA and thus

are relatively inactive five minutes before the announcement. As time draws closer to

14:30:00 - the scheduled release time, more information is revealed, inducing a higher

likelihood of informed traders. The presence of informed market participants is high-

est during the one minute around the release, and gradually decreases in the next ten

minutes when more information is incorporated into prices. Consequently, trades oc-

curring within one minute around the announcements have the greatest impact on

prices.

To further highlight the impact of the monetary announcements on prices of stock

NAB, we re-estimate the return equation of the Endo-VAR model using data on the

non-RBA announcement days of our sample only. The results are reported in Panel

B of Table 2.3. On non-RBA announcement days, the effects of trade characteristics

and time durations on quote revisions for stock NAB remain qualitatively similar to

those previously discussed. Differences, however, are found when looking at the 16-

minute window that corresponds to the announcement time period on the announce-

ment days. On days with no monetary policy releases, trades performed within the

13 1.206 = 0.182︸︷︷︸
arot

+1.310︸︷︷︸
x0
t arot

+0.327× ln0.417︸              ︷︷              ︸
vtarot

, and 0.239 = 0.004︸︷︷︸
aftt

+0.319︸︷︷︸
x0
t aftt

+0.096× ln0.417︸              ︷︷              ︸
vtaftt

. Note that the

immediate price impact of an average buy in the reference period is 0.984 bps (see Footnote 12).
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Chapter 2. Time and the price impact around interest rate announcements

16-minute period typically have a smaller impact on prices than those executed in the

reference period, reflecting a typical diurnal pattern on a normal day (see Table 2.1).

This result thus confirms the important information content of the interest rate an-

nouncements that significantly affect prices of stock NAB, which is in agreement with

previous findings such as Kim and Nguyen (2008) and Smales (2012).

Regarding the estimation for trade attributes which is tabulated in Table 2.4, trades

exhibit a strong positive serial correlation structure, both in terms of direction and

volume. This pattern is typically observed in empirical applications (e.g. Hasbrouck,

1991a, Dufour and Engle, 2000, Manganelli, 2005), and it suggests a clustering feature

inherent in a trade series. In particular, purchases (sales) tend to follow purchases

(sales), and large (small) transactions tend to induce large (small) transactions. More-

over, there is a significant bilateral Granger-causal relationship between trade direc-

tions and volumes, as well as strong Granger-causality running from quote revisions to

trade characteristics, which is in conformance with the findings of Hasbrouck (1991a).

Consistent with Dufour and Engle (2000), trade signs become more positively autocor-

related when time durations between trades get shorter, as reflected in Panel A of Table

2.4 by a significantly negative coefficient on x0
t−1 ln(Tt−1) at the first lag, even though

the coefficient sum is not significant. Similarly, not only is higher trading intensity or

shorter trade duration associated with larger future transactions (see the coefficients

on ln(Tt−i) in Panel B - which is in harmony with Easley and O’Hara’s (1992) theory

that predicts a negative association between trade durations and trading size), but it

also tends to increase the positive autocorrelation of trading volumes, as evidenced by

the coefficients on vt−i ln(Tt−i) in Panel B.
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Table 2.4: Estimated trade sign and volume equations of the Endo-VAR model for stock NAB in eleven RBA announcement weeks in 2013

Panel A: Trade sign equation

Coef. t-stat Coef. t-stat Coef. t-stat Coef. t-stat

const 0.039 (10.46) x0
t−1 0.395 (97.69) vt−1 0.017 (14.87) ln(Tt−1) 0.000 (0.05)

opent 0.029 (4.10) x0
t−2 0.076 (18.78) vt−2 -0.001 (-0.81) ln(Tt−2) 0.001 (0.83)

beft -0.015 (-0.38)
∑5
i=1 x

0
t−i 0.502 (83.68)

∑5
i=1 vt−i -0.004 (-2.36)

∑5
i=1 ln(Tt−i) -0.001 (-0.50)

arot 0.057 (0.69) x0
t−1opent−1 0.030 (3.28) vt−1opent−1 0.014 (4.22) Adj. R2 0.246 -

aftt -0.017 (-0.61) x0
t−1beft−1 0.079 (1.33) vt−1beft−1 0.016 (0.85) Walddiur 41.3 -

rt−1 -0.199 (-139.13) x0
t−1arot−1 0.172 (1.73) vt−1arot−1 0.056 (1.30) Waldtime 239.4 -

rt−2 -0.028 (-21.41) x0
t−1aftt−1 0.028 (0.74) vt−1aftt−1 0.024 (1.64) Q15,raw 19196.9 -∑5

i=1 rt−i -0.217 (-70.17) x0
t−1 ln(Tt−1) -0.005 (-4.59) vt−1 ln(Tt−1) 0.002 (5.96) Q15,resid 393.8 -

|rt−1| -0.008 (-6.29) x0
t−2 ln(Tt−2) 0.001 (1.26) vt−2 ln(Tt−2) 0.002 (4.11) JBresid 4649.9 -

|rt−2| 0.000 (0.15)
∑5
i=1 x

0
t−i ln(Tt−i) -0.002 (-0.99)

∑5
i=1 vt−i ln(Tt−i) 0.004 (5.61)∑5

i=1 |rt−i | -0.008 (-3.72)

Panel B: Trade volume equation

Coef. t-stat Coef. t-stat Coef. t-stat Coef. t-stat

const -0.232 (-15.81) x0
t−1 -0.239 (-18.79) vt−1 0.183 (38.92) ln(Tt−1) -0.010 (-3.41)

opent -0.087 (-4.45) x0
t−2 -0.022 (-1.70) vt−2 0.080 (18.73) ln(Tt−2) -0.003 (-0.87)

beft -0.090 (-0.55)
∑5
i=1 x

0
t−i -0.151 (-7.80)

∑5
i=1 vt−i 0.442 (58.38)

∑5
i=1 ln(Tt−i) -0.013 (-2.54)

arot -0.103 (-0.56) x0
t−1opent−1 -0.067 (-2.78) vt−1opent−1 -0.054 (-4.57) Adj. R2 0.114 -

aftt 0.189 (2.39) x0
t−1beft−1 -0.332 (-1.64) vt−1beft−1 -0.102 (-1.24) Walddiur 64.4 -

rt−1 0.223 (66.27) x0
t−1arot−1 -0.452 (-2.35) vt−1arot−1 -0.045 (-0.34) Waldtime 136.4 -

rt−2 0.029 (7.74) x0
t−1aftt−1 -0.160 (-1.46) vt−1aftt−1 -0.122 (-2.94) Q15,raw 36259.6 -∑5

i=1 rt−i 0.189 (23.44) x0
t−1 ln(Tt−1) 0.014 (4.30) vt−1 ln(Tt−1) 0.000 (0.12) Q15,resid 1180.6 -

|rt−1| 0.018 (4.62) x0
t−2 ln(Tt−2) -0.004 (-1.23) vt−2 ln(Tt−2) -0.006 (-3.98) JBresid 5230.6 -

|rt−2| 0.011 (2.86)
∑5
i=1 x

0
t−i ln(Tt−i) 0.002 (0.29)

∑5
i=1 vt−i ln(Tt−i) -0.011 (-3.41)∑5

i=1 |rt−i | 0.051 (6.92)

This table reports the coefficient estimates and Newey and West (1994) heteroskedasticity and autocorrelation consistent t-statistics (in parentheses) for the trade
sign and volume equations of the Endo-VAR model specified in (2.8) for stock NAB.

xt = αx + βxDt +
p∑
i=1

axi rt−i +
p∑
i=1

bxi |rt−i |+λ
xDt−1 ⊗ xt−1 +

p∑
i=1

[
γxi + δxi ln(Tt−i )

]
xt−i +

p∑
i=1

cxi ln(Tt−i ) +uxt .

See Table 2.2 notes for definitions of the variables.
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Chapter 2. Time and the price impact around interest rate announcements

From Tables 2.2-2.4, the Ljung-Box statistics suggest that the Endo-VAR model ap-

pears to capture most of the dynamics of the joint system by filtering out most of the

serial correlation exhibited in the raw series. However, there is still significant autocor-

relation in the residuals for trade direction, size and duration. For all four equations,

the residuals are not normally distributed, as shown by large Jarque-Bera statistics.

Nevertheless, significant Wald test statistics at a 5% level again confirm the role of

time in explaining the price and trade formation processes.

We now investigate the results for the remaining stocks. Since our main interest

is on the dynamics of prices and trade durations as well as on how the interest rate

announcements affect these quantities, we only report the results for the quote revision

and duration equations in Tables 2.5 and 2.6 respectively, using the whole sample of

eleven RBA announcement weeks. The results for these stocks’ trade attributes are

qualitatively similar to those for stock NAB.

The dynamic behavior of prices and trade durations for the other Australian bank-

ing stocks is qualitatively similar to that for stock NAB. For example, Table 2.6 shows

that the time between trades exhibits a persistent positive dependence structure and is

positively related to past volatility while negatively linked to trading volumes (except

for WBC). From Table 2.5, a trade has a significant impact on prices which is con-

tributed by both trade direction and trading volume channels and negatively related

to trade durations. Trades performed within one minute around the RBA announce-

ment have higher price impact, although statistical significance is not obtained for

WBC. However, there are some important differences with regard to the duration dy-

namics shown in Table 2.6. First, in contrast to other stocks it takes less (similar) time,

instead of more time, for a trade in stock BEN (MQG) to occur when it is preceded by

a purchase rather than a sale. Second, there is some evidence that time durations for

stocks ANZ, WBC and MQG are significantly shorter within one minute around the

RBA monetary policy releases (see the coefficients on arot), which is consistent with

the duration pattern observed in Table 2.1 and implies a higher concentration of in-

formed agents around the announcements that consequently increases the probability

of trades in these stocks.
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Chapter 2. Time and the price impact around interest rate announcements

Table 2.5: Estimated return equation of the Endo-VAR model for banking stocks in
eleven RBA announcement weeks in 2013

ANZ CBA WBC MQG BEN

Coef. t-stat Coef. t-stat Coef. t-stat Coef. t-stat Coef. t-stat

const -0.030 (-5.81) 0.005 (1.52) -0.012 (-1.92) 0.014 (1.64) -0.181 (-4.93)
opent Lag 0 0.004 (0.26) 0.026 (2.39) -0.041 (-2.31) 0.029 (1.19) 0.172 (1.59)
beft Lag 0 0.103 (1.06) 0.083 (1.81) 0.148 (1.80) 0.046 (0.53) -0.396 (-0.98)
arot Lag 0 0.158 (1.10) 0.092 (0.70) 0.134 (0.75) -0.262 (-1.15) 1.422 (1.22)
aftt Lag 0 0.027 (0.44) 0.051 (1.42) 0.058 (0.87) 0.030 (0.40) 0.035 (0.11)

rt Lag 1 -0.055 (-15.38) -0.027 (-7.87) -0.050 (-14.42) 0.000 (-0.04) -0.056 (-7.26)
Lag 2 0.005 (1.38) 0.033 (10.05) 0.003 (0.84) 0.027 (7.15) -0.002 (-0.34)
Σ1:p -0.033 (-3.86) 0.072 (10.08) -0.030 (-3.73) 0.076 (9.27) -0.100 (-5.68)

|rt | Lag 1 0.002 (0.54) -0.006 (-1.58) -0.004 (-1.27) -0.012 (-2.77) -0.003 (-0.52)
Lag 2 0.001 (0.24) 0.000 (0.02) 0.000 (-0.01) -0.002 (-0.47) -0.007 (-1.13)
Σ1:p 0.016 (3.36) -0.002 (-0.49) -0.005 (-1.03) -0.011 (-1.75) -0.014 (-1.46)

x0
t Lag 0 1.040 (111.11) 0.595 (119.95) 1.085 (106.89) 1.205 (115.19) 3.633 (59.12)

Lag 1 0.048 (5.51) 0.009 (1.95) 0.008 (0.88) -0.038 (-3.73) 0.091 (1.43)
Σ0:p 0.991 (67.57) 0.490 (65.33) 0.958 (61.28) 0.952 (53.76) 3.011 (36.66)

x0
t opent Lag 0 0.395 (16.11) 0.427 (26.10) 0.334 (12.75) 0.716 (20.34) 0.499 (2.91)
x0
t beft Lag 0 0.152 (1.00) -0.071 (-1.03) -0.042 (-0.22) -0.127 (-0.86) -0.452 (-0.78)
x0
t arot Lag 0 0.562 (2.87) 0.410 (3.09) 0.120 (0.39) 0.761 (2.15) 2.993 (2.13)
x0
t aftt Lag 0 0.262 (2.59) 0.098 (1.52) 0.158 (1.58) 0.269 (2.14) -0.018 (-0.04)
x0
t ln(Tt) Lag 0 -0.044 (-16.69) -0.021 (-14.60) -0.034 (-12.11) -0.011 (-3.62) -0.092 (-6.26)

Lag 1 -0.007 (-2.72) 0.002 (1.55) 0.005 (1.93) 0.006 (1.90) -0.005 (-0.33)
Σ0:p -0.056 (-9.62) -0.008 (-2.65) -0.015 (-2.37) 0.008 (1.22) -0.104 (-3.43)

vt Lag 0 0.197 (90.17) 0.129 (93.66) 0.192 (82.66) 0.265 (80.38) 0.566 (50.73)
Lag 1 0.001 (0.28) -0.001 (-0.72) -0.004 (-1.81) -0.007 (-2.24) 0.012 (1.05)
Σ0:p 0.161 (47.40) 0.091 (44.20) 0.152 (41.93) 0.196 (35.39) 0.462 (27.97)

vtopent Lag 0 0.085 (11.12) 0.098 (17.69) 0.092 (11.84) 0.179 (12.78) 0.121 (3.22)
vtbeft Lag 0 0.010 (0.27) -0.020 (-1.16) 0.005 (0.09) -0.029 (-0.66) -0.003 (-0.02)
vtarot Lag 0 0.175 (2.57) 0.111 (2.67) 0.101 (0.92) 0.132 (1.00) 0.519 (1.41)
vtaftt Lag 0 0.075 (2.80) 0.017 (0.94) 0.079 (2.75) 0.143 (2.75) 0.010 (0.10)
vt ln(Tt) Lag 0 -0.011 (-16.24) -0.007 (-16.21) -0.007 (-9.96) -0.009 (-8.13) -0.015 (-5.11)

Lag 1 -0.002 (-2.62) 0.001 (2.02) 0.000 (0.47) 0.002 (2.14) 0.001 (0.49)
Σ0:p -0.015 (-9.76) -0.004 (-3.84) -0.002 (-1.25) 0.000 (-0.03) -0.011 (-1.79)

ln(Tt) Lag 1 0.001 (0.61) 0.003 (2.69) -0.002 (-1.18) 0.005 (2.20) 0.015 (1.66)
Lag 2 0.001 (0.65) 0.000 (0.18) -0.001 (-0.75) 0.000 (-0.15) 0.005 (0.53)
Σ1:p 0.003 (0.91) 0.004 (2.50) -0.003 (-0.95) 0.002 (0.58) 0.045 (3.07)

Adj. R2 0.171 0.161 0.155 0.175 0.192
Walddiur 278.7 702.9 197.5 429.1 27.7
Waldtime 622.0 1038.0 370.6 542.5 88.5
Q15,raw 6221.7 2721.7 4282.3 922.2 1993.8
Q15,resid 23.6 105.2 36.2 34.6 31.0
JBresid 64575.3 208084.3 60180.5 101836.4 19233.0

This table reports the coefficient estimates and Newey and West (1994) heteroskedasticity and autocor-
relation consistent t-statistics (in parentheses) for the return equation of the Endo-VAR model specified
in (2.8) for stocks ANZ, CBA, WBC, MQG and BEN.

rt = αr + βrDt +
p∑
i=1

ari rt−i +
p∑
i=1

bri |rt−i |+λ
rDt ⊗ xt +

p∑
i=0

[
γri + δri ln(Tt−i )

]
xt−i +

p∑
i=1

cri ln(Tt−i ) +urt .

See Table 2.2 notes for definitions of the variables.
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Table 2.6: Estimated trade duration equation of the Endo-VAR model for banking
stocks in eleven RBA announcement weeks in 2013

ANZ CBA WBC MQG BEN

Coef. t-stat Coef. t-stat Coef. t-stat Coef. t-stat Coef. t-stat

const -0.166 (-18.90) -0.324 (-41.01) -0.054 (-5.84) -0.247 (-21.83) 0.764 (32.47)
opent Lag 1 -0.077 (-4.21) -0.123 (-6.95) -0.171 (-9.20) -0.248 (-10.81) -0.171 (-3.49)
beft Lag 1 0.170 (1.30) 0.126 (1.21) 0.082 (0.60) 0.020 (0.12) 0.083 (0.29)
arot Lag 1 -0.465 (-2.72) -0.228 (-1.43) -0.691 (-4.09) -0.627 (-2.89) 0.504 (1.35)
aftt Lag 1 -0.163 (-2.29) -0.045 (-0.67) -0.105 (-1.36) 0.035 (0.42) 0.037 (0.24)

rt Lag 1 -0.004 (-1.23) 0.004 (0.80) -0.016 (-5.41) 0.003 (0.86) 0.001 (0.53)
Lag 2 -0.002 (-0.41) 0.000 (-0.08) -0.013 (-3.33) 0.011 (2.84) 0.005 (1.52)
Σ1:p -0.005 (-0.53) -0.007 (-0.58) -0.038 (-4.41) 0.023 (2.92) 0.004 (0.50)

|rt | Lag 1 0.234 (62.62) 0.523 (95.31) 0.273 (77.12) 0.337 (84.90) 0.067 (21.71)
Lag 2 -0.204 (-51.01) -0.328 (-54.82) -0.199 (-51.10) -0.171 (-39.93) -0.063 (-19.27)
Σ1:p -0.014 (-2.33) 0.033 (3.85) -0.001 (-0.22) 0.107 (16.07) 0.004 (0.78)

x0
t Lag 1 0.038 (3.12) 0.023 (2.41) 0.059 (4.72) -0.018 (-1.42) -0.142 (-4.49)

Lag 2 -0.017 (-1.49) -0.009 (-0.89) 0.036 (3.02) -0.001 (-0.11) -0.119 (-3.84)
Σ1:p 0.020 (1.07) 0.027 (1.86) 0.126 (6.80) -0.003 (-0.15) -0.349 (-7.99)

x0
t opent Lag 1 -0.031 (-1.18) -0.027 (-1.13) -0.069 (-2.60) -0.022 (-0.76) 0.032 (0.42)
x0
t beft Lag 1 0.413 (1.86) 0.056 (0.30) -0.113 (-0.47) -0.301 (-1.53) -0.137 (-0.30)
x0
t arot Lag 1 -0.509 (-2.14) 0.040 (0.16) -0.109 (-0.42) -0.408 (-1.88) -0.563 (-0.88)
x0
t aftt Lag 1 0.157 (1.32) -0.123 (-1.22) -0.062 (-0.54) 0.070 (0.59) -0.608 (-2.09)
x0
t ln(Tt) Lag 1 0.020 (5.71) 0.006 (2.22) 0.009 (2.46) -0.001 (-0.41) 0.017 (2.10)

Lag 2 -0.002 (-0.50) 0.003 (1.01) -0.004 (-1.00) 0.004 (1.25) 0.005 (0.64)
Σ1:p 0.034 (4.64) 0.022 (3.65) 0.007 (0.83) 0.006 (0.75) 0.022 (1.33)

vt Lag 1 -0.015 (-4.89) -0.009 (-2.83) -0.001 (-0.38) -0.040 (-9.05) -0.039 (-6.02)
Lag 2 -0.006 (-1.97) -0.005 (-1.58) 0.003 (1.05) 0.004 (0.92) -0.013 (-2.02)
Σ1:p -0.024 (-4.98) -0.021 (-4.47) 0.013 (2.70) -0.012 (-1.82) -0.043 (-4.57)

vtopent Lag 1 -0.015 (-1.80) -0.019 (-2.10) -0.025 (-3.14) 0.000 (-0.03) -0.023 (-1.26)
vtbeft Lag 1 0.102 (1.82) 0.047 (0.86) -0.023 (-0.36) -0.155 (-2.09) -0.011 (-0.11)
vtarot Lag 1 -0.015 (-0.22) 0.130 (1.38) 0.026 (0.24) -0.092 (-1.16) -0.199 (-1.17)
vtaftt Lag 1 0.064 (1.73) 0.027 (0.78) 0.011 (0.24) -0.003 (-0.06) -0.070 (-1.01)
vt ln(Tt) Lag 1 0.002 (1.43) 0.003 (2.69) -0.001 (-1.10) -0.005 (-3.29) 0.003 (1.30)

Lag 2 0.000 (0.01) 0.004 (3.32) -0.001 (-0.94) 0.004 (2.55) -0.005 (-2.81)
Σ1:p 0.008 (3.71) 0.014 (6.29) -0.001 (-0.46) 0.001 (0.23) -0.007 (-2.03)

ln(Tt) Lag 1 0.180 (70.84) 0.186 (82.23) 0.173 (65.00) 0.173 (60.50) 0.195 (35.99)
Lag 2 0.068 (26.92) 0.073 (31.23) 0.076 (28.66) 0.071 (24.38) 0.099 (18.25)
Σ1:p 0.338 (73.39) 0.387 (97.29) 0.362 (75.05) 0.374 (73.73) 0.422 (45.54)

Adj. R2 0.078 0.100 0.090 0.104 0.099
Walddiur 45.1 64.8 108.8 134.8 22.8
Waldtime 8029.3 12739.5 7862.9 7442.6 3327.9
Q15,raw 14708.3 24311.0 15032.9 14738.9 8677.8
Q15,resid 803.3 1354.4 795.7 1017.0 335.2
JBresid 10445.4 9150.2 12026.2 5882.9 7632.7

This table reports the coefficient estimates and Newey and West (1994) heteroskedasticity and autocor-
relation consistent t-statistics (in parentheses) for the trade duration equation of the Endo-VAR model
specified in (2.8) for stocks ANZ, CBA, WBC, MQG and BEN.

ln(Tt) = αT + βTDt−1 +
p∑
i=1

aTi rt−i +
p∑
i=1

bTi |rt−i |+λ
TDt−1 ⊗ xt−1 +

p∑
i=1

[
γTi + δTi ln(Tt−i )

]
xt−i +

p∑
i=1

cTi ln(Tt−i ) +uTt .

See Table 2.2 notes for definitions of the variables.
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Chapter 2. Time and the price impact around interest rate announcements

Overall, we find strong evidence of the endogeneity of trade durations, support-

ing the theories of Diamond and Verrecchia (1987) and Easley and O’Hara (1992). In

particular, larger past trading volumes and smaller past volatility tend to shorten sub-

sequent trade durations. Further, the price impact of a signed trade is positive, con-

tributed by both trade direction and trading volumes, and negatively related to trade

durations. Higher trading intensity or shorter trade duration is associated with not

only a higher price impact of a trade but also more positive autocorrelation of trade

characteristics. Moreover, the release of the RBA monetary policy decisions signifi-

cantly affects the joint system of trade arrival times and the associated marks of inter-

est, with trades executed within one minute around the announcement time typically

being more informative about prices (i.e. having a larger price impact) and having

shorter durations.

WACD-VARmodels

Although the VAR framework is able to capture the internal dynamics of the joint sys-

tem of durations and the marks, it does not seem to find changes in the pattern of

trade durations around the interest rate announcements, especially for NAB and CBA.

We now examine if the WACD model, which is widely used in the duration modeling

literature, finds evidence of such changes. The estimated WACD(2,1) models for six

Australian banking stocks in eleven RBA announcement weeks in 2013 are reported in

Table 2.7. Panel A shows the results when the strict exogeneity assumption of trade du-

rations is imposed (as in Dufour and Engle (2000) and Xu et al. (2006)), while Panel B

reports the results when this assumption is relaxed. From both panels, all autoregres-

sive parameter estimates for durations and conditional durations are highly significant

and sum up to between 0.938 and 0.994 for all stocks, suggesting that the duration

process is strongly persistent, which is consistent with the results from the estimated

Endo-VAR models. The estimate for the Weibull parameter, θ, ranges between 0.44 and

0.51 and is significantly less than one. This implies an overdispersed distribution of

trade durations - a stylized fact often observed in empirical work (Engle and Russell,

1998, Bauwens and Veredas, 2004, Renault et al., 2014), and it suggests that the use of
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Chapter 2. Time and the price impact around interest rate announcements

an exponential distribution (i.e. θ = 1), which implies equi-dispersion, to model trade

durations is deficient.

From Panel B, most the parameter estimates for trade attributes and absolute re-

turns (a proxy for volatility) are highly statistically significant, indicating that these

variables are important predictors of trade durations, which in turn invalidates the

strict exogeneity assumption of durations typically imposed in the literature. Conse-

quently, the incorporation of these additional variables into the conditional duration

model improves the log likelihood of the model markedly; and it is easy to verify that

likelihood ratio (LR) tests strongly support the endogenous duration model. Consis-

tent with the Endo-VAR model, it is the magnitude of price changes, rather than the

direction of price adjustments, that is informative about the (conditional) durations of

future trades. The lag-one coefficients of absolute returns are positive, implying that

conditional trade durations increase with larger price adjustments. However, they are

almost offset by the negative lag-two coefficients, suggesting that conditional trade du-

rations tend to be higher the larger the change in quote revisions (i.e. the second order

difference in prices). While conditional time durations tend to be larger if the last trade

is a buy than a sell for four stocks ANZ, CBA, NAB and WBC, the reverse is observed

for BEN, and there appears to be no relation between the conditional durations and

trade signs for MQG. However, similar to the effect of quote revisions on durations, it

appears that big changes in the direction of previous trades on average lengthen fu-

ture durations. Conversely, larger trading volumes and bigger volume changes for all

stocks (except WBC) tend to induce higher future trading intensity, and thus reduce

time durations, which is in agreement with previous studies such as Bauwens and Giot

(2000), Manganelli (2005) and Nowak and Anderson (2014).
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Table 2.7: Estimated W-ACD(2,1) models for banking stocks in eleven RBA announcement weeks in 2013

Panel A: Exogenous-duration W-ACD(2,1) model

Stock θ αT aT1 aT2 bT1 bT2 γT
x0,1 γT

x0,2 γTv,1 γTv,2 ρ1 ρ2 ζ λTop λTbe λTar λTaf Log Lik. Q15,raw Q15,resid

ANZ 0.467 0.013 - - - - - - - - 0.122 -0.108 0.979 -0.002 -0.007 -0.034 0.003 -47118.4 13705.3 2158.5
(0.001) (0.001) - - - - - - - - (0.002) (0.002) (0.001) (0.000) (0.004) (0.007) (0.002) - - -

CBA 0.457 0.017 - - - - - - - - 0.129 -0.107 0.967 -0.001 -0.001 -0.034 0.003 -42621.6 14516.2 1560.0
(0.001) (0.001) - - - - - - - - (0.002) (0.003) (0.003) (0.001) (0.004) (0.010) (0.002) - - -

NAB 0.477 0.011 - - - - - - - - 0.107 -0.093 0.977 -0.002 0.000 -0.024 0.003 -52905.1 10221.7 1452.8
(0.001) (0.001) - - - - - - - - (0.002) (0.002) (0.002) (0.000) (0.004) (0.010) (0.002) - - -

WBC 0.475 0.014 - - - - - - - - 0.109 -0.082 0.949 -0.002 -0.002 -0.066 -0.001 -53651.8 11006.7 1340.3
(0.001) (0.001) - - - - - - - - (0.002) (0.003) (0.005) (0.001) (0.007) (0.011) (0.003) - - -

MQG 0.438 0.017 - - - - - - - - 0.115 -0.094 0.968 -0.002 -0.007 -0.038 0.003 -13480.4 9964.4 1116.1
(0.001) (0.001) - - - - - - - - (0.002) (0.003) (0.002) (0.001) (0.007) (0.010) (0.003) - - -

BEN 0.498 0.012 - - - - - - - - 0.103 -0.082 0.958 -0.001 -0.019 -0.017 0.004 -18768.8 4328.6 683.3
(0.002) (0.001) - - - - - - - - (0.004) (0.004) (0.005) (0.002) (0.014) (0.043) (0.008) - - -

Panel B: Endogenous-duration W-ACD(2,1) model

Stock θ αT aT1 aT2 bT1 bT2 γT
x0,1 γT

x0,2 γTv,1 γTv,2 ρ1 ρ2 ζ λTop λTbe λTar λTaf Log Lik. Q15,raw Q15,resid

ANZ 0.471 0.012 0.002 0.000 0.176 -0.175 0.019 -0.020 -0.011 0.010 0.125 -0.110 0.977 -0.004 -0.006 -0.041 0.002 -45312.1 13705.3 1759.4
(0.001) (0.001) (0.002) (0.002) (0.003) (0.003) (0.008) (0.008) (0.002) (0.002) (0.002) (0.002) (0.002) (0.000) (0.004) (0.008) (0.002) - - -

CBA 0.465 0.019 0.007 -0.007 0.411 -0.408 0.022 -0.020 -0.008 0.005 0.133 -0.101 0.949 -0.004 0.001 -0.051 0.001 -38684.3 14516.2 935.7
(0.001) (0.001) (0.003) (0.003) (0.005) (0.005) (0.007) (0.007) (0.002) (0.002) (0.002) (0.003) (0.005) (0.001) (0.006) (0.012) (0.003) - - -

NAB 0.484 0.010 0.000 0.002 0.208 -0.205 0.024 -0.026 -0.010 0.010 0.113 -0.095 0.971 -0.004 0.000 -0.044 0.003 -50127.6 10221.7 1171.8
(0.001) (0.001) (0.002) (0.002) (0.003) (0.003) (0.008) (0.008) (0.002) (0.002) (0.002) (0.003) (0.003) (0.001) (0.005) (0.011) (0.002) - - -

WBC 0.482 0.016 -0.004 0.006 0.209 -0.210 0.040 -0.035 -0.001 0.001 0.114 -0.078 0.929 -0.003 0.000 -0.091 -0.001 -51071.8 11006.7 928.7
(0.001) (0.001) (0.002) (0.002) (0.003) (0.003) (0.008) (0.008) (0.002) (0.002) (0.002) (0.004) (0.011) (0.001) (0.009) (0.017) (0.005) - - -

MQG 0.448 0.011 0.007 -0.003 0.255 -0.250 -0.015 0.012 -0.030 0.030 0.118 -0.092 0.958 -0.009 -0.007 -0.050 0.001 -10325.2 9964.4 682.5
(0.001) (0.001) (0.002) (0.002) (0.003) (0.003) (0.009) (0.009) (0.003) (0.003) (0.002) (0.003) (0.004) (0.001) (0.008) (0.013) (0.004) - - -

BEN 0.506 0.003 0.001 -0.001 0.054 -0.050 -0.080 0.067 -0.027 0.026 0.109 -0.085 0.953 -0.008 -0.005 -0.077 0.008 -18276.0 4328.6 425.9
(0.002) (0.001) (0.002) (0.002) (0.002) (0.002) (0.018) (0.018) (0.004) (0.004) (0.004) (0.005) (0.006) (0.002) (0.014) (0.043) (0.009) - - -

This table reports the estimates and robust standard errors (in parentheses) from the W-ACD(2,1) models in eleven RBA announcement weeks in 2013. Panel A shows the results for the Dufour and Engle
(2000) exogenous-duration model, in which trade durations are independent of prices and trade attributes. Panel B shows the results for the WACD-VAR model (2.9) with the following W-ACD specification

T̃t = [φtΓ (1 + 1/θ)]εt ,

ln(φt) = αT +
2∑
i=1

aTi rt−i +
2∑
i=1

bTi |rt−i |+
2∑
i=1

γTi xt−i +
2∑
i=1

ρi ln(T̃t−i ) + ζ ln(φt−1) +λTopopent−1 +λTbebeft−1 +λTararot−1 +λTaf aftt−1.

T̃t is the cubic-spline diurnally adjusted duration of the t-th trade. εt
iid∼ Weibull

(
scale = 1

Γ (1+1/θ) , shape = θ
)
. φtΓ (1 + 1/θ)] is the conditional duration mean of the t-th trade. opent is a dummy variable for

the first 30 minutes of the trading day. rt and |rt | are quote revisions and absolute quote revisions, respectively; xt is a column vector of trade signs (x0
t , which equals 1 for buys and -1 for sells) and volumes

(vt , defined as the signed logarithm of the ratio of the share volume to the prevailing quoted depth) of the t-th trade. beft , arot and aftt are indicator variables identifying trades that are executed 5 minutes
before (14:24:30-14:29:30), one minute around (14:29:30-14:30:30), and 10 minutes after (14:30:30-14:40:30) the RBA announcements. Q15,raw (Q15,resid) is the Ljung-Box statistic associated with the null
hypothesis of no autocorrelation up to order 15 in the raw (residual) diurnally adjusted duration series. Bold format denotes statistical significance at a 5% level.
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Chapter 2. Time and the price impact around interest rate announcements

There is evidence that the RBA interest rate announcements have significant impact

on trade durations. In particular, trades in stocks other than BEN that occur within one

minute around the announcement lead to higher future trading intensity, and hence

are followed by trades that have shorter durations. This is in line with the findings of

Nowak and Anderson (2014) that airline stocks in the U.S. are more frequently traded

around the release of macroeconomic news. Meanwhile, the insignificant coefficients

of beft−1 and aftt−1, which respectively signify 5 minutes before and 10 minutes after

the interest rate release, suggest that there appears to be no information leak prior to

the announcement and the information content of the news release is quickly absorbed

within one minute. There is also evidence that trades performed at the market open

tend to have shorter conditional durations than those executed at other times, even

though trade durations have been diurnally adjusted using a cubic spline. Thus, it

seems that intraday periodicities have not been totally removed by the spline. In addi-

tion, although most of the serial autocorrelation associated with adjusted trade dura-

tions is explained by the conditional duration equation, the residuals of the model are

still strongly autocorrelated. A deeper lag structure may be required.

2.4.2 Impulse response analysis

We now examine how prices evolve if there are shocks to the trade, duration, and/or

return equation(s) of the system at an event time t. Conditioning on all information

up to the transaction time t−1, It−1, the best guess of the value of the quote revision h

periods after unexpected shocks to trade attributes, trade durations, and/or returns at

time t is its conditional expectation E (rt+h|εt = ε,It−1) given the shock vector εt, which

is (urt ,u
x
t
′,uTt )′ if the joint system is Endo-VAR and (urt ,u

x
t
′,εt)′ if the joint system is

WACD-VAR. However, if there is no shock at time t, the quote revision h periods later

is expected to be E (rt+h|It−1). The impact of the unanticipated trade, duration, and/or

return shocks at t on quote revisions after h periods is calculated as the difference

between the two conditional expectations, denoted by Ir(·), when all other current and
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future shocks (for rt, xt and Tt) are integrated out. That is,

Ir(h,ε,It−1) = E (rt+h|εt = ε,It−1)−E (rt+h|It−1) , (2.10)

defines a generalized impulse response function (GIRF) for quote revisions rt which was

initially proposed by Koop et al. (1996). GIRFs generated by a multivariate system

typically depend on the past history It−1 before the system is shocked and the size and

sign of the shocks hitting the system at time t (Koop et al., 1996, Pesaran and Shin,

1998, Lanne and Nyberg, 2016). Since quote revisions and trade attributes are nonlin-

early linked to time durations via either the Endo-VAR or the WACD-VAR system, the

impulse response function specified in (2.10) is also nonlinear. To calculate Ir(·), we

follow Koop et al. (1996) and Dufour and Engle (2000) to simulate all possible trajec-

tories for (rt+k ,xt+k ,Tt+k), k = 0,1, ...,h that share the same initial information set, It−1,

with and without the shock(s) at t. The impulse response Ir(·) is computed by averag-

ing the realizations obtained from all trajectories. Steps to compute Ir(·) are described

in more details in Appendix A.

In the subsequent analysis, we will examine how prices of each stock evolve under

the following two scenarios: (1) there is an unanticipated purchase (i.e. sign shock =

+1, while other shocks including return, volume and duration shocks are integrated

out); and (2) there is an unanticipated purchase with a one standard deviation dura-

tion shock. We consider both positive and negative duration shocks in the latter sce-

nario.14,15 In order to see how the release of RBA interest rate decisions affects prices,

we shock the system on days with and without the monetary policy announcements.

Since the GIRFs of a nonlinear system are dependent on the state of the system at time

t − 1 before being shocked (Koop et al., 1996, Pesaran and Shin, 1998, Lanne and Ny-

berg, 2016) and there are many RBA and non-RBA announcement days in the current

sample, we shock the joint system of quote revisions, trade attributes and trade du-

rations conditioning on a hypothetical average RBA announcement time (RBAAT) and

14Since the Endo-VAR system assumes an additive error model for durations, while the WACD-VAR
framework differs and specifies durations with a multiplicative error model, a one standard deviation
positive (negative) duration shock is defined as σ̂TEndo−VAR (−σ̂TEndo−VAR) for the former system, but as
σ̂TWACD−VAR (1/σ̂TWACD−VAR) for the latter.

15These two scenarios enable us to see how an unexpected buy affects prices if it arrives as quickly as
expected, slower than expected, or more quickly than expected.
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non-RBAAT histories. A hypothetical average RBAAT (non-RBAAT) history for each

stock is defined as an equally weighted average of all histories right before the interest

rate release time, 14:30:00, on the eleven RBA (forty-three non-RBA) announcement

days in the current sample for that stock. Conditioning on the history and shock vec-

tors, the simulation is conducted for h = 300 steps into the future with N = 10,000

repetitions.

The cumulative quote changes for stock NAB following an unanticipated purchase

with either (i) no duration shock, (ii) a positive one standard deviation duration shock,

or (iii) a negative one standard deviation duration shock are plotted in Panels (a), (b),

and (c) of Figure 2.1, respectively.16 In addition to reporting the cumulative price im-

pact produced by the Endo-VAR and WACD-VAR systems, we also chart those for the

augmented Dufour and Engle (2000) exogenous-duration VAR model (i.e. with vol-

ume incorporated) for comparison.17 These impulse responses are pictured in both

transaction time and calendar time starting from the conditioning trade that occurs

immediately before 14:30:00 of the average RBAAT or non-RBAAT history. To convert

the cumulative price impact from transaction time to calendar time, we follow Dufour

and Engle (2000) to exploit the simulated trade duration series under the “shock” sce-

nario (discussed in Points (A.2) and (A.3) in the Appendix A) to sample the cumulative

quote changes every five seconds, and then we compute averages.

Panel (a) of Figure 2.1 reveals that, for all models, after an unexpected purchase

16We employ the estimated joint system using the whole sample of eleven RBA announcement weeks
in all simulation experiments, and simply plot the mean responses in keeping with other related liter-
ature. Caution is required when interpreting these responses, given that the 5%-95% percentile bands
of simulated responses often include zero.

17The original Dufour and Engle (2000) VAR framework contains only two equations for quote re-
visions and trade signs and does not include RBA dummy variables. However, an augmented Dufour
and Engle (2000) framework that incorporates another equation for trading volumes as well as the RBA
dummy variables is employed. By allowing all three systems to have comparable trade attribute infor-
mation (i.e. sign and size), the differences amongst the cumulative price impacts obtained from these
systems can be attributed to the differences in their treatments of durations and/or to the effects of RBA
announcements. The augmented Dufour and Engle (2000) model is given by

rt = αr +
5∑
i=1

ari rt−i +λrStxt +
5∑
i=0

[
γri + δri ln(Tt−i )

]
xt−i +urt ,

xt = αx +
5∑
i=1

axi rt−i +λxSt−1xt−1 +
5∑
i=1

[
γxi + δxi ln(Tt−i )

]
xt−i +uxt ,

T̃t = Tt/ϕ(t) = [φtΓ (1 + 1/θ)]εt ,
ln(φt) = αT + ρ1 ln(T̃t−1) + ρ2 ln(T̃t−2) + ζ1 ln(φt−1) +λTDt−1.
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prices initially increase considerably and then taper off relatively quickly after about

10 transactions or 1 minute. As expected, prices respond more strongly to the unan-

ticipated buy at around the announcement time on an average RBA announcement

day than at the equivalent time on days when there is no interest rate release. In

particular, while the unanticipated purchase performed around 14:30:00 in the aver-

age non-RBAAT history raises prices of stock NAB by about 1.5 bps in the long run,

a twice-as-large permanent price increase (of about 2.7 bps) results from the same

trade in the average RBAAT history, which suggests that trades at around the RBA an-

nouncement time are more informative about the price formation process. The result

is consistent with the fact that there is higher trading intensity (i.e. shorter trade dura-

tion) around the release of the monetary policy news at 14:30:00 on the RBA days than

around the corresponding time window on the non-RBA days (see Table 2.1). Since a

higher trading rate or shorter duration implies a higher probability of informed traders

in the market (Easley and O’Hara, 1992, Dufour and Engle, 2000), trades around RBA

announcements have larger impact on prices. For each average history, there are neg-

ligible differences in the cumulative quote revisions produced by three models that

augment the information of trade arrival times, namely the Endo-VAR, WACD-VAR and

extended Dufour and Engle (2000) models. Given that there is no duration shock to

the systems and the main differences amongst these three models lie in their treatment

of durations, this result is not surprising.
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Figure 2.1: Impulse response functions for quote revisions of stock NAB
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(b) A positive one standard deviation duration shock
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(c) A negative one standard deviation duration shock

Note: This figure plots the cumulative impulse response of quote revisions after an unexpected buy with either (i) no duration

shock (Panel (a)), (ii) a positive one standard deviation duration shock (Panel (b)), or (iii) a negative one standard deviation

duration shock (Panel (c)). Conditioning on a trade that occurred right before 14:30:00 of an average day on which the RBA

made or did not make announcements (i.e. conditioning on the average RBAAT or non-RBAAT history), we simulate and compute

10,000 impulse response functions for 300 transactions into the future. Averages of cumulative quote changes at each step are

calculated and plotted in both transaction time (left graphs) and calendar time (right graphs, for the first 4 minutes in Panel (a))

since the conditioning transaction (i.e. t = −1). Cumulative price impacts obtained from the Endo-VAR model (2.8) and WACD-

VAR model (2.9) are pictured. We also chart the cumulative quote changes for the augmented Dufour and Engle (2000) (DE)

exogenous-duration VAR model (i.e. with volume incorporated) for comparison.
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Chapter 2. Time and the price impact around interest rate announcements

The impact on prices when the aforementioned joint systems are disturbed with

a duration shock from an unexpected purchase is depicted in Panels (b) and (c) of

Figure 2.1. Overall, the comparison of the cumulative quote revisions for stock NAB

conditioning on the average RBAAT and non-RBAAT histories remains qualitatively

unchanged in the sense that an unexpected buy with a duration shock that occurs right

before the monetary policy release conveys more information about prices and hence

has higher price impact than does a comparable buy transacted on a no-news day. In

addition, there are almost no changes to the shape and level of the cumulative GIRFs

for quote revisions produced by the three time-augmented VAR systems based on the

average non-RBAAT history, either with or without the duration shock. It appears that

the informativeness of trade durations about prices is negligible for trades executed at

around 14:30:00 on non-RBA days, during which the market is relatively tranquil (see

Table 2.1). This lends support to the Easley and O’Hara (1992) theory which demon-

strates that long trade durations neither imply the appearance of informed traders nor

news, and hence they have little impact on prices.

Interestingly, conditioning on the average RBAAT history, the cumulative price im-

pact functions of an unexpected purchase with a duration shock implied by the aug-

mented Dufour and Engle (2000) model are almost the same as those under no dura-

tion shock. Although it highlights a significant difference in the response of prices to

an unanticipated trade that comes from different trading histories (e.g. active versus

inactive histories), the augmented Dufour and Engle (2000) model seems to suggest

a minimal role for duration shocks in explaining prices, once the history before the

shocks has been taken into account. This might be a consequence of the exogeneity

assumption of trade durations imposed by the model.

When the exogeneity of durations is relaxed, we observe some differences in the

shape and/or level of the cumulative quote revisions around the RBA announcements.

In particular, when the duration shock is positive and an unexpected trade arrives

slower than expected, the two endogenous-duration models (i.e. Endo-VAR and WACD-

VAR) show an initial surge in the cumulative price impact, followed by a gradual de-

cline to the equilibrium level (which is about 0.9 bps lower than the steady state when
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Chapter 2. Time and the price impact around interest rate announcements

there is no duration shock) after about 60 transactions or about 11 minutes. When

the duration shock is negative and an unanticipated trade occurs more quickly than

expected, prices adjust more strongly according to the Endo-VAR model, with the ac-

cumulation of quote revisions of roughly 3.4 bps in the long run (approximately 0.7

bps higher than that under no duration shock). Surprisingly, such a large price in-

crease is not observed for the WACD-VAR system. Generally, the result suggests an

overall negative relationship between trade durations and quote revisions, even after

controlling for the history: given the average RBAAT history, trades appear to possess

a richer (poorer) information content about prices when they arrive sooner (later) than

expected, which is in conformance with Easley and O’Hara’s (1992) theory. However,

this result is obtained only when trade durations are endogenously determined.

The cumulative impulse response functions of quote revisions to different shock

scenarios for the remaining banking stocks are plotted in Figure 2.2. Consistent with

the conventional wisdom, Figure 2.2 shows that the more liquid a stock, the smaller the

price impact of a trade (compare the scales on the vertical axis of the plots). In general,

the long-run price impact functions for other banking stocks exhibit qualitatively sim-

ilar features to those for stock NAB. Specifically, the cumulative quote changes of an

unanticipated purchase executed around the RBA announcements is generally higher

than that of a comparable trade occurring at a similar time on a no-news day (except

for stock WBC). Moreover, when there is no duration shock, the differences in the long-

run price impact of an unanticipated purchase produced by the time-augmented VAR

models (i.e. the Endo-VAR, WACD-VAR and extended Dufour and Engle (2000) mod-

els) conditioning on the same history are negligible, except for stock BEN (see the left

plots). However, when an unexpected buy is accompanied by a one standard deviation

duration shock, prices typically respond less (more) strongly (i.e. the long run price

impact is lower (higher)) when the shock to durations is positive (negative) than do

they without the duration shock, except for stock MQG (see the middle (right) plots).

This observation is only obtained when one conditions on an average history for an

RBA announcement day and utilizes a joint specification that allows for the endogene-
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ity of trade durations such as the Endo-VAR or WACD-VAR model.18

Overall, the impulse response analysis for quote revisions confirms the previous

findings in the literature that the time of trade arrivals conveys important informa-

tion about prices (Diamond and Verrecchia, 1987, Easley and O’Hara, 1992) and that

trades have a larger price impact when the time durations between trades are shorter

(Easley and O’Hara, 1992, Dufour and Engle, 2000). In addition, we find that trades

transacted around the release of monetary policy news possess more important in-

formation about prices and have larger price impacts than do comparable trades on

non-RBA days. If there is no duration shock to the system, the cumulative price im-

pact of an unanticipated trade is almost the same, regardless of whether or not trade

durations are endogenously modeled. However, when the unexpected trade is accom-

panied by a duration shock, the long-run price impact of the trade whose duration is

treated as exogenous is quite different, in terms of shape and/or level, to that when

its duration is endogenously determined. In particular, after controlling for the trad-

ing history prior to the interest rate announcements, the permanent price impact of a

trade tends to be higher (lower) when there is a negative (positive) duration shock if

trade durations are endogenous, and yet it is almost the same if durations are assumed

to be exogenous.

18 Note, however, that a negative duration shock leading to higher long-run price impact is only
obtained using the Endo-VAR model.
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Figure 2.2: Impulse response functions for quote revisions of banking stocks
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(c) WBC
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(d) MQG

(Figure continued on next page)
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Figure 2.2 – continued
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(e) BEN

Note: This figure plots the cumulative impulse response of quote revisions after an unexpected buy with either (i) no duration

shock (left plots), (ii) a positive one standard deviation duration shock (middle plots), or (iii) a negative one standard deviation

duration shock (right plots) for 5 Australian banking stocks, namely ANZ, CBA, WBC, MQG and BEN. Conditioning on a trade

that occurred right before 14:30:00 of an average day on which the RBA made or did not make announcements (i.e. conditioning

on the average RBAAT or non-RBAAT history), we simulate and compute 10,000 impulse response functions for 300 transactions

into the future. Averages of cumulative quote changes at each step are calculated and plotted in transaction time since the

conditioning transaction (i.e. t = −1). Cumulative price impacts obtained from the Endo-VAR model (2.8) and WACD-VAR model

(2.9) are pictured. We also chart the cumulative quote changes for the augmented Dufour and Engle (2000) (DE) exogenous-

duration VAR model (i.e. with volume incorporated) for comparison.
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2.4.3 Forecast error variance decomposition analysis

The previous impulse response analysis demonstrates that both trade durations and

trade attributes convey important information about prices to the market. However,

the impulse response methodology does not directly estimate the relative importance

of each trade attribute in the overall price formation process. We now quantify their

relative importance, which helps answer the question of whether a trade duration con-

tributes more to the process of price formation than other trade attributes by decom-

posing the forecast error variance of quote revisions into portions that are accounted

for by innovations in each trade characteristic, including its duration.

Forecast error variance decomposition (FEVD) of a weakly stationary linear VAR

model is often computed from an infinite-order vector moving average (VMA) repre-

sentation of the model with orthogonal shocks, assuming that suitable identification

restrictions to recover the structural shocks from the reduced-form errors are avail-

able. However, since our Endo-VAR and WACD-VAR models, as well as the original and

volume-augmented Dufour and Engle (2000) models, are nonlinear multivariate sys-

tems for which a VMA equivalent does not exist, the traditional orthogonalized FEVD

cannot be applied. Instead, we employ the generalized FEVD (GFEVD) method pro-

posed by Lanne and Nyberg (2016) that mimics the traditional orthogonalized FEVD

by replacing the orthogonal impulse response functions with the GIRFs that are calcu-

lated based on the notion that only one equation of the multivariate system is shocked

at a time. By construction and similar to the traditional orthogonalized FEVD, Lanne

and Nyberg’s (2016) GFEVD features a nice property that the proportions of the fore-

cast error variance of the h-period forecast of a variable that are accounted for by in-

novations in all variables in the system always sum to unity, facilitating the economic

interpretation.19 Conditioning on a history It−1, Lanne and Nyberg (2016) define the

contribution of shocks to variable i to the forecast error variance of the h-period fore-

19Lanne and Nyberg (2016) modify the original GFEVD proposed by Pesaran and Shin (1998) (which
was developed for a linear Gaussian VAR model) to address a shortcoming of the latter that is that the
forecast error variance proportions generally do not add up to 1, as a consequence of the potential con-
temporaneous correlatedness amongst the reduced-formed innovations. Moreover, Lanne and Nyberg’s
(2016) GFEVD can be applied to any linear or nonlinear, Gaussian or non-Gaussian model for which
GIRFs can be computed.
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cast of variable j, denoted by λi→j,It−1
(h), in a K-dimensional multivariate system of

the form yt = G(yt−1, yt−2, · · · , yt−p;µ)+ηt, whereG(·) is some linear or nonlinear function

characterized by the parameter vector µ, as

λi→j,It−1
(h) =

∑h
k=0 Ij(k,ηi,t = δi ,It−1)2∑K

i=1
∑h
k=0 Ij(k,ηi,t = δi ,It−1)2

, i, j = 1,2, · · · ,K, (2.11)

and Ij(k,ηi,t = δi ,It−1) = E
(
yj,t+k |ηi,t = δi ,It−1

)
− E

(
yj,t+k |It−1

)
, k = 0,1,2, · · · ,h, is the

GIRF of the j-th variable k periods after a shock at time t of size δi to the i-th vari-

able, given the past history It−1, where all other contemporaneous and future shocks

are integrated out; and K is the number of variables in the system. The GFEVD is

often calculated by averaging λi→j,It−1
(h) over shocks δi that are bootstrapped from

the residuals, and over all histories It−1. However, if interest is drawn to a particular

subset of shocks and/or histories, the conditional GFEVD can also be computed.

We note that Lanne and Nyberg’s (2016) GFEVD is different from the efficient price

variance decomposition (Hasbrouck, 1991b) and the information share methodology

(Hasbrouck, 1995), which are widely used in the microstructure literature to compare

the information contributions of different trader groups or different markets to price

discovery (e.g. Barclay et al., 2003, Hendershott and Riordan, 2011, Benos and Sagade,

2016, Brogaard et al., 2018). In both Hasbrouck’s methods, the observed price or mid-

point is written as the sum of an unobserved random walk (which is equated with

the permanent efficient price) and an unobserved stationary component (considered

as transient noise). The total price discovery is defined as the variance of the efficient

price innovations, whereas the transient disturbance, which might be correlated with

the efficient price, is effectively ignored. Hasbrouck’s methodologies rely on a critical

assumption that there exists a linear stationary VAR that links price changes or re-

turns with other trade-related information (Hasbrouck, 1991b) or a linear vector error

correction model (VCEM) that connects different price series closely related to a single

security (Hasbrouck, 1995). Consequently, Hasbrouck’s price discovery decomposi-

tion can be straightforwardly calculated from a VMA equivalent of the linear VAR or

VECM. However, if the VAR or VECM is nonlinear such that its VMA representation

cannot be obtained, it is not clear how Hasbrouck’s price discovery decomposition can
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be computed.

In contrast, GFEVD decomposes the forecast error variance (FEV) of a variable,

such as returns, into portions that are accounted for by innovations in each variable

of the system. Since returns are defined as changes in prices, the FEV of returns ef-

fectively captures the FEV of both the efficient price and transient noise, and is con-

sequently different from the variance of the efficient price innovations. As Lanne and

Nyberg’s (2016) GFEVD can be computed for nonlinear VARs while Hasbrouck’s mea-

sures are inapplicable in our context, we employ the former in the subsequent analysis.

However, in order to prevent any confusion with the price discovery literature we in-

terpret a GFEVD result as the relative informativeness or importance of a variable (e.g.

durations) to another (e.g. returns), as in the traditional FEVD literature, and deliber-

ately avoid saying “the contribution to the price discovery process”.

Steps to compute the GFEVD, conditioning on the average RBAAT and non-RBAAT

histories, for various multivariate systems discussed in this chapter are detailed in Ap-

pendix B. The GFEVD results of quote revisions, conditioning on the average RBAAT

history (up to h = 50 future transactions) and the average non-RBAAT history (up to

h = 20), for six Australian banking stocks for the Endo-VAR and WACD-VAR models

are reported in Tables 2.8 and 2.9, respectively. Each entry in these tables, reported in

%, is computed according to equation (2.11) by averaging over M = 1,000 vectors of

shocks bootstrapped from the estimated residuals; for each shock vector, the GIRF Ij(·)

in equation (2.11) is calculated from N = 1,000 simulated repetitions. We also com-

pute the corresponding results for the augmented Dufour-Engle (i.e. with volume) and

original Dufour-Engle (without volume) models for comparison.20

20The specification of the augmented Dufour-Engle model is shown in Footnote 17. Meanwhile, the
original Dufour-Engle model, which does not include trading volumes and RBA dummy variables, is
given by

rt = αr +
5∑
i=1

ari rt−i +λropentx
0
t +

5∑
i=0

[
γri + δri ln(Tt−i )

]
x0
t−i +urt ,

x0
t = αx +

5∑
i=1

axi rt−i +λxopent−1x
0
t−1 +

5∑
i=1

[
γxi + δxi ln(Tt−i )

]
x0
t−i +uxt ,

T̃t = Tt/ϕ(t) = [φtΓ (1 + 1/θ)]εt ,
ln(φt) = αT + ρ1 ln(T̃t−1) + ρ2 ln(T̃t−2) + ζ1 ln(φt−1) +λT opent−1.

We employ a logarithmic WACD model, rather than a WACD model as in Dufour and Engle (2000), to
ensure the positivity of the conditional durations.
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Table 2.8: Generalized Forecast Error Variance Decomposition for Returns conditioning on the average RBAAT history

Stock ANZ CBA NAB WBC MQG BEN

Response returns returns returns returns returns returns

Impulse ret sign vol dur ret sign vol dur ret sign vol dur ret sign vol dur ret sign vol dur ret sign vol dur

Horizon

A: Endo-VAR model
0 33.18 43.08 23.65 0.10 30.89 49.51 19.11 0.48 27.16 46.71 25.75 0.38 40.99 35.85 22.52 0.64 31.20 52.49 15.24 1.07 30.20 40.14 25.01 4.66
1 33.93 41.49 24.48 0.11 31.07 48.46 19.90 0.57 28.82 45.05 25.58 0.55 40.69 34.34 23.84 1.14 31.14 51.57 15.48 1.82 31.01 38.25 25.70 5.04
2 33.96 41.46 24.48 0.11 31.02 48.47 19.85 0.66 28.82 44.97 25.55 0.67 40.53 34.10 23.76 1.61 30.94 51.33 15.33 2.40 30.89 38.20 25.53 5.38
3 33.96 41.46 24.47 0.11 30.99 48.47 19.82 0.73 28.79 44.93 25.52 0.77 40.38 33.92 23.68 2.01 30.80 51.02 15.22 2.96 30.86 38.11 25.49 5.54

10 33.94 41.43 24.46 0.18 30.89 48.25 19.74 1.13 28.64 44.61 25.35 1.40 39.58 32.88 23.18 4.35 30.13 49.52 14.76 5.60 30.81 38.06 25.43 5.70
20 33.93 41.41 24.45 0.21 30.84 48.12 19.70 1.34 28.55 44.44 25.26 1.75 38.91 32.01 22.73 6.35 29.67 48.51 14.44 7.38 30.80 38.05 25.43 5.71
40 33.93 41.41 24.45 0.22 30.82 48.10 19.69 1.39 28.53 44.40 25.25 1.82 38.58 31.57 22.49 7.36 29.50 48.14 14.32 8.04 30.80 38.05 25.43 5.72
45 33.93 41.41 24.45 0.22 30.82 48.10 19.69 1.39 28.53 44.40 25.25 1.82 38.58 31.55 22.48 7.39 29.50 48.13 14.32 8.05 30.80 38.05 25.43 5.72
50 33.93 41.41 24.45 0.22 30.82 48.10 19.69 1.39 28.53 44.40 25.25 1.82 38.57 31.55 22.48 7.40 29.50 48.13 14.32 8.05 30.80 38.05 25.43 5.72

B: WACD-VAR model
0 33.25 42.19 24.55 0.01 30.36 49.02 20.59 0.04 28.09 47.78 24.08 0.05 41.07 36.32 22.54 0.07 31.49 54.35 13.97 0.20 27.84 44.25 25.94 1.96
1 33.97 40.66 25.36 0.01 30.57 47.95 21.43 0.05 29.77 46.24 23.90 0.09 40.96 34.99 23.94 0.11 31.57 53.82 14.26 0.35 28.86 41.53 27.36 2.25
2 34.01 40.63 25.35 0.01 30.55 47.99 21.40 0.06 29.79 46.19 23.90 0.11 40.96 34.95 23.95 0.14 31.49 53.86 14.19 0.47 28.76 41.57 27.18 2.49
3 34.01 40.63 25.35 0.01 30.53 48.02 21.38 0.07 29.78 46.19 23.89 0.14 40.94 34.94 23.95 0.17 31.45 53.80 14.17 0.59 28.74 41.48 27.15 2.63

10 34.00 40.62 25.35 0.03 30.50 48.01 21.36 0.13 29.73 46.09 23.85 0.33 40.82 34.81 23.89 0.48 31.32 53.52 14.08 1.09 28.69 41.42 27.09 2.81
20 34.00 40.62 25.35 0.04 30.49 47.98 21.35 0.19 29.70 46.04 23.83 0.42 40.69 34.63 23.82 0.86 31.28 53.42 14.05 1.25 28.69 41.41 27.08 2.82
40 34.00 40.61 25.35 0.04 30.48 47.96 21.34 0.21 29.70 46.03 23.83 0.44 40.60 34.48 23.76 1.16 31.27 53.41 14.05 1.28 28.69 41.41 27.08 2.82
45 34.00 40.61 25.35 0.04 30.48 47.96 21.34 0.22 29.70 46.03 23.83 0.44 40.59 34.47 23.75 1.19 31.27 53.40 14.05 1.28 28.69 41.41 27.08 2.83
50 34.00 40.61 25.34 0.04 30.48 47.96 21.34 0.22 29.70 46.03 23.83 0.44 40.58 34.46 23.75 1.21 31.27 53.40 14.05 1.28 28.69 41.41 27.08 2.83

C: Augmented Dufour-Engle model
0 33.98 40.61 25.41 0.00 29.99 48.97 21.03 0.02 29.62 46.88 23.51 0.00 42.21 34.70 23.09 0.01 32.49 51.31 16.20 0.00 26.32 44.25 29.39 0.04
1 34.68 39.10 26.21 0.00 30.16 47.87 21.95 0.02 31.37 45.24 23.39 0.00 42.04 33.37 24.57 0.01 32.61 50.87 16.51 0.00 27.57 41.61 30.76 0.06
2 34.72 39.07 26.21 0.00 30.14 47.92 21.92 0.02 31.39 45.20 23.40 0.00 42.04 33.35 24.60 0.01 32.55 50.98 16.46 0.01 27.55 41.69 30.68 0.08
3 34.71 39.07 26.21 0.00 30.12 47.96 21.91 0.02 31.39 45.21 23.39 0.00 42.04 33.35 24.60 0.01 32.54 51.00 16.45 0.01 27.55 41.67 30.69 0.09

10 34.71 39.07 26.21 0.01 30.11 47.97 21.89 0.03 31.39 45.21 23.39 0.01 42.04 33.35 24.59 0.01 32.53 51.01 16.44 0.02 27.54 41.67 30.66 0.13
20 34.71 39.07 26.21 0.01 30.11 47.97 21.89 0.04 31.39 45.20 23.39 0.02 42.04 33.35 24.59 0.02 32.53 51.00 16.44 0.03 27.54 41.67 30.66 0.13
40 34.71 39.07 26.21 0.01 30.11 47.96 21.89 0.04 31.38 45.20 23.39 0.03 42.04 33.35 24.59 0.02 32.53 51.00 16.44 0.03 27.54 41.67 30.66 0.13
45 34.71 39.07 26.21 0.01 30.11 47.96 21.89 0.05 31.38 45.20 23.39 0.03 42.04 33.35 24.59 0.02 32.53 51.00 16.44 0.03 27.54 41.67 30.66 0.13
50 34.71 39.07 26.21 0.01 30.10 47.96 21.89 0.05 31.38 45.20 23.39 0.03 42.04 33.35 24.59 0.02 32.53 51.00 16.44 0.03 27.54 41.67 30.66 0.13

D: Original Dufour-Engle model
0 75.75 24.23 - 0.02 71.22 28.77 - 0.01 76.84 23.15 - 0.01 73.28 26.68 - 0.04 68.27 31.73 - 0.00 74.64 25.36 - 0.00
1 75.89 24.09 - 0.02 70.78 29.21 - 0.01 76.98 23.00 - 0.01 73.31 26.65 - 0.04 67.92 32.08 - 0.00 75.09 24.91 - 0.00
2 75.83 24.15 - 0.02 70.64 29.35 - 0.01 76.92 23.07 - 0.01 73.23 26.74 - 0.04 67.82 32.18 - 0.00 75.02 24.97 - 0.00
3 75.79 24.19 - 0.02 70.58 29.41 - 0.01 76.89 23.10 - 0.01 73.21 26.75 - 0.04 67.82 32.18 - 0.00 75.02 24.98 - 0.00

10 75.78 24.20 - 0.02 70.56 29.43 - 0.01 76.88 23.11 - 0.01 73.19 26.77 - 0.04 67.81 32.19 - 0.00 74.98 25.01 - 0.00
20 75.78 24.20 - 0.02 70.56 29.43 - 0.01 76.88 23.11 - 0.01 73.19 26.77 - 0.04 67.81 32.19 - 0.00 74.98 25.02 - 0.01
40 75.78 24.20 - 0.02 70.56 29.43 - 0.01 76.88 23.11 - 0.01 73.19 26.77 - 0.04 67.81 32.19 - 0.00 74.98 25.02 - 0.01
45 75.78 24.20 - 0.02 70.56 29.43 - 0.01 76.88 23.11 - 0.01 73.19 26.77 - 0.04 67.81 32.19 - 0.00 74.98 25.02 - 0.01
50 75.78 24.20 - 0.02 70.56 29.43 - 0.01 76.88 23.11 - 0.01 73.19 26.77 - 0.04 67.81 32.19 - 0.00 74.98 25.02 - 0.01

This table reports the generalized forecast error variance decomposition (GFEVD) for returns, conditioning on the average RBAAT history, for six Australian banking stocks in 2013 for 4 models, namely
the Endo-VAR, WACD-VAR, Augmented Dufour-Engle (i.e. with volume), and Original Dufour-Engle (without volume) models. Following the step-by-step procedure described in Appendix B, each entry in
the table, reported in %, is calculated according to Equation (2.11), by averaging over M = 1,000 vectors of shocks bootstrapped from the residuals of the corresponding estimated models. For each vector
of shocks, the GIRF Ij (·) in Equation (2.11) is based on N = 1,000 simulated realizations. The average RBAAT history is defined as the average of all trading histories right before 14:30:00 on each of eleven
RBA days in 2013.

63



C
hap

ter
2.

T
im

e
and

the
p

rice
im

p
act

arou
nd

interest
rate

annou
ncem

ents
Table 2.9: Generalized Forecast Error Variance Decomposition for Returns conditioning on the average non-RBAAT history

Stock ANZ CBA NAB WBC MQG BEN

Response returns returns returns returns returns returns

Impulse ret sign vol dur ret sign vol dur ret sign vol dur ret sign vol dur ret sign vol dur ret sign vol dur

Horizon

A: Endo-VAR model
0 46.94 37.64 15.42 0.00 45.89 40.39 13.71 0.01 51.09 34.87 14.04 0.00 49.68 36.28 14.03 0.00 46.16 40.66 13.18 0.00 42.68 36.56 20.76 0.00
1 47.33 37.00 15.67 0.01 45.77 40.59 13.62 0.02 51.42 34.38 14.19 0.01 49.94 35.89 14.15 0.01 46.06 40.82 13.11 0.02 43.22 35.59 21.17 0.02
2 47.34 36.98 15.67 0.01 45.70 40.69 13.59 0.02 51.43 34.37 14.18 0.01 49.93 35.92 14.14 0.01 46.00 40.91 13.08 0.02 43.22 35.61 21.16 0.02
3 47.34 36.99 15.67 0.01 45.66 40.75 13.57 0.02 51.41 34.40 14.17 0.02 49.92 35.93 14.14 0.01 46.00 40.91 13.08 0.02 43.22 35.59 21.17 0.02

10 47.33 36.97 15.66 0.04 45.65 40.76 13.57 0.02 51.40 34.40 14.17 0.03 49.91 35.93 14.13 0.03 45.99 40.90 13.08 0.03 43.19 35.60 21.15 0.06
15 47.33 36.97 15.66 0.04 45.65 40.76 13.57 0.02 51.40 34.40 14.17 0.03 49.91 35.93 14.13 0.03 45.99 40.90 13.08 0.03 43.19 35.60 21.15 0.06
20 47.33 36.97 15.66 0.04 45.65 40.76 13.57 0.02 51.40 34.40 14.17 0.03 49.91 35.93 14.13 0.03 45.99 40.90 13.08 0.03 43.19 35.60 21.15 0.06

B: WACD-VAR model
0 46.83 37.09 16.08 0.00 43.84 40.92 15.24 0.01 51.43 34.67 13.90 0.00 50.09 35.40 14.50 0.00 46.55 41.14 12.31 0.00 41.16 36.63 22.21 0.00
1 47.23 36.44 16.33 0.00 43.72 41.12 15.15 0.01 51.76 34.20 14.05 0.00 50.37 34.99 14.63 0.01 46.45 41.31 12.24 0.01 41.71 35.62 22.66 0.01
2 47.25 36.42 16.34 0.00 43.66 41.21 15.11 0.01 51.76 34.19 14.05 0.00 50.36 35.01 14.63 0.01 46.39 41.39 12.21 0.01 41.71 35.64 22.65 0.01
3 47.24 36.42 16.33 0.00 43.63 41.27 15.10 0.01 51.74 34.21 14.04 0.01 50.35 35.02 14.62 0.01 46.39 41.39 12.21 0.01 41.71 35.62 22.66 0.01

10 47.24 36.42 16.33 0.02 43.62 41.28 15.09 0.01 51.74 34.22 14.03 0.01 50.34 35.03 14.62 0.02 46.39 41.39 12.21 0.01 41.69 35.64 22.64 0.03
15 47.24 36.42 16.33 0.02 43.62 41.28 15.09 0.01 51.74 34.22 14.03 0.01 50.34 35.03 14.62 0.02 46.39 41.39 12.21 0.01 41.69 35.64 22.64 0.03
20 47.24 36.42 16.33 0.02 43.62 41.28 15.09 0.01 51.74 34.22 14.03 0.01 50.34 35.03 14.62 0.02 46.39 41.39 12.21 0.01 41.69 35.64 22.64 0.03

C: Augmented Dufour-Engle model
0 47.44 37.29 15.27 0.00 46.04 39.92 14.05 0.01 51.01 35.31 13.68 0.00 47.27 37.57 15.16 0.00 44.38 42.64 12.98 0.00 42.60 36.83 20.57 0.00
1 47.83 36.65 15.52 0.00 45.93 40.08 13.99 0.01 51.36 34.80 13.84 0.00 47.54 37.15 15.31 0.00 44.29 42.78 12.93 0.00 43.15 35.84 21.01 0.00
2 47.85 36.63 15.53 0.00 45.88 40.16 13.96 0.01 51.37 34.79 13.84 0.00 47.52 37.17 15.30 0.00 44.24 42.86 12.90 0.00 43.15 35.85 21.00 0.00
3 47.84 36.63 15.52 0.00 45.85 40.21 13.94 0.01 51.35 34.82 13.83 0.00 47.52 37.18 15.30 0.00 44.24 42.86 12.90 0.00 43.15 35.84 21.01 0.00

10 47.84 36.63 15.52 0.00 45.84 40.22 13.94 0.01 51.35 34.82 13.83 0.00 47.51 37.19 15.30 0.00 44.23 42.86 12.90 0.00 43.14 35.87 21.00 0.00
15 47.84 36.63 15.52 0.00 45.84 40.22 13.94 0.01 51.35 34.82 13.83 0.00 47.51 37.19 15.30 0.00 44.23 42.86 12.90 0.00 43.14 35.87 21.00 0.00
20 47.84 36.63 15.52 0.00 45.84 40.22 13.94 0.01 51.35 34.82 13.83 0.00 47.51 37.19 15.30 0.00 44.23 42.86 12.90 0.00 43.14 35.87 21.00 0.00

D: Original Dufour-Engle model
0 77.19 22.81 - 0.00 70.03 29.96 - 0.01 75.12 24.88 - 0.00 75.50 24.50 - 0.01 68.76 31.24 - 0.00 74.45 25.53 - 0.03
1 77.32 22.68 - 0.00 69.59 30.40 - 0.01 75.27 24.73 - 0.00 75.53 24.47 - 0.00 68.42 31.58 - 0.00 74.89 25.08 - 0.02
2 77.26 22.74 - 0.00 69.44 30.55 - 0.01 75.20 24.80 - 0.00 75.44 24.55 - 0.00 68.32 31.68 - 0.00 74.83 25.15 - 0.02
3 77.22 22.77 - 0.00 69.38 30.61 - 0.01 75.17 24.83 - 0.00 75.43 24.57 - 0.00 68.31 31.69 - 0.00 74.82 25.15 - 0.02

10 77.22 22.78 - 0.00 69.36 30.63 - 0.01 75.16 24.84 - 0.00 75.41 24.59 - 0.00 68.31 31.69 - 0.00 74.79 25.19 - 0.03
15 77.22 22.78 - 0.00 69.36 30.63 - 0.01 75.16 24.84 - 0.00 75.41 24.59 - 0.00 68.31 31.69 - 0.00 74.78 25.19 - 0.03
20 77.22 22.78 - 0.00 69.36 30.63 - 0.01 75.16 24.84 - 0.00 75.41 24.59 - 0.00 68.31 31.69 - 0.00 74.78 25.19 - 0.03

This table reports the generalized forecast error variance decomposition (GFEVD) for returns, conditioning on the average non-RBAAT history, for six Australian banking stocks in
2013 for 4 models, namely the Endo-VAR, WACD-VAR, Augmented Dufour-Engle (i.e. with volume), and Original Dufour-Engle (without volume) models. Following the step-by-step
procedure described in Appendix B, each entry in the table, reported in %, is calculated according to Equation (2.11), by averaging over M = 1,000 vectors of shocks bootstrapped
from the residuals of the corresponding estimated models. For each vector of shocks, the GIRF Ij (·) in Equation (2.11) is based on N = 1,000 simulated realizations. The average
non-RBAAT history is defined as the average of all trading histories right before 14:30:00 on each of forty-three non-RBA days in the current sample.
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From both tables a big proportion of the FEV of returns of six major Australian

banking stocks is accounted for by trade-related innovations (i.e. shocks to trade at-

tributes and durations) which are often considered private information in the market

microstructure literature. Amongst these sources of private information, trade direc-

tion is found to be the most important factor to explain the price dynamics of these

stocks. Its innovations account for between 22% and 33% of the FEV of returns based

on the original Dufour and Engle (2000) model that does not incorporate the informa-

tion from trade sizes, and for more than 35% (even above 50% in some cases) of the

returns’ FEV according to other models that have also included trading volumes. This

result lends support to Hasbrouck (1991a), Dufour and Engle (2000), Barclay et al.

(2003), and Hendershott and Riordan (2011), who show that trade sign is an impor-

tant determinant of the price formation process. Likewise, consistent with the findings

of Easley and O’Hara (1987), Hasbrouck (1988, 1991a), and O’Hara et al. (2014) that

there is a significant price-quantity relationship, shocks to trading volume possess re-

markable explanatory power for the FEV of returns, which ranges between 12% and

31%. Moreover, the inclusion of trade sizes into a joint system significantly increases

the informativeness of trade direction about the dynamic behavior of prices of the

banking stocks, possibly due to the correlatedness between trade signs and sizes.

Meanwhile, shocks to durations contribute much less to the FEV of returns of the

Australian banking stocks than do other trade attributes’ shocks. The contribution of

duration innovations is less than 9% for all stocks and is typically below 1% in cases

where durations are treated as exogenous and/or one conditions on an average his-

tory prior to 14:30:00 on non-RBA days during which the market is relatively tranquil

(see Table 2.1). On the other hand, the contribution of other trade attributes’ shocks

is normally above 50%. These results suggest that the time between trades is signif-

icantly less important in explaining price dynamics of the Australian banking stocks

than other trade characteristics. Despite this, the informativeness of trade durations

about the price formation process of these stocks is much higher when durations are

endogenously modeled than when they are treated as exogenous (which is consistent

with the results in subsection 2.4.2), since the proportion of the FEV of quote revi-
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sions explained by duration shocks under the former scenario is many times as high

as that under the latter case, especially when one conditions on the average RBAAT

history. This finding is in agreement with theory in Easley and O’Hara (1992) which

demonstrates that the informativeness of trade arrival time about security prices is re-

lated to its correlatedness and joint determination with trading volumes and prices.

Duration shocks have a significantly larger relative contribution to the returns’ FEV in

the Endo-VAR model than in the WACD-VAR model, especially on the RBA announce-

ment days. The reasons for this might be that durations exhibit a significant nonlinear

dynamic behavior (Zhang et al., 2001, Fernandes and Grammig, 2006), and the Endo-

VAR model, which allows for a higher degree of nonlinearity in the duration dynamics

(which includes not only a deeper lag serial dependence of durations but also interac-

tions between durations and trade attributes) than does the WACD-VAR model, might

better capture this nonlinearity.

We find that the RBA announcements significantly affect the relative importance of

durations and trade attributes to the process of price adjustments for Australian bank-

ing stocks. In particular, shocks to both trade characteristics and durations account

for larger proportions of the FEV of returns of these stocks on the RBA announcement

days than on days without RBA announcements. This implies that trades executed

around the interest rate announcements convey more important information, through

both durations and other trade attributes, about prices than trades transacted during

a similar calendar time window on a non-RBA day. Consistent with the findings in

previous subsections, this result suggests that trades around the RBA announcements

are likely to be initiated by informed traders and thus are more informative about the

price dynamics of the Australian banking stocks that we examine.

2.5 Conclusion

This chapter relaxes the strict exogeneity assumption of time between trades that is of-

ten imposed in prior studies by proposing a nonlinear VAR model for trade durations,

trade characteristics (signs and volumes) and returns that allows for the feedback ef-
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fects amongst these variables. Building upon the general econometric methodology

developed by Engle (2000), our proposed model extends the VAR model in Hasbrouck

(1991a) and Dufour and Engle (2000) to study the joint dynamics of trades and returns.

We apply this model to examine the effects of trade arrival times and other trade at-

tributes on the price dynamics of Australian banking stocks around the RBA interest

rate announcements. Consistent with Dufour and Engle (2000) and Manganelli (2005),

we find strong evidence to reject the exogeneity of trade durations. The time between

trades is positively dependent on past absolute price changes but negatively related

to previous trading volumes. We also observe that as trading intensifies or trade du-

rations get shorter, trades become more positively autocorrelated and have a bigger

impact on prices, which is in line with the findings of Dufour and Engle (2000).

Our results show the significant effects of the RBA announcements on the role that

durations and trade characteristics play in explaining the price dynamics of major Aus-

tralian banking stocks. Trades executed within one minute around the releases of the

monetary policy news typically have shorter durations and larger price impacts. Con-

ditioning on an average before-announcement history, when an unanticipated trade in

these banking stocks arrives faster (slower) than on average, its cumulative impact on

prices is higher (lower) only if durations are endogenously modeled. No similar results

are found if durations are treated as exogenous. This result confirms the importance

of allowing for the endogeneity of trade durations that underlies the theoretical model

of Easley and O’Hara (1992).

Using Lanne and Nyberg’s (2016) GFEVD methodology, we find that duration shocks

account for a significantly smaller proportion of the forecast error variance of returns

of the Australian banking stocks than do other trade attribute shocks. The relative im-

portance of duration innovations to returns is, however, remarkably higher when du-

rations are endogenously modeled. Moreover, conditioning on RBA announcements,

the contributions of both duration and other trade attribute shocks to the forecast er-

ror variance of returns increase. The results indicate that the time between trades is

an important determinant of banking stock prices, especially around the interest rate

announcements, even though it explains the dynamics of prices significantly less than
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do other trade characteristics.

2.6 Appendix

A Simulation procedure to compute GIRFs

The simulation experiment explained in subsection 2.4.2 to produce the GIRFs for

quote revision rt is carried out via the following steps.

A.1 Pick a history It−1.

A.2 For a given horizon h, generate a 4×(1 + h) matrix of random noise for quote re-

visions, trade attributes and time durations. For the Endo-VAR system, the noise

series are bootstrapped from their respective residuals ε̂t since the usual nor-

mal assumption is too restrictive, as implied by the large Jarque-Bera statistics

discussed earlier. The bootstrapping avoids the imposition of unrealistic distri-

butional assumptions on the error terms. The error terms (of sign and volume

equations in particular) are contemporaneously correlated, so we first transform

the correlated ε̂t to contemporaneously uncorrelated residuals, ζ̂t = P −1ε̂t, where

P is the lower Cholesky decomposition of the estimated covariance matrix of εt

(i.e. V̂ ar(εt) = P P ′) (see Koop et al., 1996, Pesaran and Shin, 1996). We retain

the serial correlation inherent in the observed ε̂t (which is also imported to ζ̂t)

by applying the stationary bootstrap procedure proposed by Politis and Romano

(1994) with an average block bootstrap length set to 10 to each element of ζ̂t.

We recover ε̂t = P ζ̂t from the draws of ζ̂t. For the WACD-VAR system, duration

innovations are randomly drawn from the estimated Weibull distribution, while

the innovations for quote changes and trade characteristics are drawn using the

above bootstrap method.

A.3 Given It−1, compute Tt, xt, and then rt according to their joint system, using the

disturbances produced in step A.2. Simulated values for (T ,x, r) at each period

are augmented into the past information set to compute the next period values
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until the h-th future period is reached. This gives a trajectory of (rt+k ,xt+k ,Tt+k)

for k = 0,1, · · · ,h under the “no shock” scenario. Special attention is given to

the simulation of the WACD-VAR system. Since the WACD model is applied to

diurnally adjusted duration T̃t, after T̃t+k , k = 0,1, · · · ,h is calculated, these T̃t+k

are transformed back to Tt+k, for use in the other equations.

A.4 Shock the joint system at transaction time t with trade, duration, and/or return

shocks and repeat step A.3 using the same set of noise series generated in step

A.2.21 At each horizon k, calculate a realization of Ir(k, ·) as rt+k, shock−rt+k, no shock.

The simulated path of Ir(k, ·) indexed in transaction time can be used directly,

and/or converted into calendar time.

A.5 Repeat steps A.3 to A.4 N times, where N is a sufficiently large number. This

gives N realizations of the impulse response I (l)
r (k, ·) for l = 1,2, · · · ,N . Averaging

these realizations provides an estimate of Ir(k, ·) for k = 0,1, · · · ,h.

21That is, the first vector of the noise series in step A.2 (i.e. at time t), or a part of it, is replaced by
the relevant shocks.
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B Simulation procedure to compute GFEVD

The GFEVD for a multivariate system of quote revisions, trade attributes and trade

durations is calculated via the following steps.

B.1 Pick a history It−1 (i.e. either the average RBAAT or average non-RBAAT history

in our case).

B.2 Draw a shock vector εt from the residuals of the estimated model. This can be

done similarly to step A.2 in subsection 2.4.2, but without the embedded station-

ary bootstrap procedure since only one shock vector is drawn.

B.3 Compute the GIRF Ij(·) in equation (2.11) associated with each element of the

shock vector drawn in step B.2 for all variables in the multivariate system. This

consists of performing steps A.2 to A.5 in subsection 2.4.2 but now for all vari-

ables. Note that in step A.4 we now only shock one equation of the system at

a time using the relevant element of the shock vector, and the GIRF Ij(·) corre-

sponding to each shock element is computed for h future transactions based on

N repetitions.

B.4 Use the GIRFs obtained in step B.3 to compute λi→j,It−1
(h),h = 0,1,2, · · · as in

equation (2.11) for the particular history and shock.

B.5 Repeat steps B.2 to B.4 M times. Compute the mean of λi→j,It−1
(h),h = 0,1,2, · · ·

to average out the effects of different shock sizes.
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Chapter 3

The volume-volatility relation of

trades: A bivariate stochastic

conditional model

3.1 Introduction

Examination of how trading volume and price volatility are interrelated is an impor-

tant research question in finance which has attracted the attention of researchers for

a long time. According to Karpoff (1987), the study of the volume-volatility rela-

tion(ship) is important for several reasons. First, it is related to the existence, dis-

semination and absorption of information in markets, and hence it provides insights

into how financial markets are structured. Second, the relationship is important for

research such as event studies that need the joint distribution of prices and volumes

in order to conduct inference. Third, the study of the volume-volatility relation offers

ways to investigate the empirical distributions of prices and returns, which are of great

interest in finance.

Theoretical studies demonstrate a positive relationship between trading volume

and price volatility, and they also highlight the endogeneity and joint determination
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of these two variables (see, amongst others, Clark, 1973, Admati and Pfleiderer, 1988,

Andersen, 1996). For example, the Mixture of Distribution Hypothesis (MDH) of Clark

(1973) and Andersen (1996) posits that both volume and return volatility are jointly

driven by an underlying latent information flow. The arrival of new private informa-

tion generates a sequence of trading activities and price movements that move the

market to a new equilibrium where all private information is fully revealed. Conse-

quently, return volatility is positively related to trading volume.22

Despite the theoretical suggestions of the joint determination of volume and volatil-

ity, most existing empirical studies (see, amongst others, Ahn et al., 2001, Chan and

Fong, 2006, Næs and Skjeltorp, 2006, Park, 2010, Chevallier and Sévi, 2012, Wang

and Wu, 2015, Clements and Todorova, 2016, Bollerslev et al., 2018) investigate this

relationship using single-equation or univariate time series models that preclude the

feedback effects between these variables, rather than embrace a joint framework. Nev-

ertheless, there is a growing literature that provides multivariate analyses of the two

variables, including Manganelli (2005), Xu et al. (2006), Nolte (2008), Fleming and

Kirby (2011), Rossi and Santucci de Magistris (2013), Carlin et al. (2014), and Do et al.

(2014).

Manganelli (2005) and Nolte (2008) provide systems of equations for price changes,

volumes and other variables such as trade durations that model the latent quantities

(for example, expected volume or volatility) with an autogressive conditional duration-

(ACD-) or GARCH- type structure. The application of an ACD model to a volume se-

ries is due to the distributional similarities between trade durations and trading vol-

umes. However, an ACD or GARCH process is conditionally deterministic: the expec-

tation of a quantity of interest (e.g. volume) is assumed to be some function of past in-

formation and hence is completely known given the past information. Meanwhile, Xu

et al. (2006), Fleming and Kirby (2011), Rossi and Santucci de Magistris (2013), Carlin

et al. (2014), and Do et al. (2014) employ a vector autoregression (VAR) or fractionally

integrated VAR to characterize the relationship between volume, volatility and other

variables in a way that does not require a separate latent structure for the expected
22It is noted that the MDH theory only considers a contemporaneous relationship between trading

volume and return volatility.
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quantities. However, the VAR model implies that both expected volume and volatility

are known after conditioning on the past information.23

Motivated by the stochastic volatility (SV) and stochastic conditional duration (SCD)

literatures (Harvey et al., 1994, Harvey and Shephard, 1996, Bauwens and Veredas,

2004, Strickland et al., 2006, Renault and Werker, 2011, Renault et al., 2014, Pelletier

and Zheng, 2013, Wei and Pelletier, 2015), this chapter develops a bivariate stochastic

conditional model to investigate the joint evolution of returns and trading volumes. In

particular, returns are assumed to follow an SV model while volumes are characterized

by a multiplicative error model (which is proposed by Engle (2002) for non-negative

processes) that embeds a latent stochastic structure for the conditional expected vol-

umes. The joint latent process, which consists of the conditional expected volume and

instantaneous volatility, is further assumed to evolve according to a first order VAR

structure that accommodates both the contemporaneous and serial cross-dependencies

between the latent variables.

Our proposed model is a bivariate generalization of the popular univariate SV and

SCD models in the literature, which are often known to be superior to their corre-

sponding analogues such as GARCH and ACD models in explaining the empirical data

dynamics and producing well-behaved residuals (Jacquier et al., 1994, Kim et al., 1998,

Bauwens and Veredas, 2004, Carnero et al., 2004). Unlike the models put forward by

Manganelli (2005), Xu et al. (2006), Nolte (2008), Fleming and Kirby (2011), Rossi and

Santucci de Magistris (2013), Carlin et al. (2014), and Do et al. (2014), the conditional

expected volume and instantaneous volatility in our model have their own innova-

tions, and therefore, they are no longer conditionally deterministic. We examine a few

alternative parameterizations of the joint latent process and establish several statisti-

cal properties with regard to the moments and the correlation structures of the volume

and volatility processes implied by these bivariate considerations. These properties

generalize and are all consistent with those derived in previous studies for univariate

SV and SCD models.

23Since there are no latent variables in a standard VAR model, the conditional expectation of a vari-
able in the VAR system, for example volume, is simply a linear function of the past values of all variables
in the system.
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Similar to the univariate SV and SCD models, it is not easy to evaluate the exact

likelihood function of our bivariate stochastic model since it involves a high-dimensional

integral over the space of all the latent variables which are stochastic and not fully ob-

served given the past information. We estimate our model, which is essentially a non-

linear non-Gaussian state space model, by transforming it into a linear non-Gaussian

state space representation and then employing Quasi Maximum Likelihood (QML) to

produce a so-called quasi likelihood function that approximates the exact one. The

quasi likelihood function is obtained by treating the non-Gaussian errors as if they

were normally distributed and then applying the Kalman filter. Under correct model

specifications and standard regularity conditions, the QML estimates, which maximize

the quasi likelihood function, are still consistent and asymptotically normal, but they

are no longer asymptotically efficient (see, for example, White, 1982, Harvey et al.,

1994, Ruiz, 1994, Bauwens and Veredas, 2004).

We conduct a simulation study to check the applicability of the QML method to

our model, and the results support the consistency of our QML estimators. Although

more sophisticated methods that better evaluate the exact likelihood of a nonlinear

non-Gaussian state space models exist (e.g. Kim et al., 1998, Durbin and Koopman,

2000, Sandmann and Koopman, 1998), they rely on complicated simulation techniques

and hence are highly demanding in computing time, especially for large datasets like

ours. In addition, these methods require that the true (joint) non-Gaussian density

be entirely known, which may not be the case in our bivariate model unless the non-

Gaussian measurement disturbances are independent (which we do not assume). There-

fore, we do not consider these methods in this chapter but rely on QML, which is much

less computationally demanding.

We apply the proposed bivariate stochastic model to the transaction data of one

big market capitalization stock (BHP - BHP Billiton Limited) and one small market

capitalization stock (CHC - Charter Hall Group) listed on the S&P/ASX200 index in

August 2014. We find that there are strong positive contemporaneous and temporal

feedback effects between trading volume and return volatility for both stocks, which

is consistent with the empirical findings of Manganelli (2005), Xu et al. (2006), Flem-
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ing and Kirby (2011), Rossi and Santucci de Magistris (2013), Carlin et al. (2014) and

Do et al. (2014), and which also supports the endogeneity and joint determination of

these two variables, as highlighted in market microstructure theory (e.g. Clark, 1973,

Admati and Pfleiderer, 1988, Easley and O’Hara, 1992, Andersen, 1996). Thus, our

results suggest that studies that examine the relationship between volume and volatil-

ity using single-equation regression models might be subject to endogeneity or reverse

causality issues, and their findings might only reflect correlation rather than causation

unless estimation techniques have taken this into account. In addition, we find that

there is an asymmetry in the feedback effects between volume and volatility, with the

impact of volume on volatility usually being much more significant. This latter result

reaffirms one fundamental prediction in market microstructure theory which is that

trading is an important channel that explains price dynamics.

We obtain significant estimates for the variance of the latent expected volume and

volatility innovations, especially for the latter. This observation suggests the inad-

equacy of the GARCH/ACD-type models in modeling conditional expected volume

and instantaneous volatility, and the necessity of treating these conditional quantities

as latent variables that follow a stochastic process, which is in agreement with previous

studies such as Jacquier et al. (1994), Kim et al. (1998), and Carnero et al. (2004). In

addition, by accommodating the joint determination and feedback effects between vol-

ume and volatility, our bivariate stochastic model provides significant enhancements

in fit relative to its univariate stochastic counterparts, producing not only statistically

significantly higher log likelihood values but also better-behaved smoothed residuals

that are less serially autocorrelated.

We also find that a positive shock to either trading volume or return volatility in-

creases the expectation of both quantities of the future transactions in both stocks.

Such an increase is largest after the first few trades and then declines steadily to zero

as both volume and volatility converge to their new full information equilibrium. The

responses of both variables to the initial perturbation are remarkably larger for the

bigger and more frequently traded stock (BHP), and the convergence to the steady

state is also faster for BHP in both transaction and calendar time. The latter result is
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consistent with Manganelli (2005), in that it takes less time for more heavily traded

stocks to reach their long run equilibrium after an initial shock. It also lends support

to the theoretical predictions of Holden and Subrahmanyam (1992), who show that

higher trading frequency hastens the speed of disseminating private information by

informed traders to the market.

This chapter contributes to the literature that investigates the volume-volatility re-

lation by developing a bivariate stochastic conditional model for trading volume and

return volatility that allows for their joint determination, and for dynamic feedback

effects between the two variables, as suggested by theory. This distinguishes our study

from most existing studies that examine the relationship between volume and volatil-

ity using a single-equation or univariate framework, which cannot facilitate joint de-

termination. Our proposed model is a bivariate generalization of the popular univari-

ate SV and SCD models in the literature, and it relaxes the conditional deterministic

feature imposed by a few previous studies that accommodate the joint modeling of

volume and volatility using either multivariate GARCH-type approaches (Manganelli,

2005, Nolte, 2008) or a VAR model that does not allow a latent structure for the ex-

pected quantities (Xu et al., 2006, Fleming and Kirby, 2011, Rossi and Santucci de

Magistris, 2013, Carlin et al., 2014, Do et al., 2014). To the best of our knowledge, it

is the first time that the SCD model has been applied to the modeling of trading vol-

umes, and it is also the first time that the SV and SCD models have been employed

to jointly model volatility and volume. An empirical application confirms that not

only does our model successfully capture the stylized positive dynamic relationship

between trading volume and return volatility often observed in empirical data, it also

provides additional insights into this relation.

The rest of the chapter is structured as follows. Section 3.2 introduces the bivariate

stochastic conditional model for trading volumes and returns/volatility proposed in

this chapter. It also discusses some statistical properties of the model and proposes

QML for estimation. Section 3.3 describes the data. Estimated results, model diag-

nostics and an impulse response analysis are presented in Section 3.4. Section 3.5

concludes.
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3.2 A bivariate stochastic conditional model for volume

and volatility

3.2.1 Model setup

Denote the trading volume and the returns of the tth transaction by vt and rt = 100(ln(qt+1)

− ln(qt)) respectively, where qt is the mid-point of the prevailing bid and ask prices

right before the tth trade. As a starting point which is typical in both the autoregressive

conditional and stochastic modeling literatures, we assume that vt can be factorized ac-

cording to a multiplicative error model (MEM) as the product of a latent variable times

a positive random error term (see, amongst others, Engle, 2002, Manganelli, 2005, Re-

nault et al., 2014), while rt, as usual, is decomposed as the sum of a drift term and a

zero-mean innovation with heteroskedastic volatility as follows:

vt = φt(θv |It−1)× εt, εt ∼ i.i.d(1,σ2
ε ), and εt > 0,

rt = µt + et = µt + σt(θr |It−1)× ζt, ζt ∼ i.i.d(0,1),
(3.1)

where It−1 denotes the information available at time t − 1, and i.i.d(a, b) denotes an

independent and identical distribution with a mean of a and variance of b. While the

innovation ζt is typically assumed to be normally distributed, and sometimes Student-

t distributed to better capture the fat tails commonly found in a return series, εt is

usually assumed to follow a Weibull or Gamma distribution, of which an Exponential

distribution is a special case. The normalization of the mean of εt to 1 implies that

φt is the expected value of vt conditioning on past information (i.e. E(vt |It−1) = φt) if

the dynamics of φt, given It−1, are uncorrelated with εt.24 The use of an MEM, which

is widely utilized to study the time duration between trades or events (e.g. Engle and

Russell, 1997, 1998, Bauwens and Veredas, 2004, Renault et al., 2014), is introduced

in this chapter to model trading volume, since volume and durations have similar dis-

tributional properties. A few studies such as Manganelli (2005) and Nolte (2008) have

also modeled trading volume with an MEM; however, they assume the conditional

24Normalizing εt to have a unit mean also helps to achieve identification since the mean of εt and the
constant in a process for φt (e.g. γv in Equation (3.2)) cannot be separately identified.
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expected volume φt to follow a GARCH-type structure that is conditionally determin-

istic.

A common approach in the SV or SCD literature to modeling the latent conditional

expected volume φt and instantaneous volatility σ2
t is to assume that their logarith-

mically transformed quantities (which help to ensure positivity) follow the following

correlated bivariate AR(1) process25

logφt = γv + av logφt−1 +uv,t,

logσ2
t = γe2 + ae2 logσ2

t−1 +ue2,t,
(3.2)

where ut = (uv,t,ue2,t)′ ∼ i.i.d(0,Σu). The appearance of the errors ut in the latent pro-

cess indicates that the latent quantities (i.e. expected volume and volatility) are no

longer entirely known given the past information It−1. Thus, the stochastic latent

process in (3.2) relaxes the conditionally deterministic feature implied either by an

autoregressive conditional model such as a GARCH or ACD model, or by a standard

VAR model that does not allow a latent structure for the expected quantities. We note

that it is the first time that (1) the SCD model has been employed to model trading

volumes, and (2) the SV and SCD models have been used to jointly model volatility

and volume.

Following the standard literature (e.g. Andersen and Sørensen, 1996, Bauwens and

Veredas, 2004, Strickland et al., 2006), we assume that conditioning on the past infor-

mation It−1, the measurement innovations in (3.1) are independent of the disturbances

of the latent states in (3.2) at all times, such that the contemporaneous and serial in-

terdependencies between the observed volume and return series are only driven by (i)

the contemporaneous dependence between the measurement innovations and (ii) the

instantaneous and serial feedback effects between the latent quantities. That is, we as-

sume ηt B (εt,ζt)′ is independent of us B (uv,s,ue2,s)′ for all t and s, however we allow

for the correlatedness between εt and ζt, as well as between uv,t and ue2,t. The inde-

pendence assumption between measurement and latent errors is typically maintained

in a bivariate or multivariate setting (Harvey et al., 1994, Danielsson, 1998, Wei and

Pelletier, 2015, Pelletier and Wei, 2018), even though its relaxation has been explored

25Throughout this chapter, the log notation is used to refer to natural logarithms.
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in a univariate setting (Harvey and Shephard, 1996, Feng et al., 2004, Xu et al., 2011).

The latent system (3.2) is a restricted reduced form VAR(1) process where the ma-

trix of coefficients is diagonal. Consequently, the contemporaneous and serial cross-

dependencies between the latent variables stem entirely from the correlation between

the state innovations uv,t and ue2,t, and there is no direct influence of one latent vari-

able on another. If the disturbances in (3.2) are Gaussian and uncorrelated, then the

expected volume φt and the instantaneous volatility σ2
t will be independent of each

other. The system in (3.1) and (3.2) presents a state space framework for the joint vol-

ume and return/volatility process, in which the measurement equations are nonlinear.

A logarithmic linearization of the measurement system has the following form,

logvt = logφt + logεt = logφt + wv,t,

loge2
t = logσ2

t + logζ2
t = logσ2

t + we2,t,
(3.3)

where wt B (wv,t,we2,t)′ = (logεt, logζ2
t )′ is a vector of non-Gaussian disturbances whose

means are ω =
(
E(logεt),E(logζ2

t )
)′

, and et = rt −µt.26 A compact representation of the

state-space system (3.2)-(3.3) is given by

yt =ω+αt + (wt −ω),

αt = γ +Aαt−1 +ut,
(3.4)

where yt = (logvt, loge2
t )′, αt = (logφt, logσ2

t )′, γ = (γv ,γe2)′, A = diag(av , ae2), wt ∼

i.i.d(ω,Σw), ut ∼ i.i.d(0,Σu), and wt is independent of us for all t, s. It is noted that the

variance covariance matrix of wt, Σw, is not the same as that of ηt, and the transforma-

tion from one to another, in general, cannot be attained theoretically.

The state-space system (3.4) is similar to a multivariate stochastic variance model

put forward by Harvey et al. (1994) and Danielsson (1998). The only difference is that

while this model investigates the behaviors of the return/volatility series of different

assets which, to some extent, may share many similarities, the stochastic model in our

study focuses on the volume and returns/volatility of a single asset, whose behaviors

might be very different. Taken individually, returns follow an SV process while trading

26 Although rt is observable, et = rt − µt is arguably not. In the estimation of the model, we first
fit an ARMA(1,1) to rt and then replace et with the residuals from the fitted model. This is common
practice in the literature (e.g. Harvey and Shephard, 1996, Manganelli, 2005), although various ARMA
structures have been employed. Our results are robust to the usage of different ARMA processes.
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volumes evolve according to a so-called stochastic conditional volume (SCV) model,

which is an analogue to an SCD model proposed by Bauwens and Veredas (2004) for

trade durations. However, these two stochastic processes are correlated, as a conse-

quence of the correlatedness between the measurement innovations wv,t and we2,t, and

between the latent errors uv,t and ue2,t.

The system (3.4) offers a baseline bivariate stochastic model for trading volume and

price volatility, in which the instantaneous and serial cross-relationships between the

latent variables logφt and logσ2
t are driven by and can only be inferred indirectly

from the correlation between their innovations, as previously discussed. To allow for

some direct cross-dependencies between the latent quantities, a natural remedy is to

relax the diagonality restriction on the reduced form coefficient matrix A of the system

(3.4). The resulting unrestricted VAR(1) state process is in line with a discretization

of a general continuous-time bivariate Ornstein-Uhlenbeck specification for the latent

log expected volume and log instantaneous volatility. See Pelletier and Zheng (2013)

and Wei and Pelletier (2015) for applications of a continuous-time bivariate Ornstein-

Uhlenbeck process to the joint modeling of return volatility and trade durations.

Although the system (3.4) accommodates the contemporaneous and serial cross-

dependencies between the latent expected volume and volatility of trades, either di-

rectly (when A is a full matrix) or indirectly (when A is diagonal), it precludes the

impact of shocks to the observed volumes and returns on the expected quantities, as

a consequence of the independence assumption between the measurement and state

disturbances. In other words, the latent component αt and the innovation component

wt of the observed quantities yt are two independent processes at all times.27 An alter-

native parameterization of the state equations that relaxes this independence between

αt and wt while still accommodating some direct interdependence between the latent

quantities αt is of the following form:

logφt = γv + av logφt−1 + bv,e2 loge2
t−1 +uv,t,

logσ2
t = γe2 + ae2 logσ2

t−1 + be2,v logvt−1 +ue2,t.
(3.5)

27This can be easily shown by looking at the moving average presentation of the state variable αt ,
assuming that the latent process is stationary.
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This parameterization of the latent equations offers several advantages. First, the ef-

fects of past observed values of one variable on the expected values of another variable

in the next period are directly captured by the b coefficients, making the interpreta-

tion more intuitive. Second, shocks to the measurement equations are transmittable

to the latent process, and hence will affect the future realizations of volumes and re-

turns/volatility. The strength of the transmission depends on that of the direct cross-

dependencies between the expected quantities (measured by the b parameters) and the

persistence of each latent variable (quantified by the a coefficients). Thus, similar to

a univariate stochastic model with a “leverage effect” proposed by Feng et al. (2004)

for trade durations, this model allows for an intertemporal correlation between the ob-

served variables and their conditional quantities, which according to Feng et al. (2004)

better captures the local asymmetries or “leverage effect” in the observed variables,

improving the model fit. Third, the incorporation of the past observed quantities into

the current latent process makes the assumption that the measurement innovations

wt and the latent disturbances ut are independent at all times (which was imposed in

the system (3.2)-(3.3)) more plausible. If this independence assumption is violated, we

can alternatively assume that the latent errors ut in (3.2) can be decomposed into two

uncorrelated components: one that consists of the past observed variables and hence is

dependent on past measurement shocks, and the other (which is the latent innovation

in (3.5)) that is independent of the measurement errors. This gives rise to the extended

system (3.3)-(3.5), for which the independence assumption between measurement and

latent innovations is still maintained at all times.

All three alternatives of the joint stochastic process for the volumes and returns/volatility

of trades formulated above can be cast into a more general state-space framework that

reads

yt =ω+αt + (wt −ω),

αt = γ +Aαt−1 +Byt−1 +ut,
(3.6)

where different forms of coefficient matrices A and B determine different parameter-

izations of the latent equations. When A is a diagonal matrix and B is a null matrix,

we obtain the baseline stochastic volume-volatility model specified in (3.2) and (3.3)
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which we shall label SVV0. When A is a full matrix and B is still a null matrix, we get

an extended bivariate stochastic model with a latent system that evolves according to

an unrestricted reduced form VAR(1) process. We name this state-space model SVV1.

Finally, when A is a diagonal matrix and B is a general square matrix with zeros on the

main diagonal, another extended bivariate stochastic setting with the latent equations

in (3.5) is realized, which shall be called SVV2. It is noted that other combinations of

(more general)A and Bmatrices can lead to identification problems as far as estimation

is concerned.28

3.2.2 Distributional assumptions

We parameterize the distributions of the innovations by assuming that ut
i.i.d∼ N (0,Σu),

which is an assumption that is typically imposed by most studies in the literature.

Meanwhile, the innovation ζt of the return equation in (3.1) is assumed to be i.i.d

N (0,1), implying that we2,t = logζ2
t has a logχ2

(1) distribution. For the distribution of

εt of the volume equation in (3.1), we consider two cases: Weibull (denoted as W) and

Gamma (G) which are appropriately scaled to have a unit mean. Consequently, wv,t =

logεt are log-Weibull (LW) or log-Gamma (LG) distributed. Some basic properties of

the distributions of εt and wv,t are summarized in Table 3.1. It is worth noting that

both Weibull (log-Weibull) and Gamma (log-Gamma) distributions nest and collapse

to an Exponential (log-Exponential) distribution when δj or κj equals 1. Similarly, the

logχ2
(1) distribution for we2,t is a special case of a log-Gamma distribution with κj =

1/2, and thus has mean of ψ(1/2) + log2 ≈ −1.2704 and variance of ψ′(1/2) ≈ 4.9348.

28When using a dataset simulated from a data generating process that is similar to the system (3.6)
but with more general forms of A and B matrices, the parameter estimates, which were obtained using
Quasi Maximum Likelihood, varied with the starting values of the optimization and were often very
different from the true values, even though the maximization process was initiated at the true values,
showing a lack of identification. This issue was not resolved when the sample size increased. These
simulation experiments are omitted for brevity but are available upon request. With regard to the
proposed state space systems in the current study, QML works well in simulation, as will be discussed
in subsection 3.2.5.
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Table 3.1: Summary of error distributions

Distribution Parameters PDF Mean Variance MGF

Panel A: Weibull & log-Weibull

For X = εt

W(δ, λ) δ > 0; λ =
1

Γ (1 + 1/δ)
f (x) =

δxδ−1

λδ
exp

(
−x

δ

λδ

)
λΓ (1 + 1/δ) = 1 λ2Γ

(
1 +

2
δ

)
− 1

∑∞
n=0

znλn

n!
Γ

(n
δ

+ 1
)

For X = wv,t = logεt

LW(δ, λ) δ > 0; λ =
1

Γ (1 + 1/δ)
f (x) =

δexδ

λδ
exp

(
−e

xδ

λδ

)
ψ(1)
δ

+ logλ
π2

6δ2 λzΓ
( z
δ

+ 1
)

Panel B: Gamma & log-Gamma

For X = εt

G(κ, λ) κ > 0; λ =
1
κ

f (x) =
xκ−1

Γ (κ)λκ
exp

(
−x
λ

)
λκ = 1 λ2κ =

1
κ

1
(1−λz)κ

for z <
1
λ

For X = wv,t = logεt

LG(κ, λ) κ > 0; λ =
1
κ

f (x) =
exκ

Γ (κ)λκ
exp

(
−e

x

λ

)
ψ(κ) + logλ ψ′(κ) λz

Γ (κ+ z)
Γ (κ)

This table shows some distributional properties of the random variables εt and logεt with different probability density functions (PDFs). MGF stands for
moment generating function, which is defined as E(exp(zX)) for some real number z and some random variable X. Γ (x) =

∫∞
0 tx−1e−tdt is the gamma function.

ψ(x) is the digamma function, which is the logarithmic derivative of the gamma function, i.e. ψ(x) = d logΓ (x)
dx = Γ ′(x)

Γ (x) . ψ′(x) = dψ(x)
dx is the trigamma function.

The PDF of the log-Weibull (log-Gamma) distribution is derived from that of the Weibull (Gamma) distribution using the standard Jacobian transformation.
The MGF of a log-Weibull (log-Gamma) random variable X (i.e. E(exp(zX))) equates to the z-th moment (for some real number z) of the corresponding Weibull
(Gamma) random variable X̃ = exp(X); See subsection 3.6.1 in the Appendix for the derivation of the MGF.

83



Chapter 3. A bivariate stochastic conditional volume-volatility model

3.2.3 Statistical properties

In this subsection we study some statistical properties of the processes yt = (logvt, loge2
t )′

and αt = (logφt, logσ2
t )′ of the state space system (3.6), which nests the SVV0, SVV1

and SVV2 models. We also examine some properties of the original processes χt B

(φt,σ
2
t )′ and τt B (vt, e

2
t )′. Proofs of these results are relegated to subsection 3.6.2 in

the Appendix.

Propositions 3.1-3.4 below detail the weak stationarity condition, the first two mo-

ments, and the correlation functions of the processes αt and yt. Corresponding results

for the level quantities χt and τt are presented in Propositions 3.5-3.7. To facilitate the

exposition of these propositions, let Im denote an m×m identity matrix and H = A+B.

Proposition 3.1 The latent process αt and the measurement process yt in the state space

system (3.6) are weakly or covariance stationary if and only if det(I2 −Hz) , 0 for all |z| ≤ 1.

We implicitly assume that the stationarity condition for the state space system (3.6)

holds in this section. Under stationarity, the first two moments of both the measure-

ment (yt) and latent (αt) processes are given below.

Proposition 3.2 Let Θα(s) B Cov(αt,αt−s) for s ≥ 0. The latent process αt of the system

(3.6) has the following moments:

E[αt] = (I2 −H)−1 (γ +Bω),

Θα(0) =
∞∑
i=0

H i (Σu +BΣwB
′) (H ′)i

Θα(s) =H sΘα(0) for s ≥ 0,

The vectorization of Θα(0) is vec(Θα(0)) = (I4 −H ⊗H)−1 vec(Σu +BΣwB
′) , where vec de-

notes the vectorization operator, and ⊗ denotes the Kronecker product.

84



Chapter 3. A bivariate stochastic conditional volume-volatility model

Proposition 3.3 Let Θy(s) B Cov(yt, yt−s) for s ≥ 0. The measurement process yt of the

system (3.6) has the following moments:

E[yt] = ω+ (I2 −H)−1 (γ +Bω),

Θy(0) = Θα(0) +Σw,

Θy(s) = Θα(s) +H s−1BΣw for s ≥ 1.

Autocovariances are often not bounded and are dependent on the units of the vari-

ables in the system. An alternative measure of linear relationships between the vari-

ables that is unit-invariant and bounded within the [-1, 1] range is autocorrelation.

Proposition 3.4 details the expressions for the autocorrelations of processes αt and yt.

Proposition 3.4 Let Dα and Dy be diagonal matrices whose diagonal elements are the

square roots of the diagonal elements of Θα(0) and Θy(0), respectively. The autocorrela-

tions of the processes αt and yt of the system (3.6), for s ≥ 0, are given by

Rα(s) =D−1
α Θα(s)D−1

α ,

Ry(s) =D−1
y Θy(s)D−1

y .

In the special case of the SVV0 system where B is a zero matrix and A is a diagonal matrix

(i.e. A = diag(av , ae2)), let Σu = [uσj,k] and Σw = [wσj,k] (j,k ∈ {v,e2}), then the autocorre-

lations of the processes αt and yt, for s ≥ 0, simplify to

Rα(s) = [αρj,k,s],

Ry(s) = [yρj,k,s],

where αρj,k,s =

asj uσj,k

1− ajak√
uσj,j

1− a2
j

√
uσk,k
1− a2

k

and yρj,k,s =

asj uσj,k

1− ajak
+ wσj,k ×1{s=0}√

uσj,j

1− a2
j

+ wσj,j

√
uσk,k
1− a2

k

+ wσk,k

, where j,k ∈

{v,e2} and 1{C} is an indicator function that equals 1 if the event C occurs, and 0 otherwise.

Proposition 3.4 implies that for the SVV0 model αρj,k,s/αρj,k,s−1 = yρj,k,s/yρj,k,s−1 =

aj for any j,k ∈ {v,e2} and s ≥ 2. If the volume and price volatility of trades jointly

evolve according to the SVV0 system, they become more autocorrelated (or more per-

sistent, when j = k) and more cross-correlated (when j , k) when the AR(1) coefficients,
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aj , are closer to 1. Furthermore, |yρj,k,s| < |αρj,k,s| for any j,k ∈ {v,e2} and s ≥ 1, suggest-

ing that the measurement process yt is less auto- and cross-correlated than the latent

process αt, as a consequence of an extra source of disturbances (i.e. the measurement

errors) that only affects the former process.

Even though the first and second moments of αt = (logφt, logσ2
t )′ (i.e. the loga-

rithms of expected volume and instantaneous volatility) and yt = (logvt, loge2
t )′ (i.e. the

logarithms of volume and the square of demeaned returns) of the state space system

(3.6) exist in closed forms, those of the corresponding level quantities (χt = (φt,σ
2
t )′

and τt = (vt, e
2
t )′) in general do not have closed analytical expressions if B is not a null

matrix (as in the SVV2 model). This is because the joint distribution of the measure-

ment errors wt = (wv,t,we2,t)′ is not known, while the expressions of χt and τt involve

products of the powers (with non-integer exponents) of expwv,t−i and expwe2,t−i when

B is not a zero matrix (as implied by equation (3.22) in the Appendix). In order to

obtain some analytical expressions for the moments and cross-moments of χt and τt,

we further assume that the measurement errors wt are mutually independent when B

is not null. Let

(I2 −H)−1γ =

γvγe2

 ;H i =

h
′
v,i

h′
e2,i

 ;and H iB =

βv,v,i βv,e2,i

βe2,v,i βe2,e2,i

 for i = 0,1,2, · · · , (3.7)

and let us define the moment generating function Mq(·) (q ∈ {v,e2}) as29

Mq(z)B E(exp(zwq,t)) =


λzqΓ

(
z
δq

+ 1
)
, when wq,t ∼ LW(δq,λq),

λzq
Γ (κq + z)

Γ (κq)
, when wq,t ∼ LG(κq,λq),

(3.8)

then various moments of the processes χt B (χv,t,χe2,t)′ = (φt,σ
2
t )′ and τt B (τv,t, τe2,t)′ =

(vt, e
2
t )′ when B is not a zero matrix (as in the SVV2 model) are detailed in Proposition

3.5 below.

Proposition 3.5 Consider the case where B is not a zero matrix. If the measurement errors

wt of the system (3.6) are mutually independent, then for j,k ∈ {v,e2} and m,n,s ≥ 0, the

29Note that we2,t ∼ logχ2
(1) ≡ LG(1/2,2), and the summary for the LW(δq,λq) and LG(κq,λq) distribu-

tions is given in Table 3.1.
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expressions of the cross-moments of the processes χt and τt are given by

E
[
χmj,tχ

n
k,t−s

]
=exp

(
mγ j+nγk

) s−1∏
i=0

exp
(
m2

2
h′j,iΣuhj,i

) ∞∏
i=0

exp
(1

2
(mh′j,i+s+nh

′
k,i)Σu(mhj,i+s+nhk,i)

)

×
s−1∏
i=0

 ∏
q∈{v,e2}

Mq(mβj,q,i)


∞∏
i=0

 ∏
q∈{v,e2}

Mq(mβj,q,i+s+nβk,q,i)

 (3.9)

E
[
τmj,tτ

n
k,t−s

]
=E

[
χmj,tχ

n
k,t−s

]
×g(j,k,m,n,s), (3.10)

where γ,h and β are defined in (3.7), Mq(·) is defined in (3.8), and

g(j,k,m,n,s) =



Mj(m)
Mk(mβj,k,s−1 +n)

Mk(mβj,k,s−1)
, when s ≥ 1,

Mj(m)Mk(n), when s = 0 & j , k,

Mj(m+n), when s = 0 & j = k.

(3.11)

When B is a null matrix (i.e. one assumes there is no transmission of the measure-

ment shocks to the latent processes) as in the SVV0 and SVV1 models, H = A and

βj,k,i = 0 for all j,k ∈ {v,e2} and i = 0,1,2, · · · . Consequently, the moving average repre-

sentation of χt and τt does not depend on the lags of the measurement errors wt, and

hence the cross-moments of χt and τt, except for the contemporaneous cross-moments

of τt (i.e. E
[
τmj,tτ

n
k,t

]
when j , k), can be analytically attained without the assumption

of mutual independence between the measurement errors. Proposition 3.6 details this

result.

Proposition 3.6 Consider the case where B is a zero matrix. For j,k ∈ {v,e2} andm,n,s ≥ 0,

the expressions for the cross-moments of the processes χt and τt are given by

E
[
χmj,tχ

n
k,t−s

]
=exp

(
mγ j+nγk

) s−1∏
i=0

exp
(
m2

2
h′j,iΣuhj,i

) ∞∏
i=0

exp
(1

2
(mh′j,i+s+nh

′
k,i)Σu(mhj,i+s+nhk,i)

)
E
[
τmj,tτ

n
k,t−s

]
=E

[
χmj,tχ

n
k,t−s

]
×g1(j,k,m,n,s),

where γ,h and β are defined in (3.7),

g1(j,k,m,n,s) =


Mj(m)Mk(n), when s ≥ 1,

E(exp(mwj,t)exp(nwk,t)), when s = 0 & j , k,

Mj(m+n), when s = 0 & j = k,

and Mj(·) is defined in (3.8). When s = 0 & j , k, g1(j,k,m,n,s) simplifies to Mj(m)Mk(n)

if one assumes that the measurement errors wt are mutually independent.
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Proposition 4.1 of Knight and Ning (2008) derives the cross-moments of trade dura-

tions that are modeled with an SCD model proposed by Bauwens and Veredas (2004).

If the SCD model of Bauwens and Veredas (2004) was used to model trading volumes

(which share many distributional similarities with trade durations), then we would

have an SCV model for volumes, which is essentially the volume component of the

SVV0 model. In such a case the cross-moments of trading volumes (E
[
τmv,tτ

n
v,t−s

]
or

E [vmt v
n
t−s]) implied by our Proposition 3.6 when B is a zero matrix and A is a diagonal

matrix (i.e. under the SVV0 model) would coincide with those detailed in Proposition

4.1 of Knight and Ning (2008), after straightforward simplifications.

To better examine the statistical properties of each individual volume and volatility

series, we state their moments in the following Corollary.

Corollary 3.1 Let γ,h and β be defined in (3.7), and Mj(·) (j ∈ {v,e2}) be defined in (3.8).

The m-th moment of τj,t (j ∈ {v,e2}) is given by

E
[
τmj,t

]
= E

[
χmj,t

]
×Mj(m),

where

(i) if B is a non zero matrix and the measurement errors wt are mutually independent,

E
[
χmj,t

]
= exp

(
mγ j

) ∞∏
i=0

exp
(
m2

2
h′j,iΣuhj,i

) ∞∏
i=0

 ∏
q∈{v,e2}

Mq(mβj,q,i)

 ,
(ii) if B is a zero matrix,

E
[
χmj,t

]
= exp

(
mγ j

) ∞∏
i=0

exp
(
m2

2
h′j,iΣuhj,i

)
,

(iii) if B is a zero matrix and A is a diagonal matrix (i.e. A = diag(av , ae2)),

E
[
χmj,t

]
= exp

(
mγj

1− aj

)
exp

 m2
uσj,j

2(1− a2
j )

 ,
where uσj,j = Var(uj,t).

From Corollary 3.1, the m-th moment of the squared demeaned returns τe2,t or e2
t

of a standard univariate SV model, which is the return/volatility component of our

baseline SVV0 model, is given by

E
[
τme2,t

]
= E

[
e2m
t

]
= exp

(
mγe2

1− ae2

)
exp

m2
uσe2,e2

2(1− a2
e2)

× 2mΓ (m+ 1
2 )

Γ (1
2 )

,
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which is the same as that stated in Ghysels et al. (1996, eq. 3.2.2) and Shephard (1996,

eq. 1.13).

Having obtained the cross-moments of χt and τt, we can derive the autocorrelation

and cross correlation functions for these processes. The correlation functions implied

by the SVV1 and SVV2 models, albeit analytically available if one assumes the mutual

independence between the measurement errors, are complicated and difficult to inter-

pret. Instead, we report the results for the simplest bivariate model SVV0 in which B is

a zero matrix and A is a diagonal matrix (i.e. A = diag(av , ae2)). Despite its simplicity,

the SVV0 model is similar to the multivariate stochastic volatility model developed

by Harvey et al. (1994) and Danielsson (1998) and it generalizes the basic but pop-

ular univariate SV and SCD models in the literature (e.g. Jacquier et al., 1994, Ruiz,

1994, Bauwens and Veredas, 2004, Knight and Ning, 2008). The results are given in

Proposition 3.7.

Proposition 3.7 Consider the SVV0 system where B is a zero matrix and A is a diagonal

matrix (i.e. A = diag(av , ae2)). Define by xρj,k,s = Corr(xj,t,xk,t−s) the cross correlation

function between two series xj,t and xk,t−s, for some s ≥ 0. Let Σu = [uσj,k] (j,k ∈ {v,e2}).

The cross correlation functions of the processes χt and τt, for j,k ∈ {v,e2} and s ≥ 0, are

given by

χρj,k,s =

exp

 asj uσj,k1− ajak

− 1√√
exp

 uσj,j

1− a2
j

− 1

√
exp

 uσk,k1− a2
k

− 1

,

τρj,k,s =

exp

 asj uσj,k1− ajak

× g1(j,k,1,1, s)−Mj(1)Mk(1)√√
Mj(2)exp

 uσj,j

1− a2
j

− [Mj(1)]2

√
Mk(2)exp

 uσk,k1− a2
k

− [Mk(1)]2

,

where Mj(·) is defined in (3.8) and g1(·) in Proposition 3.6.

Proposition 3.7 implies that the cross correlation functions of the χt and τt pro-

cesses of the SVV0 system tend to 0 as s goes to infinity, since (i) |aj | < 1 (assuming

stationarity) so asj goes to 0 when s becomes large; and (ii) g1(j,k,1,1, s) = Mj(1)Mk(1)

for s ≥ 1 (see Proposition 3.6). Moreover, for large s and/or small (i.e. close to 0) uσj,k,
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these correlation functions decay geometrically at the rate of aj ,30 suggesting that the

χt and τt processes are more persistent the closer aj is to unity.

The autocorrelation function (ACF) of the squared demeaned returns under the

SVV0 system implied by Proposition 3.7 is given by

Corr(e2
t , e

2
t−s) = τρe2,e2,s =

exp

ase2 uσe2,e2

1− a2
e2

− 1

3exp

uσe2,e2

1− a2
e2

− 1

, s ≥ 1, (3.12)

where we have used equation (3.8) to obtainMe2(2)/[Me2(1)]2 = Γ (1
2 +2)Γ (1

2 )/
[
Γ (1

2 + 1)
]2

= 3, since we2,t ∼ logχ2
(1) ≡ LG(1/2,2). Despite the difference in notation, the ACF in

(3.12) coincides with the one that was previously derived for a standard univariate SV

model; See Ghysels et al. (1996, eq. 3.2.3, when c = 2), Shephard (1996, eq. 1.14),

Carnero et al. (2004, eq. 7), or Taylor (2008, eq. 3.5.10).

3.2.4 Estimation of the state-space system

The difficulty associated with the estimation of a state space model such as model (3.6)

is driven by the stochastic nature of the latent state variable which is not fully observed

given past information. Consequently, there are more unknowns (which include the

unknown parameters of the model and the unobserved state variables) than the num-

ber of observations, rendering the likelihood function for the state space model very

complex since its expression involves a high-dimensional integral over the space of all

the nuisance latent variables. This is in sharp contrast to autoregressive conditional

models such as ARCH, GARCH or ACD models, which assume that conditioning on

the past information an expected quantity is deterministic, allowing the likelihood

function to be presented in an analytic and closed form expression. Due to the curse of

dimensionality, the integration of a state space likelihood function cannot be evaluated

using traditional deterministic numerical methods.

30For large s and/or small (i.e. close to 0) uσj,k such that (asj uσj,k)/(1 − ajak) is close to 0,
χρj,k,s

χρj,k,s−1
=

τρj,k,s

τρj,k,s−1
=

exp
(
asj uσj,k
1−ajak

)
− 1

exp
(
as−1
j uσj,k
1−ajak

)
− 1
≈

asj uσj,k
1−ajak
as−1
j uσj,k
1−ajak

= aj .
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Different methods have been developed in the literature to estimate state space

models. The Kalman filter algorithm is probably the most popular method in the

field, and it can be applied to linear and Gaussian state space models (i.e. both mea-

surement and state equations are linear with Gaussian disturbances) to produce the

minimum mean square estimates or estimators (MMSEs) of the state variables in a

recursive manner via conditional expectations (Harvey, 1989). The exact likelihood

function constructed using these estimates is then maximized to obtain the maximum

likelihood estimates (MLEs) of the unknown parameters which, under usual regularity

conditions, attain consistency, asymptotic normality and asymptotic efficiency, pro-

vided that the linearity and Gaussianity of the state space model has been correctly

specified.

However, when the Gaussianity condition is not satisfied the Kalman filter no longer

produces the MMSEs of the latent variables but only the minimum linear mean square

estimators (MLMSEs) (Harvey, 1989, Ruiz, 1994). Also, the exact likelihood cannot be

obtained. A quasi likelihood function is produced instead by treating the disturbances

as if they were normally distributed, with the mean and variance of a normal approx-

imation that correctly match those of the exact non-normal distribution. The maxi-

mization of the quasi likelihood function results in QML estimates which still attain

consistency and asymptotic normality under correct model specifications and regu-

larity conditions, but they are no longer asymptotically efficient (Harvey et al., 1994,

Ruiz, 1994). Nevertheless, QML is still an attractive approach because it is relatively

easy to implement and it also provides the best linear estimates of the latent variables

via the Kalman filter and smoother. Examples of the application of QML estimation

in financial econometrics include Harvey et al. (1994), Ruiz (1994), and Harvey and

Shephard (1996) in an SV context and Bauwens and Veredas (2004) in an SCD model.

There are more sophisticated methods of estimating nonlinear and non-Gaussian

state space models that better capture the exact likelihood, such as Kim et al. (1998)

(for a Bayesian approach) and Durbin and Koopman (1997) (for a frequentist ap-

proach). These methods provide better ways to approximate the true non-Gaussian

distribution (usually of the measurement equation), either by a mixture of normal den-
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sities (Carter and Kohn, 1994, Shephard, 1994, Kim et al., 1998) or by bias-correcting

for the difference between the true non-Gaussian density and the approximating Gaus-

sian one (Durbin and Koopman, 1997, 2000, Sandmann and Koopman, 1998, Feng

et al., 2004, Strickland et al., 2006). The latter method involves (i) the approximation

of the non-Gaussian density at each observation by a Gaussian distribution such that

the first two derivatives of the two log densities (the true non-Gaussian and the ap-

proximating Gaussian) at each observation are the same; and (ii) the addition (to the

quasi log likelihood function) of a bias correction term that is computed via simulation

from the approximating Gaussian (i.e. “importance”) density (see Durbin and Koop-

man (1997) and Sandmann and Koopman (1998) for more details). For these methods

to work, the true non-Gaussian density must be entirely known. These methods are

based on simulations and hence are highly computationally demanding, especially for

large data sets. In our bivariate stochastic conditional volume-volatility model, the

joint non-Gaussian distribution of the measurement innovations is unknown unless

they are independent. Moreover, since the transaction datasets we investigate are large

(see Section 3.3), the implementation of the aforementioned methods (which have been

mostly applied to single-equation or univariate settings) to a bivariate or multivariate

model will be computationally difficult and time consuming, even if we assume the

measurement errors to be independent and hence know their joint distribution. Thus,

we leave these methods for future work and rely on QML for estimating our models.

We treat εt = wt −ω as if it were normally distributed to apply QML estimation.

That is, we approximate the true distribution of εt with a bivariate normal distribu-

tion with zero means and a variance-covariance matrix that exactly matches that of εt,

i.e. N (0,Σε), where Σε = Σw B Var(wt). Equivalently, the true distribution of wt is

approximated with a normal distribution N (ω,Σw). The matrix Σε, or Σw, which is to

be estimated, has diagonal elements that depend on the assumed distributions of εt,

and these are given in the second last column of Table 3.1.31 With this normal approx-

imation and an assumed (bivariate) normal distribution for the latent disturbances ut,

we have a linear and Gaussian approximation of the state space system (3.6) based

31The log χ2
(1) distribution for logζ2

t is equivalent to an LG(1/2,2) distribution.
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on which a quasi-likelihood function can be derived via the Kalman filter and sub-

sequently be maximized. If we denote by θ̂ the QML estimator of the true unknown

parameter vector θ0, then its limiting distribution (e.g. White, 1982, Hamilton, 1994)

is

√
n(θ̂ −θ0)

d→N (0, I−1JI−1),

where

I = −Ef0

[
∂2 logf (Y |θ)

∂θ∂θ′

]
θ=θ0

,

J = Ef0

[
∂ logf (Y |θ)

∂θ

∂ logf (Y |θ)
∂θ′

]
θ=θ0

,

where E denotes the expectation operator, f0 and f respectively denote the true density

and the approximating quasi density, Y denotes the observed data, and n is the sample

size. The matrices I and J can be consistently estimated by their sample quantities

Î = −1
n

n∑
i=1

[
∂2 logf (yi |θ)

∂θ∂θ′

]
θ=θ̂

, and

Ĵ =
1
n

n∑
i=1

[
∂ logf (yi |θ)

∂θ

∂ logf (yi |θ)
∂θ′

]
θ=θ̂

.

Several parameters in our bivariate stochastic models are either positive (i.e. the

(log-) Weibull parameter δ and the (log-) Gamma parameter κ) or positive definite (i.e.

Σw and Σu). We estimate the logarithmic transformation (i.e. logδ or logκ) to ensure

the positivity of the (log-) Weibull or Gamma parameter. Meanwhile, we ensure the

positive definiteness of Σj (j ∈ {w,u}) by decomposing it as Σj = DjRjDj , where Dj is

a diagonal matrix of the standard deviations (i.e. the square roots of the diagonal el-

ements of Σj), and Rj is the corresponding correlation matrix, which, by definition,

has one on its diagonal. Since Rj is a 2 × 2 matrix, imposing that its symmetric off-

diagonal elements are between -1 and 1 (which can be achieved by applying the fol-

lowing transformation z = (1− ex)/(1 + ex), where z is bounded between -1 and 1 while

x is unbounded) is sufficient to ensure that Rj , and hence Σj (j ∈ {w,u}), is positive

definite. While the parameters of the diagonal standard deviation matrix Dw are de-

terministic functions of the (log-) Weibull or Gamma parameter (see Table 3.1) and

hence they do not require separate estimation, those of Du need to be estimated and
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they are logarithmically transformed to ensure positivity. We impose the stationarity

restriction on our bivariate models by checking the stationarity condition presented in

Proposition 3.1 at each estimation iteration throughout the maximization of the quasi

log likelihood function, and we penalize the log likelihood function (i.e. make the

log likelihood value very small, which in our case is set equal to −108 multiplied by

the number of observations) at iterations for which the stationarity condition is not

satisfied.

3.2.5 Simulation study

We generate samples of n = 10,000, n = 100,000, and n = 250,000 observations for

volume and volatility from the following SVV2 data generating process (DGP), and es-

timate the parameters using QML, to illustrate the performance of QML in our setting.

The generated model is32

logvt

logr2
t

 =

logφt

logσ2
t

+

 logεt

logζ2
t

 =

logφt

logσ2
t

+

wv,t

we2,t

 ,logφt

logσ2
t

 =

0.2060

0.1906

+

0.90 0

0 0.85


logφt−1

logσ2
t−1

+

 0 0.05

0.15 0


logvt−1

logr2
t−1

+

uv,tue2,t

 ,
where wv,t

iid∼ LW(δ = 0.7,λ = 1/Γ (1 + 1/δ)), we2,t
iid∼ logχ2

(1), and for simplicity, wv,t

and we2,t are generated independently. Thus, ω = E

wv,t

we2,t

 =

−1.0603

−1.2704

, and Σw =

Var

wv,t

we2,t

 =

3.3570 0

0 4.9348

. Meanwhile, ut = (uv,t,ue2,t)′
iid∼ N(0,Σu) with Σu =

0.4922 0.1329

0.1329 1.3381

, so Corr(u) =

 1 0.1638

0.1638 1

. wt = (wv,t,we2,t)′ and us are indepen-

dent for all t and s. The true parameter values are fixed so that E(logvt) = E(logr2
t ) = 2,

Var(logvt) = 9, Var(log r2
t ) = 16 and Corr(logvt, logr2

t ) = 0.5.33

32We assume that the drift term µt of the return process is equal to 0 so that rt = et .
33We first fix the distribution of wv,t and the coefficient matrices A and B, then compute γ and Σu

(using the results in Proposition 3.3) to achieve the target.
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Table 3.2 presents the estimated SVV2 models using QML estimation.34 As the

sample size increases, the estimated parameters become closer to the true values, while

the standard errors become smaller. This result demonstrates the consistency of the

QML estimators and illustrates the validity of the QML estimation method.35

Table 3.2: Estimated SVV2 model using simulated data

δ γ A B Σw Σu
logφt−1 logσ2

t−1 logvt−1 loge2
t−1 v σ2 v σ2

Panel A: True DGP
logφt 0.7000 0.2060 0.9000 - - 0.0500 3.3570 - 0.4922 -
logσ2

t - 0.1906 - 0.8500 0.1500 - 0.0000 4.9348 0.1638 1.3381

Panel B: n = 10,000 observations
logφt 0.7199 0.2323 0.8896 - - 0.0514 3.1738 - 0.5514 -

(0.0087) (0.0218) (0.0121) - - (0.0086) - - (0.0443) -
logσ2

t - 0.2041 - 0.8569 0.1320 - -0.0324 4.9348 0.2174 1.2863
- (0.0182) - (0.0111) (0.0152) - (0.0245) - (0.0801) (0.0869)

Panel C: n = 100,000 observations
logφt 0.7011 0.2082 0.9008 - - 0.0477 3.3465 - 0.4992 -

(0.0026) (0.0071) (0.0040) - - (0.0029) - - (0.0134) -
logσ2

t - 0.1873 - 0.8548 0.1438 - -0.0138 4.9348 0.2026 1.2806
- (0.0056) - (0.0038) (0.0050) - (0.0080) - (0.0273) (0.0296)

Panel D: n = 250,000 observations
logφt 0.7008 0.2058 0.9008 - - 0.0486 3.3494 - 0.4921 -

(0.0016) (0.0040) (0.0022) - - (0.0016) - - (0.0075) -
logσ2

t - 0.1943 - 0.8499 0.1489 - -0.0024 4.9348 0.1835 1.3526
- (0.0036) - (0.0020) (0.0028) - (0.0048) - (0.0165) (0.0175)

This table shows the estimates from a bivariate stochastic conditional volume-volatility SVV2 model
using QML estimation. Simulated data are generated from the following true DGP:

yt = αt + wt ,

αt = γ +Aαt−1 +Byt−1 +ut ,

where yt = (logvt , loge2
t )′ , αt = (logφt , logσ2

t )′ , wt = (logεt , logζ2
t )′ ∼ iid(ω,Σw), ut

iid∼ N (0,Σu), wt is
independent of us for all t, s, and the true values of γ,A,B,Σw, Σu are specified in Panel A. The di-
agonal elements of Σw and Σu are variances, while the lower off-diagonal elements are correlations.
The measurement error of trading volumes (i.e. logεt) is generated from a log-Weibull distribution
LW(δ = 0.7,λ = 1/Γ (1+1/δ)), while that of volatility (i.e. logζ2

t ) is logχ2
(1) distributed and independent of

logεt . Panels B, C and D report the QML estimates of the model parameters based on a simulated sam-
ple of n = 10,000, n = 100,000 and n = 250,000 observations, respectively. Robust standard errors are
reported in parentheses. The diagonal elements of Σw are not free parameters in the SDVV2 model, but
they are functions of the free parameter δ (given in Table 3.1). We therefore do not report their standard
errors, even though the latter can be computed using the Delta method.

34We obtained the same set of QML estimates, regardless of where the maximization of the quasi log
likelihood function had been initiated.

35We conducted a wide range of simulation experiments using all three state space alternatives as the
true DGP. Results of these simulations, which are omitted for brevity but available upon request, are
qualitatively similar to those of the simulation displayed in this section, and the QML estimates closely
match the true DGP.
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3.3 Data

We illustrate the estimation of the bivariate stochastic models SVV0, SVV1 and SVV2

using tick-by-tick data for one large cap and one small cap stock listed on the Aus-

tralian Securities Exchange (ASX), which are BHP (BHP Billiton Limited) and CHC

respectively. We choose BHP because it is one of the largest and most important com-

panies in Australia (with market capitalization of about AU$115.62bn, as of 1 July

2014) and is often selected to examine by many studies in Australia, just as IBM (In-

ternational Business Machines Corporation) is often selected as a well-known stock

traded in the US market. In contrast, CHC is chosen because it is a small property

firm (with market capitalization of about AU$1.47bn) in the Real Estate Investment

Trust industry, which is quite different from the Industrial Metals & Minerals industry

in which BHP belongs. The choice of these two stocks, which belong in two differ-

ent market capitalization groups and two different industries, illustrates differences

in the relationship between volume and volatility for stocks with different corporate

characteristics.

We consider a sample time period that covers twenty-one business trading days

in August 2014, during which there were no abnormal market events. We collect a

time and sales dataset from the Securities Industry Research Center of Asia-Pacific

(SIRCA), which records details on every transaction of a stock, such as the date and

time (to millisecond precision), price, volume (number of shares), value (dollar value)

and qualifiers.36 The dataset also contains information about the best bid and ask

quotes such as price, volume, spread and relative spread at any time instant when

there is a change to the best bid/ask prices or volumes.

We extract all trades that are performed within the continuous trading session in

the lit market (from 10:10:00 to 16:00:00) and discard all transactions executed in the

opening auction (i.e. either during 10:00:00-10:10:00 or with “AC” qualifiers that de-

fine auction trades) and in dark pools. We use the information about the best quotes

36Each trade contains a qualifier that declares some qualitative property of the trade. For example,
a “Bi” (“Si”) qualifier signifies a buyer-initiated (seller-initiated) trade, an “XT” denotes a cross trade,
while a “CX” is attached to trades that are executed in an Australian dark pool called Centre Point.
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(after having removed all observations with a negative bid or ask quote, and any ob-

servation with a bid quote larger than ask quote) to work out the bid-ask midpoint

before each transaction. Since one large buy (sell) marketable order can be matched

against several limit orders queuing on the sell (buy) side of the limit order book and

hence result in multiple instantaneous transactions that have zero durations, we ag-

gregate trades executed at the same time into one “large” trade by calculating volume-

weighted average prices and summing up the volumes of the small trades. After this

cleaning procedure, which is standard in the literature (see, amongst others, Dufour

and Engle, 2000, Nowak and Anderson, 2014, Renault et al., 2014), the final data sets

consist of 117,970 trades for BHP and 15,685 trades for CHC. We winsorize the volume

and return data of each stock at the 0.5th and 99.5th percentiles to avoid the effects of

outliers.

Table 3.3: Summary statistics for stocks BHP and CHC in August 2014

BHP CHC

Volume (shares) Return (%) Volume (shares) Return (%)

Min 1.0 -0.027 1.0 -0.238
25% 60.0 0.000 13.0 0.000
Mean 717.6 0.000 416.5 0.000
Median 200.0 0.000 54.0 0.000
75% 692.0 0.000 236.0 0.000
Max 10822.1 0.038 10993.1 0.238
Std. dev. 1450.1 0.011 1259.2 0.064
Skewness 4.1 0.110 5.8 0.014
Kurtosis 23.6 5.082 42.1 11.030
n 117970 117970 15685 15685

This table reports some summary statistics of trading volumes and returns for stocks BHP and CHC

in August 2014. These statistics include the sample minimum (Min), 25% quantile (25%), sample aver-

age (Mean), sample median (Median), 75% quantile (75%), sample maximum (Max), sample standard

deviation (Std. dev.), sample skewness (Skewness), sample kurtosis (Kurtosis), and sample size (n).

Table 3.3 provides some descriptive statistics for the two stocks in August 2014.

Reflecting its higher level of liquidity, BHP trades much more frequently (117,970

vs. 15,685 trades) with a remarkably larger average trading volume (717.6 vs. 416.5

shares) but with a significantly narrower range of price adjustments ([-0.027%, 0.038%]

vs. [-0.238%, 0.238%]) than does CHC. Consistent with well-documented stylized
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facts, trading volumes of both stocks exhibit positive skewness and excess kurtosis

(e.g. Andersen, 1996, Manganelli, 2005, Menkhoff et al., 2010, Nowak and Anderson,

2014). In addition, trading volumes are over-dispersed since the standard deviation is

much larger than the mean. This characteristic is often observed for trade durations

(e.g. Engle and Russell, 1998, Bauwens and Veredas, 2004), but it is also noted else-

where for trading volumes (e.g. Menkhoff et al., 2010, Nowak and Anderson, 2014).

The majority of transactions for each stock do not result in any price adjustment since

returns are zero within the interquantile range (25%-75%) of the distribution. This

observation is typically found in many financial tick-by-tick return series, and it is re-

ported by, for example, Dufour and Engle (2000), Pelletier and Zheng (2013), Renault

et al. (2014), and Pham et al. (2017) in their studies.

It is well-known in the literature that trading volumes and returns exhibit diurnal

patterns (see Engle and Russell, 1998, Manganelli, 2005, Renault et al., 2014, Pham

et al., 2017). These financial data can be thought of as a multiplicative function of

two components: a stochastic part that is to be analyzed by some econometric model,

and a deterministic part that is driven by the systematic and cyclical pattern of mar-

ket activities throughout the trading day (Engle and Russell, 1998). The deterministic

component is predictable and is usually removed from the raw financial data. Follow-

ing Engle and Russell (1998), we estimate the diurnal patterns of trading volumes and

absolute returns by fitting a cubic spline to the raw series that has the following form

ϕ(zi) = β0 + β1zi + β2z
2
i + β3z

3
i +

k∑
j=1

βj+3

[
(zi − cj)3 × Izi>cj

]
,

where zi is the clock time of the i-th trade, cj (j = 1, · · · , k) are the spline knots,37 Izi>cj

is an indicator function that equals 1 if zi > cj and 0 otherwise. Diurnally adjusted

data (volume and returns) are obtained by dividing the raw data by the corresponding

fitted diurnal component.

Figure 3.1 shows the intradaily patterns for trading volumes and absolute returns

for BHP and CHC over the sample period. Consistent with well-known stylized facts,

there is an overall inverse U-shaped pattern for trading volumes, with larger transac-

37Since the trading day in our dataset runs from 10:10 to 16:00, we set the knots at 10:30, 11:00,
11:30, 12:00, 12:30, 13:00, 14:00, 14:30, 15:00, 15:30 and 15:45.
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tions often being executed around the beginning and towards the end of the trading

day during which the market is most active, and with smaller trades around lunchtime

(13:00). Interestingly, trading volumes of BHP drop sharply during the last 15 min-

utes before the market close. Meanwhile, price adjustments, in magnitude, exhibit

a downward trend as the trading day progresses, which is also observed by Renault

et al. (2014) and Pham et al. (2017). Prices move more quickly around the open of

the market as a result of the higher trading intensity initiated by informed investors

who attempt to take advantage of new information that has accumulated overnight,

whereas increased trading activities around the close of the market, which are primar-

ily contributed by uninformed traders, have slight impact on prices, leading to small

price adjustments (Anand et al., 2005, Bloomfield et al., 2005, Duong et al., 2009).

However, it appears that transactions around the market close of stock CHC have a

slightly higher impact on prices than those during lunchtime.
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Figure 3.1: Diurnal patterns for the trading volumes and absolute returns of stocks
BHP and CHC.
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3.4 Results and discussion

This section discusses the estimated results for our proposed bivariate stochastic volume-

volatility models of two Australian stocks, namely BHP and CHC. The estimation re-

sults for these models are presented in subsection 3.4.1, followed by a discussion of

model diagnostics in subsection 3.4.2. We conduct an impulse response analysis in

subsection 3.4.3 in order to answer the question of how both trading volumes and

return volatility react if there is a shock to either variable.

3.4.1 Estimation results

Tables 3.4 and 3.5 present the QML estimation results of two univariate stochastic

models (Panel A) and of three bivariate stochastic conditional volume-volatility mod-

els (Panels B, C, and D), imposing a log-Weibull distributional assumption on the

measurement error of trading volumes, for BHP and CHC, respectively. The corre-

sponding results that assume a log-Gamma distribution for volumes’ measurement

innovation are reported in Tables 3.6 and 3.7. These estimated results are insensitive

to starting values for the QML estimates. We report, in the measurement and latent

variance-covariance matrices (i.e. Σw and Σu , respectively) of the bivariate models, cor-

relation estimates, instead of covariance estimates, in the lower off-diagonal positions,

while still reporting variance estimates in the diagonal positions. This facilitates inter-

pretation. Note that due to the use of QML estimation that approximates the true dis-

tribution of the non-Gaussian measurement errors with a Gaussian distribution with

the same mean and variance, the assumption of different distributions for the mea-

surement innovations of the state space model (3.6) does not affect the estimation and

result of the structural parameters of the model (which include the coefficient matrices

A and B and the variance-covariance matrices Σw and Σu), as well as the maximized

log likelihood value. It only affects those of the parameters of the assumed distribu-

tion and the intercept γ .38 Thus, we obtain the same log likelihood value and identical

38In our cases, the VARMA(1,1) representation of yt in the state space model (3.6) derived in equation

(3.21) is yt = (ω + γ −Aω) + (A + B)yt−1 + (ut + εt −Aεt−1), where εt = wt −ω, ω = E(wt), wt
iid∼ (ω,Σw),
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estimated coefficients for the structural parameters (A,B,Σw, and Σu) for each stock

when a different error distribution for trading volume is assumed; however, we obtain

different estimated coefficients for the intercept (γ) and the distributional parameter

(either δ or κ) (compare Table 3.4 with Table 3.6, and Table 3.5 with Table 3.7).

We first investigate the estimated results for two separate univariate stochastic

models (SCV and SV) which are reported in Panels A of Tables 3.4-3.7. Consistent

with previous studies such as Harvey and Shephard (1996), Manganelli (2005) and Yu

(2005), both volume and volatility processes of each stock are highly persistent but

still stationary since their corresponding persistence parameters or autoregressive co-

efficients are large but significantly smaller than one.

The estimated shape parameter δ (κ) of the log-Weibull (log-Gamma) distribution

for the trading volumes of the two stocks is significantly less than one, which, as dis-

cussed in Bauwens and Veredas (2004), is a sufficient (but not necessary) condition for

an overdispersed distribution. Thus, the SCV model is able to capture the overdisper-

sion in the empirical data (shown in Table 3.3), whereas the use of a log-Exponential

distributional assumption, which implies an equidispersed distribution, would not be

able to do this.39 Meanwhile, the estimated variances of the latent innovations (uv,t

and ue2,t) of each process are significantly different from zero, especially for volatil-

ity. Consistent with prior studies such as Jacquier et al. (1994), Kim et al. (1998), and

Carnero et al. (2004), this result implies that the GARCH/ACD-type or VAR-type mod-

els, which assume conditional deterministicity, might be inadequate for capturing the

dynamics of conditional expected volume and volatility. These quantities are better

mod eled with a stochastic process.

ut
iid∼ N (0,Σu), and wt is independent of us for all t and s. When we approximate the non-Gaussian dis-

tribution of wt with a Gaussian distribution N (ω,Σw), we can estimate A,B,Σw,Σu , and γ̃ =ω+γ −Aω,
which are unaffected by the actual non-Gaussian shape of wt . Depending on the assumption of the true
non-Gaussian distribution of wt , which can be either log-Weibull or log-Gamma in this Chapter, one
can retrieve the estimates of its parameters and then derive ω from the estimate of Σw using Table 3.1,
which allows γ to be computed. Therefore, the estimation of the non-Gaussian distribution parameters
and the intercept γ depends on the assumption of the true distribution.

39Note, however, that we are not able to tell, based on an information criterion, which distribution
(log-Weibull or log-Gamma, both of which have the same number of parameters) is more appropriate for
the modeling of trading volume since we obtain the same log likelihood value for the two distributions,
as a consequence of QML estimation.
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Table 3.4: Estimated stochastic conditional volume-volatility models for stock BHP, using the log-Weibull distribution

δ γ A B Σw Σu Loglik
logφt−1 logσ2

t−1 logvt−1 loge2
t−1 v σ2 v σ2

Panel A: Univariate stochastic models -557994.5
Stochastic volume
logφt 0.7090 -0.0270 0.9297 - - - 3.2721 - 0.0748 - -243199.8

(0.0025) (0.0029) (0.0065) - - - - - (0.0090) -
Stochastic volatility
logσ2

t - -0.4505 - 0.7966 - - - 4.9348 - 6.0740 -314794.7- (0.0062) - (0.0023) - - - - - (0.0559)

Panel B: Bivariate stochastic model SVV0
logφt 0.7124 -0.0382 0.9025 - - - 3.2409 - 0.1049 -

-556482.0(0.0036) (0.0059) (0.0129) - - - - - (0.0182) -
logσ2

t - -0.4460 - 0.7986 - - 0.2051 4.9348 0.2001 6.0643
- (0.0064) - (0.0024) - - (0.0078) - (0.0160) (0.0564)

Panel C: Bivariate stochastic model SVV1
logφt 0.7566 -0.1510 0.7261 -0.0075 - - 2.8739 - 0.4615 -

-555857.3(0.0081) (0.0226) (0.0356) (0.0009) - - - - (0.0775) -
logσ2

t - -0.2188 0.5907 0.7702 - - 0.2441 4.9348 0.0203 5.7161
- (0.0140) (0.0141) (0.0026) - - (0.0071) - (0.0163) (0.0668)

Panel D: Bivariate stochastic model SVV2
logφt 0.7070 0.0049 0.8649 - - 0.0161 3.2912 - 0.1456 -

-554319.1(0.0027) (0.0038) (0.0104) - - (0.0010) - - (0.0150) -
logσ2

t - 0.1293 - 0.7662 0.4552 - 0.5361 4.9348 -0.5705 6.3190
- (0.0129) - (0.0025) (0.0089) - (0.0109) - (0.0223) (0.0598)

This table shows the QML estimates from the univariate stochastic models and the bivariate stochastic conditional volume-volatility models specified in
(3.6) for BHP using data in August 2014. The model is

yt = αt + wt ,

αt = γ +Aαt−1 +Byt−1 +ut ,

where yt = (logvt , loge2
t )′ , αt = (logφt , logσ2

t )′ , wt = (logεt , logζ2
t )′ ∼ iid(ω,Σw), ut

iid∼ N (0,Σu), and wt is independent of us for all t, s. The measurement error
of trading volumes (i.e. logεt) is assumed to follow a log-Weibull distribution, while that of volatility (i.e. logζ2

t ) is assumed to be logχ2
(1) distributed.

Robust standard errors are reported in parentheses. The diagonal elements of Σw and Σu are variance estimates, while the lower off-diagonal elements are
correlation estimates. The diagonal elements of Σw are not free parameters in our models, but they are functions of the free parameter δ (given in Table 3.1).
We therefore do not report their standard errors, even though the latter can be computed using the Delta method.

102



C
hap

ter
3.

A
bivariate

stochastic
cond

itionalvolu
m

e-volatility
m

od
el

Table 3.5: Estimated stochastic conditional volume-volatility models for stock CHC, using the log-Weibull distribution

δ γ A B Σw Σu Loglik
logφt−1 logσ2

t−1 logvt−1 loge2
t−1 v σ2 v σ2

Panel A: Univariate stochastic models -69709.8
Stochastic volume
logφt 0.7678 -0.0794 0.9274 - - - 2.7902 - 0.2286 - -32108.4

(0.0069) (0.0092) (0.0068) - - - - - (0.0242) -
Stochastic volatility
logσ2

t - -0.2420 - 0.9337 - - - 4.9348 - 2.3710 -37601.4- (0.0131) - (0.0023) - - - - - (0.0769)

Panel B: Bivariate stochastic model SVV0
logφt 0.7585 -0.0798 0.9258 - - - 2.8589 - 0.2080 -

-69292.0(0.0071) (0.0089) (0.0068) - - - - - (0.0224) -
logσ2

t - -0.2392 - 0.9345 - - 0.1736 4.9348 0.4831 2.3663
- (0.0133) - (0.0024) - - (0.0222) - (0.0269) (0.0739)

Panel C: Bivariate stochastic model SVV1
logφt 0.7593 -0.0780 0.9379 -0.0031 - - 2.8532 - 0.2094 -

-69256.8(0.0075) (0.0090) (0.0098) (0.0017) - - - - (0.0275) -
logσ2

t - -0.1701 0.1406 0.9119 - - 0.2047 4.9348 0.3672 2.3474
- (0.0166) (0.0163) (0.0038) - - (0.0227) - (0.0412) (0.0699)

Panel D: Bivariate stochastic model SVV2
logφt 0.7382 -0.0475 0.9268 - - 0.0057 3.0189 - 0.1970 -

-69108.2(0.0073) (0.0076) (0.0112) - - (0.0023) - - (0.0258) -
logσ2

t - 0.0853 - 0.8959 0.2323 - 0.4197 4.9348 0.0548 2.4660
- (0.0267) - (0.0039) (0.0160) - (0.0307) - (0.0592) (0.0785)

This table shows the QML estimates from the univariate stochastic models and the bivariate stochastic conditional volume-volatility models specified in
(3.6) for CHC using data in August 2014. The model is

yt = αt + wt ,

αt = γ +Aαt−1 +Byt−1 +ut ,

where yt = (logvt , loge2
t )′ , αt = (logφt , logσ2

t )′ , wt = (logεt , logζ2
t )′ ∼ iid(ω,Σw), ut

iid∼ N (0,Σu), and wt is independent of us for all t, s. The measurement
error of trading volumes (i.e. logεt) is assumed to follow a log-Weibull distribution, while that of volatility (i.e. logζ2

t ) is assumed to be logχ2
(1)

distributed. Robust standard errors are reported in parentheses. The diagonal elements of Σw and Σu are variance estimates, while the lower off-diagonal
elements are correlation estimates. The diagonal elements of Σw are not free parameters in our models, but they are functions of the free parameter δ
(given in Table 3.1). We therefore do not report their standard errors, even though the latter can be computed using the Delta method.
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Table 3.6: Estimated stochastic conditional volume-volatility models for stock BHP, using the log-Gamma distribution

κ γ A B Σw Σu Loglik
logφt−1 logσ2

t−1 logvt−1 loge2
t−1 v σ2 v σ2

Panel A: Univariate stochastic models -557994.5
Stochastic volume
logφt 0.6401 -0.0327 0.9297 - - - 3.2721 - 0.0748 - -243199.8

(0.0028) (0.0034) (0.0065) - - - - - (0.0090) -
Stochastic volatility
logσ2

t 0.5000 -0.4505 - 0.7966 - - - 4.9348 - 6.0740 -314794.7- (0.0062) - (0.0023) - - - - - (0.0559)

Panel B: Bivariate stochastic model SVV0
logφt 0.6439 -0.0460 0.9025 - - - 3.2409 - 0.1049 -

-556482.0(0.0040) (0.0068) (0.0130) - - - - - (0.0184) -
logσ2

t 0.5000 -0.4460 - 0.7986 - - 0.2051 4.9348 0.2001 6.0643
- (0.0066) - (0.0024) - - (0.0078) - (0.0166) (0.0551)

Panel C: Bivariate stochastic model SVV1
logφt 0.6939 -0.1670 0.7261 -0.0075 - - 2.8739 - 0.4615 -

-555857.3(0.0087) (0.0223) (0.0336) (0.0009) - - - - (0.0722) -
logσ2

t 0.5000 -0.1843 0.5907 0.7702 - - 0.2441 4.9348 0.0203 5.7161
- (0.0180) (0.0194) (0.0025) - - (0.0079) - (0.0140) (0.0620)

Panel D: Bivariate stochastic model SVV2
logφt 0.6378 -0.0063 0.8649 - - 0.0161 3.2912 - 0.1456 -

-554319.1(0.0031) (0.0045) (0.0110) - - (0.0010) - - (0.0161) -
logσ2

t 0.5000 0.1293 - 0.7662 0.4552 - 0.5361 4.9348 -0.5705 6.3190
- (0.0131) - (0.0025) (0.0091) - (0.0114) - (0.0230) (0.0602)

This table shows the QML estimates from the univariate stochastic models and the bivariate stochastic conditional volume-volatility models specified in
(3.6) for BHP using data in August 2014. The model is

yt = αt + wt ,

αt = γ +Aαt−1 +Byt−1 +ut ,

where yt = (logvt , loge2
t )′ , αt = (logφt , logσ2

t )′ , wt = (logεt , logζ2
t )′ ∼ iid(ω,Σw), ut

iid∼ N (0,Σu), and wt is independent of us for all t, s. The measurement error
of trading volumes (i.e. logεt) is assumed to follow a log-Gamma distribution, while that of volatility (i.e. logζ2

t ) is assumed to be logχ2
(1), or equivalently

LG(κ = 0.5,λ = 2), distributed. Robust standard errors are reported in parentheses. The diagonal elements of Σw and Σu are variance estimates, while the
lower off-diagonal elements are correlation estimates. The diagonal elements of Σw are not free parameters in our models, but they are functions of the free
parameter κ (given in Table 3.1). We therefore do not report their standard errors, even though the latter can be computed using the Delta method.
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Table 3.7: Estimated stochastic conditional volume-volatility models for stock CHC, using the log-Gamma distribution

κ γ A B Σw Σu Loglik
logφt−1 logσ2

t−1 logvt−1 loge2
t−1 v σ2 v σ2

Panel A: Univariate stochastic models -69709.8
Stochastic volume
logφt 0.7069 -0.0833 0.9274 - - - 2.7902 - 0.2286 - -32108.4

(0.0081) (0.0094) (0.0069) - - - - - (0.0242) -
Stochastic volatility
logσ2

t 0.5000 -0.2420 - 0.9337 - - - 4.9348 - 2.3710 -37601.4- (0.0131) - (0.0023) - - - - - (0.0769)

Panel B: Bivariate stochastic model SVV0
logφt 0.6962 -0.0841 0.9258 - - - 2.8589 - 0.2080 -

-69292.0(0.0082) (0.0091) (0.0068) - - - - - (0.0224) -
logσ2

t 0.5000 -0.2392 - 0.9345 - - 0.1736 4.9348 0.4831 2.3663
- (0.0132) - (0.0024) - - (0.0222) - (0.0265) (0.0725)

Panel C: Bivariate stochastic model SVV1
logφt 0.6970 -0.0816 0.9379 -0.0031 - - 2.8532 - 0.2094 -

-69256.8(0.0086) (0.0093) (0.0098) (0.0017) - - - - (0.0274) -
logσ2

t 0.5000 -0.1621 0.1406 0.9119 - - 0.2047 4.9348 0.3672 2.3474
- (0.0171) (0.0162) (0.0038) - - (0.0225) - (0.0407) (0.0722)

Panel D: Bivariate stochastic model SVV2
logφt 0.6728 -0.0524 0.9268 - - 0.0057 3.0189 - 0.1970 -

-69108.2(0.0083) (0.0078) (0.0113) - - (0.0024) - - (0.0259) -
logσ2

t 0.5000 0.0853 - 0.8959 0.2323 - 0.4197 4.9348 0.0548 2.4660
- (0.0267) - (0.0039) (0.0161) - (0.0310) - (0.0605) (0.0787)

This table shows the QML estimates from the univariate stochastic models and the bivariate stochastic conditional volume-volatility models specified in
(3.6) for CHC using data in August 2014. The model is

yt = αt + wt ,

αt = γ +Aαt−1 +Byt−1 +ut ,

where yt = (logvt , loge2
t )′ , αt = (logφt , logσ2

t )′ , wt = (logεt , logζ2
t )′ ∼ iid(ω,Σw), ut

iid∼ N (0,Σu), and wt is independent of us for all t, s. The measurement
error of trading volumes (i.e. logεt) is assumed to follow a log-Gamma distribution, while that of volatility (i.e. logζ2

t ) is assumed to be logχ2
(1), or

equivalently LG(κ = 0.5,λ = 2), distributed. Robust standard errors are reported in parentheses. The diagonal elements of Σw and Σu are variance
estimates, while the lower off-diagonal elements are correlation estimates. The diagonal elements of Σw are not free parameters in our models, but they
are functions of the free parameter κ (given in Table 3.1). We therefore do not report their standard errors, even though the latter can be computed using
the Delta method.
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Chapter 3. A bivariate stochastic conditional volume-volatility model

Although they are able to capture some stylized facts about trading volumes and

price volatility, the separate univariate stochastic models preclude and are silent on

the interdependence amongst the two quantities of interest which, according to theo-

ries such as Admati and Pfleiderer (1988) and Andersen (1996), are endogenously and

jointly determined. Further, not only is the baseline bivariate model SVV0 in Panels B

of Tables 3.4-3.7 able to recapture the results delivered by the univariate models, but

it also provides confirmation that the interrelationship between volume and volatility

indeed exists and it is significant, as shown by the correlation estimates in the measure-

ment and latent covariance matrices (i.e. Σw and Σu). Consistent with previous find-

ings in the literature, there is a strong positive contemporaneous relationship between

volume and volatility which is contributed by the interactions between both latent and

measurement shocks. One plausible explanation for this positive dependence, which

is in line with theoretical studies such as Kyle (1985), Admati and Pfleiderer (1988),

Easley and O’Hara (1992), Holden and Subrahmanyam (1992), and Andersen (1996),

is that larger transactions are potentially initiated by informed traders. Consequently,

they convey more information about prices and move prices more quickly, implying a

positive volume-volatility relation.

The SVV0 model allows for the interdependence between trading volumes and

volatility which is typically observed in empirical data, and therefore it fits the data

much better than do the two univariate models, producing a maximized quasi log

likelihood value that is substantially higher than the sum of the two univariate log

likelihood values. The improvement in the log likelihood is highly significant when

compared against an asymptotic χ2 distribution with 2 degrees of freedom (i.e. χ2
(2))

under the usual null hypothesis of a likelihood ratio test, where 2 is the number of

additional correlation parameters between the latent and measurement innovations in

the SVV0 model.

Extensions to the baseline bivariate model to better capture direct relationships be-

tween the expected volumes and instantaneous volatility are shown in Panels C and

D of Tables 3.4-3.7. As expected, both SVV1 and SVV2 models provide a significantly

better fit to the empirical data than the baseline SVV0 model, with the largest maxi-
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Chapter 3. A bivariate stochastic conditional volume-volatility model

mized log likelihood value obtained by the SVV2 model. This result suggests that the

interdependence between trading volumes and return volatility is complicated and

thus, the use of a basic bivariate stochastic model that allows for this interrelationship

only indirectly via the correlations between the innovations may be insufficient.

Interestingly, the SVV1 model indicates that there are opposite direct dynamic feed-

back effects between trading volumes and return volatility for both stocks.40 In partic-

ular, bigger previous transactions strongly increase future volatility, which is consis-

tent with prior empirical findings of Manganelli (2005), Xu et al. (2006), Nolte (2008),

Carlin et al. (2014) and Do et al. (2014), as well as with the theoretical predictions

of Shalen (1993) and Banerjee and Kremer (2010). In contrast, higher past volatility

tends to reduce the expected volume of future transactions, even though such an effect

is much weaker, both economically and statistically, than the impact of past volume

on future volatility. These contrasting effects, although hard to explain, are also em-

pirically observed in Manganelli (2005) and Carlin et al. (2014). Despite this, there

remains a strong positive contemporaneous connection between trading volumes and

return volatility, as evidenced by the correlation coefficients between the measurement

and latent errors. This implies that large conditional volumes are often accompanied

by high volatility, and thus large transactions often come with big price adjustments.

Combining both contemporaneous and dynamic effects, it appears plausible that there

is an overall positive relationship between trading volumes and return volatility, which

is in conformance with most theoretical and empirical studies in the literature.

Unlike the SVV1 model, the SVV2 model shows that there is a significant positive

dynamic volume-volatility relation in that larger trading volumes inflate future re-

turn volatility, and vice versa higher volatility increases the size of an incoming trade,

even though the strength of the latter effect is considerably weaker. This implies an

asymmetry in the dynamic feedback effects between volume and volatility. The pos-

itive dynamic relationship between volume and volatility is in agreement with the

theory of Admati and Pfleiderer (1988) in which informed and discretionary liquidity

40It is noted that while there are numerous studies in the literature that investigate the volume-
volatility relation, they mainly look at the impact of volume on volatility, and very limited research also
examines the effects of volatility on volume.
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traders strategically time their trades in order to maximize profits or minimize trading

costs. It is also consistent with Easley and O’Hara’s (1992) theory which suggests that

large transactions are typically transacted by informed traders who attempt to trade as

quickly as possible to capitalize on their private information and make profits. Conse-

quently, trading activities are often concentrated during some time periods (possibly

after the release of private information) that feature both large trading volumes and

big price movements.

Similar to the SVV0 model, the SVV2 model indicates that there is a strong pos-

itive correlation between the measurement innovations (see the off-diagonal element

of Σw), suggesting that trading volume and return volatility are contemporaneously

positively correlated. By accommodating direct feedback effects between volumes and

volatility, the SVV2 model seems to better capture the interdependence between the

two variables for stock CHC, which helps significantly to reduce the contemporane-

ous correlation between the latent volume and volatility errors (see the off-diagonal

element of Σu). As for stock BHP, it appears that the estimates of the positive direct

feedback effects between trading volumes and return volatility are so strong that they

are offset by a contemporaneous correlation that is often positive but is now negative

between the latent innovations.

In general, the three bivariate stochastic models proposed in this chapter, namely

SVV0, SVV1 and SVV2, generalize the well-known univariate stochastic conditional

models for trading volumes and price volatility in the literature. Our proposed bivari-

ate models are capable of capturing both the positive contemporaneous and dynamic

interdependence between trading volumes and price volatility, in addition to improv-

ing on the fit of the univariate models (by producing substantially higher log likelihood

values) and recapturing the results delivered by the latter. Our results lend support to

theoretical studies such as Admati and Pfleiderer (1988) and Andersen (1996), which

suggest the endogeneity and joint determination of volumes and volatility.
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3.4.2 Model diagnostics

In this section, we conduct some diagnostic tests on the fitted models, both univari-

ate and bivariate. In these models, both measurement errors ((εt,ζt)′ as specified in

Equation (3.1) or (wv,t,we2,t)′ as in Equation (3.3)) and latent disturbances ((uv,t,ue2,t)′)

are assumed to be i.i.d.. In addition, the latent errors are assumed to be normally

distributed. If the models are correctly specified, the residuals from the fitted models

should satisfy the independence assumption and/or the Gaussian assumption, to some

extent. We explore this idea and investigate (i) if there is any serial correlation in the

residuals, and (ii) if the latent residuals follow a normal distribution.

For each univariate and bivariate stochastic model, we run the Kalman filter and

smoother at the QML estimates to obtain the smoothed estimates α̂t of the logarithmic

expected quantities αt and the smoothed residuals ût of the latent innovations ut. The

logarithmic measurement residuals ŵt are calculated as the difference between loga-

rithmically transformed observed data yt and the latent estimates α̂t. For the original

measurement errors (εt,ζt)′ specified in (3.1), we follow Bauwens and Veredas (2004)

to define their corresponding residuals as

ε̂t=
vt

exp
(
l̂ogφt

)=exp
(
logvt− l̂ogφt

)
=exp

(
ŵv,t

)
, and

ζ̂t=sign(et)

 e2
t

exp
(
l̂ogσ2

t

)


1/2

=sign(et)
[
exp

(
loge2

t − l̂ogσ2
t

)]1/2
=sign(et)

[
exp

(
ŵe2,t

)]1/2
,

where α̂t =
(
l̂ogφt, l̂ogσ2

t

)′
, et is estimated by the residuals from an ARMA(1,1) model

fitted to rt as discussed in footnote 26, and sign(x) denotes the sign function that equals

1 if x > 0, -1 if x < 0, and 0 if x = 0. The definition for the return residuals ζ̂t makes

use of the fact that ζt and et are of the same sign, as discussed in Harvey and Shep-

hard (1996). Note that we obtain the same set of the smoothed estimates (α̂t, ût, ŵt,

ε̂t, and ζ̂t) via the Kalman filter and smoother, regardless of the distribution of trad-

ing volume errors. This is because the calculation of these smoothed estimates is only

dependent on the QML estimates of the structural parameters of the models (includ-

ing A,B,Σw,Σu , and γ̃), which, as a result of QML estimation, are unaffected by the
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assumed non-Gaussian shape of the measurement innovations of trading volumes (see

footnote 38).

Autocorrelation structures of residuals

We examine the autocorrelation functions (ACFs) of the fitted residuals to check the

i.i.d assumption of the measurement and latent errors. If the models are correctly

specified, there should be no systematic patterns in the residuals and the autocorrela-

tion coefficients should be statistically indistinguishable from zero. Tables 3.8 and 3.9

report the ACFs, truncated at the first seven autocorrelation levels, of different resid-

ual series produced by various univariate and bivariate stochastic models for BHP and

CHC, respectively. Under the null hypothesis that a true autocorrelation coefficient is

equal to 0, the estimated sample autocorrelation coefficient converges in distribution

to a standard normal distribution at the rate of
√
n, where n is the sample size. Thus,

the 5% critical value under the null hypothesis of a zero true autocorrelation coeffi-

cient is approximately 2/
√
n, which equals 0.0058 and 0.0160 for stock BHP and CHC,

respectively.

From Tables 3.8 and 3.9, there is significant serial correlation in the residuals of

all models, with the exception of the original measurement residuals ε̂t of the trading

volumes for stock CHC. This indicates that all models, both univariate and bivariate,

are misspecified. In particular, similar to typical findings in the stochastic literature

(e.g. Bauwens and Veredas, 2004, Feng et al., 2004), the residuals of the latent equa-

tions of all models are highly serially correlated, exhibiting substantial autocorrelation

coefficients at the first few lags. The result suggests that the AR(1) or VAR(1) structure

assumed in the latent process may not be adequate to fully capture the dynamics in-

herent in the empirical data; more flexible and higher-order latent processes may be

needed to attenuate this problem.
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Table 3.8: Autocorrelation functions of the residuals for stock BHP

Volume Volatility
Univariate SVV0 SVV1 SVV2 Univariate SVV0 SVV1 SVV2

Panel A: Logarithmic measurement residuals (ŵv,t,ŵe2,t)
AC1 -0.016 -0.031 -0.129 -0.009 -0.216 -0.205 -0.214 -0.088
AC2 -0.054 -0.064 -0.074 -0.044 -0.151 -0.143 -0.146 -0.063
AC3 -0.056 -0.060 -0.028 -0.047 -0.064 -0.061 -0.058 -0.042
AC4 -0.057 -0.056 -0.009 -0.049 -0.028 -0.028 -0.023 -0.036
AC5 -0.050 -0.046 0.002 -0.045 -0.039 -0.040 -0.036 -0.050
AC6 -0.041 -0.035 0.007 -0.037 -0.010 -0.014 -0.011 -0.036
AC7 -0.032 -0.025 0.011 -0.026 0.026 0.022 0.024 -0.007

Panel B: Original measurement residuals (ε̂t, ζ̂t)
AC1 0.000 -0.008 -0.076 0.003 0.204 0.195 0.197 0.152
AC2 -0.023 -0.029 -0.043 -0.017 0.132 0.126 0.128 0.099
AC3 -0.019 -0.022 -0.009 -0.017 0.086 0.083 0.085 0.066
AC4 -0.018 -0.019 0.001 -0.018 0.056 0.054 0.056 0.043
AC5 -0.005 -0.005 0.016 -0.009 0.024 0.025 0.026 0.024
AC6 0.003 0.004 0.021 -0.003 0.002 0.002 0.003 0.004
AC7 -0.001 0.000 0.012 -0.005 0.001 0.001 0.002 0.003

Panel C: Latent residuals (ûv,t, ûe2,t)
AC1 0.841 0.748 0.538 0.351 0.396 0.391 0.380 0.288
AC2 0.692 0.566 0.272 0.123 0.084 0.076 0.077 0.045
AC3 0.564 0.437 0.150 0.060 -0.032 -0.039 -0.024 -0.015
AC4 0.458 0.340 0.098 0.040 -0.070 -0.074 -0.052 -0.031
AC5 0.371 0.266 0.085 0.029 -0.076 -0.078 -0.056 -0.038
AC6 0.303 0.217 0.091 0.050 -0.038 -0.037 -0.018 -0.006
AC7 0.250 0.186 0.099 0.072 0.011 0.012 0.027 0.031

This table reports the autocorrelation functions, truncated at the first 7 autocorrelation coefficients
(ACs), of the residuals obtained from different univariate and bivariate stochastic conditional mod-
els for BHP. Panel A presents the results for the logarithmic measurement residuals (ŵv,t , ŵe2,t)
specified in equation (3.3). Panel B presents the results for the original measurement residuals
(ε̂t , ζ̂t) specified in equation (3.1). Panel C presents the results for the latent residuals (ûv,t , ûe2,t)
specified in equation (3.6). The critical value at a 5% significance level under the null hypothesis
that an autocorrelation coefficient equals 0 is 2/

√
n = 0.0058, where n = 117,970 is the number of

observations for stock BHP in our sample.
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Table 3.9: Autocorrelation functions of the residuals for stock CHC

Volume Volatility
Univariate SVV0 SVV1 SVV2 Univariate SVV0 SVV1 SVV2

Panel A: Logarithmic measurement residuals (ŵv,t,ŵe2,t)
AC1 -0.091 -0.070 -0.078 -0.061 0.029 0.030 0.027 0.035
AC2 -0.072 -0.061 -0.066 -0.055 -0.149 -0.149 -0.150 -0.117
AC3 -0.102 -0.097 -0.099 -0.094 -0.123 -0.123 -0.123 -0.099
AC4 -0.061 -0.061 -0.060 -0.061 -0.100 -0.100 -0.099 -0.090
AC5 -0.043 -0.046 -0.043 -0.047 -0.061 -0.061 -0.060 -0.060
AC6 -0.040 -0.045 -0.041 -0.045 -0.038 -0.039 -0.036 -0.035
AC7 -0.021 -0.027 -0.023 -0.028 -0.032 -0.033 -0.030 -0.027

Panel B: Original measurement residuals (ε̂t, ζ̂t)
AC1 -0.005 -0.004 -0.010 0.009 0.162 0.163 0.159 0.115
AC2 -0.017 -0.020 -0.023 -0.009 0.126 0.127 0.124 0.090
AC3 -0.012 -0.017 -0.019 -0.005 0.099 0.100 0.098 0.072
AC4 -0.019 -0.024 -0.025 -0.017 0.083 0.083 0.081 0.058
AC5 -0.007 -0.006 -0.005 -0.009 0.066 0.066 0.065 0.045
AC6 -0.012 -0.013 -0.014 -0.014 0.064 0.064 0.062 0.045
AC7 -0.009 -0.012 -0.013 -0.009 0.048 0.048 0.047 0.030

Panel C: Latent residuals (ûv,t, ûe2,t)
AC1 0.737 0.738 0.755 0.752 0.706 0.706 0.705 0.650
AC2 0.526 0.502 0.532 0.555 0.398 0.398 0.396 0.347
AC3 0.357 0.326 0.353 0.395 0.180 0.180 0.180 0.160
AC4 0.244 0.207 0.227 0.285 0.037 0.035 0.039 0.051
AC5 0.164 0.132 0.142 0.203 -0.048 -0.049 -0.043 -0.009
AC6 0.109 0.086 0.086 0.141 -0.097 -0.098 -0.090 -0.048
AC7 0.076 0.057 0.052 0.100 -0.123 -0.124 -0.116 -0.073

This table reports the autocorrelation functions, truncated at the first 7 autocorrelation coefficients
(ACs), of the residuals obtained from different univariate and bivariate stochastic conditional mod-
els for CHC. Panel A presents the results for the logarithmic measurement residuals (ŵv,t , ŵe2,t)
specified in equation (3.3). Panel B presents the results for the original measurement residuals
(ε̂t , ζ̂t) specified in equation (3.1). Panel C presents the results for the latent residuals (ûv,t , ûe2,t)
specified in equation (3.6). The critical value at a 5% significance level under the null hypothesis
that an autocorrelation coefficient equals 0 is 2/

√
n = 0.0160, where n = 15,685 is the number of

observations for stock CHC in our sample.
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Despite the inadequacy of these models in fully explaining the empirical dynam-

ics, we note that the residuals produced by the bivariate stochastic models proposed

in this chapter are often less (and considerably less in some cases) serially correlated

than those created by univariate stochastic models. This observation confirms the in-

terdependencies between trading volumes and price volatility, and it advocates the

employment of a bivariate setting that can facilitate this interplay in modeling these

quantities, as opposed to univariate models that preclude such interrelation. In addi-

tion, the extended bivariate models SVV1 and SVV2 that accommodate both direct and

indirect relationships between volumes and volatility often fit the data better than the

baseline model SVV0 that only allows for indirect connections. This result indicates

the joint volume and volatility distribution is highly complex, and requires the use of

a more flexible model.

Q-Q plots of latent residuals

Figures 3.2 and 3.3 plot the Q-Q plots for the latent residuals of the volume equation

(left plots) and volatility equation (right plots) produced by various univariate and

bivariate stochastic models for BHP and CHC, respectively. Significant departures

from normality are observed for the latent residuals of all models, especially for the

latent residuals of the volatility equation of stock CHC. Similar to the autocorrelation

test, this observation implies the mis-specification of both univariate and bivariate

models. A more flexible distribution such as a Student-t distribution may be needed

to model the latent errors.
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Figure 3.2: Q-Q plots of the latent residuals for stock BHP. Left plots are Q-Q plots of the la-
tent residuals ûv,t of the volume equation, while right plots are Q-Q plots of the latent residuals
ûe2,t of the volatility equation.
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Figure 3.3: Q-Q plots of the latent residuals for stock CHC. Left plots are Q-Q plots of
the latent residuals ûv,t of the volume equation, while right plots are Q-Q plots of the latent
residuals ûe2,t of the volatility equation.

115



Chapter 3. A bivariate stochastic conditional volume-volatility model

3.4.3 Impulse response analysis

The SVV2 model allows one to measure the response of the expected volume and

volatility of future transactions to a shock to the system at time t, which provides

insights into how prices and volumes react to information. Assuming that the SVV2

system is weakly stationary, the impulse response functions (IRFs) can be conveniently

computed from the moving average representation of the log expected volume and

volatility, which is given by

αt = (I2 −H)−1γ +
∞∑
i=0

H i(ut−i +Bwt−1−i), (3.13)

where H = A + B (see equation (3.22) in the Appendix). Due to the potential correla-

tion between the measurement errors wt, a shock to one variable, for example trading

volume, is likely to be accompanied by a shock to the other variable (volatility) in the

system. To examine the effect of a shock to one variable in the system after controlling

for the correlation between the errors, the correlated errors are often orthogonalized

into a set of uncorrelated or structural shocks. Since there is usually no unique way to

do the orthogonal transformation, one needs to impose suitable identification restric-

tions, which are often suggested by theories, to retrieve the structural shocks from the

correlated errors.

In the current analysis, we orthogonalize the correlated measurement errors wt

by imposing the restriction that there is an instantaneous Granger-causal relationship

running from trading volume to return volatility, but not vice versa. Given that trad-

ing volume is known at the execution of a trade, whereas the return and volatility of

the trade can only be realized ex-post once the trade is fully transacted, this restric-

tion is intuitive and reflects the chronological operation in a financial market which

is typically highlighted in market microstructure theory. For example, according to

Kyle (1985) and Hasbrouck (1991a,b), after observing a new trade, the market maker

learns the information conveyed by the trade such as its volume and then revises his

quotes accordingly to take into account the new information. As a result, the volume

of a trade contemporaneously affects the price and volatility of that trade.41

41We obtain qualitatively similar results when the reverse contemporaneous Granger causality is
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Given the setup of the SVV2 model that places trading volume in the first equa-

tion of the latent process and volatility in the last, the orthogonalization of the mea-

surement errors wt based on the assumption of a causality direction from volume to

volatility is equivalent to the one based on a lower Cholesky decomposition of the mea-

surement error covariance matrix. By letting wt = Pww∗t, where Pw is a lower triangular

matrix such that PwP
′
w = Σw = Var(wt), we obtain the structural shocks w∗t that are un-

correlated and have unit variance (i.e. Σw∗ = I2). The moving average form of the latent

process (3.13) then becomes

αt = (I2 −H)−1γ +
∞∑
i=0

H i(ut−i +BPww∗t−1−i), (3.14)

which implies that the IRF of αt+i (i.e. the expected volume and volatility, measured

in a log scale, at transaction time t + i, i ≥ 1) to a (positive) structural shock w∗t to the

system at time t is42

∂E(αt+i |It−1)

∂w∗
′
t

B Φi =H iBPw. (3.15)

Given that αt+i measures the logarithm of the expected volume and volatility at trans-

action time t + i while w∗t is an orthogonal transformation of the logarithm of the orig-

inal innovations of the trading volume and volatility at time t (i.e. εt and ζ2
t ), the

impulse response function Φi in equation (3.15) can be interpreted as the elasticity of

the trading volume and volatility of a trade at time t + i to a structural shock to either

variable at time t. To compute the standard error of Φi , we note that if θ̂
(p×1)

is the QML

estimator of the true unknown parameter vector θ0 that underlies the SVV2 model

(p = 11 here) and standard regularity conditions hold, then
√
n(θ̂ − θ0)

d→ N (0,Σθ0
),

where n is the sample size and the limiting distribution of ν̂i
(4×1)

B νi(θ̂) B vec
(
Φi(θ̂)

)
is
√
n(ν̂i − ν0,i)

d→N (0,GiΣθ0
G′i) according to the Delta method, where Gi

(4×p)
=
∂νi
∂θ′

∣∣∣∣
θ=θ0

.

While Σθ0
is estimated using a sandwich-type estimator detailed at the end of sub-

section 3.2.4, the matrix of derivatives Gi is estimated using numerical differentiation.

Specifically, the j-th column of Gi is computed as Gji =
νi(θ̂ + I jp∆)− νi(θ̂ − I

j
p∆)

2∆
, where

imposed. That is, our results are robust to the ordering of volume and volatility in the SVV2 system.
42Meanwhile, ∂E(αt |It−1)/∂w∗

′
t = 0. Thus, the SVV2 model assumes that (structural) shocks to the

system at time t only affect the expected quantities (i.e. volume and volatility) of a future trade but have
no effects on those of the trade at t.
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I
j
p is the j-th column of the (p × p) identity matrix Ip and ∆ is a small number.

Figures 3.4 and 3.5 depict the responses of the trading volume and volatility of a

trade to a structural shock to either variable, implied by the SVV2 model, for stocks

BHP and CHC, respectively. The average IRFs are represented by solid curves, while

the corresponding 95% confidence intervals are illustrated with dotted lines. Since

the IRFs in equation (3.15) only depend on the structural parameters (including A,B

and Σw) of the SVV2 model, whose QML estimates are not affected by the assumed

distribution of the measurement innovation for trading volumes in the model (see

footnote 38), we obtain an identical set of IRFs for trading volume and volatility for

each stock regardless of the distributional assumption of the volume error.

The IRFs depicted in Figures 3.4 and 3.5 bear a remarkable similarity to the ones

reported in Manganelli (2005) for U.S. stocks, and they demonstrate that there are

strong positive dynamic relationships between the trading volume and volatility of

trades, reaffirming the results discussed in subsection 3.4.1. A positive shock to either

variable in the SVV2 system triggers an increase in the expected trading volume and

return volatility of the future trades in both stocks BHP and CHC, with the biggest

rise observed after the first or first few transactions. After that, the increase in return

volatility and trading volume declines gradually to zero, signifying that both quan-

tities are approaching their steady-state equilibrium, where the effects of the initial

shock are fully incorporated.

Consistent with Manganelli (2005), the convergence to the long run equilibrium

of both return volatility and trading volume is quicker for the bigger and more liq-

uid stock (BHP) than for the smaller and less liquid one (CHC). In particular, while

the price volatility and volume of BHP converge to their long run levels in about 60

to 70 transactions after an initial perturbation, it takes about 90 to 100 transactions

for those of CHC to reach their steady states. Given that BHP is traded much more

frequently than is CHC (117,970 vs. 15,685 trades in August 2014 - see Table 3.3),43

the price volatility and trading volume of BHP converge even much more rapidly in

calendar time to their long run equilibrium than do those of CHC. This result lends

43The average trade duration is 3.739 (28.210) seconds for BHP (CHC) in our sample.
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support to the theoretical work of Holden and Subrahmanyam (1992), who show that

the speed with which the private information of informed traders is revealed to the

public through their strategic trading activities increases dramatically with either the

trading frequency (i.e. the number of auctions or trades in a fixed time interval) or

the number of informed traders in the market. This is because of the competition

between the informed agents who trade strategically and aggressively to capitalize on

their informational advantage. Consequently, as the number of trades or the number of

informed investors increases (which strengthens the competition between the traders),

the error variance of the price (which measures the remaining informational content

of the private signals) declines to zero very quickly. Due to the much higher trading

frequency of BHP and its likely larger number of informed followers, it is understand-

able that an initial perturbation such as a news event results in a quicker convergence

of price volatility and trading volume to their long run levels for BHP than for CHC -

a much smaller stock.

Figures 3.4 and 3.5 also reveal that a volume shock has strong effects, both statis-

tically and economically, on the future return volatility of both stocks, whereas the

impact of a volatility shock on the trading volume of future trades, although statisti-

cally significant, is weaker. This observation is also noted in Manganelli (2005), and it

suggests an asymmetry in the feedback effects between volume and volatility, of which

the impact of volume on volatility is much more dominant. The sizeable impact of

trading volume on volatility is also consistent with one of the most important theoret-

ical predictions in finance which is that trades contain crucial information that drives

stock price movements (e.g. Kyle, 1985, Hasbrouck, 1991a, Easley and O’Hara, 1992,

Duffie, 2010). In addition, the responses of the price volatility and trading volume of

BHP to an initial shock are considerably stronger than those of CHC, as indicated by

the scales on the vertical axes. The result implies that the positive dynamic relation-

ships between trading volume and return volatility are more significant for the bigger

and more liquid stock BHP, which is consistent with the coefficient estimates reported

in Tables 3.4-3.7.
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Figure 3.4: Impulse response to structural measurement shocks for stock BHP implied by the SVV2 model. The solid curve represents the mean
estimate, while dotted curves represent the 95% confidence interval.
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Figure 3.5: Impulse response to structural measurement shocks for stock CHC implied by the SVV2 model. The solid curve represents the mean
estimate, while dotted curves represent the 95% confidence interval.
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Overall, the impulse response analysis re-confirms the result that the trading vol-

ume and return volatility of trades are strongly, positively and dynamically related,

with the effect of volume on volatility being much more pronounced. After a positive

shock to either variable, both price volatility and trading volume increase and gradu-

ally converge to their new long-run equilibrium, with a faster rate of convergence for

the bigger and more liquid stock (BHP).

3.5 Conclusion

This chapter develops a bivariate stochastic conditional model to study the interac-

tion between trading volume and return volatility. Unlike most existing studies in the

literature that use univariate approaches, which cannot accommodate joint modeling

to investigate the relationship between volume and volatility, we explicitly allow for

the dynamic feedback effects between these two variables in our model. Our proposed

model generalizes the popular univariate SV and SCD models in the literature to a

bivariate setting, and it relaxes the conditional deterministic assumption imposed by

a few prior studies that employ multivariate GARCH-type or VAR-type approaches

to model trading volumes and return volatility. We derive several statistical proper-

ties of our bivariate model with regard to the moments and correlation functions of

the volume and volatility series. We show that these properties generalize and are all

consistent with those derived previously in a univariate SV and SCD context.

The bivariate stochastic conditional volume-volatility model is applied to a trans-

action dataset of one big and one small market capitalization stock in the Australian

stock market, and we employ QML to estimate the model. Consistent with market mi-

crostructure theory (e.g. Admati and Pfleiderer, 1988, Andersen, 1996), we show that

trading volume and return volatility are jointly determined, and our proposed model is

capable of capturing the positive dynamic feedback effects between these variables for

both stocks. However, these feedback effects are asymmetric, with the impact of vol-

ume on volatility being dominant. Significant estimates obtained for the variance of

the errors of the latent conditional expected volume and volatility errors indicate that
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these conditional quantities cannot be fully explained by the past information, and

hence the use of a GARCH-type model (which imposes the conditional deterministic

assumption) to model the expected volume and volatility is inadequate. In addition,

by allowing for the joint determination of volume and volatility, our bivariate stochas-

tic model fits the empirical data significantly better than its univariate counterparts.

In agreement with the theoretical prediction of Holden and Subrahmanyam (1992)

and the empirical finding of Manganelli (2005), we find that after a positive shock

to either variable both trading volume and return volatility increase significantly, af-

ter which they gradually converge to their full information equilibrium, with quicker

convergence observed for the bigger and more frequently traded stock.
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3.6 Appendix

3.6.1 Derivation of the MGF

In this subsection, we derive the MGF of a log-Weibull and a log-Gamma random vari-

able specified in Table 3.1. The MGF of a random variable X, denoted by MX(z), is

defined as MX(z)B E(exp(zX)) = E(X̃z), where X̃ = exp(X).

Consider the case X ∼ LW(δ,λ), it follows that X̃ ∼W(δ,λ). The MGF of X is given by

MX(z) = E(X̃z) =
∫ ∞

0
x̃z
δx̃δ−1

λδ
exp

(
− x̃

δ

λδ

)
dx̃

=
1
λδ

∫ ∞
0
x̃z exp

(
− x̃

δ

λδ

)
dx̃δ

=
1
λδ

∫ ∞
0
tz/δ exp

(
− t
λδ

)
dt (3.16)

=
1
λδ
× Γ (1 + z/δ)

(
λδ

)1+z/δ
(3.17)

= λzΓ
( z
δ

+ 1
)
,

where we have replaced the Gamma kernel in equation (3.16) with its integrating con-

stant, Γ (1 + z/δ)
(
λδ

)1+z/δ
, in equation (3.17).

Now consider the case X ∼ LG(κ,λ), it follows that X̃ ∼G(κ,λ). The MGF of X is given

by

MX(z) = E(X̃z) =
∫ ∞

0
x̃z

x̃κ−1

Γ (κ)λκ
exp

(
− x̃
λ

)
dx̃

=
1

Γ (κ)λκ

∫ ∞
0
x̃κ+z−1 exp

(
− x̃
λ

)
dx̃ (3.18)

=
1

Γ (κ)λκ
× Γ (κ+ z)λκ+z (3.19)

= λz
Γ (κ+ z)
Γ (κ)

,

where we have replaced the Gamma kernel in equation (3.18) with its integrating con-

stant, Γ (κ+ z)λκ+z, in equation (3.19).

We note that the MGF MX(z) derived in this study for a log-Weibull or log-Gamma

random variable X is similar to that derived in Feng et al. (2004, p. 419), even though

Feng et al. (2004) use a slightly different parameterization of the log-Weibull or log-

Gamma distribution and a different set of notation.
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3.6.2 Proofs of Propositions

Proof of Proposition 3.1: To establish the weak stationarity conditions for the state

space system (3.6), we rewrite the system as follows. First, considering the latent state

equation we have:

αt = γ +Aαt−1 +B(ω+αt−1 + εt−1) +ut

= (γ +Bω) + (A+B)αt−1 +ut +Bεt−1

where εt = wt −ω ∼ i.i.d(0,Σw). Since Bεt−1 is a white noise process which is indepen-

dent of the white noise process ut, it follows that ut+Bεt−1 is also white noise (Granger

and Morris, 1976).44 Therefore, the state vector αt B (logφt, logσ2
t )′ follows a VAR(1)

model, which will be covariance stationary if and only if

det(I2 −Hz) , 0 for all |z| ≤ 1, (3.20)

where H = A+B (Lütkepohl, 2005, p. 423).

As for the measurement equation we have

yt = (ω+γ −Aω) + (A+B)yt−1 + (ut + εt −Aεt−1) . (3.21)

Since εt−1 −Aεt−1 is an MA(1) process independent of the white noise process ut, ut +

εt −Aεt−1 is also an MA(1) process. Consequently, yt follows a VARMA(1,1) process.

Therefore, (3.20) is also the necessary and sufficient condition for yt B (logvt, loge2
t )′

to be weakly stationary. �

Proof of Proposition 3.2: When the covariance stationarity condition (3.20) holds, the

latent process of the system (3.6) can be expressed as

αt = γ +Hαt−1 +ut +Bwt−1

= (I2 −HL)−1γ + (I2 −HL)−1(ut +Bwt−1)

= (I2 −H)−1γ +
∞∑
i=0

H i(ut−i +Bwt−1−i), (3.22)

44 Indeed, let xt = ut +Bεt−1, then we have: (i) E(xt) = 0, and (ii) E(xtx′t−s) =

Σu +BΣwB
′ if s = 0,

0 if s ≥ 1,
since εt ∼ i.i.d(0,Σw), ut ∼ i.i.d(0,Σu), and ut and εs are independent for all t and s.
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where H = A+B and L is the lag operator.

Given that wt ∼ i.i.d(ω,Σw), ut ∼ i.i.d(0,Σu), and ut and ws are independent for all

t and s, we then have

E(αt) = (I2 −H)−1γ +
∞∑
i=0

H iBω = (I2 −H)−1(γ +Bω),

and

Θα(0)B Var(αt) = Var

 ∞∑
i=0

H i(ut−i +Bwt−1−i)

 =
∞∑
i=0

H i (Σu +BΣwB
′) (H ′)i ,

which implies

vec(Θα(0)) =
∞∑
i=0

vec
(
H i (Σu +BΣwB

′) (H ′)i
)

=
∞∑
i=0

(
H i ⊗H i

)
vec(Σu +BΣwB

′)

= (I4 −H ⊗H)−1 vec(Σu +BΣwB
′).

Now for s ≥ 1,

Θα(s)BCov(αt,αt−s)

=Cov

 ∞∑
i=0

H i(ut−i+Bwt−1−i),
∞∑
i=0

H i(ut−s−i+Bwt−s−1−i)


=Cov

 s−1∑
i=0

H i(ut−i+Bwt−1−i)+
∞∑
i=0

H i+s(ut−s−i+Bwt−s−1−i),
∞∑
i=0

H i(ut−s−i+Bwt−s−1−i)


=
∞∑
i=0

H i+s(Σu+BΣwB
′)(H ′)i

=H s
∞∑
i=0

H i (Σu+BΣwB
′)(H ′)i

=H sΘα(0).

This completes the proof. �

Proof of Proposition 3.3: Since yt = αt + wt, from Proposition 3.2 we have that

E(yt) = E(αt) +E(wt) = (I2 −H)−1(γ +Bω) +ω,

and

Θy(0)B Var(yt) = Θα(0) +Σw + Cov(αt,wt) + Cov(wt,αt) = Θα(0) +Σw,

and, for s ≥ 1,

Θy(s)B Cov(yt, yt−s) = Cov(αt,αt−s) + Cov(αt,wt−s) + Cov(wt,αt−s) + Cov(wt,wt−s)
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= Θα(s) +H s−1BΣw.

These above results are obtained using the fact that Cov(wt,αt−s) = 0 for all s ≥ 0,

and Cov(αt,wt−s) = H s−1BΣw for s ≥ 1, both of which result from the moving average

representation of αt in equation (3.22), in combination with the usual assumptions

that wt ∼ i.i.d(ω,Σw), ut ∼ i.i.d(0,Σu), and ut and ws are independent for all t and s. �

Proof of Proposition 3.4: The first part of the Proposition is trivial and follows directly

from the definition of autocorrelations (see, for example, Lütkepohl, 2005, p. 30). To

prove the second part of Proposition 3.4, note that under the SVV0 model, B = 0 so

H = A = diag(av , ae2) and H i = diag(aiv , a
i
e2), for i ≥ 0. Assuming the stationarity of

the SVV0 system implies that |aj | < 1, j ∈ {v,e2}. From Proposition 3.2 and letting

Σu = [uσj,k], (j,k ∈ {v,e2}), we have

Θα(0) =
∞∑
i=0

H iΣu(H ′)i =
∞∑
i=0

diag(aiv , a
i
e2)× [uσj,k]× diag(aiv , a

i
e2)

=
∞∑
i=0

[
aija

i
k uσj,k

]
=

[
uσj,k

1− ajak

]
, for j,k ∈ {v,e2}.

Thus, Dα = diag


√

uσv,v
1− a2

v
,

√
uσe2,e2

1− a2
e2

 (see the definition for Dα in Proposition 3.4), and

Θα(s) =H sΘα(0) =


asv

uσv,v
1− a2

v
asv

uσv,e2

1− avae2

as
e2

uσe2,v

1− avae2
as
e2
uσe2,e2

1− a2
e2

 =

 asj uσj,k1− ajak

, for j,k ∈ {v,e2}.

Therefore, Rα(s) =D−1
α Θα(s)D−1

α = [αρj,k,s], where αρj,k,s =

asjuσj,k

1− ajak√
uσj,j

1− a2
j

√
uσk,k
1− a2

k

, j,k ∈ {v,e2}.

For the process yt of the SVV0 system, it is noted from Proposition 3.3 that Θy(0) =

Θα(0) + Σw and Θy(s) = Θα(s) for s ≥ 1. Straightforward calculations of Ry(s) give the

last result of Proposition 3.4, which completes the proof. �

Proof of Proposition 3.5: We first prove equation (3.9). From equations (3.22) and
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(3.7) we have

αt =

αv,tαe2,t

B
logφt

logσ2
t

 =

γvγe2

+
∞∑
i=0

 h
′
v,iut−i +

∑
q∈{v,e2}βv,q,iwq,t−1−i

h′
e2,i
ut−i +

∑
q∈{v,e2}βσ2,q,iwq,t−1−i

 . (3.23)

Thus, αj,t = γ j +
∑∞
i=0

(
h′j,iut−i +

∑
q∈{v,e2}βj,q,iwq,t−1−i

)
, for j ∈ {v,e2}.

Since χt B (χv,t,χe2,t)′ = (φt,σ
2
t )′, we have, for j ∈ {v,e2},

χj,t = exp(αj,t) = exp
(
γ j

) ∞∏
i=0

exp(h′j,iut−i)
∞∏
i=0

 ∏
q∈{v,e2}

exp(βj,q,iwq,t−1−i)

 . (3.24)

Given the serial and mutual independence between ut and wt, the mutual indepen-

dence between wj,t (j ∈ {v,e2}), and ut ∼ N (0,Σu), the cross-moment between χj,t and

χk,t−s, for j,k ∈ {v,e2} and m,n,s ≥ 0, is given by

E
[
χmj,tχ

n
k,t−s

]
=E

exp
(
mγ j

) ∞∏
i=0

exp(mh′j,iut−i)
∞∏
i=0

 ∏
q∈{v,e2}

exp(mβj,q,iwq,t−1−i)


×exp

(
nγk

) ∞∏
i=0

exp(nh′k,iut−s−i)
∞∏
i=0

 ∏
q∈{v,e2}

exp(nβk,q,iwq,t−s−1−i)




=E
exp

(
mγ j+nγk

)s−1∏
i=0

exp(mh′j,iut−i)
∞∏
i=0

exp((mh′j,i+s+nh
′
k,i)ut−s−i)

×
s−1∏
i=0

 ∏
q∈{v,e2}

exp(mβj,q,iwq,t−1−i)


∞∏
i=0

 ∏
q∈{v,e2}

exp((mβj,q,i+s+nβk,q,i)wq,t−s−1−i)




=exp
(
mγ j+nγk

)s−1∏
i=0

E
[
exp(mh′j,iut−i)

] ∞∏
i=0

E
[
exp((mh′j,i+s+nh

′
k,i)ut−s−i)

]
×
s−1∏
i=0

 ∏
q∈{v,e2}

E
[
exp(mβj,q,iwq,t−1−i)

]
∞∏
i=0

 ∏
q∈{v,e2}

E
[
exp((mβj,q,i+s+nβk,q,i)wq,t−s−1−i)

]
=exp

(
mγ j+nγk

)s−1∏
i=0

exp
(
m2

2
h′j,iΣuhj,i

) ∞∏
i=0

exp
(1

2
(mh′j,i+s+nh

′
k,i)Σu(mhj,i+s+nhk,i)

)

×
s−1∏
i=0

 ∏
q∈{v,e2}

Mq(mβj,q,i)


∞∏
i=0

 ∏
q∈{v,e2}

Mq(mβj,q,i+s+nβk,q,i)

,
where Mq(·) is defined in (3.8). The last equality is obtained using the fact that

mh′j,iut−i ∼ N (0,m2h′j,iΣuhj,i), (mh′j,i+s + nh′k,i)ut−s−i ∼ N (0, (mh′j,i+s + nh′k,i)Σu(mhj,i+s +

nhk,i)), and E(exp(x)) = exp(µx + 1
2σ

2
x ) if x ∼N (µx,σ2

x ). Thus, equation (3.9) is proved.

We now prove equation (3.10). Since τj,t = exp(αj,t + wj,t) = χj,t exp(wj,t),

τmj,tτ
n
k,t−s = χmj,tχ

n
k,t−s exp(mwj,t)exp(nwk,t−s) for j,k ∈ {v,e2} and m,n,s ≥ 0.
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From equation (3.24), χj,t and wk,t are independent for any j,k ∈ {v,e2}, due to the

serial and mutual independence between ut and wt.

Now, if s = 0 and j , k, then

E
[
τmj,tτ

n
k,t−s

]
= E

[
τmj,tτ

n
k,t

]
= E

[
χmj,tχ

n
k,t exp(mwj,t)exp(nwk,t)

]
= E

[
χmj,tχ

n
k,t

]
Mj(m)Mk(n),

(3.25)

since χmj,tχ
n
k,t, wj,t and wk,t are independent.

If s = 0 and j = k, then

E
[
τmj,tτ

n
k,t−s

]
= E

[
τm+n
j,t

]
= E

[
χm+n
j,t exp((m+n)wj,t)

]
= E

[
χm+n
j,t

]
Mj(m+n). (3.26)

If s ≥ 1, then

E
[
τmj,tτ

n
k,t−s

]
=E

[
χmj,tχ

n
k,t−sexp(mwj,t)exp(nwk,t−s)

]
=E

exp
(
mγ j+nγk

) s−1∏
i=0

exp(mh′j,iut−i)
∞∏
i=0

exp
(
(mh′j,i+s+nh

′
k,i)ut−s−i

)

×exp(mwj,t)
s−2∏
i=0

 ∏
q∈{v,e2}

exp(mβj,q,iwq,t−1−i)

×


∏
q∈{v,e2}
q,k

exp(mβj,q,s−1wq,t−s)


×exp((mβj,k,s−1+n)wk,t−s)

∞∏
i=0

 ∏
q∈{v,e2}

exp((mβj,q,i+s+nβk,q,i)wq,t−s−1−i)




=exp
(
mγ j+nγk

) s−1∏
i=0

exp
(
m2

2
h′j,iΣuhj,i

) ∞∏
i=0

exp
(1

2
(mh′j,i+s+nh

′
k,i)Σu(mhj,i+s+nhk,i)

)

×Mj(m)
s−2∏
i=0

 ∏
q∈{v,e2}

Mq(mβj,q,i)

×


∏
q∈{v,e2}
q,k

Mq(mβj,q,s−1)


×Mk(mβj,k,s−1+n)

∞∏
i=0

 ∏
q∈{v,e2}

Mq(mβj,q,i+s+nβk,q,i)


=E

[
χmj,tχ

n
k,t−s

]
×Mj(m)

Mk(mβj,k,s−1+n)

Mk(mβj,k,s−1)
. (3.27)

Combining the results in equations (3.9), (3.25), (3.26) and (3.27) gives equation

(3.10). Thus, the proof of Proposition 3.5 is complete. �

Proof of Proposition 3.6: The proof of Proposition 3.6 is similar to that of Proposition

3.5 but it does not assume the mutual dependence amongst the measurement errors
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wt because with B being a zero matrix, χj,t = exp
(
γ j

)∏∞
i=0 exp(h′j,iut−i), for j ∈ {v,e2},

which does not depend on wt−i , i ≥ 0. However, we note that the contemporaneous

cross-moment of τt, E
[
τmj,tτ

n
k,t

]
(j , k), equals E

[
χmj,tχ

n
k,t

]
E
[
exp(mwj,t)exp(nwk,t)

]
(see

equation (3.25)), where E
[
exp(mwj,t)exp(nwk,t)

]
generally does not have a closed-form

expression if the joint distribution of wt is not known, but it simplifies to Mj(m)Mk(n)

if one assumes that the measurement errors wt are mutually independent. �

Proof of Corollary 3.1: The main result that E
[
τmj,t

]
= E

[
χmj,t

]
×Mj(m), j ∈ {v,e2}, fol-

lows directly from the fact that τj,t = χj,t exp(wj,t) and the independence between

χj,t and wj,t. Meanwhile, the expressions for E
[
χmj,t

]
in points (i) and (ii) immedi-

ately follow from Propositions 3.5 and 3.6, respectively, by letting n = 0. When B is

a zero matrix and A = diag(av , ae2), H = A, γ = (I2 − H)−1γ =
(
γv

1− av
,
γe2

1− ae2

)′
, and

H i =

h
′
v,i

h′
e2,i

 = diag(aiv , a
i
e2), for i ≥ 0. Consequently, γ j =

γj
1− aj

and exp
(
m2

2
h′j,iΣuhj,i

)
=

exp
(
m2

2
a2i
j uσj,j

)
, where uσj,j = Var(uj,t), j ∈ {v,e2}. Simple simplifications of the result

in Point (ii) give the result in Point (iii). �

Proof of Proposition 3.7: For two generic time series xj,t and xk,t, their cross correla-

tion function is

xρj,k,s=Corr(xj,t ,xk,t−s)=
Cov(xj,t ,xk,t−s)√

Var(xj,t)Var(xk,t−s)
=

E(xj,txk,t−s)−E(xj,t)E(xk,t−s)√
E
(
x2
j,t

)
−
[
E(xj,t)

]2√
E
(
x2
k,t−s

)
−
[
E(xk,t−s)

]2
,

for s ≥ 0. We use this formula to compute the cross correlation functions of the pro-

cesses χt and τt of the SVV0 model.

Under the SVV0 system, γ = (I2 − H)−1γ =
(
γv

1− av
,
γe2

1− ae2

)′
, and H i =

h
′
v,i

h′
e2,i

 =

diag(aiv , a
i
e2), for i ≥ 0. Stationarity implies that |aj | < 1, j ∈ {v,e2}. From Proposition

3.6, for j,k ∈ {v,e2},

E
[
χj,tχk,t−s

]
=exp

(
γ j+γk

) s−1∏
i=0

exp
(1

2
h′j,iΣuhj,i

) ∞∏
i=0

exp
(1

2
(h′j,i+s+h

′
k,i)Σu(hj,i+s+hk,i)

)
=exp

(
γj

1−aj
+
γk

1−ak

) s−1∏
i=0

exp
(1

2
a2i
j uσj,j

) ∞∏
i=0

exp
(1

2

(
a2i+2s
j uσj,j+2ai+sj aik uσj,k+a

2i
k uσk,k

))
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=exp
(
γj

1−aj
+
γk

1−ak

)
exp

 (1−a2s
j )uσj,j

2(1−a2
j )

exp

 a2s
j uσj,j

2(1−a2
j )

exp

asj uσj,k1−ajak

exp

 uσk,k
2(1−a2

k)


=exp

(
γj

1−aj
+
γk

1−ak

)
exp

 uσj,j

2(1−a2
j )

exp

asjuσj,k1−ajak

exp

 uσk,k
2(1−a2

k)

.

From Corollary 3.1,

E
[
χj,t

]
E
[
χk,t−s

]
=exp

(
γj

1−aj
+
γk

1−ak

)
exp

 uσj,j

2(1−a2
j )

exp

 uσk,k
2(1−a2

k)

,
E
[
χ2
j,t

]
=exp

(
2γj

1−aj

)
exp

2 uσj,j

1−a2
j

, and

(E
[
χj,t

]
)2=exp

(
2γj

1−aj

)
exp

 uσj,j1−a2
j

.

Therefore,

χρj,k,s=
E
[
χj,tχk,t−s

]
−E

[
χj,t

]
E
[
χk,t−s

]√
E
[
χ2
j,t

]
−(E

[
χj,t

]
)2
√
E
[
χ2
k,t−s

]
−(E

[
χk,t−s

]
)2

=

exp

asj uσj,k1−ajak

−1√√
exp

 uσj,j1−a2
j

−1

√
exp

 uσk,k1−a2
k

−1

.

For the process τt, using Proposition 3.6 and Corollary 3.1 we have

τρj,k,s=
E
[
τj,tτk,t−s

]
−E

[
τj,t

]
E
[
τk,t−s

]√
E
[
τ2
j,t

]
−(E

[
τj,t

]
)2
√
E
[
τ2
k,t

]
−(E

[
τk,t

]
)2

=
E
[
χj,tχk,t−s

]
×g1(j,k,1,1,s)−E

[
χj,t

]
E
[
χk,t−s

]
Mj(1)Mk(1)√

E
[
χ2
j,t

]
Mj(2)−(E

[
χj,t

]
Mj(1))2

√
E
[
χ2
k,t−s

]
Mk(2)−(E

[
χk,t−s

]
Mk(1))2

=

exp

asj uσj,k1−ajak

×g1(j,k,1,1,s)−Mj(1)Mk(1)√√
Mj(2)exp

 uσj,j1−a2
j

−[Mj(1)]2

√
Mk(2)exp

 uσk,k1−a2
k

−[Mk(1)]2

.

The proof of Proposition 3.7 is complete. �
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Chapter 4

Dynamics of the limit order book and

the volume-volatility relation

4.1 Introduction

Investigation of the relationship between trading volume and price volatility has been

an area of active research in finance for a long time. The study of the volume-volatility

relation(ship) is important because it provides evidence on how information flows

into the market, how it is processed and disseminated by trading activities of mar-

ket participants, and hence how it affects the price formation process (Karpoff, 1987).

Prior literature often documents a positive relationship between volume and volatility,

which is normally measured by the correlation between the two variables in theoret-

ical research, or alternatively by the change in volatility that results from an increase

in trading volume. Market microstructure theories provide several suggestions for

factors that drive this positive connection, be it either the arrival of new informa-

tion that generates both price and volume movements (e.g. Clark, 1973, Andersen,

1996), the disagreement among investors about asset values (e.g. Grundy and McNi-

chols, 1989, Shalen, 1993, Banerjee and Kremer, 2010), or strategic trading activities

by informed and uninformed traders in an asymmetric trading environment (e.g. Kyle,
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1985, Holden and Subrahmanyam, 1992).

Meanwhile, empirical work on this issue is rather limited. Most empirical studies

(e.g. Ahn et al., 2001, Chan and Fong, 2006, Pascual and Veredas, 2010, Chevallier and

Sévi, 2012, Carlin et al., 2014, Haugom et al., 2014, Clements and Todorova, 2016)

document the determinants of volatility, rather than the volume-volatility relation.

These studies show that trading activity (the number of trades and average trade size),

disagreements amongst traders, order flow information, and order book characteristics

(bid-ask spread and book depth) all contribute to the explanation of volatility, yet they

are silent on the way in which these factors affect the volume-volatility relation. In other

words, these studies assume that the dependence of volatility on volume is constant

over time and does not vary with other factors.

The study by Xu et al. (2006) sheds some empirical light on this matter. They iden-

tify trading intensity (or trade durations) as a determinant of the volume-volatility

relation by showing that higher trading frequency (which shortens durations between

trades) tends to strengthen the positive association between volatility and volume. Us-

ing the slope of the order book as a proxy for the heterogeneity in investors’ informa-

tion and beliefs, Næs and Skjeltorp (2006) find that increased disagreement amongst

traders, which is associated with a more gentle order book slope, makes the positive

daily correlation between volume and volatility more pronounced. Similarly, Boller-

slev et al. (2018) show that larger differences in beliefs around public news announce-

ments affect the volume-volatility relation for the S&P500 equity index and U.S. Trea-

sury bonds. In a related study, Wang and Wu (2015) find that the contemporaneous

dependence of volatility on volume varies across different corporate bond groups that

are stratified according to various liquidity and credit risk measures. These authors

suggest that liquidity and credit qualities are important determinants of the volume-

volatility relation in a corporate bond market. With the exception of Xu et al. (2006),

these studies only consider the contemporaneous relationship between volume and

volatility, and ignore lagged effects.

Electronic limit order books (LOBs) have become the dominant market trading plat-

form in recent years, replacing the traditional specialists or quote-driven trading plat-
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forms in many major financial markets around the globe (Bloomfield et al., 2005, Goet-

tler et al., 2009, Malinova and Park, 2013). Coming with the popularity of limit order

trading is increased interest in studying the properties of limit order book markets and

their role in explaining price dynamics. While many theoretical and empirical studies

examine the composition of the order flow in an LOB market,45 research into the use of

LOB information to predict future returns and return volatility is relatively sparse, yet

they all find evidence that the LOB informs the price process.46 For example, Foucault

et al. (2007), Nolte (2008) and Pascual and Veredas (2010) find that a wider bid-ask

spread leads to higher future volatility. Thicker book depths help mitigate the return

volatility of incoming orders (Ahn et al., 2001, Pascual and Veredas, 2010). Further,

Næs and Skjeltorp (2006) document that a larger LOB slope is associated with a de-

crease in daily trading activity and return volatility, and it also tends to dampen the

contemporaneous volume-volatility relation.

The objective of this chapter is to extend studies in the volume-volatility literature

and the LOB literature to examine the role that the LOB information plays in explain-

ing not only return volatility but also the volume-volatility relation. Unlike most ex-

isting studies which assume that the relationship between return volatility and trad-

ing volume is constant and fully contemporaneous (e.g. Chan and Fong, 2006, Næs

and Skjeltorp, 2006, Wang and Wu, 2015, Clements and Todorova, 2016), we allow

for the serial dependencies of volatility on volume, as implied by theoretical work of

Copeland (1976), Shalen (1993) and Banerjee and Kremer (2010) and by the empiri-

cal work of Manganelli (2005), Xu et al. (2006), Carlin et al. (2014), Do et al. (2014),

as well as Chapter 3 of this thesis. We allow the dynamic volume-volatility relation-

ship to depend on the dynamics of LOB characteristics such as the bid-ask spread, the

market depth at the inner quotes, and the LOB slope. The latter variable essentially

measures how the quantity of stocks supplied in the LOB changes as a function of the

45These studies explore possible answers to questions such as which types of orders (limit vs. market)
are often used by different types of investors (informed vs. uninformed), when these orders are used,
and why. See, for example, Glosten (1994), Biais et al. (1995), Ranaldo (2004), Foucault et al. (2005),
Wald and Horrigan (2005), Bloomfield et al. (2005), Anand et al. (2005), Kaniel and Liu (2006), Goettler
et al. (2009), Roşu (2009).

46Notable studies in this strand of literature include Ahn et al. (2001), Næs and Skjeltorp (2006),
Foucault et al. (2007), Nolte (2008), Kalay and Wohl (2009), and Pascual and Veredas (2010).
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limit price, and hence it captures the LOB information not just at but also beyond the

best quotes.

We conduct our volume-volatility analysis at a transaction or tick-by-tick level,

rather than at daily or lower frequencies like most previous studies. Not only does

the tick-by-tick analysis fit the frameworks of most theoretical studies and enable a

deeper understanding of how information from trades is incorporated into prices (e.g.

Easley and O’Hara, 1987, Shalen, 1993, Holden and Subrahmanyam, 1992), but it also

offers a natural remedy to the undetermined causality between volatility and its ex-

planatory variables, which results from the fixed-time aggregation of trades and prices

(Hasbrouck, 1995). It also helps to avoid an information loss that comes from aggre-

gating trades and prices over a fixed time interval that might bias estimation results

(Engle, 2000, Manganelli, 2005, Russell and Engle, 2005). Acknowledging the random

nature of trade arrival times at the transaction level, we follow Engle (2000) and Xu

et al. (2006) in employing time-consistent measures of volume and volatility that are

adjusted for trade durations. Our analysis also accommodates potential asymmetries

between the bid and ask order books, and it controls for the effects of the order flow

prior to a trade.

We examine the Australian limit order book market using a high-frequency tick-by-

tick dataset of the constituent stocks of the S&P/ASX200 index during July-December

2014. We find strong evidence that the LOB possesses significant information content

about the volume-volatility relation and the return volatility of trades. The depen-

dence of return volatility on trading volume is positive, dynamic, and strongly related

to the LOB information. Both the return volatility and the volume-volatility relation of

a trade are positively associated with the bid-ask spread but negatively correlated with

the market depth at the best quotes and the slope of the LOB prior to the transaction.

These results generalize and are consistent with previous findings in the literature

(Ahn et al., 2001, Næs and Skjeltorp, 2006, Foucault et al., 2007, Nolte, 2008, Pascual

and Veredas, 2010, Haugom et al., 2014).

The impact of LOB characteristics on the return volatility of an incoming trade is

conveyed via two channels; a direct channel that is mostly attributable to the lagged
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LOB information, and an indirect channel that transfers through the volume-volatility

relation and is mainly contributed by the prevailing LOB information right before the

trade. This is because the direct (indirect) channel captures the partial effect of the

LOB on return volatility without (with) the knowledge of a trade’s volume. Therefore,

if the volume of a trade is not known, the recent past order book attributes, which

contain information about recent past trading volumes and volatility (which in turn

are correlated with the volume and volatility of the trade), should play a critical role

in explaining future return volatility. However, if the volume that a trade demands

is known (i.e. if one conditions on the volume of the trade), the LOB characteristics

immediately before the trade, which provide the most recent information about recent

supply in the market, should be more relevant to the prediction of the trade’s volatil-

ity than the past LOB information. This result is consistent with work by Pham et al.

(2017), who find that in conjunction with the volume of a trade, the prevailing mar-

ket depth right before the trade is particularly useful for detecting whether the trade

has zero immediate price impact, and the depth information significantly improves

the forecast accuracy of an immediate price impact model. In addition, the effects of

the LOB information on return volatility, either direct or indirect, depend on stocks’

liquidity.

We also observe significant asymmetries in the effects of the bid versus ask order

books on return volatility and the volume-volatility relation, as previously noted in

Ahn et al. (2001), Engle and Patton (2004) and Harris and Panchapagesan (2005). In

particular, it is the order book of the opposite side to the direction of an incoming

trade that is particularly predictive of the return volatility of the current trade. Inter-

estingly, the effects of the bid-ask spread and market depth on return volatility and

the volume-volatility relation either switch signs or become much less significant after

controlling for the LOB slope, suggesting that the LOB slope is the driving determi-

nant of return volatility and the volume-volatility relation. This is because the LOB

slope summarizes the LOB information at all quote levels, and thus, it captures and

dominates the information contained in the bid-ask spread and the market depth at

the best quotes alone.
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In order to explain the empirically observed negative dependence of return volatil-

ity and the volume-volatility relation on the (opposite-side) LOB slope, we provide an

intuitive graphical illustration that can be summarized as follows: A large LOB slope

indicates a steep and concentrated LOB that has many shares queued close to the inner

quotes, which, as suggested by Næs and Skjeltorp (2006), might result from a high de-

gree of agreement amongst investors who submitted their limit orders over a narrow

range of prices. This state of the LOB is very liquid and is able to accommodate trades

with little (or no) price impact. Consequently, all else being equal, for a trade of a

given volume, the larger the slope of the (opposite-side) LOB, the smaller the change

in the price caused by the trade (i.e. the smaller the volatility of the trade), which

implies a negative correlation between return volatility and the LOB slope. Similarly,

for a given increase in the trading volume, the steeper the (opposite-side) LOB, the

smaller the price change, resulting in a weaker volume-volatility relation. Thus, the

volume-volatility relation is negatively dependent on the order book slope.

Our contributions to the literature are threefold. First, we extend research on the

volume-volatility relation by showing that the dynamics of the LOB are important fac-

tors that drive a positive dynamic relationship between return volatility and trading

volume at a high frequency tick-by-tick level. Existing studies primarily assume that

the volume-volatility relation is either fully contemporaneous or does not vary with

other characteristics that may explain volatility, or both. In addition, they mainly ex-

amine the volume-volatility relation at a low frequency such as a day (see, amongst

others, Næs and Skjeltorp, 2006, Chevallier and Sévi, 2012, Carlin et al., 2014, Wang

and Wu, 2015, Clements and Todorova, 2016). Complementing prior findings, our

study highlights the dynamic nature of the volume-volatility relation which is strongly

dependent on the LOB characteristics at a transaction level. Second, our work also con-

tributes to the literature that examines the information content of the LOB. We provide

empirical evidence that supports the informativeness of the LOB about return volatil-

ity and the volume-volatility relation of trades. We also find strong evidence of the

asymmetries between the effects of the bid and ask order books, as noted elsewhere

(e.g. Ahn et al., 2001, Engle and Patton, 2004, Harris and Panchapagesan, 2005). Fi-
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nally, our simple but intuitive graphical justification for the negative dependence of

return volatility and the volume-volatility relation on the slope of the (opposite-side)

LOB complements prior interpretations of the informativeness of the LOB slope in the

literature (e.g. Næs and Skjeltorp, 2006).

This chapter extends the closely related work of Næs and Skjeltorp (2006) that

also investigates the informativeness of the LOB attributes about the volume-volatility

relation in several aspects. First, while Næs and Skjeltorp (2006) only consider the

contemporaneous dependence of volatility on volume, we allow this relationship to be

dynamic, as highlighted in the theoretical studies of Shalen (1993) and Banerjee and

Kremer (2010). Second, Næs and Skjeltorp (2006) do not control for the direct impact

of LOB characteristics on volatility when estimating how the LOB information alters

the volume-volatility relation. Consequently, they tend to overestimate the effects of

the LOB characteristics on the volume-volatility relation. Our study, on the other hand,

explicitly accounts for such direct impact, and it shows different mechanisms through

which LOB information affects volatility, depending on whether the effect is direct or

indirect. In addition, we allow for the asymmetric effects of the bid versus ask order

books on the volume-volatility relation, which are not considered in Næs and Skjeltorp

(2006). Indeed, we find strong evidence of such asymmetries. Finally, instead of using

lower frequency (daily) data as in Næs and Skjeltorp (2006), we employ high-frequency

tick-by-tick data to conduct our analysis. This offers several advantages that will be

discussed in more detail in subsection 4.2.2.

It is worth noting that since the properties of the volume-volatility relation are

likely to be different depending on the horizons at which trading volume and return

volatility are sampled,47 the determinants of this relation in general depend on which

frequencies we employ. In other words, factors that affect the volume-volatility rela-

tion at short horizons are likely to differ from those at longer frequencies. This chapter

focuses on the high frequency effects of volume on volatility, and it investigates how

the LOB information explains return volatility and the volume-volatility relation at

47For example, at a tick-by-tick horizon, much of the impact of volume on volatility is temporary;
whereas, this impact becomes more permanent at longer horizons.
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this high frequency tick-by-tick level. Nevertheless, our findings on the informative-

ness of the LOB information about return volatility and the volume-volatility relation

are generally consistent with the findings of previous studies that utilize longer sam-

pling horizons. This result suggests that the effects of the LOB information on return

volatility and the volume-volatility relation are genuine and robust across horizons.

The rest of this chapter is organized as follows. Section 4.2 details a general em-

pirical framework that we employ to investigate the informativeness of the LOB char-

acteristics about the volume-volatility relation. Section 4.3 describes the data, and

discussions of the main empirical results follow in Section 4.4. In Section 4.5, we pro-

vide a graphical rationale for the informativeness of the LOB slope, and Section 4.6

offers some concluding remarks.

4.2 The volume-volatility relation

4.2.1 A general empirical framework

Let σi,t and vi,t be proxies for the volatility and volume associated with stock i at time

(or during the time interval) t, respectively. Previous studies (e.g. Jones et al. 1994,

Chan and Fong 2000, Chan and Fong 2006, Chevallier and Sévi 2012, Clements and

Todorova 2016) have typically examined the volume-volatility relation via the follow-

ing regression:

σi,t = α0 +
q∑
j=1

αjσi,t−j + βvi,t +γ ′xi,t + ηi,t, (4.1)

where
∑q
j=1αjσi,t−j allows for the persistence in volatility, ηi,t is a zero-mean distur-

bance term, and xi,t is a vector of independent variables that may explain the return

volatility of stock i at time t. Numerous factors xi,t have been suggested by theoreti-

cal literature as important determinants of return volatility and the volume-volatility

relation. For example, the Mixture of Distribution Hypothesis (MDH) of Clark (1973),

Tauchen and Pitts (1983) and Andersen (1996), and the Sequential Arrival of Infor-

mation Hypothesis (SAIH) of Copeland (1976), Jennings et al. (1981) and Jennings

and Barry (1983) suggest that the arrival of new information is the driving force of the
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volume-volatility relation, since it generates the comovements in both trading volumes

and asset prices. Meanwhile, studies of Kim and Verrecchia (1991), Harris and Raviv

(1993), Shalen (1993), Kandel and Pearson (1995), Banerjee and Kremer (2010), Baner-

jee (2011), amongst others, attribute the volume-volatility relation to the investors’

heterogeneity about asset values. According to these studies, a positive correlation be-

tween trading volumes and price volatility is driven by an over-reaction of one group

of traders (such as speculators who observe noisy private information, or responsive

traders who interpret the common public information too favorably or too unfavor-

ably) after observing an increase in trading activities.

Factors that affect price impact of trades are also likely to explain the volume-

volatility relation. For example, in the models of Kyle (1985) and Admati and Pflei-

derer (1988), the market maker revises his quotes upon observing the aggregated order

flow from both informed and uninformed traders. Thus, the order flow contains im-

portant information about prices, and hence the volume-volatility relation. Similarly,

both adverse selection risk and inventory holding risk are important for the under-

standing of price dynamics and the relationship between volume and price volatility.

This is because the larger a market order is submitted to the market, the further away

the market maker is from his preferred inventory position and the more severely he is

adversely selected if the incoming order is from an informed trader (O’Hara and Old-

field, 1986, Easley and O’Hara, 1987). Consequently, the market maker has to adjust

prices more in order to compensate for his higher risk.

In equation (4.1), the volume coefficient β measures the impact of volume on volatil-

ity. Clearly, equation (4.1) does not answer the question of whether xi,t, which con-

tributes to the explanation of return volatility, also explains the volume-volatility rela-

tion, since the marginal effect of volume on volatility (i.e. β) does not vary with xi,t. We

investigate this question by allowing the volume coefficient β in (4.1) to be a function

of xi,t. To keep things simple, we decompose β as β0 + δ′xi,t to obtain the following

141



Chapter 4. Dynamics of the limit order book and the volume-volatility relation

model:48

σi,t = α0 +
q∑
j=1

αjσi,t−j + [β0 + δ′xi,t]vi,t +γ ′xi,t + ηi,t, (4.2)

in which xi,t influences return volatility (σi,t) via two channels: by its direct impact

on the latter (captured by γ), and by its indirect effect that alters the volume-volatility

relation (captured by δ′xi,t). The decomposition in (4.2) is similar in spirit to the econo-

metric methodology proposed by Dufour and Engle (2000) to investigate the informa-

tiveness of trade arrival times in explaining the price impact of a trade. It is also

similar to the technique employed by Avramov et al. (2006), who show that selling

activity is the driving factor of the asymmetric effect in daily volatility, which is often

known as the “leverage effect” in individual stock returns. A recent study by Bollerslev

et al. (2018) utilizes a similar decomposition and documents that the volume-volatility

elasticity of the S&P500 equity index and U.S. Treasury bonds, which measures the ex-

pected percentage change in trading volume for a small percentage change in return

volatility, becomes weaker around public news announcements and when there is a

higher degree of disagreement in beliefs amongst investors.

Similar to most empirical studies in the literature that examine the volume-volatility

relation (e.g. Chan and Fong, 2006, Næs and Skjeltorp, 2006, Shahzad et al., 2014,

Wang and Wu, 2015, Bollerslev et al., 2018), both models (4.1) and (4.2) characterize

the correlation between volume and volatility as fully contemporaneous. However, the

SAIH of Copeland (1976) and Jennings et al. (1981) implies that there is a lead-lag

relationship between volume and volatility, which results from sequential, rather than

simultaneous, dissemination of information to market participants that creates a se-

quence of intermediate equilibria before the final equilibrium is reached. Similarly,

theoretical models that feature heterogeneity in investors’ beliefs about asset prices,

due to either asymmetric private information (Shalen, 1993) or differences of opinions

about public information (e.g. Harris and Raviv, 1993, Banerjee and Kremer, 2010),

48 We only consider the case where the volume coefficient β in (4.1) varies linearly with xi,t . It is,
however, possible to allow for the nonlinear dependence of β on xi,t , either nonparametrically by letting
β = f (xi,t), where f (·) is some unknown smooth function, or parametrically by writing β = β0 + δ′zi,t ,
where zi,t contains xi,t and possibly its higher orders, nonlinear transformations, and/or interaction
terms that allow for nonlinearities. We leave this direction for future research.
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show that there are both contemporaneous and serial dependencies of volatility on vol-

ume. In addition, as highlighted in the microstructure model of Hasbrouck (1991a,b),

microstructure imperfections such as price discreteness and inventory control effects

might induce lagged adjustments in stock prices to a trade’s information, implying that

past trading volumes could be informative about future prices and volatility. Consis-

tent with these theories, empirical work by Manganelli (2005), Xu et al. (2006), Nolte

(2008), Carlin et al. (2014), and Do et al. (2014) finds significant current and lagged

volume effects on return volatility. In order to accommodate this dynamic volume-

volatility dependence, we modify equation (4.2) as follows:

σi,t = α0 +
q∑
j=1

αjσi,t−j +
p∑
k=0

[β0,k + δ′kxi,t−k]vi,t−k +
p∑
k=0

γ ′kxi,t−k + ηi,t, (4.3)

where β0,0 +δ′0xi,t captures the contemporaneous impact of volume on volatility, β0,k +

δ′kxi,t−k (k ≥ 1) measures the lagged impact, and
∑p
k=0[β0,k+δ′kxi,t−k] gauges the cumula-

tive impact. We add the term
∑p
k=1γ

′
kxi,t−k, which measures the lagged direct effects of

xi,t on return volatility, to (4.3) in order to ascertain whether xi,t is a genuine predictor

of the volume-volatility relation, even after controlling for its contemporaneous and

lagged direct impact on volatility.

4.2.2 Proxies for volatility and volume

Given the availability of high frequency data that detail the record of every trade in

recent years, this chapter examines the dynamic volume-volatility relation at a tick-

by-tick or transaction level. Although the use of transaction data is widespread in the

market microstructure literature (e.g. Hasbrouck, 1991a,b, Dufour and Engle, 2000,

Barclay et al., 2003) and in the duration-volatility modeling literature (e.g. Engle, 2000,

Renault and Werker, 2011, Renault et al., 2014), most research investigates the volume-

volatility relation at daily or lower frequencies,49 and only a few studies, including

Manganelli (2005), Xu et al. (2006) and Nolte (2008), provide an examination of the

49See, amongst others, Jones et al. (1994), Andersen (1996), Chan and Fong (2000), Avramov et al.
(2006), Næs and Skjeltorp (2006), Giot et al. (2010), Chevallier and Sévi (2012), Carlin et al. (2014),
Shahzad et al. (2014). Also see Karpoff (1987) for a detailed survey of more distant research on the
topic. There are also several studies that examine the volume-volatility relation at an intradaily level
such as Ahn et al. (2001) and Bollerslev et al. (2018) (15 minutes), Duong and Kalev (2008) (30 minutes
and 1 hour), Pascual and Veredas (2010) (1 and 5 minutes), and Do et al. (2014) (5 minutes).
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volume-volatility relation at a transaction level. This is quite surprising, given that the

majority of theoretical studies on the topic develop their analysis at a tick-by-tick level

(see, for example, Kyle, 1985, Easley and O’Hara, 1987, Holden and Subrahmanyam,

1992, Shalen, 1993). Despite being under-researched, possibly due to the computa-

tional difficulties associated with huge data sets needed for this, a tick-by-tick analysis

of the volume-volatility relation could enable a deeper understanding of how prices

adjust to absorb the information from trades because, as highlighted in the theoretical

work by Diamond and Verrecchia (1987) and Easley and O’Hara (1992), the existence

or absence of each individual trade is informative about price formulation. In ad-

dition, a tick-by-tick analysis helps avoid a loss of information that results from the

aggregation of trades and prices over a fixed time interval that may potentially bias

the analysis (Engle, 2000, Manganelli, 2005, Russell and Engle, 2005). It also provides

a natural solution to the undetermined causality between volatility and its predictors

often recognized in prior studies that employ lower frequency data (see subsection

4.2.4 for a more detailed discussion).

Volatility is typically measured over a fixed time interval such as an hour, a day or

a week, depending on the frequency at which data are sampled. Previous studies in

the volume-volatility literature often estimate fixed-interval volatility by using either

(i) the absolute size of residuals from an autoregression of returns (e.g. Jones et al.,

1994, Chan and Fong, 2000, Avramov et al., 2006, Næs and Skjeltorp, 2006); or (ii)

a realized volatility measure computed by summing up the squared returns that are

sampled intradaily (typically every 5 minutes) during the time interval over which

volatility is measured (normally a day) (e.g. Chan and Fong, 2006, Giot et al., 2010,

Chevallier and Sévi, 2012, Shahzad et al., 2014).50 However, when working with tick-

by-tick data, researchers face a challenging issue which is that transactions do not

arrive in the market at regularly spaced time intervals but at irregular, random times.

50Under the assumption that asset prices follow a continuous time diffusion process without jumps,
realized volatility is shown to be a consistent and more accurate estimator of the true unknown in-
tegrated volatility of the underlying price process than the absolute or squared return over the same
period (Andersen et al., 2001, Barndorff-Nielsen and Shephard, 2002). When there are random jumps
in prices, the latent integrated volatility can be consistently estimated by realized bi-power variation,
which is proportional to, by a factor of π/2, the summation of the product of two adjacent absolute
intraday returns over the time interval (Barndorff-Nielsen and Shephard, 2004, 2006).
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This complicates the measurement of the volatility of a trade since the time duration

of each trade is not the same. In order to obtain a meaningful and time-consistent

measure of volatility, Engle (2000) and Xu et al. (2006) suggest that volatility should

be adjusted for trade durations, and that volatility per unit of time should be a natural

measure of volatility in tick-by-tick empirical analyses. In this chapter, we estimate the

volatility per unit of time for a transaction by dividing the absolute size of the residual

from the following regression by the duration of the trade:

ri,t =
5∑
k=1

ψi,kDayk,i,t +
5∑
k=1

φi,kblockk,i,t +
q∑
k=1

ρi,kri,t−k +ϕ′xi,t + εi,t, (4.4)

where ri,t denotes the return of the t-th trade in stock i, defined as the difference in

the natural logarithms of the bid-ask midpoint following the trade and quoted in %,

i.e. ri,t = 100(ln(qi,t+1) − ln(qi,t)), where qi,t is the midpoint of the bid and ask quotes

immediately before the t-th trade. Dayk,i,t are day-of-week dummies, and blockk,i,t

are time-of-day dummy variables.51 Lagged returns (ri,t−k) are used to control for the

autocorrelation in the return series. Meanwhile, the incorporation of xi,t (in (4.1)) into

equation (4.4) allows for its possible power in explaining returns, which ensures that

the effects of xi,t on volatility obtained from equations (4.1)-(4.3) are genuine and are

not driven by the impact of xi,t on returns. We define σi,t by σi,t B |ε̂i,t |/Ti,t, where

Ti,t is the duration of the t-th trade which measures the time (in seconds) between the

(t − 1)-th and t-th trades, and we use σi,t as a proxy for volatility in models (4.2) and

(4.3).52

Two proxies for trading activities that are popularly used in the volume-volatility

literature are the number of trades and the average trade size during a fixed time inter-

val. While both measures are found to be positively related to return volatility, prior

studies often document that the number of trades, which essentially captures the trad-

51Each trading day in the Australian Securities Exchange (ASX) is partitioned into six hourly inter-
vals: 10:10-11:00, 11:00-12:00, 12:00-13:00, 13:00-14:00, 14:00-15:00 and 15:00-16:00. All trades in
the first 10 minutes of each trading day are excluded from the analysis to avoid the effects of the ASX
opening procedure. The first five hourly dummies are included in equation (4.4), while the last trading
hour serves as the base category.

52Our proxy for volatility is a time-consistent version of the volatility measure of Jones et al. (1994),
Chan and Fong (2000), Avramov et al. (2006) and Næs and Skjeltorp (2006) that can be applied to
transaction data. Note that at a tick-by-tick level, a realized volatility measure is not defined and hence
cannot be computed.
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ing intensity, is far more informative about return volatility than the average trade size

(e.g. Chan and Fong, 2006, Næs and Skjeltorp, 2006, Chevallier and Sévi, 2012). When

working with transaction data, previous studies usually measure the volume of a trade

by the number of shares executed by the trade (e.g. Hasbrouck, 1991a,b, Manganelli,

2005, Nolte, 2008), which coincides with the average trade size since the number of

trades at a transaction time is always one.53 Motivated by the suggestion of Engle

(2000) and Xu et al. (2006) that variables computed in transaction time should be ad-

justed to account for calendar time, we employ a time-consistent measure of volume

vi,t, called volume per unit of time, which is defined as Vi,t/Ti,t, where Vi,t is the number

of shares traded (times 1000) divided by the total number of shares outstanding right

before the t-th trade in stock i,54 and Ti,t is the duration of the trade.

4.2.3 Limit order book characteristics and the volume-volatility re-

lation

The study of the information content of the LOB has attracted the attention of re-

searchers for a long time. Most of the efforts, however, have been devoted to explaining

what types of orders (i.e. limit vs. market) are employed by various types of investors

(i.e. informed vs. uninformed), when, and why.55 For example, Glosten (1994) shows

that in order to capitalize quickly on their information, informed traders, who are

presumably impatient, prefer market orders to limit orders. In contrast, Wald and

Horrigan (2005) suggest that the optimal trading strategy for informed investors is to

submit slightly discounted limit orders, rather than market orders, since these limit

orders not only have a very high execution probability but also save the traders from

paying a full bid-ask spread. Meanwhile, an experimental study by Bloomfield et al.

(2005) indicates that although informed traders are more likely to place market orders

53Although multiple instantaneous transactions can be observed, they typically result from the
matching of one big market order against several opposite side limit orders and are normally aggre-
gated into one big trade in empirical analyses.

54Standardizing the number of shares of a trade by the number of shares outstanding right before the
trade helps facilitate comparison amongst different stocks by putting them on roughly the same footing.
We obtain qualitatively similar results without this standardization.

55See Glosten (1994), Biais et al. (1995), Parlour (1998), Anand et al. (2005), Bloomfield et al. (2005),
Wald and Horrigan (2005), Foucault et al. (2005), Goettler et al. (2009), Roşu (2009), amongst others.
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at the beginning of a trading day to take advantage of their information, they tend to

switch to limit orders to earn the spread as the trading day progresses and prices have

converged to the equilibrium level. The order placement decisions of informed traders

also depend on the expected time horizon of their private information, as suggested by

Kaniel and Liu (2006). If their information is long-lived, informed traders are more

likely to submit limit orders.

Parlour (1998) considers a dynamic limit order book market that has no informa-

tion asymmetry and shows that the state of the LOB is an important factor that affects

traders’ decisions to place limit versus market orders, which in turn influence price

dynamics. In an information symmetric environment, the choice of submitting a limit

versus market order and at which price involves a trade-off between the execution

probability of the submission and its execution price. According to Parlour (1998),

traders prefer the submission of limit orders over market orders when the execution

probability of the former is high, e.g. when the book depth is small. Thus, a thick

limit order book encourages traders to submit more aggressive orders (i.e. either limit

orders with more aggressive prices or market orders) to increase the execution prob-

ability of their orders. Asymmetry between the bid and ask sides of the LOB also

plays an important role in traders’ order placement decisions. For example, a thicker

ask book than bid book increases the submission of more aggressive buy orders but

less aggressive sell orders, since the execution probability of a limit buy (sell) order is

lower (higher). The theoretical findings of Parlour (1998) are empirically supported in

the work of Ranaldo (2004), Aitken et al. (2007) and Duong and Kalev (2013).

There is a small but growing literature that examines whether the information con-

tained in the LOB is predictive of the price formation and trade generation processes.

Hasbrouck (1991a) documents that a wider bid-ask spread increases the price impact

or return of an incoming trade. Similarly, Foucault et al. (2007) develop a theoreti-

cal model that predicts a positive relationship between the bid-ask spread and future

volatility, which is strongly supported by empirical evidence documented in Næs and

Skjeltorp (2006), Foucault et al. (2007), Nolte (2008) and Pascual and Veredas (2010).

Meanwhile, an increase in the market depth available in the LOB leads to a decline in
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the price impact and return volatility of future trades (Ahn et al., 2001, Pascual and

Veredas, 2010, Brogaard et al., 2015). In addition, Pham et al. (2017) document that

the use of the market depth information right before a trade significantly improves the

prediction of the immediate price impact of the trade. Næs and Skjeltorp (2006) show

that higher average daily slope of the LOB dampens daily trading activity and return

volatility, as well as the contemporaneous volume-volatility relation. Likewise, Kalay

and Wohl (2009) find that their buying pressure measure, which is calculated from the

slopes of the bid and ask order books, is predictive of future returns.

This chapter aims to investigate the role played by the LOB in explaining the dy-

namic volume-volatility relation and ultimately the return volatility of trades at a tick-

by-tick level. Following the prior literature, the LOB characteristics that we examine

consist of (i) the relative bid-ask spread, Spreadi,t, defined as the quoted spread di-

vided by the mid-quote right before a trade; (ii) the market depth available at the inner

quotes, Depthi,t, defined as the total number of shares available at the best bid and ask

prices (times 1000) and standardized by the total number of shares outstanding right

before a trade (see footnote 54); and (iii) the slope of the LOB that prevails immediately

before a trade. The latter variable captures the steepness of the limit order book, and

it essentially measures how the quantity of stocks supplied in the LOB changes as a

function of the limit price. Thus, the slope measure summarizes the LOB information

at all limit price levels, whereas the first two attributes (i.e. bid-ask spread and market

depth) only capture the LOB information at the best quotes.

Following Næs and Skjeltorp (2006), we compute the LOB slope for stock i imme-

diately before transaction time t or the t-th trade as

Slopei,t =
Slpbi,t + Slpai,t

2
, (4.5)

where Slpbi,t and Slpai,t respectively denote the slopes of the bid and ask order books

and are given by

Slpbi,t =
1

100NB

 vB1
|pB1 /p0 − 1|

+
NB−1∑
τ=1

vBτ+1/v
B
τ − 1

|pBτ+1/p
B
τ − 1|

 , and (4.6)

Slpai,t =
1

100NA

 vA1
pA1 /p0 − 1

+
NA−1∑
τ=1

vAτ+1/v
A
τ − 1

pAτ+1/p
A
τ − 1

 , (4.7)

148



Chapter 4. Dynamics of the limit order book and the volume-volatility relation

where NB and NA are the total number of bid and ask prices (tick levels) containing or-

ders of stock i right before time t, respectively. τ denotes the tick levels that have pos-

itive share volumes, and thus, pB1 (pA1 ), where τ = 1, represents the best bid (ask) price.

p0 denotes the best bid-ask midpoint immediately prior to time t. vBτ and vAτ are the

natural logarithms of the accumulated total share volume at each tick level τ on the bid

(pBτ ) and ask (pAτ ) side right before time t, respectively. That is, if we denote by V B
τ (V A

τ )

the total share volume demanded (supplied) at pBτ (pAτ ), then vBτ = ln
(∑τ

j=1V
B
j

)
, which

measures the natural logarithm of the total share volume demanded at pBτ or higher,

and vAτ = ln
(∑τ

j=1V
A
j

)
, which measures the natural logarithm of the total share vol-

ume supplied at pAτ or lower. Intuitively, the bid (ask) slope measures the percentage

change in the bid (ask) volumes relative to the percentage change in the corresponding

bid (ask) prices, which is averaged across all limit price levels in the bid (ask) order

book, and the LOB slope is an average of the bid and ask slopes. For each point in

transaction time t, we employ the 10 best bid and ask quotes, together with the share

volumes queued at these quotes right before time t, to calculate the LOB slope.56 In

addition, all undisclosed or hidden orders are removed from the calculation of the LOB

slope.

Market microstructure studies highlight the importance of trade direction or trade

type (i.e. buy vs. sell) in explaining price dynamics (e.g. Hasbrouck, 1991a,b, Du-

four and Engle, 2000, Barclay et al., 2003). In particular, an unexpected purchase

(sale) results in a significant increase (decrease) in a stock’s price. Meanwhile, Ahn

et al. (2001), Engle and Patton (2004) and Harris and Panchapagesan (2005) document

that there are significant asymmetries between the bid and ask sides of the LOB that

are important to explain price dynamics. To incorporate the trade direction informa-

tion and to allow for potential asymmetric effects of the bid and ask order books, we

split the Depthi,t and Slopei,t measures into the corresponding bid and ask quanti-

ties, and interact them with the trade indicator. This brings us the following set of

LOB attributes: BVi,tBi,t,BVi,tSi,t,AVi,tBi,t,AVi,tSi,t,Slpbi,tBi,t,Slpbi,tSi,t,Slpai,tBi,t, and
56If less than 10 levels of the best bid and ask quotes with positive volumes are available at a par-

ticular point in time for a stock, the slope is computed using all levels of quotes available. We also
employ different sets of the LOB information (of 5 and 20 best bid and ask levels) to compute the slope
measures. Results of this experiment are reported in subsection 4.4.4.
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Slpai,tSi,t, where BVi,t (AVi,t) is the bid (ask) depth volume, Slpbi,t (Slpai,t) is the bid

(ask) order book slope, and Bi,t (Si,t) is a buy (sell) indicator that equals 1 if the t-th

trade is a buy (sell), and 0 otherwise.

Previous studies find that the information about the order flow such as order im-

balance possesses some explanatory power about return volatility (e.g. Chan and Fong

2000, Chan and Fong 2006, Shahzad et al. 2014). In order to ascertain that the infor-

mativeness of the LOB about the return volatility and the volume-volatility relation

of a trade is genuine and not driven by the order flow information prior to the trade,

we incorporate into all models several control variables that allow for the effects of

the order flow. This partly mitigates problems associated with the endogeneity and

the joint determination of the LOB variables and trading volume. The vector of con-

trol variables that we employ is yi,t = (ln(Ti,t),Ni,t,AT Si,t,OIBi,t,QT Ti,t)′, where Ti,t is

the duration of the t-th trade, Ni,t, AT Si,t, OIBi,t and QTTi,t respectively measure the

number of transactions, the average trade size (times 106 and divided by the total num-

ber of shares outstanding), the order imbalance (defined as the number of buys minus

the number of sells), and the quote to trade ratio (defined as the total number of or-

der submissions, revisions and cancellations divided by the number of trades) during

the 5-minute interval right before the t-th trade. See Table 4.8 in the Appendix (i.e.

Section 4.7) for a complete list of all variables used in this chapter.

The inclusion of the above considerations suggests modifying the dynamic volume-

volatility regression in equation (4.3) as

σi,t=α0+µ1Mondayi,t+µ2block1i,t+
q∑
j=1

αjσi,t−j+
p∑
k=0

[β0,k+δ
′
kxi,t−k]vi,t−k+

p∑
k=0

γ ′kxi,t−k+π
′yi,t+ηi,t ,

(4.8)

where σi,t = |ε̂i,t |/Ti,t, and ε̂i,t is the residual from the following autoregressive model

of returns which also includes the control variables yi,t; i.e.

ri,t =
5∑
k=1

ψi,kDayk,i,t +
5∑
k=1

φi,kblockk,i,t +
q∑
k=1

ρi,kri,t−k +ϕ′xi,t +λ′yi,t + εi,t. (4.9)

We incorporate Mondayi,t (a dummy variable for Monday) and block1i,t (a dummy

variable for the first trading hour (10:10:00-11:00:00) of a day) into equation (4.8) to

capture additional Monday and opening effects on return volatility that might not
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be fully removed in the first stage regression (4.9) (e.g. Jones et al., 1994, Avramov

et al., 2006). Vector xi,t contains the LOB characteristics, consisting of either Spreadi,t,

Depthi,t and Slopei,t if a combined LOB is considered, or Spreadi,t, BVi,tBi,t, BVi,tSi,t,

AVi,tBi,t, AVi,tSi,t, Slpbi,tBi,t, Slpbi,tSi,t, Slpai,tBi,t, and Slpai,tSi,t if we allow for a sepa-

ration of the bid and ask order books. Note that the imposition of the restrictions that

p = 0 and δ0 = 0 on equation (4.8) gives a constant contemporaneous volume-volatility

relation model similar to equation (4.1), which is examined by most existing stud-

ies. The imposition of p = 0 on equation (4.8) gives an “endogenous” contemporaneous

volume-volatility relation model similar to equation (4.2) and to the model estimated

by Næs and Skjeltorp (2006) for daily data.57 We use the word “endogenous” here

to indicate that the volume-volatility relation is no longer constant but dependent on

the LOB information. For the full model (4.8) that allows the dynamic dependence of

return volatility on trading volume to be dependent on the LOB attributes, we assume

that the model can be truncated at p = 5 lags, as is typically assumed in the literature

(e.g. Hasbrouck, 1991a,b, Dufour and Engle, 2000, Xu et al., 2006). We also truncate

the lags of returns and volatility in equations (4.8) and (4.9) at q = 12, as typically

done in previous studies (e.g. Avramov et al., 2006, Chan and Fong, 2006, Chevallier

and Sévi, 2012). We find that our results are negligibly affected by the choice of p and

q.

4.2.4 A caveat on causality

Previous empirical studies on the volume-volatility relation often face the problem of

the undetermined causal relationships between volatility and its determinants such as

trading volume and the LOB information. This arises from the use of low frequency

data that are aggregated over a fixed time interval such as a day, which leads to the con-

temporaneous correlation or bilateral relationship between the variables (Hasbrouck,

1995, Barclay et al., 2003, Benos and Sagade, 2016). For example, a large transac-

57It is noted that Næs and Skjeltorp (2006) do not control for the direct impact of LOB information
on volatility. Specifically, they first compute the sample correlation between the daily number of trades
and daily volatility in every month, then regress this monthly correlation series on the monthly averages
of the LOB attributes for a panel of all stocks in their sample.
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tion, which is often originated by informed traders, has a big impact on security prices

and increases price volatility, which then sends signals to the market and affects the

trading intensity and volume of subsequent trades (Easley and O’Hara, 1987, 1992,

Dufour and Engle, 2000). If these transactions are aggregated, the combined volume

and volatility should be interrelated and jointly determined, and it will be difficult to

disentangle the causal relationship between the two. Similarly, a thin order book in-

creases price volatility (Ahn et al., 2001, Pascual and Veredas, 2010), but a prediction

of high future volatility may reduce the aggressiveness in quoting of market partic-

ipants, which in turn affects the LOB composition (Foucault et al., 2007). Hence, a

fixed-time aggregation of trading activities leads to undetermined causality between

volatility and LOB information, as empirically observed in Næs and Skjeltorp (2006).

Given that trading and quoting activities often arrive sequentially, Hasbrouck (1995)

suggests that shortening the sampling time interval might mitigate this issue as it helps

reduce the contemporaneous correlation due to time aggregation.

Motivated by Hasbrouck’s (1995) suggestion, this chapter utilizes tick-by-tick data,

and it assumes that at a transaction level there are Granger-causality relationships run-

ning from trading volumes and LOB characteristics to return volatility, and the LOB

information Granger-causes the volume-volatility relation of trades. Given that our

LOB attributes (trading volumes) are known right before (at) the execution of a trade,

whereas the return and volatility of the trade can only be realized ex-post once the

trade is fully transacted, these assumptions are intuitive and reflect the chronologi-

cal operation of an electronic LOB market. They are also consistent with the trading

and quoting procedure in a traditional quote driven market, where designated market

makers or specialists revise the bid and ask quotes to take into account the information

that they have observed and learned from a new trade, as described in many theoreti-

cal market microstructure studies (see, for examples, Kyle, 1985, Easley and O’Hara,

1987, Hasbrouck, 1991a,b, Easley and O’Hara, 1992).

However, the use of transaction data and the above assumptions do not completely

rule out the potential endogeneity of trading volumes and LOB information. This is

because these variables are correlated with traders’ unobserved liquidity needs and
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information sets as well as the release of new information in the market, which cer-

tainly affect return volatility. Nevertheless, it is difficult to find sensible instruments

for volume and LOB characteristics because (i) these instruments need to be measured

at a tick-by-tick level, and (ii) they must only affect return volatility indirectly through

trading volume and LOB information (i.e. they must be uncorrelated with the error

of the volatility equation), which is very unlikely given the trading and price dynam-

ics. Instead of finding possible instruments, we offer an alternative solution to this

problem by incorporating into our models the lags of return volatility as well as vari-

ables that account for the order flow information prior to a trade (see discussions in

the previous subsections). This is typically done in the volume-volatility literature,

and we hope that these variables, which capture some information about traders’ un-

observed characteristics, are sufficient to minimize the endogeneity and joint determi-

nation problems and maintain the validity of our results.58

4.3 Data

4.3.1 The Australian stock market

The Australian Securities Exchange (ASX) is amongst the 15 largest listed exchange

groups in the world by market capitalization. Prior to 31 October 2011 it was the

only stock exchange where all Australian listed stocks were traded, and it has been the

primary Australian equity exchange ever since, accounting for more than 80% of all

trading volumes in Australia.59 As of July 2017, almost 2,200 companies and issuers

were listed on the ASX, ranging from big well established companies to small start-up

firms and possessing a total market capitalization of about AUD$ 1.5 trillion (or USD$

58 Another way to accommodate the endogeneity and joint determination of trading volumes and
LOB information is to model these variables and price volatility simultaneously in a multivariate sys-
tem of equations similar to the (nonlinear) VAR model examined in Chapter 2. Such a system includes
equation (4.3) for volatility and other similarly defined equations for trading volumes and LOB at-
tributes, and it can be consistently estimated (equation by equation) by OLS. We do not estimate this
entire system of equations in this chapter since our main focus is on the volatility equation of the system.

59On 31 October 2011 a new trading platform called Chi-X Australia was launched and it became
the second equity exchange in Australia. Since then, the market share of Chi-X has increased from 1.7%
in April 2012 to 14.3% in September 2013 (ASIC, 2014), and to over 20% in July 2017 (see http://chi-
x.com.au).
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1.2 trillion).

The ASX has operated as a purely electronic order-driven market via a system

called “Stock Exchange Automated Trading System” (SEATS) since 1991. Orders sub-

mitted to the ASX follow a price-time priority, as typically seen in most other elec-

tronic LOB markets. In particular, limit orders are queued and ranked in the LOB

first by price priority and then in the time sequence that they arrive at the market.

Meanwhile, market orders, which are orders with the highest price priority, are ex-

ecuted at the best available prices immediately upon their submissions. The LOB is

updated instantaneously whenever an order submission, revision, cancellation, or ex-

ecution occurs. The submitted price of an order must be in multiples of the minimum

tick size, which is pre-specified by the exchange and is dependent on the price level

of the security. The tick size is currently AUD$ 0.001, 0.005, and 0.01 for stock prices

that are below AUD$ 0.1, from AUD$ 0.1 but below AUD$ 2, and from AUD$ 2, re-

spectively. A typical trading day consists of two sessions: a pre-market session from

7:00am to 10:00am Australian Eastern Standard Time (AEST), and a normal trading

session from 10:00am to 4:00pm AEST. The first 10 minutes of the normal trading ses-

sion are opening auctions. There is also a closing single price auction between 4:10pm

and 4:12pm during which the daily closing price for each stock is determined (see

http://www.asx.com.au).

4.3.2 The data

The informativeness of the LOB about the dynamic volume-volatility relation is inves-

tigated using a sample of the constituent stocks of the S&P/ASX200 index between 1

July and 31 December 2014. Comprising of the 200 largest Australian listed stocks, the

S&P/ASX200 index is the primary stock market index that serves as the main invest-

ment benchmark in Australia and it constitutes about 80% of Australia’s sharemarket

capitalization. We follow the ASX’s classification to partition these stocks into three

groups: “Large cap” which contains stocks in the S&P/ASX50 index, “Mid cap” which

contains stocks in the S&P/ASX100 index but outside the S&P/ASX50 index, and

“Small cap” which contains the remaining stocks in the S&P/ASX200 index. There
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were 198 stocks in our sample, consisting of 49 large cap, 50 mid cap, and 99 small

cap stocks.60

We collect two datasets from the Securities Industry Research Centre of Asia-Pacific

(SIRCA) database. The first dataset records details on every order submitted to the

Australian central LOB, including the stock code, the order type (order submission,

order revision, order cancellation and execution), the date and time (to millisecond

precision), the order price, the order volume (number of shares), the order value (dol-

lar value), and the order qualifiers.61 Each new order is assigned a unique identication

number (ID) so that the order can be tracked from its initial submission through any

revision, cancellation or execution. We extract all trades that are performed within the

continuous trading session in the lit market (from 10:10:00 to 16:00:00) and discard all

transactions executed in the opening auction (i.e. either during 10:00:00-10:10:00 or

with “AC” qualifiers that define auction trades) and in dark pools. We classify trades

into buyer-initiated and seller-initiated trades based on the direction of the (market)

orders that initiate the trade. Since one large buy (sell) market order can be matched

against several limit orders queuing on the sell (buy) side of the LOB and appear as

multiple instantaneous transactions that have zero durations, we follow the standard

practice in the literature (e.g Dufour and Engle, 2000, Nowak and Anderson, 2014,

Renault et al., 2014) and aggregate trades executed at the same time and of the same

direction into one “big” trade by calculating volume-weighted average prices and sum-

ming up the volumes of small trades. We use the order book dataset to compute the

control variables that allow for the effects of the order flow during a 5-minute interval

immediately prior to each trade such as the number of transactions (Ni,t), the average

trade size (AT Si,t), the order imbalance (OIBi,t), and the quote to trade ratio (QTTi,t).

60We exclude two stocks, namely WES (Wesfarmers Limited - Large cap) and NWS (News Corpora-
tion - Small cap) from our analysis, since the SIRCA database did not record data for these stocks during
the sample period, even though they were listed and traded throughout the period. In addition, there
are 6 stocks that were delisted during the sample period. We do not remove them from our sample since
our analysis is conducted on a stock-by-stock basis and we still have a large sample size for these stocks
(of more than 4000 transactions). Nevertheless, excluding these stocks negligibly affects our results.

61Each limit or non-market order has a qualifier indicating the order direction (buy or sell order).
Meanwhile, each trade or market order contains a qualifier that declares some qualitative property of
the trade. For example, a “Bi” (“Si”) qualifier signifies a buyer-initiated (seller-initiated) trade, an “XT”
denotes a cross trade, while a “CX” is attached to trades that are executed in an Australian dark pool
called Centre Point.
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The second dataset contains detailed information on stock code, date, time, and the

best bid/ask quotes and volumes up to 20 levels in the LOB. We remove all observa-

tions with either (i) a negative bid/ask quote or volume at any level, (ii) a bid quote

higher than ask quote at any level, (iii) a positive bid or ask quote but with zero vol-

ume at any level, (iv) a zero bid or ask quote but with a positive volume at any level,

or (v) a bid (ask) quote at level j lower (higher) than or equal to the bid (ask) quote

at level k > j.62 The transaction data are merged with the bid and ask quotes data to

work out the bid-ask midpoint, the bid-ask spread, the depth volume at the best bid

and ask quotes, and the LOB slope immediately before each transaction. Finally, we

collect daily data on the numbers of shares outstanding for each stock from the Dat-

Analysis Premium database.63 In order to avoid the effects of outliers, all variables

in the study are winsorized at the 1st and 99th percentiles on a stock-by-stock basis.64

The winsorization filters out another four stocks, leaving us with the final sample of

194 stocks, consisting of 49 large cap, 48 mid cap, and 97 small cap stocks.65

62The last filtering criterion is to ensure that best bid (ask) quotes must be in a strictly decreasing
(increasing) order as one moves further away from the best, i.e. level 1, bid (ask) quote. However, it
is worth noting that some stocks, especially the illiquid stocks, might not have all 20 levels of the best
bid/ask quotes and volumes available at some point in time, but only 5 or 10, for example, levels in-
stead. In such a case, entries for the bid/ask prices and volumes of the remaining levels are displayed
as 0. These observations are still valid and hence will not be removed if they pass the first four afore-
mentioned filtering criteria ((i) - (iv)).

63Delivered by the Morningstar company, DatAnalysis Premium database provides compre-
hensive and daily updated corporate data (such as company histories, announcements, re-
ports and financial data) on all Australian companies listed and delisted on the ASX (see
https://corporate.morningstar.com/au/asp/subject.aspx?xmlfile=6765.xml).

64Note that we estimate the return volatility of a trade as σi,t = |ε̂i,t |/Ti,t , where ε̂i,t is the residual
obtained from an autoregressive model in equation (4.9) of winsorized returns, and Ti,t is the winsorized
duration of the trade. We do not winsorize σi,t since it would be effectively a double winsorization.

65Four stocks, namely DJS (David Jones Limited - Mid cap), ENV (Envestra Limited - Mid cap), AQA
(Aquila Resources Limited - Small cap), and GFF (Goodman Fielder Limited - Small cap), have the
return series ri,t of all zeros after the winsorization. This is because more than 98% of their returns
were zero during the sample period. Consequently, the return volatility estimates, defined in subsec-
tion 4.2.2, for these four stocks are all zero and the subsequent volume-volatility regressions cannot
be performed. Thus, we exclude these stocks from our analysis. Note that we also investigate the case
where we use the unwinsorized return series, together with other variables (either winsorized or un-
winsorized), of these four stocks to conduct the analyses. Results from this unreported experiment are
qualitatively similar to the ones in the main text and are available upon request.
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Table 4.1: Summary statistics of trading activities and the order book characteristics

Large cap Mid cap Small cap All stocks

Number of stocks 49 48 97 194
Market capitalization ($AUD bn) 22.707 3.266 1.016 7.051
Shares outstanding (millions) 1748.409 856.875 482.700 894.969
Return (%) (×100) -0.003 0.007 -0.034 -0.016
Volume (thousand shares) 1.457 1.564 2.328 1.919
Duration (secs) 11.582 21.788 33.864 25.248
Absretpd 0.834 1.502 2.005 1.585
Volpd 81.681 84.777 93.033 88.123
Spread (%) 0.123 0.237 0.442 0.311
Bidvol (thousand shares) 56.436 155.741 100.329 102.953
Askvol (thousand shares) 56.861 66.036 84.114 72.758
Depth (thousand shares) 113.696 222.123 184.846 176.098
Slpb 25.268 11.456 7.030 12.732
Slpa 25.155 11.355 6.987 12.657
Slope 25.215 11.407 7.009 12.696
N 42.804 23.124 16.235 24.650
ATS (thousand shares) 1.639 1.767 2.710 2.206
OIB 0.635 0.451 0.427 0.486
QTT 13.763 13.004 12.349 12.868

This table presents summary statistics of trading activities and the order book characteristics for
the constituent stocks of the S&P/ASX200 index in July-December 2014. These stocks are classified
into three groups: “Large cap” which contains stocks in the S&P/ASX50 index, “Mid cap” which
contains stocks in the S&P/ASX100 index but outside the S&P/ASX50 index, and “Small cap” which
contains the remaining stocks in the S&P/ASX200 index. “Market capitalization” (in $AUD billion)
is the market capitalization of firms as of 1 July 2014. “Shares outstanding” is the number of shares
outstanding (in millions) right before a trade. “Return” (in %, and multiplied by 100) measures the
change in log of the mid-quote right before a trade and the next trade. “Volume” is the number of
shares (in thousands) traded in each trade. “Duration” (in seconds) is the time interval between two
consecutive trades. “Absretpd” is the absolute return per unit of time, calculated as the absolute value
of the return of a trade divided by its duration. “Volpd” is the share volume traded per unit of time,
calculated as the volume (in thousands) of a trade divided by its duration. “Spread” (in %) is the
relative spread (i.e. quoted spread as a % of the mid-quote right before a trade). “Bidvol”, “Askvol”
and “Depth” are respectively the total share volumes (in thousands) available at the best bid price,
the best ask price, and both best bid and ask prices right before a trade. “Slpb” (“Slpa”) is the slope of
the bid (ask) side of the order book using 10 best bid/ask price levels right before a trade. “Slope” is
the slope of the limit order book right before a trade, calculated as (“Slpb” + “Slpa”)/2. “N” (“ATS”) is
the number of trades (the average trade size, in thousands) during a 5 minute interval right before a
trade. “OIB” is the order imbalance, defined as the number of buys minus the number of sells during
a 5 minute interval right before a trade. “QTT” is the quote to trade ratio during a 5 minute interval
right before a trade. All variables for each stock are winsorized at the 1st and 99th quantiles to avoid
the effects of outliers. All the statistics reported in the table (excepting those in the first line) are first
computed for each individual stock and then equally averaged across all stocks.
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Table 4.1 provides some cross-sectional summary statistics of trades and LOB at-

tributes for the constituent stocks of the S&P/ASX200 index during July-December

2014. In terms of market capitalization, large cap stocks are on average about seven

times as big as mid cap stocks, which in turn are about three times as big as small cap

stocks. In addition, the number of shares outstanding of large cap stocks is respectively

twice and four times as high as those of mid and small cap stocks. Consistent with pre-

vious empirical evidence, the transaction returns for all stock groups have a mean of

almost zero percent (e.g. Renault and Werker, 2011, Renault et al., 2014, Jondeau et al.,

2015). In conformance with well-documented stylized facts (e.g Manganelli, 2005, Xu

et al., 2006, Jondeau et al., 2015, Pham et al., 2017), larger cap stocks trade more fre-

quently and consequently have significantly smaller trade durations, reflecting their

higher levels of liquidity. Moreover, they tend to trade in a smaller volume, either in

the number of shares or per unit of time. Thus, the larger cap stocks have smaller

volatility, as evidenced by the smaller absolute return per unit of time - a raw proxy

for return volatility per unit of time.

Regarding the LOB characteristics, larger cap and more liquid stocks on average

have a smaller relative spread, as reported elsewhere (e.g. Dufour and Engle, 2000,

Næs and Skjeltorp, 2006). Interestingly, large cap stocks have significantly fewer shares

supplied at the inner quotes than do mid and small cap stocks, possibly because the

former are much more heavily traded so that more depth at the best quotes is ab-

sorbed. While the number of shares or depth available at the best bid and ask quotes

are roughly equal for large cap stocks, significantly more shares are queued at the best

bid than at the best ask for mid and small cap stocks. For all stock groups, the average

amount of shares supplied at the best quotes is much larger than the average volume

demanded by a trade, implying that the majority of transactions do not move the best

bid or ask prices and hence have zero returns - an observation that is also documented

by Dufour and Engle (2000), Renault et al. (2014), Pham et al. (2017), amongst others.

The bid, ask and overall order book slopes are larger for more liquid stocks, suggesting

that for these stocks more shares are queued closer to the inner bid/ask quotes, making

their LOB steeper, which is consistent with the findings of Næs and Skjeltorp (2006)
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and Duong and Kalev (2008). Moreover, the LOB slope appears slightly higher on the

bid or buy side than on the ask or sell side.

The order flow characteristics are also in conformance with the liquidity of stocks.

More specifically, more liquid stocks trade more frequently in a smaller volume than

less liquid stocks, as can be seen from the number of trades and the average trade

size during a 5-minute interval. Larger stocks also have a slightly higher quote to

trade ratio, which, coupled with higher trading intensity, suggests that bigger stocks

attract more attention and more intensive quoting activities from market participants

than do smaller stocks, as expected. There are on average more purchases than sales

for all stock groups, and the imbalance between buying and selling activities tends to

increases with the liquidity level of stocks.

4.4 Results and discussion

In this section, we empirically examine the role played by the LOB characteristics in

explaining the return volatility and the volume-volatility relation of trades. We begin

with an investigation of the information content of the LOB at the best bid and ask

prices (subsection 4.4.1). Then, to ascertain whether the LOB information beyond the

best quotes possesses additional explanatory power about prices, we study the inter-

action between the LOB slope, which summarizes the LOB information at all quote

levels, and the volume-volatility relation (subsection 4.4.2). We also conduct a com-

parison of the predictive power of the LOB slope and the LOB information at the best

quotes (subsection 4.4.3), along with a series of sensitivity analyses to ensure the ro-

bustness of our results (subsection 4.4.4).

4.4.1 Spread, depth and the volume-volatility relation

This subsection investigates the informativeness of the inner bid/ask quotes and depths

about return volatility as well as the dynamic volume-volatility relation for the con-

stituent stocks of the S&P/ASX200 index during July-December 2014. We estimate

equations (4.1)-(4.3) separately for each individual stock in our sample, then we re-
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port the median coefficient and the proportions of coefficients that are negatively and

positively significant at a 5% level for three stock groups. The results for a combined

LOB are reported in Table 4.2, while those for a separation of the bid and ask sides of

the LOB are shown in Table 4.3. Note that since the median operator is not additive,

“Lag 0” and “
∑

1:p” median coefficients generally do not add up to that of “
∑

0:p”.66

Panel A of Table 4.2 contains an analysis of the volume-volatility relation formu-

lated in equation (4.1) which is fully exogenous and contemporaneous, as typically

assumed in most previous studies. Consistent with prior findings, we observe a strong

positive contemporaneous relation between trading volume and return volatility for all

stock groups which is statistically significant at a 5% level for almost all stocks, even

after controlling for the effects of the bid-ask spread, the depth at the best quotes as

well as other order flow characteristics. The best level of the LOB has predictive power

about future return volatility. The wider the bid-ask spread prior to a trade, the larger

the volatility (per unit of time) of the trade. This positive relation between spread

and volatility is significant at a 5% level for the majority of stocks in three groups

and is consistent with the theoretical model of Foucault et al. (2007) and the empirical

findings of Hasbrouck (1991a), Næs and Skjeltorp (2006), Foucault et al. (2007), Nolte

(2008), Pascual and Veredas (2010), and Haugom et al. (2014). Meanwhile, the return

volatility of a trade is negatively dependent on the prevailing quoted depth right be-

fore the trade. This result is intuitive because larger market depths available at the

best bid and ask prices are better able to accommodate a trade of a given size, result-

ing in fewer quote revisions and consequently lower price impact and volatility of the

trade (e.g. Ahn et al., 2001, Brogaard et al., 2015, Pham et al., 2017). Interestingly, the

informativeness of the bid-ask spread and market depth about return volatility is most

pronounced for mid cap stocks, in terms of both the magnitude of the coefficients and

the proportion of significant estimates.

66The mean coefficients, which preserve additivity but are more prone to outliers, are generally qual-
itatively similar to the reported median coefficients. They are omitted for brevity but are available upon
request.
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Table 4.2: Spread, depth and the volume-volatility relation: Combined limit order
book

Large cap (49 stocks) Mid cap (48 stocks) Small cap (97 stocks)

Med %−5% %+5% Med %−5% %+5% Med %−5% %+5%

Panel A: Constant contemporaneous volume-volatility relation
vi,t 0.937 0.0% 95.9% 0.847 0.0% 100.0% 1.022 0.0% 100.0%
Spreadi,t 3.607 20.4% 71.4% 5.573 10.4% 72.9% 3.029 21.6% 63.9%
Depthi,t -0.994 49.0% 36.7% -2.994 58.3% 29.2% -1.600 57.7% 24.7%
ln(Ti,t) -0.653 100.0% 0.0% -1.259 100.0% 0.0% -1.487 100.0% 0.0%
Ni,t -0.009 100.0% 0.0% -0.036 100.0% 0.0% -0.063 100.0% 0.0%
AT Si,t 0.191 0.0% 95.9% 0.226 4.2% 95.8% 0.123 0.0% 99.0%
OIBtri,t 0.000 12.2% 34.7% 0.002 4.2% 37.5% 0.005 9.3% 37.1%
QTTi,t 0.017 0.0% 100.0% 0.029 2.1% 97.9% 0.040 0.0% 100.0%
adj. R2 0.155 - - 0.171 - - 0.179 - -

Panel B: Endogenous contemporaneous volume-volatility relation
vi,t -0.463 44.9% 38.8% -0.908 45.8% 27.1% 0.444 19.6% 39.2%
vi,tSpreadi,t 18.181 10.2% 75.5% 12.988 6.2% 79.2% 5.169 10.3% 68.0%
vi,tDepthi,t -26.223 83.7% 0.0% -13.381 85.4% 8.3% -7.094 79.4% 1.0%

Spreadi,t 2.292 22.4% 67.3% 2.969 12.5% 66.7% 1.637 24.7% 54.6%
Depthi,t 1.205 36.7% 51.0% -1.617 56.2% 35.4% -0.412 47.4% 35.1%
adj. R2 0.162 - - 0.180 - - 0.184 - -

Panel C: Endogenous dynamic volume-volatility relation
vi,t Lag 0 -0.420 44.9% 40.8% -0.872 45.8% 27.1% 0.460 19.6% 40.2%∑

1:p 0.204 22.4% 24.5% 0.317 10.4% 12.5% 0.040 8.2% 10.3%∑
0:p -0.014 28.6% 28.6% -0.272 22.9% 16.7% 0.392 8.2% 36.1%

vi,tSpreadi,t Lag 0 16.727 10.2% 75.5% 12.819 6.2% 75.0% 5.057 10.3% 67.0%∑
1:p 8.092 0.0% 49.0% 2.885 2.1% 22.9% 0.783 3.1% 19.6%∑
0:p 26.320 4.1% 85.7% 15.889 2.1% 79.2% 6.055 6.2% 68.0%

vi,tDepthi,t Lag 0 -25.380 83.7% 0.0% -13.103 85.4% 8.3% -7.176 79.4% 0.0%∑
1:p -9.332 49.0% 12.2% -3.680 43.8% 12.5% -1.552 29.9% 1.0%∑
0:p -29.747 75.5% 4.1% -18.056 85.4% 8.3% -9.570 84.5% 1.0%

Spreadi,t Lag 0 -7.793 63.3% 26.5% -1.510 43.8% 29.2% -4.518 54.6% 22.7%∑
1:p 19.423 0.0% 71.4% 9.051 4.2% 56.2% 9.304 12.4% 66.0%∑
0:p 14.797 0.0% 73.5% 7.596 0.0% 66.7% 4.718 2.1% 68.0%

Depthi,t Lag 0 61.806 14.3% 79.6% 25.541 27.1% 58.3% 25.687 7.2% 71.1%∑
1:p -61.657 79.6% 6.1% -28.805 62.5% 12.5% -32.570 74.2% 4.1%∑
0:p -13.354 59.2% 10.2% -7.715 66.7% 6.2% -4.852 77.3% 0.0%

adj. R2 0.172 - - 0.188 - - 0.194 - -

This table reports the results of the following model, for the constituent stocks of the S&P/ASX200 index during Jul-Dec 2014,

σi,t = α0 +µ1Mondayi,t +µ2block1i,t +
12∑
j=1

αjσi,t−j +
p∑
k=0

[β0,k + δ′kxi,t−k ]vi,t−k +
p∑
k=0

γ ′kxi,t−k +π′yi,t + ηi,t ,

where σi,t is a proxy for return volatility per unit of time of the t-th transaction in stock i, which is estimated as the absolute value of
the residual |ε̂i,t | of the following autoregressive model of returns ri,t divided by the duration Ti,t of the trade (i.e. σi,t = |ε̂i,t |/Ti,t):

ri,t =
5∑
k=1

ψi,kDayk,i,t +
5∑
k=1

φi,kblockk,i,t +
12∑
k=1

ρi,kri,t−k +ϕ′xi,t +λ′yi,t + εi,t .

xi,t = (Spreadi,t ,Depthi,t)′ is a vector of potential predictors of the volume-volatility relation. yi,t = (ln(Ti,t),Ni,t ,AT Si,t ,
OIBi,t ,QT Ti,t)′ is a vector of control variables that allow for the effects of the order flow prior to a trade. See Table 4.8 for the
definitions of the variables.
Panel A reports the results for a constant contemporaneous volume-volatility relation model, in which p = 0 and the restriction
that δ0 = 0 is imposed on the volatility equation.
Panel B reports the results for an endogenous contemporaneous volume-volatility relation model, in which p = 0 and no restric-
tions are imposed on the volatility equation.
Panel C reports the results for an endogenous dynamic volume-volatility relation model, in which p = 5 and no restrictions are
imposed on the volatility equation.
The table only reports the coefficient estimates for vi,t and xi,t from the volatility equation. The coefficient estimates for yi,t are
only reported in Panel A. The regression is separately run for each stock, using Newey-West heteroskedasticity and autocorrelation
consistent estimation. Σi:p (in Panel C only) denotes the sum of the coefficients from lag i up to lag p. For brevity, we only report the
median coefficients in “Med” column for each group. %−5% (%+5%) indicates the proportion of estimates in each group that are
significantly negative (positive) at a 5% level. “adj.R2” denotes the adjusted R2. Note that as the median operator is not additive,
“Lag 0” and “

∑
1:p” median coefficients generally do not add up to that of “

∑
0:p”.
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We also find strong evidence in support of the predictability of the order flow in-

formation about future return volatility at the tick-by-tick level.67 Consistent with the

findings of Xu et al. (2006), Manganelli (2005), Russell and Engle (2005) and Nolte

(2008), a shorter trade duration increases the return volatility of the trade. The re-

sult lends support to Easley and O’Hara’s (1992) theory which implies that shorter

time between trades or higher trading intensity is a signal of more private news and a

higher fraction of informed traders present in the market. Since the increased presence

of informed investors constrains liquidity traders from entering the market, possibly

via toxic order flows that adversely select the latter (Easley et al., 2012), trades with

shorter durations have larger impacts on prices, leading to higher volatility. The aver-

age size of trades that are executed during a 5-minute interval before a trade is found

to be positively related to the return volatility of the trade, with statistical significance

observed for most stocks. Not only does this result strengthen the positive relation be-

tween volume and volatility discussed previously, but it also suggests that past trading

volumes are predictive of future volatility, and hence the volume-volatility relation is

dynamic.

The return volatility of a trade is inversely dependent on the number of trades

during a 5-minute interval prior to a trade - a proxy for the trading frequency prior to

the trade, which appears to be inconsistent with the findings of most previous studies.

This surprising observation can be explained as a result of both measures of trading

intensity, namely trade duration Ti,t and the number of trades Ni,t, being included

in the regression. Results from an unreported experiment in which trade duration is

removed from the volatility equation show a positive and significant relation between

return volatility and the number of trades. While reaffirming the findings of previous

work, this outcome suggests that the most recent information about trading intensity,

captured by Ti,t, appears to be more relevant for the explanation of future volatility

than the more distant information, proxied by Ni,t.

In conformance with Chan and Fong (2000), Chan and Fong (2006) and Shahzad

et al. (2014), there is a positive link between the order imbalance of trades and volatil-
67We do not report the estimated coefficients for the order flow characteristics in subsequent analyses

to save space but note that the results are qualitatively similar to those being discussed here.
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ity which is statistically significant for a fair proportion of stocks in our sample (more

than 34% for all groups), suggesting that trade order imbalance does possess some

predictive power about future return volatility. Meanwhile, there is a strong positive

dependence of the volatility of a trade on the quote to trade ratio which measures

the quoting activities during a 5-minute interval before the trade. Quote to trade ra-

tios have increased considerably in today’s fast trading environment, as a consequence

of the dominance of algorithmic and high frequency traders (HFTs) who utilize their

speed advantage to split and submit many orders that subsequently get canceled very

quickly (e.g. SEC, 2010, Hasbrouck and Saar, 2013, Conrad et al., 2015, O’Hara, 2015).

Our result suggests that HFT activities tend to increase future return volatility, as also

noted by Boehmer et al. (2015).

Panel B of Table 4.2 reports the results relating to the relaxation of the assump-

tion of a constant contemporaneous volume-volatility relation. There is strong ev-

idence that the contemporaneous volume-volatility relation is endogenously related

to the LOB characteristics at the best level. In particular, the positive dependence

of return volatility on the trading volume of a trade becomes stronger, the larger the

bid-ask spread right before the trade. In contrast, a larger amount of shares being

supplied at the best bid/ask prices weakens the volume-volatility relation. Both re-

sults are statistically significant at the 5% level for the majority of stocks (more than

68% and 79% respectively), and they are stronger, in terms of the magnitude of the

coefficients, for more liquid stocks. Note that the dependence of the contemporaneous

volume-volatility relation on the bid-ask spread and market depth is genuine since

the direct impacts of the spread, depth and other order flow attributes on volatility

are already controlled for. In fact, a comparison of the coefficients on Spreadi,t and

Depthi,t between Panel A and Panel B suggests that allowing the volume-volatility re-

lation to vary with the bid-ask spread and market depth remarkably reduces the direct

effects of these order book characteristics on return volatility, even though the direct

effects are still strong and significant for a big proportion of stocks, especially with re-

gard to the bid-ask spread. This finding implies that a more liquid order book market

(which has deeper depths and/or narrower bid-ask spreads) reduces trading volatility
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via two channels: by its direct impact on volatility and by its indirect effect that weak-

ens the volume-volatility relation. Interestingly, the direct impact of trading volume

on volatility, captured by β in equation (4.1), changes sign from positive to negative for

large and mid cap stocks and becomes much less significant for small stocks following

the relaxation of the constant volume-volatility relation (comparing the coefficients on

vi,t in Panels A and B). The result suggests that the well-documented positive asso-

ciation between trading volume and return volatility seems to be driven by the LOB

characteristics.

We now investigate the results for the volume-volatility relation that is allowed to

be dynamically dependent on the LOB information at the best level, which are reported

in Panel C of Table 4.2. The results from Panel C, in which we assume that the volatility

regression can be truncated at p = 5 lags, indicate the dynamic nature of the volume-

volatility relation, which is also related to the dynamics of the bid-ask spread and

market depth. Larger bid-ask spreads and smaller depths available at the best quotes

strengthen the positive dependence of return volatility not only on current trading

volumes, as discussed in Panel B, but also on lagged volumes. However, most of the

effects are attributable to the LOB information immediately before a trade (see the “Lag

0” coefficients), while the contribution of the past order book information, albeit of

expected sign, is of much smaller magnitude and of much less statistical significance.

In contrast, most of the direct impact of the bid-ask spread and market depth on future

return volatility comes from the lagged information (see the “
∑

1:p” coefficients), while

the coefficients measuring the direct effects of the bid-ask spread and market depth

right before a trade (i.e. the “Lag 0” coefficient estimates) on volatility are usually

of opposite and unexpected signs. All else being equal, the influence, either direct

or indirect, of the bid-ask spread and the depth available at the best quotes prior to

a trade on the return volatility of the trade increases, in magnitude, with a stock’s

liquidity.

The contrasting results between the direct and indirect effects of the LOB attributes

at the best level are interesting and can be explained as follows. In order to predict

the return volatility of an incoming trade without knowing the volume of that trade,
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one needs to make use of all past trading information, including the past order book

characteristics, to draw a likely and sensible picture of the relation between future

volatility and the past information. However, if one knew the volume that the trade

would demand, then the information of what is currently being supplied right before

the execution of the trade contained in the LOB would be more relevant than the past

order book information to the determination of how the trade would move prices. As

a result, it seems reasonable that the direct impact of the bid-ask spread and market

depth on return volatility, which does not take into account the information about the

volume of the current trade, is mostly contributed by the lagged effects, whereas their

indirect effects on volatility, which channel through the volume-volatility relation and

incorporate the current volume information, are primarily driven by the current state

of the LOB right before the trade. This result is in conformance with the findings of

Pham et al. (2017), who show that a comparison of the volume of a trade with the

prevailing market depth information right before the trade is of particular relevance

to identifying whether the trade results in any immediate impact on prices. These

authors show that the incorporation of the depth information into an immediate price

impact model significantly enhances the forecast accuracy of the model.

We now turn to an analysis of the dynamic volume-volatility relation that allows

for possible asymmetries between the bid and ask sides of the LOB. The results are re-

ported in Table 4.3. While the effects of the bid-ask spread on return volatility and the

volume-volatility relation remain qualitatively similar to those previously discussed in

Table 4.2, the separation of the bid and ask order books offers some interesting insights

into how market depth affects the volatility of trades, especially when one also takes

the information of trade direction into consideration. First, as expected, when an in-

coming trade is a buy (sell), it is the opposite (i.e. ask (bid)) side of the LOB that is more

important for determining the impact that the trade will place on prices. Specifically,

for a given trading volume the larger the amount of shares available at the best ask

(bid) quote immediately before a purchase (sale), the smaller the return volatility (see

the coefficients on AVi,tBi,t (BVi,tSi,t) in Panels A, B and C) and the weaker the positive

dependence of volatility on the volume (see the coefficients on vi,tAVi,tBi,t (vi,tBVi,tSi,t)
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in Panels B and C) of the trade. These results not only complement the corresponding

findings presented in Table 4.2, but are also stronger than the latter in terms of both

magnitude and statistical significance, which is generally in conformance with previ-

ous studies (e.g. Ahn et al., 2001, Brogaard et al., 2015, Pham et al., 2017) that show

deeper markets support liquidity and mitigate the price impact and return volatility

of trades.

In contrast to the opposite-side market depth, we find that larger market depth

available on the same side of the LOB as the direction of a trade tends to increase

the volatility (see the coefficients on BVi,tBi,t and AVi,tSi,t in Panels A and B) and

strengthen the volume-volatility relation (see the coefficients on vi,tBVi,tBi,t and vi,tAVi,tSi,t

in Panels B and C) of that trade, even though the proportions of stocks that have signif-

icant coefficients are generally remarkably lower. These results are consistent with the

findings in the prior literature on order aggressiveness (e.g. Biais et al., 1995, Ranaldo,

2004, Aitken et al., 2007, Duong and Kalev, 2013) that investors tend to submit more

(less) aggressive orders when the same-side (opposite-side) market depth increases

since the non-execution risk of an incoming limit order is higher (lower). As more

aggressive orders typically have a larger impact on prices (Biais et al., 1995, Duong

and Kalev, 2013, Brogaard et al., 2018), it follows that larger same-side (opposite-side)

market depth increases (decreases) the future trading volatility, as we observe.

In conformance with the results from a combined LOB shown in Table 4.2, the di-

rect effects of the bid and ask depths on return volatility become weaker once one al-

lows for the endogeneity of the volume-volatility relation. Furthermore, the dynamics

of the bid and ask depths do play a significant role in explaining future return volatil-

ity. While the direct impact of the bid and ask depths on return volatility mostly comes

from their lagged information, their current information right before the execution of

a trade is the main driver of the volume-volatility relation which constitutes their indi-

rect impact on volatility. Furthermore, the larger the stock, the bigger the cumulative

impact of the best bid and ask depths, either direct or indirect, on return volatility.
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Table 4.3: Spread, depth and the volume-volatility relation: Bid vs. Ask sides

Large cap (49 stocks) Mid cap (48 stocks) Small cap (97 stocks)

Med %−5% %+5% Med %−5% %+5% Med %−5% %+5%

Panel A: Constant contemporaneous volume-volatility relation
vi,t 1.254 0.0% 100.0% 1.238 0.0% 100.0% 1.416 0.0% 100.0%
Spreadi,t 4.564 16.3% 77.6% 6.546 10.4% 79.2% 3.508 13.4% 73.2%
BVi,tBi,t 12.233 26.5% 71.4% 4.921 22.9% 60.4% 3.530 20.6% 55.7%
BVi,tSi,t -9.697 79.6% 6.1% -8.736 91.7% 6.2% -7.919 95.9% 0.0%
AVi,tBi,t -6.753 75.5% 8.2% -6.557 85.4% 10.4% -5.477 89.7% 0.0%
AVi,tSi,t 13.568 6.1% 83.7% 4.846 14.6% 68.8% 3.768 13.4% 59.8%
adj. R2 0.189 - - 0.215 - - 0.212 - -

Panel B: Endogenous contemporaneous volume-volatility relation
vi,t -0.357 46.9% 42.9% -0.760 45.8% 25.0% 0.578 16.5% 40.2%
vi,tSpreadi,t 18.988 10.2% 75.5% 15.285 6.2% 79.2% 5.354 6.2% 71.1%
vi,tBVi,tBi,t 25.892 12.2% 63.3% 5.447 16.7% 50.0% 2.682 9.3% 38.1%
vi,tBVi,tSi,t -83.303 93.9% 0.0% -36.415 87.5% 0.0% -23.425 92.8% 0.0%
vi,tAVi,tBi,t -77.159 98.0% 0.0% -37.500 87.5% 0.0% -21.382 90.7% 0.0%
vi,tAVi,tSi,t 30.906 4.1% 61.2% 4.567 10.4% 41.7% 1.473 12.4% 41.2%

Spreadi,t 3.339 16.3% 71.4% 4.062 10.4% 77.1% 2.527 15.5% 63.9%
BVi,tBi,t 10.111 26.5% 69.4% 2.572 25.0% 56.2% 2.567 21.6% 55.7%
BVi,tSi,t -5.413 63.3% 14.3% -5.117 70.8% 6.2% -4.408 86.6% 1.0%
AVi,tBi,t -2.899 57.1% 18.4% -3.696 66.7% 12.5% -2.851 67.0% 2.1%
AVi,tSi,t 10.542 8.2% 81.6% 3.769 16.7% 64.6% 2.735 11.3% 56.7%
adj. R2 0.197 - - 0.226 - - 0.225 - -

Panel C: Endogenous dynamic volume-volatility relation
vi,t Lag 0 -0.257 44.9% 42.9% -0.748 47.9% 25.0% 0.547 16.5% 40.2%∑

1:p -0.066 24.5% 14.3% 0.236 12.5% 10.4% 0.016 6.2% 10.3%∑
0:p -0.148 34.7% 26.5% -0.528 33.3% 20.8% 0.447 8.2% 36.1%

vi,tSpreadi,t Lag 0 18.739 10.2% 75.5% 14.545 6.2% 77.1% 5.259 8.2% 71.1%∑
1:p 9.219 0.0% 59.2% 3.085 2.1% 22.9% 0.986 2.1% 19.6%∑
0:p 27.570 4.1% 87.8% 17.782 2.1% 77.1% 6.972 5.2% 71.1%

vi,tBVi,tBi,t Lag 0 33.340 12.2% 63.3% 4.931 10.4% 50.0% 2.422 9.3% 39.2%∑
1:p -7.249 32.7% 0.0% -3.391 16.7% 0.0% -2.095 23.7% 0.0%∑
0:p 25.947 16.3% 55.1% 3.146 16.7% 31.2% 0.904 10.3% 18.6%

vi,tBVi,tSi,t Lag 0 -79.618 93.9% 0.0% -35.032 85.4% 0.0% -23.226 92.8% 0.0%∑
1:p -10.397 34.7% 20.4% -2.641 29.2% 10.4% -1.571 20.6% 2.1%∑
0:p -77.428 77.6% 2.0% -42.287 83.3% 6.2% -25.294 91.8% 0.0%

vi,tAVi,tBi,t Lag 0 -77.249 98.0% 0.0% -35.970 91.7% 0.0% -21.503 92.8% 0.0%∑
1:p -13.508 34.7% 18.4% -7.367 39.6% 16.7% -2.007 22.7% 3.1%∑
0:p -80.332 81.6% 2.0% -47.534 89.6% 6.2% -25.972 87.6% 0.0%

vi,tAVi,tSi,t Lag 0 30.841 4.1% 63.3% 4.478 8.3% 41.7% 1.299 10.3% 40.2%∑
1:p -8.706 22.4% 0.0% -2.598 22.9% 2.1% -1.830 12.4% 1.0%∑
0:p 31.542 10.2% 46.9% 0.498 18.8% 31.2% 0.830 15.5% 22.7%

Spreadi,t Lag 0 -3.653 55.1% 34.7% 2.411 37.5% 52.1% -1.181 45.4% 34.0%∑
1:p 14.497 8.2% 63.3% 2.927 16.7% 37.5% 5.575 14.4% 53.6%∑
0:p 15.268 0.0% 71.4% 7.144 0.0% 64.6% 4.422 2.1% 66.0%

BVi,tBi,t Lag 0 52.212 18.4% 71.4% 17.953 31.2% 54.2% 20.088 13.4% 55.7%∑
1:p -33.574 71.4% 14.3% -16.805 54.2% 33.3% -20.849 55.7% 8.2%∑
0:p -2.895 16.3% 14.3% -0.780 0.0% 12.5% -0.006 11.3% 12.4%

BVi,tSi,t Lag 0 43.679 18.4% 71.4% 10.437 35.4% 50.0% 13.238 15.5% 51.5%∑
1:p -44.858 61.2% 4.1% -21.941 47.9% 18.8% -23.380 60.8% 5.2%∑
0:p -18.327 44.9% 8.2% -10.195 45.8% 4.2% -8.925 62.9% 0.0%

AVi,tBi,t Lag 0 50.413 14.3% 77.6% 12.364 29.2% 52.1% 19.656 10.3% 62.9%∑
1:p -52.767 79.6% 0.0% -22.814 50.0% 0.0% -26.060 66.0% 3.1%∑
0:p -22.111 53.1% 6.1% -12.336 52.1% 6.2% -8.525 59.8% 0.0%

AVi,tSi,t Lag 0 62.248 14.3% 77.6% 19.345 27.1% 58.3% 20.633 8.2% 62.9%∑
1:p -57.520 79.6% 8.2% -20.757 58.3% 18.8% -23.948 66.0% 8.2%∑
0:p -0.912 20.4% 2.0% -1.112 14.6% 12.5% -0.766 12.4% 8.2%

adj. R2 0.210 - - 0.236 - - 0.234 - -
Continued on next page
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Table 4.3 – continued from previous page

This table reports the results of the following model, for the constituent stocks of the S&P/ASX200 index during
Jul-Dec 2014,

σi,t = α0 +µ1Mondayi,t +µ2block1i,t +
12∑
j=1

αjσi,t−j +
p∑
k=0

[β0,k + δ′kxi,t−k]vi,t−k +
p∑
k=0

γ ′kxi,t−k +π′yi,t + ηi,t ,

where σi,t is a proxy for return volatility per unit of time of the t-th transaction in stock i, which is estimated as the
absolute value of the residual |ε̂i,t | of the following autoregressive model of returns ri,t divided by the duration Ti,t
of the trade (i.e. σi,t = |ε̂i,t |/Ti,t):

ri,t =
5∑
k=1

ψi,kDayk,i,t +
5∑
k=1

φi,kblockk,i,t +
12∑
k=1

ρi,kri,t−k +ϕ′xi,t +λ′yi,t + εi,t .

xi,t = (Spreadi,t ,BVi,tBi,t ,BVi,tSi,t ,AVi,tBi,t ,AVi,tSi,t)′ is a vector of potential predictors of the volume-volatility
relation. yi,t = (ln(Ti,t),Ni,t ,AT Si,t ,OIBi,t ,QT Ti,t)′ is a vector of control variables that allow for the effects of the
order flow prior to a trade. The lag length p is set to p = 5 in Panel C. See Table 4.8 and the notes of Table 4.2 for
the definitions of the variables and other notation. The table only reports the coefficient estimates for vi,t and xi,t
from the volatility equation.
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Table 4.3 indicates that the direction or type of a trade contains useful information

about the return volatility of the trade, which is in agreement with previous studies

that find strong evidence supportive of the important role played by trading or quoting

directions or types in explaining the price formation process (e.g. Hasbrouck, 1991a,b,

Dufour and Engle, 2000, Barclay et al., 2003). We also observe some asymmetries in

the effects of the bid versus ask depths on return volatility as well as the volume-

volatility relation. Incorporating the trade direction information and these asymme-

tries between the bid and ask sides of the LOB significantly improves the in-sample fit

of the volatility regressions, with an average increase of about 3-4 percentage points

(or about 20-25%) in the adjusted R2, in comparison to that in Table 4.2.

Overall, the results presented in Tables 4.2 and 4.3 show that the dynamics of the

LOB characteristics at the best quote level, namely the bid-ask spread and the market

depth, are informative about the volume-volatility relation and ultimately the return

volatility of trades. The positive dependence of volatility on volume is dynamic and

positively (negatively) related to the bid-ask spread (market depth). Larger same-side

(opposite-side) market depth prior to a trade increases (decreases) the return volatility

and the volume-volatility relation of the trade. The effects of market depth on return

volatility and the volume-volatility relation are asymmetric between the bid and ask

sides of the LOB and tend to increase with a stock’s liquidity.

4.4.2 Order book slope and the volume-volatility relation

The previous subsection examines the informativeness of the LOB characteristics at

the best level about return volatility and the volume-volatility relation. Prior studies

(e.g. Ahn et al., 2001, Kalay et al., 2004, Næs and Skjeltorp, 2006, Duong and Kalev,

2008, Kalay and Wohl, 2009, Pascual and Veredas, 2010) provide empirical evidence

that the LOB information that lies beyond the best quotes contains significant predic-

tive power about future returns and volatility. For example, Næs and Skjeltorp (2006)

find that the average daily slope of the LOB, which summarizes the LOB information

by measuring the average elasticity of the bid and ask order books, is negatively related

to daily return volatility, daily trading activity, and the correlation between volatility
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and trading activity, where daily trading activity is measured by the number of trans-

actions within a day. In this subsection, we investigate the information content of the

LOB across different best quote levels by examining how the LOB slopes, computed

according to equations (4.5)-(4.7) using the 10 best quotes, explain return volatility

and the volume-volatility relation at a transaction level.

The results for an investigation of the power of the LOB slope for explaining the

tick-by-tick volume-volatility relation for a combined LOB are presented in Table 4.4.

Panel A reports the coefficient estimates of a volatility regression under the assump-

tion that the volume-volatility relation is exogenous and fully contemporaneous. Con-

sistent with the findings discussed in the previous subsection and in prior literature,

there is a strong positive contemporaneous dependence of return volatility on trading

volume that is statistically significant for almost all stocks. As expected, the return

volatility of a trade is negatively related to the slope of the LOB immediately before

the trade, with statistical significance obtained for the majority of stocks, which is con-

sistent with the findings of Næs and Skjeltorp (2006) and Duong and Kalev (2008). A

larger order book slope implies steeper LOB curves where more shares are supplied

closer to the inner bid/ask quotes. Consequently, the larger the LOB slope, the better

the LOB is able to absorb a given amount of shares demanded from an incoming trade,

and the smaller the price impact and the return volatility of the trade. The negative

relation between return volatility and the LOB slope becomes weaker, in magnitude,

for larger cap stocks, reflecting the fact that more liquid stocks have a steeper LOB

(Næs and Skjeltorp, 2006), and hence for a given change, e.g. one unit increase in the

LOB slope, the price of more liquid stocks moves less to accommodate a given trading

volume.
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Table 4.4: Slope and the volume-volatility relation: Combined limit order book

Large cap (49 stocks) Mid cap (48 stocks) Small cap (97 stocks)

Med %−5% %+5% Med %−5% %+5% Med %−5% %+5%

Panel A: Constant contemporaneous volume-volatility relation
vi,t 0.937 0.0% 95.9% 0.874 0.0% 100.0% 1.012 0.0% 100.0%
Slopei,t -0.029 69.4% 24.5% -0.299 85.4% 10.4% -0.398 75.3% 17.5%
adj. R2 0.159 - - 0.174 - - 0.179 - -

Panel B: Endogenous contemporaneous volume-volatility relation
vi,t 3.980 0.0% 98.0% 8.420 2.1% 97.9% 4.941 0.0% 92.8%
vi,tSlopei,t -0.132 77.6% 12.2% -0.826 85.4% 8.3% -0.577 82.5% 7.2%

Slopei,t -0.018 61.2% 30.6% -0.207 79.2% 12.5% -0.233 67.0% 21.6%
adj. R2 0.169 - - 0.182 - - 0.185 - -

Panel C: Endogenous dynamic volume-volatility relation
vi,t Lag 0 3.865 2.0% 95.9% 8.265 2.1% 95.8% 4.931 0.0% 91.8%∑

1:p 1.395 0.0% 77.6% 1.812 0.0% 47.9% 0.964 3.1% 40.2%∑
0:p 7.013 0.0% 95.9% 11.046 2.1% 93.8% 6.116 0.0% 94.8%

vi,tSlopei,t Lag 0 -0.128 77.6% 12.2% -0.786 85.4% 8.3% -0.574 81.4% 8.2%∑
1:p -0.034 65.3% 0.0% -0.140 41.7% 0.0% -0.111 39.2% 4.1%∑
0:p -0.205 81.6% 10.2% -1.011 87.5% 4.2% -0.737 82.5% 3.1%

Slopei,t Lag 0 0.017 30.6% 57.1% -0.019 41.7% 39.6% 0.188 27.8% 56.7%∑
1:p -0.111 85.7% 2.0% -0.247 70.8% 4.2% -0.520 72.2% 12.4%∑
0:p -0.084 93.9% 0.0% -0.380 87.5% 0.0% -0.437 90.7% 1.0%

adj. R2 0.174 - - 0.193 - - 0.194 - -

This table reports the results of the following model, for the constituent stocks of the S&P/ASX200 index during
Jul-Dec 2014,

σi,t = α0 +µ1Mondayi,t +µ2block1i,t +
12∑
j=1

αjσi,t−j +
p∑
k=0

[β0,k + δ′kxi,t−k]vi,t−k +
p∑
k=0

γ ′kxi,t−k +π′yi,t + ηi,t ,

where σi,t is a proxy for return volatility per unit of time of the t-th transaction in stock i, which is estimated as the
absolute value of the residual |ε̂i,t | of the following autoregressive model of returns ri,t divided by the duration Ti,t
of the trade (i.e. σi,t = |ε̂i,t |/Ti,t):

ri,t =
5∑
k=1

ψi,kDayk,i,t +
5∑
k=1

φi,kblockk,i,t +
12∑
k=1

ρi,kri,t−k +ϕ′xi,t +λ′yi,t + εi,t .

xi,t = Slopei,t is a potential predictor of the volume-volatility relation. yi,t = (ln(Ti,t),Ni,t ,AT Si,t ,OIBi,t , QT Ti,t)′ is
a vector of control variables that allow for the effects of the order flow prior to a trade. The lag length p is set to
p = 5 in Panel C. See Table 4.8 and the notes of Table 4.2 for the definitions of the variables and other notation. The
table only reports the coefficient estimates for vi,t and xi,t from the volatility equation.
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We now examine the results for the contemporaneous volume-volatility relation

that is allowed to vary with the LOB slope. Panel B of Table 4.4 shows that the pos-

itive dependence of return volatility on the trading volume of a trade is negatively

associated with the slope of the LOB right before the trade, with statistical signifi-

cance observed for more than 77% of all stocks. Thus, the positive volume-volatility

relation is neither constant nor exogenous as typically assumed in most prior studies

but it becomes weaker as the LOB is steeper and more concentrated around the best

quotes. This result is consistent with work by Næs and Skjeltorp (2006), who docu-

ment a negative link between the daily average order book slope and the correlation

between daily return volatility and the number of transactions occurring in a day. Our

result complements Næs and Skjeltorp’s (2006) findings in that it shows that the neg-

ative dependence of the volume-volatility relation on the LOB slope prevails even at

a tick-by-tick level. Allowing the volume-volatility relation to be endogenously re-

lated to the LOB slope significantly weakens the direct effects of the slope on return

volatility (see the coefficients on Slopei,t in Panel B in comparison to those in Panel

A). It follows from Panel B that the LOB slope right before a trade negatively affects

the return volatility of the trade through two channels: a direct channel (captured by

the coefficients on Slopei,t) and an indirect channel (captured by the coefficients on

vi,tSlopei,t) that changes the volume-volatility relation. Unlike the results shown in

Panel B of Table 4.2, the direct effects of trading volume on return volatility (captured

by the coefficients on vi,t) do not switch signs but remain strongly positive after one

allows the volume-volatility relation to depend on the LOB slope, even though the

proportions of significant volume coefficients are slightly smaller.

In support of the theories of Copeland (1976), Jennings et al. (1981), Shalen (1993),

and Banerjee and Kremer (2010) and the empirical work of Manganelli (2005), Xu

et al. (2006), Nolte (2008), Carlin et al. (2014), and Do et al. (2014), Panel C of Table

4.4 shows that return volatility is positively correlated with both current and lagged

trading volumes, implying that this relation is indeed dynamic. In addition, the pos-

itive dependence of return volatility on volume also varies with the dynamics of the

LOB slope, with larger order book slopes (i.e. steeper LOBs) weakening the volume-

172



Chapter 4. Dynamics of the limit order book and the volume-volatility relation

volatility relation. Similar to the results in Table 4.2, the negative indirect impact of

the LOB slope on future return volatility is primarily contributed by the current slope

that prevails right before a trade (see the coefficients on vi,tSlopei,t), whereas most of

its direct impact on volatility comes from the lagged slope information, as demon-

strated by the coefficients on Slopei,t. Unlike the bid-ask spread and the depth at the

best quotes, both direct and indirect effects of the LOB slope on the volatility of an in-

coming trade become smaller in magnitude for more liquid stocks (compare mid and

small cap stocks with large cap stocks).

Table 4.5 reports the results of an investigation in which we allow for possible

asymmetries between the slope of the bid and ask order books in explaining return

volatility and the volume-volatility relation. Similar to the results in Table 4.3, it is

the opposite side of the LOB that is more predictive of the future return volatility of

a trade. In particular, for an incoming purchase (sale) of a given volume, the larger

the slope of the ask (bid) order book right before the trade (i.e. the more concentrated

the ask (bid) book is around the best quote), the smaller the return volatility (see the

coefficients on Slpai,tBi,t (Slpbi,tSi,t) in Panels A and B) and the weaker the volume-

volatility relation (see the coefficients on vi,tSlpai,tBi,t (vi,tSlpbi,tSi,t) in Panel B) of the

trade. In contrast, the dependence of return volatility on the volume of a trade is pos-

itively related to the slope of the LOB that is of the same side as the direction of the

trade (see the coefficients on vi,tSlpbi,tBi,t and vi,tSlpai,tSi,t in Panel B), while the direct

impact of the latter on the volatility of the trade becomes ambiguous (see the propor-

tions of significant coefficients on Slpbi,tBi,t and Slpai,tSi,t in Panels A and B). These

results highlight the asymmetric effects of the bid and ask slopes on return volatility

and the volume-volatility relation.
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Table 4.5: Slope and the volume-volatility relation: Bid vs. Ask sides

Large cap (49 stocks) Mid cap (48 stocks) Small cap (97 stocks)

Med %−5% %+5% Med %−5% %+5% Med %−5% %+5%

Panel A: Constant contemporaneous volume-volatility relation
vi,t 1.390 0.0% 100.0% 1.295 0.0% 100.0% 1.417 0.0% 100.0%
Slpbi,tBi,t 0.002 36.7% 55.1% -0.017 39.6% 33.3% 0.019 25.8% 40.2%
Slpbi,tSi,t -0.039 93.9% 2.0% -0.279 97.9% 2.1% -0.344 90.7% 1.0%
Slpai,tBi,t -0.037 89.8% 6.1% -0.212 89.6% 4.2% -0.337 82.5% 5.2%
Slpai,tSi,t 0.003 30.6% 55.1% 0.009 25.0% 37.5% 0.073 24.7% 52.6%
adj. R2 0.235 - - 0.252 - - 0.244 - -

Panel B: Endogenous contemporaneous volume-volatility relation
vi,t 6.916 0.0% 98.0% 11.525 2.1% 97.9% 5.443 0.0% 95.9%
vi,tSlpbi,tBi,t 0.101 2.0% 75.5% 0.327 4.2% 66.7% 0.446 0.0% 71.1%
vi,tSlpbi,tSi,t -0.467 91.8% 0.0% -1.569 93.8% 6.2% -1.360 96.9% 0.0%
vi,tSlpai,tBi,t -0.467 95.9% 0.0% -1.584 93.8% 2.1% -1.418 92.8% 0.0%
vi,tSlpai,tSi,t 0.157 0.0% 85.7% 0.382 6.2% 72.9% 0.583 1.0% 71.1%

Slpbi,tBi,t 0.001 36.7% 51.0% -0.045 45.8% 25.0% -0.006 30.9% 29.9%
Slpbi,tSi,t -0.020 89.8% 4.1% -0.154 83.3% 2.1% -0.212 79.4% 6.2%
Slpai,tBi,t -0.027 83.7% 10.2% -0.113 83.3% 4.2% -0.191 74.2% 9.3%
Slpai,tSi,t 0.002 36.7% 49.0% -0.001 27.1% 27.1% 0.024 26.8% 43.3%
adj. R2 0.270 - - 0.277 - - 0.268 - -

Panel C: Endogenous dynamic volume-volatility relation
vi,t Lag 0 6.580 0.0% 93.9% 11.348 2.1% 97.9% 5.317 0.0% 95.9%∑

1:p 1.479 0.0% 77.6% 1.176 0.0% 52.1% 0.799 3.1% 39.2%∑
0:p 8.276 0.0% 95.9% 12.024 2.1% 95.8% 6.493 0.0% 94.8%

vi,tSlpbi,tBi,t Lag 0 0.102 2.0% 75.5% 0.318 4.2% 66.7% 0.471 0.0% 72.2%∑
1:p -0.045 46.9% 2.0% -0.081 39.6% 2.1% -0.180 43.3% 1.0%∑
0:p 0.039 4.1% 46.9% 0.128 6.2% 43.8% 0.284 3.1% 44.3%

vi,tSlpbi,tSi,t Lag 0 -0.468 89.8% 0.0% -1.576 93.8% 4.2% -1.354 96.9% 0.0%∑
1:p 0.006 18.4% 18.4% 0.049 4.2% 18.8% 0.087 2.1% 22.7%∑
0:p -0.473 87.8% 0.0% -1.481 93.8% 6.2% -1.192 89.7% 0.0%

vi,tSlpai,tBi,t Lag 0 -0.471 95.9% 0.0% -1.559 91.7% 2.1% -1.440 92.8% 0.0%∑
1:p 0.001 20.4% 14.3% 0.004 8.3% 20.8% 0.052 4.1% 17.5%∑
0:p -0.401 89.8% 4.1% -1.511 93.8% 4.2% -1.221 87.6% 0.0%

vi,tSlpai,tSi,t Lag 0 0.163 0.0% 87.8% 0.388 6.2% 75.0% 0.601 1.0% 73.2%∑
1:p -0.050 57.1% 0.0% -0.167 47.9% 0.0% -0.213 44.3% 0.0%∑
0:p 0.043 0.0% 46.9% 0.142 10.4% 37.5% 0.327 5.2% 41.2%

Slpbi,tBi,t Lag 0 -0.010 44.9% 44.9% -0.093 58.3% 29.2% -0.125 46.4% 30.9%∑
1:p -0.020 38.8% 8.2% 0.020 22.9% 27.1% -0.054 23.7% 25.8%∑
0:p -0.039 36.7% 4.1% -0.036 29.2% 10.4% -0.021 16.5% 11.3%

Slpbi,tSi,t Lag 0 -0.007 51.0% 40.8% -0.137 50.0% 31.2% -0.057 40.2% 35.1%∑
1:p -0.009 36.7% 6.1% -0.020 25.0% 14.6% -0.084 34.0% 8.2%∑
0:p -0.015 28.6% 2.0% -0.100 37.5% 0.0% -0.169 43.3% 2.1%

Slpai,tBi,t Lag 0 -0.009 44.9% 40.8% -0.037 41.7% 33.3% 0.048 29.9% 44.3%∑
1:p -0.041 46.9% 2.0% -0.045 35.4% 4.2% -0.196 47.4% 3.1%∑
0:p -0.041 40.8% 2.0% -0.119 39.6% 2.1% -0.242 49.5% 2.1%

Slpai,tSi,t Lag 0 0.005 36.7% 49.0% -0.025 41.7% 27.1% -0.066 35.1% 40.2%∑
1:p -0.034 51.0% 8.2% -0.044 33.3% 14.6% -0.063 34.0% 18.6%∑
0:p -0.042 51.0% 2.0% -0.066 22.9% 10.4% -0.089 22.7% 9.3%

adj. R2 0.272 - - 0.288 - - 0.274 - -

This table reports the results of the following model, for the constituent stocks of the S&P/ASX200 index during Jul-Dec 2014,

σi,t = α0 +µ1Mondayi,t +µ2block1i,t +
12∑
j=1

αjσi,t−j +
p∑
k=0

[β0,k + δ′kxi,t−k ]vi,t−k +
p∑
k=0

γ ′kxi,t−k +π′yi,t + ηi,t ,

where σi,t is a proxy for return volatility per unit of time of the t-th transaction in stock i, which is estimated as the absolute value of
the residual |ε̂i,t | of the following autoregressive model of returns ri,t divided by the duration Ti,t of the trade (i.e. σi,t = |ε̂i,t |/Ti,t):

ri,t =
5∑
k=1

ψi,kDayk,i,t +
5∑
k=1

φi,kblockk,i,t +
12∑
k=1

ρi,kri,t−k +ϕ′xi,t +λ′yi,t + εi,t .

xi,t = (Slpbi,tBi,t ,Slpbi,tSi,t ,Slpai,tBi,t ,Slpai,tSi,t)′ is a vector of potential predictors of the volume-volatility relation. yi,t =
(ln(Ti,t),Ni,t ,AT Si,t ,OIBi,t ,QT Ti,t)′ is a vector of control variables that allow for the effects of the order flow prior to a trade.
The lag length p is set to p = 5 in Panel C. See Table 4.8 and the notes of Table 4.2 for the definitions of the variables and other
notation. The table only reports the coefficient estimates for vi,t and xi,t from the volatility equation.
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Furthermore, there is strong evidence supporting the predictability of the dynam-

ics of the bid and ask slopes about the dynamic volume-volatility relation, with most of

the predictive power contributed by the slope information right before the execution

of a trade, which is consistent with the results presented in the previous tables. While

the negative indirect impact of the bid (ask) slope on the future return volatility of a

sell (buy), which is channeled through the dynamic volume-volatility relation, remains

economically and statistically significant for the vast majority of stocks (see the coef-

ficients on vi,tSlpai,tBi,t (vi,tSlpbi,tSi,t) in Panel C), its direct effects on volatility, albeit

of expected negative signs, are of much less statistical significance (compare the coef-

ficients on Slpai,tBi,t (Slpbi,tSi,t) in Panel C of Table 4.5 with the corresponding results

for Slopei,t in Panel C of Table 4.4). Nevertheless, taking into consideration the asym-

metries between the bid and ask sides of the LOB as well as the information of the

direction of trades brings a considerable enhancement to the in-sample explanatory

power of the volatility regressions, with the adjusted R2 increasing by 7-8 percentage

points (or about 40-45%), relative to that for a combined LOB in Table 4.4.

4.4.3 Spread, depth, slope and the volume-volatility relation

Previous subsections 4.4.1 and 4.4.2 demonstrate the informativeness of the dynamics

of the LOB characteristics, either at the best quotes (i.e. the bid-ask spread and market

depth) or at different quote levels (i.e. the slope of the LOB), about the return volatility

and the dynamic volume-volatility relation of trades. In this subsection, we investigate

which order book information plays a more important role in explaining the positive

dependence of return volatility on trading volume. The results of this analysis are

reported in Table 4.6 for a combined LOB, and in Table 4.7 where we allow for the

separation of the bid and ask order books.68

In conformance with the results discussed in previous subsections, the return volatil-

ity of a trade is positively related to not only contemporaneous but also lagged trading

68For brevity, we only report in Table 4.7 the estimates of the LOB attributes that are of the opposite
side to the direction of a trade (e.g. Slpai,tBi,t) from the volatility equation. The results for the LOB
characteristics that are of the same side as the direction of a trade (e.g. Slpbi,tBi,t) are of less interest
and are often less statistically significant. A complete table of results is available upon request.
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volumes while being negatively dependent on the LOB slope prior to the trade, with

statistical significance observed for the majority of stocks. In addition, the dynamic

volume-volatility relation is not constant but varies inversely with the dynamics of

the LOB slope, which is in agreement with Næs and Skjeltorp (2006) and Duong and

Kalev (2008). The more concentrated the (opposite-side) order book is around the

inner quotes or the larger the (opposite-side) book slope prior to an incoming trade,

the more able the market is to absorb the trade. Consequently, there are fewer price

revisions, resulting in lower return volatility and a weaker volume-volatility relation.

Since larger stocks typically have a steeper LOB (see Table 4.1), it follows that the ef-

fects of the LOB slope on return volatility, either direct or indirect, should decrease

with stocks’ liquidity, which is indeed what we observe (compare mid and small cap

stocks with large cap stocks).

Interestingly, after controlling for the LOB slope, both direct and indirect effects

of the bid-ask spread and market depth on return volatility and the volume-volatility

relation either switch signs or become much less significant, as compared with the cor-

responding results previously reported in Tables 4.2 and 4.3. This observation can be

explained by the fact that the LOB slope, by definition, encompasses the information

about the LOB both at and beyond the best quote level. Since the LOB outside the inner

quotes is informative about future returns and volatility (Ahn et al., 2001, Kalay et al.,

2004, Næs and Skjeltorp, 2006, Kalay and Wohl, 2009, Pascual and Veredas, 2010), the

information contained in the LOB slope appears to dominate the bid-ask spread and

the market depth in explaining the return volatility and the volume-volatility relation

of trades. In fact, this result is in harmony with work by Næs and Skjeltorp (2006), who

show that the contemporaneous correlation between daily volatility and the number of

trades within a day becomes negatively (positively) related to the bid-ask spread (total

depth in the LOB) after the LOB slope is taken into account. It is also consistent with

Pascual and Veredas (2010), who find that the ex-post informational volatility of the

latent efficient price process is positively (negatively) dependent on the depth avail-

able at (beyond) the best quotes, especially when one realizes that the information of

the depth beyond the best quotes is incorporated in the LOB slope.
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Table 4.6: Spread, depth, slope and the volume-volatility relation: Combined limit
order book

Large cap (49 stocks) Mid cap (48 stocks) Small cap (97 stocks)

Med %−5% %+5% Med %−5% %+5% Med %−5% %+5%

Panel A: Constant contemporaneous volume-volatility relation
vi,t 0.970 0.0% 98.0% 0.897 0.0% 100.0% 1.047 0.0% 100.0%
Spreadi,t -6.335 65.3% 28.6% -6.745 72.9% 10.4% -4.682 60.8% 5.2%
Depthi,t 5.203 20.4% 67.3% 5.320 14.6% 77.1% 2.025 22.7% 55.7%
Slopei,t -0.096 71.4% 26.5% -0.572 89.6% 8.3% -0.582 81.4% 6.2%
adj. R2 0.159 - - 0.176 - - 0.181 - -

Panel B: Endogenous contemporaneous volume-volatility relation
vi,t 10.725 10.2% 79.6% 22.215 6.2% 85.4% 10.652 0.0% 79.4%
vi,tSpreadi,t -32.536 61.2% 14.3% -24.684 68.8% 6.2% -7.339 59.8% 3.1%
vi,tDepthi,t 7.154 30.6% 40.8% 2.772 18.8% 35.4% -0.682 35.1% 23.7%
vi,tSlopei,t -0.342 75.5% 16.3% -1.564 91.7% 6.2% -1.088 73.2% 5.2%

Spreadi,t -6.010 63.3% 28.6% -5.722 68.8% 10.4% -3.994 61.9% 7.2%
Depthi,t 5.459 10.2% 71.4% 5.466 10.4% 79.2% 2.702 13.4% 58.8%
Slopei,t -0.077 71.4% 26.5% -0.496 85.4% 8.3% -0.489 80.4% 6.2%
adj. R2 0.174 - - 0.187 - - 0.191 - -

Panel C: Endogenous dynamic volume-volatility relation
vi,t Lag 0 10.027 10.2% 77.6% 21.664 6.2% 85.4% 10.627 0.0% 80.4%∑

1:p 0.256 28.6% 22.4% 3.037 14.6% 22.9% 1.777 3.1% 17.5%∑
0:p 12.213 18.4% 67.3% 23.348 6.2% 79.2% 12.633 0.0% 76.3%

vi,tSpreadi,t Lag 0 -28.056 61.2% 14.3% -23.886 64.6% 6.2% -7.576 59.8% 3.1%∑
1:p 6.042 18.4% 38.8% -1.762 22.9% 16.7% -1.310 9.3% 4.1%∑
0:p -21.467 49.0% 26.5% -28.891 54.2% 8.3% -9.907 48.5% 1.0%

vi,tDepthi,t Lag 0 4.235 30.6% 40.8% 2.376 20.8% 35.4% -0.892 34.0% 22.7%∑
1:p -8.079 28.6% 4.1% -1.914 16.7% 6.2% -0.615 14.4% 1.0%∑
0:p -3.300 36.7% 28.6% -0.689 18.8% 22.9% -1.016 32.0% 14.4%

vi,tSlopei,t Lag 0 -0.327 73.5% 18.4% -1.476 91.7% 6.2% -1.078 73.2% 5.2%∑
1:p 0.001 26.5% 28.6% -0.088 25.0% 14.6% -0.164 19.6% 1.0%∑
0:p -0.302 65.3% 22.4% -1.740 81.2% 8.3% -1.207 73.2% 2.1%

Spreadi,t Lag 0 -5.538 59.2% 10.2% -2.911 47.9% 12.5% -0.755 38.1% 19.6%∑
1:p 5.984 22.4% 40.8% -9.140 35.4% 16.7% -7.347 35.1% 8.2%∑
0:p 3.380 26.5% 36.7% -13.550 43.8% 12.5% -6.910 47.4% 6.2%

Depthi,t Lag 0 53.795 12.2% 83.7% 24.443 16.7% 60.4% 21.384 4.1% 67.0%∑
1:p -61.702 77.6% 10.2% -23.948 52.1% 16.7% -22.482 66.0% 4.1%∑
0:p -5.272 30.6% 12.2% -0.063 10.4% 22.9% 0.209 18.6% 11.3%

Slopei,t Lag 0 0.011 34.7% 51.0% 0.011 35.4% 41.7% 0.308 15.5% 53.6%∑
1:p -0.073 44.9% 18.4% -0.372 58.3% 2.1% -0.968 75.3% 2.1%∑
0:p -0.066 42.9% 24.5% -0.636 62.5% 10.4% -0.916 73.2% 0.0%

adj. R2 0.185 - - 0.203 - - 0.204 - -

This table reports the results of the following model, for the constituent stocks of the S&P/ASX200 index during
Jul-Dec 2014,

σi,t = α0 +µ1Mondayi,t +µ2block1i,t +
12∑
j=1

αjσi,t−j +
p∑
k=0

[β0,k + δ′kxi,t−k]vi,t−k +
p∑
k=0

γ ′kxi,t−k +π′yi,t + ηi,t ,

where σi,t is a proxy for return volatility per unit of time of the t-th transaction in stock i, which is estimated as the
absolute value of the residual |ε̂i,t | of the following autoregressive model of returns ri,t divided by the duration Ti,t of
the trade (i.e. σi,t = |ε̂i,t |/Ti,t):

ri,t =
5∑
k=1

ψi,kDayk,i,t +
5∑
k=1

φi,kblockk,i,t +
12∑
k=1

ρi,kri,t−k +ϕ′xi,t +λ′yi,t + εi,t .

xi,t = (Spreadi,t ,Depthi,t ,Slopei,t)′ is a vector of potential predictors of the volume-volatility relation. yi,t =
(ln(Ti,t),Ni,t ,AT Si,t ,OIBi,t ,QT Ti,t)′ is a vector of control variables that allow for the effects of the order flow prior
to a trade. The lag length p is set to p = 5 in Panel C. See Table 4.8 and the notes of Table 4.2 for the definitions of
the variables and other notation. The table only reports the coefficient estimates for vi,t and xi,t from the volatility
equation.
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Table 4.7: Spread, depth, slope and the volume-volatility relation: Bid vs. Ask sides

Large cap (49 stocks) Mid cap (48 stocks) Small cap (97 stocks)

Med %−5% %+5% Med %−5% %+5% Med %−5% %+5%

Panel A: Constant contemporaneous volume-volatility relation
vi,t 1.381 0.0% 100.0% 1.296 0.0% 100.0% 1.465 0.0% 100.0%
Spreadi,t -1.790 49.0% 30.6% -3.015 52.1% 18.8% -2.188 44.3% 11.3%
BVi,tSi,t 9.272 16.3% 69.4% 5.580 10.4% 72.9% 0.970 20.6% 36.1%
AVi,tBi,t 8.400 18.4% 71.4% 6.384 8.3% 66.7% 1.531 14.4% 36.1%
Slpbi,tSi,t -0.065 83.7% 14.3% -0.383 83.3% 4.2% -0.433 83.5% 5.2%
Slpai,tBi,t -0.065 81.6% 14.3% -0.271 85.4% 8.3% -0.366 76.3% 1.0%
adj. R2 0.236 - - 0.252 - - 0.246 - -

Panel B: Endogenous contemporaneous volume-volatility relation
vi,t 29.845 8.2% 87.8% 36.983 6.2% 91.7% 16.660 0.0% 87.6%
vi,tSpreadi,t -100.431 83.7% 8.2% -52.209 83.3% 6.2% -17.117 73.2% 5.2%
vi,tBVi,tSi,t 65.062 16.3% 61.2% 36.890 10.4% 64.6% 4.138 13.4% 41.2%
vi,tAVi,tBi,t 80.364 20.4% 63.3% 34.515 8.3% 60.4% 5.152 13.4% 35.1%
vi,tSlpbi,tSi,t -0.820 85.7% 6.1% -3.160 93.8% 6.2% -2.671 91.8% 1.0%
vi,tSlpai,tBi,t -0.909 87.8% 4.1% -2.933 91.7% 6.2% -2.575 92.8% 0.0%

Spreadi,t -1.719 51.0% 32.7% -4.408 60.4% 18.8% -1.985 50.5% 11.3%
BVi,tSi,t 11.473 10.2% 83.7% 6.105 8.3% 79.2% 2.166 9.3% 48.5%
AVi,tBi,t 11.553 12.2% 79.6% 8.011 4.2% 81.2% 3.102 9.3% 55.7%
Slpbi,tSi,t -0.045 83.7% 8.2% -0.274 85.4% 2.1% -0.266 78.4% 4.1%
Slpai,tBi,t -0.049 81.6% 14.3% -0.197 83.3% 4.2% -0.227 70.1% 3.1%
adj. R2 0.278 - - 0.297 - - 0.279 - -

Panel C: Endogenous dynamic volume-volatility relation
vi,t Lag 0 30.218 8.2% 87.8% 36.503 6.2% 91.7% 16.639 0.0% 88.7%∑

1:p 1.260 28.6% 26.5% 1.103 14.6% 25.0% 0.796 4.1% 10.3%∑
0:p 29.435 12.2% 81.6% 35.541 6.2% 89.6% 17.936 0.0% 86.6%

vi,tSpreadi,t Lag 0 -98.626 83.7% 8.2% -52.148 85.4% 6.2% -17.010 76.3% 4.1%∑
1:p 4.377 18.4% 30.6% 0.676 16.7% 16.7% 0.338 7.2% 7.2%∑
0:p -96.019 75.5% 16.3% -49.564 75.0% 6.2% -16.107 64.9% 2.1%

vi,tBVi,tSi,t Lag 0 64.537 16.3% 61.2% 38.249 10.4% 64.6% 4.512 13.4% 42.3%∑
1:p -17.418 30.6% 2.0% -9.876 18.8% 4.2% -4.051 29.9% 0.0%∑
0:p 56.117 18.4% 51.0% 26.766 10.4% 50.0% 1.275 16.5% 23.7%

vi,tAVi,tBi,t Lag 0 78.634 20.4% 63.3% 32.267 8.3% 62.5% 4.986 13.4% 35.1%∑
1:p -14.717 20.4% 0.0% -6.871 20.8% 6.2% -2.972 14.4% 0.0%∑
0:p 52.137 20.4% 46.9% 21.558 2.1% 45.8% 1.849 15.5% 22.7%

vi,tSlpbi,tSi,t Lag 0 -0.811 85.7% 6.1% -3.186 93.8% 6.2% -2.669 91.8% 1.0%∑
1:p 0.033 8.2% 42.9% 0.140 4.2% 22.9% 0.180 1.0% 22.7%∑
0:p -0.800 81.6% 16.3% -2.985 87.5% 6.2% -2.149 81.4% 1.0%

vi,tSlpai,tBi,t Lag 0 -0.909 87.8% 4.1% -2.961 91.7% 6.2% -2.586 92.8% 0.0%∑
1:p 0.016 8.2% 36.7% 0.056 2.1% 29.2% 0.128 1.0% 15.5%∑
0:p -0.839 81.6% 12.2% -2.652 89.6% 6.2% -2.273 85.6% 1.0%

Spreadi,t Lag 0 -6.091 69.4% 6.1% -6.988 60.4% 12.5% -4.086 47.4% 13.4%∑
1:p 3.844 14.3% 36.7% 0.914 22.9% 18.8% 0.166 12.4% 14.4%∑
0:p -3.644 24.5% 32.7% -10.663 41.7% 14.6% -4.809 33.0% 10.3%

BVi,tSi,t Lag 0 57.390 10.2% 79.6% 15.468 25.0% 56.2% 14.929 5.2% 54.6%∑
1:p -62.621 61.2% 4.1% -23.179 39.6% 6.2% -15.343 47.4% 4.1%∑
0:p -11.812 24.5% 0.0% -1.200 10.4% 14.6% -0.047 15.5% 9.3%

AVi,tBi,t Lag 0 59.366 6.1% 83.7% 24.653 8.3% 60.4% 20.213 4.1% 60.8%∑
1:p -53.029 63.3% 0.0% -17.516 47.9% 6.2% -14.848 52.6% 2.1%∑
0:p -4.502 24.5% 4.1% 1.018 4.2% 10.4% 0.258 12.4% 14.4%

Slpbi,tSi,t Lag 0 -0.022 55.1% 26.5% -0.119 52.1% 25.0% -0.043 33.0% 24.7%∑
1:p 0.021 10.2% 38.8% -0.008 12.5% 10.4% -0.126 22.7% 4.1%∑
0:p -0.008 20.4% 30.6% -0.203 20.8% 6.2% -0.189 27.8% 0.0%

Slpai,tBi,t Lag 0 -0.026 55.1% 34.7% -0.063 52.1% 27.1% 0.014 26.8% 25.8%∑
1:p -0.003 16.3% 26.5% -0.042 18.8% 12.5% -0.162 30.9% 1.0%∑
0:p -0.032 32.7% 22.4% -0.223 31.2% 8.3% -0.238 35.1% 3.1%

adj. R2 0.288 - - 0.314 - - 0.291 - -
Continued on next page
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Table 4.7 – continued from previous page

This table reports the results of the following model, for the constituent stocks of the S&P/ASX200 index during
Jul-Dec 2014,

σi,t = α0 +µ1Mondayi,t +µ2block1i,t +
12∑
j=1

αjσi,t−j +
p∑
k=0

[β0,k + δ′kxi,t−k]vi,t−k +
p∑
k=0

γ ′kxi,t−k +π′yi,t + ηi,t ,

where σi,t is a proxy for return volatility per unit of time of the t-th transaction in stock i, which is estimated as the
absolute value of the residual |ε̂i,t | of the following autoregressive model of returns ri,t divided by the duration Ti,t of
the trade (i.e. σi,t = |ε̂i,t |/Ti,t):

ri,t =
5∑
k=1

ψi,kDayk,i,t +
5∑
k=1

φi,kblockk,i,t +
12∑
k=1

ρi,kri,t−k +ϕ′xi,t +λ′yi,t + εi,t .

xi,t = (Spreadi,t ,BVi,tBi,t ,BVi,tSi,t ,AVi,tBi,t ,AVi,tSi,t ,Slpbi,tBi,t ,Slpbi,tSi,t ,Slpai,tBi,t ,Slpai,tSi,t)′ is a vector of
potential predictors of the volume-volatility relation. yi,t = (ln(Ti,t),Ni,t ,AT Si,t ,OIBi,t ,QT Ti,t)′ is a vector of control
variables that allow for the effects of the order flow prior to a trade. The lag length p is set to p = 5 in Panel C. See
Table 4.8 and the notes of Table 4.2 for the definitions of the variables and other notation. The table only reports the
coefficient estimates for vi,t and xi,t of the order book that are of the opposite side to the direction of a trade (e.g.
Slpai,tBi,t) from the volatility equation.
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Overall, the results in subsections 4.4.1-4.4.3 highlight the dynamic nature of the

volume-volatility relation which is positive and varies with the dynamics of the LOB.

The dependence of return volatility on the trading volume of a trade is positively asso-

ciated with the bid-ask spread but negatively correlated with the market depth at the

best quotes and the slope of the LOB prior to the transaction. Since the LOB slope, by

definition, captures the information contained in the bid-ask spread and the market

depth at the best quotes, it acts as the dominant explanatory factor of the volume-

volatility relation and the return volatility of a trade. The impact of the LOB charac-

teristics on the future return volatility of a trade depends on the liquidity of stocks

and is transmitted through two channels: a direct channel that is mainly contributed

by the lagged order book information, and an indirect channel that transfers the ef-

fects via the volume-volatility relation and is primarily driven by the current order

book information that prevails immediately before the trade. There are also asymme-

tries between the influence of the bid and ask order books on return volatility and the

volume-volatility relation, with the opposite-side order book possessing the dominant

predictive power about the return volatility of an incoming trade.

4.4.4 Robustness

The above analyses are based on the LOB slopes that are calculated using 10 best bid

and ask levels from the LOB. An interesting and natural question is whether the slopes

become more or less informative about the return volatility and the volume-volatility

relation of trades if they are computed from different sets of the LOB information. To

answer this question, we employ different bid and ask levels (5 and 20) from the LOB

to calculate the slope measures, then we reexamine our analysis. The results of this

exercise are reported in Table 4.9 in the Appendix (i.e. Section 4.7) for a combined

LOB, and in Table 4.10 for an order book that is separated into bid and ask sides.69

69To save space, we only tabulate the results for the case where the volume-volatility relation is al-
lowed to be dynamic and endogenously related to the bid-ask spread, the market depth at the best
quotes, and the slope of the LOB right before a trade. In addition, we only report the estimated coeffi-
cients for the LOB attributes and their interactions with trading volume vi,t in the volatility equation.
In Table 4.10, only the coefficients for the attributes of the opposite side to the trade direction (e.g.
vi,tSlpai,tBi,t) are reported. The estimates for other variables are of less interest and are qualitatively
similar to the corresponding ones reported in the main text. A complete table of results is available
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Overall, the results from Tables 4.9 and 4.10 are qualitatively similar to those re-

ported in Tables 4.6 and 4.7, respectively, with both the dynamic volume-volatility

relation and return volatility strongly negatively associated with the dynamics of the

slopes of the (opposite-side) order book. The indirect effects of the (opposite-side) or-

der book slope on return volatility, which are transmitted through the volume-volatility

relation, tend to decrease with stocks’ liquidity (compare mid and small cap stocks

with large cap stocks) and mainly stem from the slope information that is available

right before a trade. The direct effects of the LOB slope on return volatility are also

inversely related to stocks’ liquidity; however, they are of less statistical significance

than the indirect effects and are mainly explained by lagged slope information (see

Table 4.9). These direct effects even play a much smaller statistical role than the corre-

sponding indirect effects when one allows for potential asymmetries between the bid

and ask order books (see Table 4.10).

The LOB slope dominates the bid-ask spread and the market depth in explaining

the return volatility and the volume-volatility relation of a trade. This result reaf-

firms the informativeness of the LOB information that is beyond the best inner quotes,

as noted in previous studies (e.g. Ahn et al., 2001, Næs and Skjeltorp, 2006, Pascual

and Veredas, 2010). Nevertheless, the market depth at the best quotes does possess

significant predictive power about volatility, especially for mid and small cap stocks,

when 20 best quote levels are used to construct the LOB slope (see the coefficients on

vi,tDepthi,t in Panel B of Table 4.9, and the coefficients on vi,tBVi,tSi,t and vi,tAVi,tBi,t

in Panel B of Table 4.10)

There is, however, an interesting observation that is worth highlighting. While the

impact of the LOB slope on the volume-volatility relation, or equivalently the indi-

rect influence of the slope on return volatility, becomes stronger (in magnitude) for

large cap stocks when more order book information is employed to construct the slope

measure, the impact is biggest for mid and small cap stocks when the LOB slope is

computed using 10 best bid and ask levels. In addition, the proportions of significant

coefficients for the mid and small cap stocks are also remarkably lower for the slope

upon request.
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measure computed using the 20 best quotes from the book. These results suggest that

for almost all stocks, the sixth to tenth best levels of the LOB possess significant pre-

dictive power about future return volatility additional to that contained in the first five

best quotes. Quotes and depths that are queued beyond the tenth best level (and up to

the twentieth best level) are informative about volatility only for highly liquid stocks

but not for the less liquid stocks. The reason for this is that for illiquid stocks, quotes

outside the 10 best levels are likely stale orders. Consequently, the inclusion of these

levels in the calculation of the slope measures reduces the informativeness of the LOB

slope for the less liquid stocks, which possibly explains the improvements in the pre-

dictability of the depths at the best quotes about volatility and the volume-volatility

relation for these stocks as we observe.

The second set of robustness checks the sensitivity of the informativeness of the

LOB information to different winsorization cut-off levels. In order to avoid the effect of

the outliers, in previous analyses all variables are winsorized, on a stock-by-stock basis,

at the 1st and 99th quantiles (i.e. 2% winsorization). We now redo our analyses (with

the LOB slope constructed from the 10 best bid and ask levels) adopting two different

winsorization cut-off levels, namely the 0.5th-99.5th quantiles (i.e. 1% winsorization)

and the 2nd-98th quantiles (i.e. 4% winsorization).70 The results of this investigation,

respectively reported in Tables 4.11 and 4.12 in the Appendix, again qualitatively re-

semble those reported in Tables 4.6 and 4.7, suggesting that our main finding that the

slope of the (opposite-side) LOB is an important determinant of the dynamic volume-

volatility relation is robust to different winsorization levels. It is, however, noted that

this main finding generally becomes more (less) statistically significant when the 4%

(1%) winsorization window is employed.

70In addition to the two stocks discussed in footnote 60, another stock GFF (Goodman Fielder Lim-
ited - Small cap) is removed after the 0.5th-99.5th winsorization for the reason explained in footnote 65,
leaving us with a sample of 197 stocks (49 Large cap, 50 Mid cap, and 98 Small cap). Meanwhile, addi-
tional eleven stocks, namely TLS (Telstra Corporation Limited - Large cap), ALZ (Australand Property
Group - Mid cap), DUE (DUET Group - Mid cap), DJS (David Jones Limited - Mid cap), ENV (Envestra
Limited - Mid cap), AQA (Aquila Resources Limited - Small cap), CMW (Cromwell Property Group -
Small cap), GFF (Goodman Fielder Limited - Small cap), HZN (Horizon Oil Limited - Small cap), SIP
(Sigma Pharmaceuticals Limited - Small cap), and TEN (Ten Network Holdings Limited - Small cap),
are removed after the 2nd-98th winsorization, resulting in a sample of 187 stocks (48 Large cap, 46 Mid
cap, and 93 Small cap).
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4.5 Why is the order book slope informative?

The previous analyses highlight the significant information content of the LOB slope

about the return volatility and the volume-volatility relation of trades. In order to

interpret the informativeness of the order book slope given a lack of theoretical guid-

ance, Næs and Skjeltorp (2006) conduct an empirical analysis to identify factors that

can explain the slope. Based on an empirical observation that there is a significant

negative relation between the average monthly LOB slope and the variation in the an-

alysts’ monthly earnings forecasts, these authors suggest that the LOB slope acts as a

proxy for disagreements amongst investors. The more traders disagree about the true

value of a stock, the wider the range of prices and volumes of the limit or market or-

ders that they will submit, resulting in a less concentrated LOB with a more gentle

slope. This conjecture of Næs and Skjeltorp (2006) seems to fit in with a strand of

theoretical studies that demonstrate that disagreements amongst investors about asset

values are a key factor contributing to the positive correlation between trading vol-

umes and absolute price changes. These disagreements may result from either private

information asymmetry (e.g. Grundy and McNichols, 1989, Shalen, 1993) or differ-

ences of opinions about public information (e.g. Harris and Raviv, 1993, Kandel and

Pearson, 1995, Banerjee and Kremer, 2010). An empirical study of Carlin et al. (2014)

also finds that both trading volume and return volatility become larger following an

increase in investors’ disagreement. Similarly, Wang and Wu (2015) document that

the contemporaneous impact of the number of trades on price volatility varies across

different corporate bond groups that are classified according to the dispersion of an-

alysts’ earnings forecasts, and it is typically larger for bonds that have higher analyst

disagreement. Since investor heterogeneity is a driver of the positive dependence of

volatility on volume, the informativeness of the LOB slope about the volume-volatility

relation can be reasonably explained if the slope is indeed a proxy for the heterogeneity

of investors as suggested by Næs and Skjeltorp (2006).

In this chapter, we do not aim to empirically test the above Næs and Skjeltorp’s

(2006) conjecture, which is connected to the theoretical prediction of Harris and Ra-
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viv (1993), Shalen (1993), Banerjee and Kremer (2010), amongst others. Instead, we

provide an intuitive graphical illustration that not only directly explains why return

volatility and the volume-volatility relation are negatively associated with the slope of

the (opposite-side) LOB, but also complements Næs and Skjeltorp’s (2006) conjecture.

Consider a market order submitted to the LOB of a hypothetical stock A that im-

mediately results in a trade. Suppose that right before the execution of the market

order, the LOB of stock A has the best bid quote of P0 − s/2 and the best ask quote of

P0 + s/2, implying that the prevailing mid quote is P0 and the quoted bid-ask spread is

s. To obtain a clearer and simplified picture of how the slope of the LOB that prevails

immediately prior to the trade affects the price at which the trade is transacted and

the volume-volatility relation of the trade, we assume that (i) the market order that

leads to the trade is buyer-initiated so that the ask side of the LOB is relevant for the

execution of the order; (ii) the depths queued on the ask order book right before the

trade are nicely allocated such that the ask book can be smoothly illustrated by an in-

creasing straight line starting from the best ask;71 (iii) the last transacted price of stock

A is P and it is no greater than the prevailing best ask quote P0 + s/2; (iv) the size of

the market order, Vbuy, is larger than the depth available at the best ask; and (v) the

market order is very aggressive such that it walks the LOB and is fully executed.

Figure 4.1 illustrates how the price of stock A adjusts to accommodate the market

buy order or the purchase. We consider two scenarios. The first is one for which the

ask order book of stock A right before the execution of the purchase has less shares

queued close to the best ask quote and hence is relatively flat. The ask order book

in this scenario is illustrated with a dashed black line labeled as “Ask order book 1”,

with Ask Depth1 shares available at the best ask. The second scenario is one for which

the ask order book prior to the trade is more concentrated around the best ask and

has a bigger slope, which has the best ask depth of Ask Depth2 (> Ask Depth1) and

is presented by a solid black line with an “Ask order book 2” label. Note that the

“Ask order book 1” (“Ask order book 2”) can also be viewed as the state of the LOB

for stock A when there is a high (low) degree of disagreement amongst traders whose

71Strictly speaking, the limit order book has a non-decreasing piece-wise linear shape.
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orders are placed over a wide (narrow) range of prices. Thus, the two scenarios under

consideration here are compatible with Næs and Skjeltorp’s (2006) suggestion.

From Figure 4.1, the execution of the buy of size Vbuy moves the price of stock A to

P1 (P2) under the first (second) scenario from the previous transaction price P . Clearly,

the absolute change in the price of stock A, which is a proxy for volatility that is widely

used in the literature, is smaller in the second scenario where the slope of the ask order

book that prevails right before the purchase is larger (i.e. |P2 − P | < |P1 − P |), and this

explains the negative correlation between volatility and the LOB slope.

To see how the LOB slope affects the volume-volatility relation, consider a hy-

pothetical increase of ∆Vbuy in the volume of the purchase from Vbuy to V ′buy. This

pushes the price of stock A further to P ′1 (P ′2) under the first (second) scenario, imply-

ing an increase in the price of ∆P1 (∆P2), relative to the previous price when the size

of the purchase is Vbuy. The impact of the increase in the buying volume on the stock

price, which is essentially a measure of the volume-volatility relation, is ∆P1/∆Vbuy

(∆P2/∆Vbuy) in the first (second) scenario. Since ∆P1/∆Vbuy > ∆P2/∆Vbuy, it follows

that the volume-volatility relation becomes weaker the larger the LOB slope is prior to

the trade.
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Figure 4.1: Order book slope and the volume-volatility relation
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Note: This figure depicts how the order book slope affects the volume-volatility relation, using the ask side of the order book as an illustration.

186



Chapter 4. Dynamics of the limit order book and the volume-volatility relation

The main intuition underlying the informativeness of the LOB slope discussed

above still holds without the aforementioned simplifying assumptions. Assumption

(i) is imposed without a loss of generality so that we only need to focus on the relevant

side of the order book. If the market order is a sale, a qualitatively similar graph based

on the bid order book can be employed. Assumption (ii) is also trivial and is added to

assist the drawing of the graph. It is easy to verify that the above argument from Fig-

ure 4.1 remains valid if we use the commonly observed piece-wise linear limit order

book instead. Assumption (iii) is also not an unreasonable assumption given that the

majority of trades are executed at the inner quotes, since trading volume is often much

smaller than the quoted market depth at the best level (see Table 4.1). If the previous

transaction before the purchase of size Vbuy illustrated in Figure 4.1 was a sale, it was

certainly executed against the bid order book at a price less than the best ask price. If

the last transaction was a purchase, it was very likely transacted either at P0+s/2 (when

either (a) the best ask prior to that transaction was also P0 +s/2 and the trading volume

was less than the depth at P0 + s/2; or (b) the best ask prior to the transaction was less

P0 +s/2 and the trading volume was less than the cumulative ask depths up to P0 +s/2),

or at one tick lower (when the best ask prior to the transaction was one tick lower than

P0 + s/2 and the trading volume was exactly equal to the ask depth). However, there is

a possibility that the last transacted price might be larger than P0 + s/2, which happens

if after the last transaction, there were submissions of limit sell orders that pushed the

best ask back to P0 + s/2. Even in this case, the main idea from Figure 4.1 still holds in

general.

Unlike the first three assumptions, assumption (iv) is quite strong and often un-

realistic. It is imposed to facilitate the delivery of the main intuition, but it can be

relaxed. So far, we have treated the trading volume Vbuy of the purchase as known and

given, but it should be a random variable whose value depends on an investor’s liquid-

ity needs and/or information and belief set. If Vbuy ≤ Ask Depth1 < Ask Depth2, the

market buy order will be executed at the best ask P0 + s/2 under both scenarios, sug-

gesting that the volatility of the trade will be the same for both situations. However,

as Ask Depth2 > Ask Depth1, the probability of Vbuy being larger than Ask Depth1 is
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higher than the probability that Vbuy is bigger than Ask Depth2, all else being equal,

which implies that the main idea from Figure 4.1 remains true in a probabilistic sense

and so too on average. Similarly, assumption (v) is rather strong since large aggressive

market orders are less often seen in empirical data (e.g. Griffiths et al., 2000, Ranaldo,

2004, Duong and Kalev, 2013). However, if the probability of such large aggressive

orders is the same in both scenarios (i.e. for both ask order books 1 and 2), then the

main intuition from Figure 4.1 still holds on average without assumption (v).

In summary, we present in Figure 4.1 as a graphical rationale for the negative de-

pendence of the return volatility and the volume-volatility relation of a trade on the

prevailing LOB slope right before the trade. This negative dependence is empirically

found in this chapter and previous research (see, amongst others, Næs and Skjeltorp,

2006, Duong and Kalev, 2008), and it reaffirms the informativeness of the LOB infor-

mation about the price formation process.

4.6 Conclusion

This research extends prior literature on the volume-volatility relation by highlight-

ing the significant information content of the LOB about the return volatility and the

volume-volatility relation of individual trades. While most existing studies in the lit-

erature assume a constant and fully contemporaneous volume-volatility relation, we

find strong evidence that the positive dependence of return volatility on the trading

volume of a trade is dynamic. In addition, the volume-volatility relation is positively

correlated with the bid-ask spread but negatively related to the market depth at the

best quotes and the LOB slope prior to the transaction. The dynamics of the LOB char-

acteristics also play a significant role in explaining future return volatility. While their

direct impact on volatility is primarily contributed by their lagged information, it is

their current information right before a trade that drives the volume-volatility relation,

which captures their indirect impact on volatility.

Consistent with the findings in Ahn et al. (2001), Engle and Patton (2004) and Har-

ris and Panchapagesan (2005), there are significant asymmetries between the effects of
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the bid and ask order books on return volatility and on the volume-volatility relation,

with the LOB of the opposite side to the direction of an incoming trade being partic-

ularly informative about the return volatility of the trade. The LOB slope plays the

dominant role in explaining return volatility and the volume-volatility relation even

when we incorporate the information from the bid-ask spread and the market depth at

the best quotes. We justify our finding that return volatility and the volume-volatility

relation are negatively associated with the LOB slope with a simple intuitive graphical

illustration, which is compatible with prior explanations of the informativeness of the

order book slope in the literature.
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4.7 Appendix

Table 4.8: Definitions of variables

Notation Description

ri,t Return of the t-th trade in stock i: ri,t = 100(ln(qi,t+1) − ln(qi,t)), where qi,t is the
midpoint of the bid and ask quotes right before the trade

Ti,t Time duration (in seconds) between the (t − 1)-th and t-th trades
σi,t Volatility per unit of time of the t-th trade: σi,t = |ε̂i,t |/Ti,t, where ε̂i,t is the residual

from the model of returns specified in Equation (4.9)
vi,t Volume per unit of time of the t-th trade: vi,t = Vi,t/Ti,t, where Vi,t is the number

of shares traded (times 1000) divided by the total number of shares outstanding
right before the trade, and Ti,t is defined above

xi,t A vector of potential predictors of the volume-volatility relation of the t-th trade
yi,t A vector of control variables that allows for the effects of the order flow prior to

the t-th trade
Spreadi,t Relative spread, defined as quoted spread as a % of the mid-quote right before

the t-th trade
BVi,t Total number of shares available at the best bid price (times 1000) divided by the

total number of shares outstanding right before the t-th trade
AVi,t Total number of shares available at the best ask price (times 1000) divided by the

total number of shares outstanding right before the t-th trade
Depthi,t Total number of shares available at the best bid and ask prices (times 1000) di-

vided by total number of shares outstanding right before the t-th trade: Depthi,t =
BVi,t +AVi,t

Slpbi,t Slope of the bid order book right before the t-th trade, defined in equation (4.6)
and calculated using the 10 best bid/ask price levels right before the trade

Slpai,t Slope of the ask order book right before the t-th trade, defined in equation (4.7)
and calculated using the 10 best bid/ask price levels right before the trade

Slopei,t Slope of the limit order book right before the t-th trade: Slopei,t = (Slpbi,t +
Slpai,t)/2

Bi,t Buy indicator: equals 1 if the t-th trade is a purchase, 0 otherwise
Si,t Sell indicator: equals 1 if the t-th trade is a sale, 0 otherwise
Ni,t Number of transactions during the 5-minute interval right before the t-th trade
AT Si,t Average trade size (times 106 and divided by the total number of shares outstand-

ing) during the 5-minute interval right before the t-th trade
OIBi,t Order imbalance (= number of buys - number of sells) during the 5-minute inter-

val right before the t-th trade
QTTi,t Quote to trade ratio (= total number of order submissions, revisions and cancel-

lations divided by number of trades) during the 5-minute interval right before
the t-th trade

Dayk,i,t Day-of-week dummy variables, k = 1, · · · ,5 for Monday till Friday
Mondayi,t Dummy variable for Monday (same as Day1,i,t)
blockk,i,t Time-of-day dummy variables, k = 1, · · · ,6 for six hourly intervals: 10:10-11:00,

11:00-12:00, 12:00-13:00, 13:00-14:00, 14:00-15:00 and 15:00-16:00
block1i,t Dummy variable for the first trading hour (10:10-11:00) of a day (same as

block1,i,t)
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Table 4.9: LOB and the endogenous dynamic volume-volatility relation: Combined LOB

Large cap (49 stocks) Mid cap (48 stocks) Small cap (97 stocks)

Med %−5% %+5% Med %−5% %+5% Med %−5% %+5%

Panel A: 5 best bid/ask price levels
vi,tSpreadi,t Lag 0 -28.723 61.2% 14.3% -24.056 66.7% 6.2% -8.093 61.9% 3.1%∑

1:p 6.057 18.4% 38.8% -2.102 20.8% 16.7% -1.323 11.3% 3.1%∑
0:p -23.129 51.0% 24.5% -29.233 54.2% 8.3% -10.510 50.5% 1.0%

vi,tDepthi,t Lag 0 4.584 30.6% 42.9% 2.522 20.8% 35.4% -0.617 32.0% 23.7%∑
1:p -8.132 28.6% 4.1% -1.808 16.7% 8.3% -0.641 14.4% 1.0%∑
0:p -2.972 36.7% 28.6% -0.594 18.8% 27.1% -0.607 32.0% 15.5%

vi,tSlope5i,t Lag 0 -0.164 73.5% 18.4% -0.747 91.7% 6.2% -0.553 74.2% 5.2%∑
1:p 0.000 26.5% 28.6% -0.057 27.1% 14.6% -0.102 21.6% 1.0%∑
0:p -0.155 65.3% 22.4% -0.877 81.2% 6.2% -0.598 73.2% 2.1%

Spreadi,t Lag 0 -5.503 59.2% 10.2% -2.795 47.9% 14.6% -0.791 39.2% 19.6%∑
1:p 6.498 22.4% 40.8% -10.476 35.4% 16.7% -7.859 38.1% 8.2%∑
0:p 3.371 26.5% 36.7% -15.003 43.8% 12.5% -7.260 51.5% 6.2%

Depthi,t Lag 0 53.812 12.2% 83.7% 24.370 16.7% 60.4% 21.503 4.1% 67.0%∑
1:p -61.880 77.6% 10.2% -23.904 52.1% 16.7% -22.636 64.9% 4.1%∑
0:p -5.628 30.6% 12.2% 0.106 10.4% 22.9% 0.321 18.6% 15.5%

Slope5i,t Lag 0 0.005 34.7% 49.0% 0.004 35.4% 41.7% 0.148 16.5% 51.5%∑
1:p -0.035 44.9% 20.4% -0.185 58.3% 2.1% -0.490 76.3% 2.1%∑
0:p -0.033 42.9% 24.5% -0.274 60.4% 10.4% -0.477 75.3% 0.0%

Panel B: 20 best bid/ask price levels
vi,tSpreadi,t Lag 0 -11.023 51.0% 16.3% -2.512 31.2% 18.8% -1.513 30.9% 13.4%∑

1:p 10.137 10.2% 42.9% 0.722 12.5% 16.7% 0.151 6.2% 9.3%∑
0:p -4.340 32.7% 28.6% -2.591 16.7% 20.8% -1.027 21.6% 10.3%

vi,tDepthi,t Lag 0 -6.680 40.8% 30.6% -5.688 52.1% 12.5% -3.294 53.6% 4.1%∑
1:p -10.074 38.8% 4.1% -2.565 33.3% 4.2% -1.100 21.6% 2.1%∑
0:p -17.178 44.9% 18.4% -6.297 47.9% 8.3% -4.809 54.6% 2.1%

vi,tSlope20i,t Lag 0 -0.596 73.5% 18.4% -1.112 81.2% 6.2% -0.960 63.9% 4.1%∑
1:p 0.028 14.3% 28.6% -0.064 14.6% 12.5% -0.075 16.5% 5.2%∑
0:p -0.527 65.3% 22.4% -1.157 60.4% 10.4% -1.081 55.7% 2.1%

Spreadi,t Lag 0 -5.102 59.2% 8.2% -1.950 43.8% 16.7% 0.890 26.8% 25.8%∑
1:p 13.180 12.2% 44.9% 1.271 20.8% 20.8% -1.556 22.7% 15.5%∑
0:p 7.863 14.3% 38.8% -1.634 27.1% 18.8% -0.389 29.9% 16.5%

Depthi,t Lag 0 53.733 12.2% 83.7% 25.332 20.8% 60.4% 22.235 4.1% 66.0%∑
1:p -62.284 77.6% 8.2% -29.216 56.2% 14.6% -27.466 69.1% 4.1%∑
0:p -8.944 38.8% 4.1% -2.518 33.3% 12.5% -2.323 35.1% 3.1%

Slope20i,t Lag 0 0.021 34.7% 51.0% 0.024 31.2% 43.8% 0.747 7.2% 60.8%∑
1:p -0.087 32.7% 20.4% -0.344 50.0% 8.3% -1.294 66.0% 5.2%∑
0:p -0.064 32.7% 24.5% -0.544 45.8% 10.4% -0.592 50.5% 1.0%

This table reports the results of the following model, for the constituent stocks of the S&P/ASX200 index during
Jul-Dec 2014,

σi,t = α0 +µ1Mondayi,t +µ2block1i,t +
12∑
j=1

αjσi,t−j +
5∑
k=0

[β0,k + δ′kxi,t−k]vi,t−k +
5∑
k=0

γ ′kxi,t−k +π′yi,t + ηi,t ,

where σi,t is a proxy for return volatility per unit of time of the t-th transaction in stock i, which is estimated as the
absolute value of the residual |ε̂i,t | of the following autoregressive model of returns ri,t divided by the duration Ti,t of
the trade (i.e. σi,t = |ε̂i,t |/Ti,t):

ri,t =
5∑
k=1

ψi,kDayk,i,t +
5∑
k=1

φi,kblockk,i,t +
12∑
k=1

ρi,kri,t−k +ϕ′xi,t +λ′yi,t + εi,t .

xi,t is a vector of potential predictors of the volume-volatility relation. yi,t = (ln(Ti,t),Ni,t ,AT Si,t ,OIBi,t ,QT Ti,t)′ is
a vector of control variables that allow for the effects of the order flow prior to a trade. Panel A reports the results
when xi,t = (Spreadi,t ,Depthi,t ,Slope5i,t)′ , and Panel B reports the results when xi,t = (Spreadi,t ,Depthi,t ,Slope20i,t)′ ,
where Slope5i,t (Slope20i,t) is the slope of the LOB, calculated using 5 (20) best bid and ask price levels, right before
the t-th trade. See Table 4.8 and the notes of Table 4.2 for the definitions of other variables and notation. The table
only reports the coefficient estimates for xi,t−kvi,t−k and xi,t−k from the volatility equation.
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Table 4.10: LOB and the endogenous dynamic volume-volatility relation: Bid vs. Ask
sides

Large cap (49 stocks) Mid cap (48 stocks) Small cap (97 stocks)

Med %−5% %+5% Med %−5% %+5% Med %−5% %+5%

Panel A: 5 best bid/ask price levels
vi,tSpreadi,t Lag 0 -99.187 83.7% 8.2% -52.642 85.4% 6.2% -17.464 76.3% 4.1%∑

1:p 4.741 18.4% 30.6% -0.555 16.7% 16.7% -0.309 8.2% 6.2%∑
0:p -93.647 73.5% 16.3% -53.336 79.2% 6.2% -16.600 67.0% 2.1%

vi,tBVi,tSi,t Lag 0 65.116 16.3% 61.2% 44.539 8.3% 68.8% 5.124 13.4% 44.3%∑
1:p -17.980 30.6% 0.0% -9.775 16.7% 4.2% -4.124 29.9% 0.0%∑
0:p 56.671 18.4% 51.0% 27.645 8.3% 58.3% 1.983 15.5% 27.8%

vi,tAVi,tBi,t Lag 0 80.376 20.4% 63.3% 38.416 6.2% 62.5% 5.807 12.4% 39.2%∑
1:p -14.712 20.4% 0.0% -7.363 20.8% 6.2% -2.851 14.4% 0.0%∑
0:p 52.582 20.4% 46.9% 26.468 0.0% 47.9% 2.981 12.4% 26.8%

vi,tSlpb5i,tSi,t Lag 0 -0.407 85.7% 6.1% -1.737 93.8% 6.2% -1.392 91.8% 1.0%∑
1:p 0.016 8.2% 42.9% 0.055 6.2% 20.8% 0.092 1.0% 21.6%∑
0:p -0.402 79.6% 16.3% -1.699 87.5% 6.2% -1.109 82.5% 1.0%

vi,tSlpa5i,tBi,t Lag 0 -0.456 87.8% 4.1% -1.532 93.8% 4.2% -1.306 92.8% 0.0%∑
1:p 0.009 8.2% 34.7% 0.034 2.1% 29.2% 0.052 2.1% 16.5%∑
0:p -0.424 81.6% 12.2% -1.375 91.7% 6.2% -1.147 85.6% 1.0%

Spreadi,t Lag 0 -6.064 69.4% 6.1% -7.006 58.3% 12.5% -4.241 48.5% 14.4%∑
1:p 3.794 14.3% 36.7% -1.139 25.0% 18.8% -0.479 13.4% 14.4%∑
0:p -3.643 24.5% 32.7% -12.190 41.7% 14.6% -5.701 36.1% 7.2%

BVi,tSi,t Lag 0 57.307 10.2% 79.6% 15.224 25.0% 56.2% 14.002 5.2% 54.6%∑
1:p -62.426 61.2% 4.1% -21.458 39.6% 6.2% -17.467 46.4% 4.1%∑
0:p -11.762 24.5% 0.0% -0.359 8.3% 14.6% -0.351 16.5% 10.3%

AVi,tBi,t Lag 0 59.425 6.1% 83.7% 24.629 10.4% 60.4% 20.368 4.1% 60.8%∑
1:p -52.693 63.3% 0.0% -17.531 45.8% 6.2% -13.444 48.5% 2.1%∑
0:p -4.515 24.5% 4.1% 0.758 4.2% 12.5% 0.447 12.4% 14.4%

Slpb5i,tSi,t Lag 0 -0.011 55.1% 26.5% -0.060 52.1% 25.0% -0.023 35.1% 24.7%∑
1:p 0.009 12.2% 38.8% -0.010 14.6% 10.4% -0.068 23.7% 3.1%∑
0:p -0.004 20.4% 30.6% -0.120 22.9% 6.2% -0.098 28.9% 0.0%

Slpa5i,tBi,t Lag 0 -0.013 55.1% 34.7% -0.032 50.0% 27.1% 0.007 26.8% 25.8%∑
1:p -0.002 16.3% 26.5% -0.015 20.8% 10.4% -0.087 29.9% 1.0%∑
0:p -0.017 32.7% 22.4% -0.114 31.2% 8.3% -0.116 35.1% 2.1%

Panel B: 20 best bid/ask price levels
vi,tSpreadi,t Lag 0 -70.844 77.6% 10.2% -11.350 54.2% 10.4% -6.832 49.5% 11.3%∑

1:p 6.504 10.2% 32.7% 1.790 12.5% 14.6% 0.409 7.2% 10.3%∑
0:p -54.066 69.4% 18.4% -10.366 43.8% 10.4% -4.508 39.2% 7.2%

vi,tBVi,tSi,t Lag 0 39.038 22.4% 51.0% -1.402 35.4% 29.2% -7.100 52.6% 6.2%∑
1:p -18.042 32.7% 2.0% -6.790 20.8% 4.2% -3.085 21.6% 0.0%∑
0:p 12.826 24.5% 40.8% -5.186 35.4% 16.7% -12.292 49.5% 3.1%

vi,tAVi,tBi,t Lag 0 43.981 26.5% 53.1% 0.258 37.5% 29.2% -4.797 41.2% 10.3%∑
1:p -13.644 24.5% 2.0% -7.017 25.0% 6.2% -1.576 10.3% 2.1%∑
0:p 35.467 26.5% 34.7% 0.133 31.2% 22.9% -5.220 43.3% 7.2%

vi,tSlpb20i,tSi,t Lag 0 -1.588 85.7% 6.1% -2.259 87.5% 6.2% -1.871 84.5% 1.0%∑
1:p 0.066 8.2% 44.9% 0.123 4.2% 18.8% 0.158 3.1% 13.4%∑
0:p -1.500 79.6% 16.3% -2.421 79.2% 6.2% -1.713 73.2% 1.0%

vi,tSlpa20i,tBi,t Lag 0 -1.580 87.8% 4.1% -2.529 89.6% 6.2% -2.210 82.5% 2.1%∑
1:p 0.044 8.2% 34.7% 0.083 6.2% 16.7% 0.015 4.1% 8.2%∑
0:p -1.459 81.6% 12.2% -2.457 83.3% 6.2% -2.041 73.2% 2.1%

Continued on next page
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Table 4.10 – continued from previous page
Large cap (49 stocks) Mid cap (48 stocks) Small cap (97 stocks)

Med %−5% %+5% Med %−5% %+5% Med %−5% %+5%

Spreadi,t Lag 0 -5.730 65.3% 4.1% -3.363 47.9% 12.5% -1.834 40.2% 16.5%∑
1:p 13.154 8.2% 42.9% 2.147 16.7% 20.8% 1.308 10.3% 19.6%∑
0:p 2.361 20.4% 36.7% 0.135 27.1% 16.7% -0.556 19.6% 19.6%

BVi,tSi,t Lag 0 57.306 8.2% 79.6% 12.443 27.1% 56.2% 13.834 5.2% 53.6%∑
1:p -62.679 63.3% 4.1% -24.822 45.8% 10.4% -18.149 53.6% 2.1%∑
0:p -13.791 26.5% 0.0% -1.664 16.7% 8.3% -2.397 20.6% 6.2%

AVi,tBi,t Lag 0 59.429 4.1% 83.7% 23.756 10.4% 58.3% 19.773 3.1% 61.9%∑
1:p -53.466 69.4% 2.0% -16.437 43.8% 2.1% -18.226 53.6% 3.1%∑
0:p -6.722 30.6% 6.1% -0.679 10.4% 16.7% 1.156 13.4% 15.5%

Slpb20i,tSi,t Lag 0 -0.039 53.1% 26.5% -0.258 52.1% 22.9% -0.098 32.0% 23.7%∑
1:p 0.044 10.2% 36.7% 0.010 14.6% 14.6% -0.115 23.7% 9.3%∑
0:p -0.003 20.4% 30.6% -0.380 31.2% 4.2% -0.271 35.1% 0.0%

Slpa20i,tBi,t Lag 0 -0.052 53.1% 36.7% -0.127 52.1% 27.1% 0.011 22.7% 28.9%∑
1:p 0.030 12.2% 30.6% -0.031 18.8% 4.2% -0.462 44.3% 3.1%∑
0:p -0.023 28.6% 22.4% -0.366 39.6% 4.2% -0.505 51.5% 4.1%

This table reports the results of the following model, for the constituent stocks of the S&P/ASX200 index during
Jul-Dec 2014,

σi,t = α0 +µ1Mondayi,t +µ2block1i,t +
12∑
j=1

αjσi,t−j +
5∑
k=0

[β0,k + δ′kxi,t−k]vi,t−k +
5∑
k=0

γ ′kxi,t−k +π′yi,t + ηi,t ,

where σi,t is a proxy for return volatility per unit of time of the t-th transaction in stock i, which is estimated as the
absolute value of the residual |ε̂i,t | of the following autoregressive model of returns ri,t divided by the duration Ti,t of
the trade (i.e. σi,t = |ε̂i,t |/Ti,t):

ri,t =
5∑
k=1

ψi,kDayk,i,t +
5∑
k=1

φi,kblockk,i,t +
12∑
k=1

ρi,kri,t−k +ϕ′xi,t +λ′yi,t + εi,t .

xi,t is a vector of potential predictors of the volume-volatility relation. yi,t = (ln(Ti,t),Ni,t ,AT Si,t ,OIBi,t ,QT Ti,t)′

is a vector of control variables that allow for the effects of the order flow prior to a trade. Panel A reports the
results when xi,t = (Spreadi,t ,BVi,tBi,t ,BVi,tSi,t ,AVi,tBi,t ,AVi,tSi,t ,Slpb5i,tBi,t ,Slpb5i,tSi,t ,Slpa5i,tBi,t ,Slpa5i,tSi,t)′ ;
Panel B reports the results when xi,t = (Spreadi,t ,BVi,tBi,t ,BVi,tSi,t ,AVi,tBi,t ,AVi,tSi,t ,Slpb20i,tBi,t ,Slpb20i,tSi,t ,
Slpa20i,tBi,t ,Slpa20i,tSi,t)′ , where Slpb5i,t (Slpa5i,t , Slpb20i,t , Slpa20i,t) is the slope of the bid (ask, bid, ask) side
of the LOB, calculated using 5 (5, 20, 20) best bid (ask, bid, ask) price levels, right before the t-th trade. See Table
4.8 and the notes of Table 4.2 for the definitions of other variables and notation. Panel B of the table only reports the
coefficient estimates for xi,t−kvi,t−k and xi,t−k of the order book that are of the opposite side to the direction of a trade
(e.g. vi,t−kSlpai,t−kBi,t−k and Slpai,t−kBi,t−k) from the volatility equation.
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Table 4.11: LOB and the endogenous dynamic volume-volatility relation: 0.5th − 99.5th

winsorization

Large cap (49 stocks) Mid cap (50 stocks) Small cap (98 stocks)

Med %−5% %+5% Med %−5% %+5% Med %−5% %+5%

Panel A: Combined limit order book
vi,tSpreadi,t Lag 0 -10.180 46.9% 14.3% -11.612 54.0% 8.0% -4.296 38.8% 6.1%∑

1:p 5.977 14.3% 38.8% -1.483 18.0% 12.0% -1.167 12.2% 5.1%∑
0:p -0.829 34.7% 22.4% -11.986 42.0% 10.0% -4.825 36.7% 2.0%

vi,tDepthi,t Lag 0 -2.638 34.7% 28.6% 0.023 24.0% 26.0% -1.518 36.7% 15.3%∑
1:p -5.677 30.6% 4.1% -0.903 16.0% 8.0% -0.462 15.3% 0.0%∑
0:p -4.775 36.7% 10.2% -2.678 20.0% 18.0% -1.592 35.7% 8.2%

vi,tSlopei,t Lag 0 -0.245 67.3% 18.4% -0.948 84.0% 6.0% -0.715 69.4% 4.1%∑
1:p -0.005 24.5% 28.6% -0.159 24.0% 8.0% -0.169 19.4% 1.0%∑
0:p -0.267 59.2% 18.4% -1.185 78.0% 8.0% -0.883 62.2% 2.0%

Spreadi,t Lag 0 -6.439 63.3% 8.2% -2.256 42.0% 16.0% -0.362 32.7% 19.4%∑
1:p 8.843 24.5% 38.8% -9.753 32.0% 16.0% -6.381 37.8% 9.2%∑
0:p 5.251 30.6% 36.7% -13.720 46.0% 14.0% -7.332 49.0% 9.2%

Depthi,t Lag 0 57.991 14.3% 83.7% 22.060 20.0% 58.0% 19.503 4.1% 63.3%∑
1:p -60.984 81.6% 12.2% -16.504 54.0% 18.0% -21.894 65.3% 6.1%∑
0:p -5.381 30.6% 10.2% 0.027 8.0% 24.0% 0.079 19.4% 10.2%

Slopei,t Lag 0 0.011 34.7% 53.1% -0.027 34.0% 42.0% 0.397 15.3% 56.1%∑
1:p -0.089 49.0% 4.1% -0.469 60.0% 2.0% -1.143 78.6% 3.1%∑
0:p -0.062 40.8% 24.5% -0.733 72.0% 6.0% -0.938 79.6% 0.0%

Panel B: Bid vs. Ask sides
vi,tSpreadi,t Lag 0 -68.566 81.6% 8.2% -38.571 82.0% 6.0% -13.449 70.4% 4.1%∑

1:p 5.175 10.2% 30.6% 0.936 18.0% 12.0% 0.129 6.1% 5.1%∑
0:p -70.439 63.3% 16.3% -40.211 76.0% 6.0% -12.769 60.2% 1.0%

vi,tBVi,tSi,t Lag 0 49.395 18.4% 57.1% 26.027 12.0% 62.0% 1.476 19.4% 29.6%∑
1:p -14.230 28.6% 0.0% -4.620 16.0% 4.0% -3.272 25.5% 0.0%∑
0:p 33.308 16.3% 40.8% 16.441 12.0% 46.0% -0.570 20.4% 22.4%

vi,tAVi,tBi,t Lag 0 53.901 18.4% 63.3% 19.920 10.0% 58.0% 3.758 14.3% 30.6%∑
1:p -9.068 20.4% 2.0% -2.448 20.0% 6.0% -2.613 15.3% 1.0%∑
0:p 44.352 22.4% 44.9% 11.282 8.0% 44.0% 0.642 19.4% 17.3%

vi,tSlpbi,tSi,t Lag 0 -0.680 85.7% 6.1% -2.173 90.0% 8.0% -1.967 83.7% 1.0%∑
1:p 0.027 6.1% 40.8% 0.042 6.0% 24.0% 0.163 0.0% 22.4%∑
0:p -0.639 81.6% 14.3% -1.976 82.0% 6.0% -1.624 72.4% 1.0%

vi,tSlpai,tBi,t Lag 0 -0.840 87.8% 4.1% -2.460 90.0% 4.0% -1.768 85.7% 0.0%∑
1:p 0.018 10.2% 28.6% 0.025 2.0% 22.0% 0.155 1.0% 14.3%∑
0:p -0.771 81.6% 12.2% -2.120 86.0% 6.0% -1.561 75.5% 2.0%

Spreadi,t Lag 0 -6.476 67.3% 2.0% -9.595 66.0% 8.0% -5.380 52.0% 10.2%∑
1:p 1.888 8.2% 40.8% 2.691 14.0% 28.0% 1.769 13.3% 19.4%∑
0:p -3.832 26.5% 36.7% -11.362 42.0% 14.0% -5.559 38.8% 12.2%

BVi,tSi,t Lag 0 56.916 12.2% 79.6% 11.378 24.0% 52.0% 13.560 7.1% 53.1%∑
1:p -63.428 65.3% 6.1% -15.658 42.0% 12.0% -14.754 46.9% 5.1%∑
0:p -11.321 24.5% 4.1% 3.366 12.0% 14.0% 0.029 15.3% 6.1%

AVi,tBi,t Lag 0 59.774 6.1% 83.7% 22.384 12.0% 60.0% 19.624 4.1% 61.2%∑
1:p -50.959 73.5% 0.0% -13.017 44.0% 8.0% -17.898 57.1% 3.1%∑
0:p -4.421 20.4% 6.1% 4.850 8.0% 12.0% 0.243 14.3% 15.3%

Slpbi,tSi,t Lag 0 -0.016 49.0% 32.7% -0.056 42.0% 30.0% 0.028 25.5% 36.7%∑
1:p 0.009 8.2% 32.7% -0.081 20.0% 6.0% -0.257 24.5% 2.0%∑
0:p -0.015 24.5% 30.6% -0.292 30.0% 6.0% -0.264 31.6% 0.0%

Slpai,tBi,t Lag 0 -0.018 51.0% 36.7% -0.057 44.0% 24.0% 0.055 16.3% 37.8%∑
1:p -0.019 18.4% 18.4% -0.072 34.0% 4.0% -0.288 35.7% 2.0%∑
0:p -0.032 36.7% 22.4% -0.250 36.0% 8.0% -0.288 31.6% 3.1%

Continued on next page
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Table 4.11 – continued from previous page

This table reports the results of the following model, for the constituent stocks of the S&P/ASX200 index during
Jul-Dec 2014,

σi,t = α0 +µ1Mondayi,t +µ2block1i,t +
12∑
j=1

αjσi,t−j +
5∑
k=0

[β0,k + δ′kxi,t−k]vi,t−k +
5∑
k=0

γ ′kxi,t−k +π′yi,t + ηi,t ,

where σi,t is a proxy for return volatility per unit of time of the t-th transaction in stock i, which is estimated as the
absolute value of the residual |ε̂i,t | of the following autoregressive model of returns ri,t divided by the duration Ti,t
of the trade (i.e. σi,t = |ε̂i,t |/Ti,t):

ri,t =
5∑
k=1

ψi,kDayk,i,t +
5∑
k=1

φi,kblockk,i,t +
12∑
k=1

ρi,kri,t−k +ϕ′xi,t +λ′yi,t + εi,t .

xi,t is a vector of potential predictors of the volume-volatility relation. yi,t = (ln(Ti,t),Ni,t ,AT Si,t ,OIBi,t ,
QT Ti,t)′ is a vector of control variables that allow for the effects of the order flow prior to a trade. Panel
A reports the results when xi,t = (Spreadi,t ,Depthi,t ,Slopei,t)′ , and Panel B reports the results when xi,t =
(Spreadi,t ,BVi,tBi,t ,BVi,tSi,t ,AVi,tBi,t ,AVi,tSi,t ,Slpbi,tBi,t ,Slpbi,tSi,t ,Slpai,tBi,t ,Slpai,tSi,t)′ . See Table 4.8 and the
notes of Table 4.2 for the definitions of the variables and other notation. The table only reports the coefficient
estimates for xi,t−kvi,t−k and xi,t−k of the order book that are of the opposite side to the direction of a trade (e.g.
vi,t−kSlpai,t−kBi,t−k and Slpai,t−kBi,t−k) from the volatility equation.
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Table 4.12: LOB and the endogenous dynamic volume-volatility relation: 2nd − 98th

winsorization

Large cap (48 stocks) Mid cap (46 stocks) Small cap (93 stocks)

Med %−5% %+5% Med %−5% %+5% Med %−5% %+5%

Panel A: Combined limit order book
vi,tSpreadi,t Lag 0 -44.176 68.8% 16.7% -35.335 87.0% 8.7% -14.876 71.0% 2.2%∑

1:p 18.447 10.4% 50.0% 0.696 13.0% 17.4% -0.230 7.5% 7.5%∑
0:p -37.933 52.1% 25.0% -33.733 67.4% 8.7% -14.541 57.0% 1.1%

vi,tDepthi,t Lag 0 6.591 29.2% 50.0% 6.578 23.9% 45.7% -0.006 33.3% 25.8%∑
1:p -12.804 47.9% 0.0% -3.194 28.3% 10.9% -0.854 11.8% 1.1%∑
0:p -2.281 39.6% 29.2% 1.570 23.9% 26.1% -0.854 31.2% 18.3%

vi,tSlopei,t Lag 0 -0.625 79.2% 12.5% -2.223 93.5% 6.5% -1.402 86.0% 2.2%∑
1:p 0.022 25.0% 47.9% -0.035 17.4% 17.4% -0.076 15.1% 6.5%∑
0:p -0.441 68.8% 20.8% -2.492 87.0% 6.5% -1.825 79.6% 1.1%

Spreadi,t Lag 0 -5.461 66.7% 4.2% -4.639 52.2% 8.7% -1.428 41.9% 20.4%∑
1:p 20.453 16.7% 50.0% -7.943 34.8% 17.4% -6.250 35.5% 8.6%∑
0:p 14.913 25.0% 41.7% -12.604 43.5% 17.4% -6.849 41.9% 5.4%

Depthi,t Lag 0 53.248 10.4% 83.3% 25.476 21.7% 63.0% 22.611 3.2% 73.1%∑
1:p -68.405 79.2% 12.5% -27.482 58.7% 13.0% -24.085 68.8% 3.2%∑
0:p -12.011 45.8% 6.2% -1.425 10.9% 21.7% -0.061 16.1% 10.8%

Slopei,t Lag 0 0.008 35.4% 50.0% -0.021 34.8% 41.3% 0.235 15.1% 53.8%∑
1:p 0.009 29.2% 33.3% -0.251 41.3% 6.5% -0.886 67.7% 3.2%∑
0:p 0.013 37.5% 37.5% -0.523 52.2% 15.2% -0.726 66.7% 1.1%

Panel B: Bid vs. Ask sides
vi,tSpreadi,t Lag 0 -107.285 83.3% 12.5% -64.169 91.3% 6.5% -23.020 81.7% 2.2%∑

1:p 5.688 12.5% 33.3% -0.116 15.2% 17.4% 0.262 6.5% 7.5%∑
0:p -106.186 81.2% 16.7% -58.882 84.8% 6.5% -21.771 71.0% 1.1%

vi,tBVi,tSi,t Lag 0 88.714 18.8% 66.7% 70.362 10.9% 76.1% 12.739 9.7% 49.5%∑
1:p -25.104 37.5% 0.0% -17.585 30.4% 2.2% -6.438 29.0% 0.0%∑
0:p 64.403 16.7% 56.2% 50.435 10.9% 60.9% 6.339 14.0% 30.1%

vi,tAVi,tBi,t Lag 0 113.426 20.8% 72.9% 63.300 6.5% 78.3% 14.764 9.7% 47.3%∑
1:p -16.346 29.2% 0.0% -10.552 26.1% 6.5% -5.335 19.4% 0.0%∑
0:p 88.396 22.9% 62.5% 48.395 2.2% 63.0% 8.092 8.6% 24.7%

vi,tSlpbi,tSi,t Lag 0 -1.324 85.4% 8.3% -4.290 93.5% 6.5% -3.227 93.5% 1.1%∑
1:p 0.075 4.2% 45.8% 0.292 2.2% 34.8% 0.273 0.0% 26.9%∑
0:p -1.175 79.2% 14.6% -3.899 89.1% 6.5% -2.806 87.1% 1.1%

vi,tSlpai,tBi,t Lag 0 -1.397 87.5% 6.2% -4.014 93.5% 6.5% -3.435 96.8% 0.0%∑
1:p 0.037 6.2% 43.8% 0.141 0.0% 37.0% 0.196 1.1% 21.5%∑
0:p -1.396 83.3% 14.6% -3.724 93.5% 6.5% -3.040 90.3% 1.1%

Spreadi,t Lag 0 -3.899 52.1% 16.7% -5.595 47.8% 13.0% -2.237 44.1% 12.9%∑
1:p 5.643 18.8% 39.6% -0.145 17.4% 21.7% -1.663 18.3% 17.2%∑
0:p -0.891 20.8% 35.4% -10.563 28.3% 17.4% -3.724 29.0% 6.5%

BVi,tSi,t Lag 0 59.239 12.5% 77.1% 18.286 21.7% 60.9% 15.339 6.5% 55.9%∑
1:p -68.301 62.5% 2.1% -28.137 43.5% 4.3% -18.968 51.6% 3.2%∑
0:p -19.035 33.3% 0.0% -6.996 8.7% 6.5% -1.476 15.1% 8.6%

AVi,tBi,t Lag 0 60.950 2.1% 89.6% 23.818 8.7% 65.2% 21.373 3.2% 65.6%∑
1:p -46.679 54.2% 0.0% -21.144 47.8% 2.2% -19.823 59.1% 2.2%∑
0:p -7.451 20.8% 4.2% -0.043 6.5% 6.5% -0.289 10.8% 6.5%

Slpbi,tSi,t Lag 0 -0.043 72.9% 12.5% -0.150 69.6% 17.4% -0.157 49.5% 7.5%∑
1:p 0.066 6.2% 45.8% 0.165 4.3% 13.0% 0.000 8.6% 5.4%∑
0:p 0.022 14.6% 35.4% -0.025 13.0% 8.7% -0.159 22.6% 0.0%

Slpai,tBi,t Lag 0 -0.039 60.4% 27.1% -0.208 69.6% 15.2% -0.077 44.1% 14.0%∑
1:p 0.026 10.4% 37.5% 0.036 4.3% 28.3% -0.057 16.1% 7.5%∑
0:p -0.019 20.8% 31.2% -0.047 23.9% 13.0% -0.239 29.0% 2.2%

Continued on next page
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Table 4.12 – continued from previous page

This table reports the results of the following model, for the constituent stocks of the S&P/ASX200 index during
Jul-Dec 2014,

σi,t = α0 +µ1Mondayi,t +µ2block1i,t +
12∑
j=1

αjσi,t−j +
5∑
k=0

[β0,k + δ′kxi,t−k]vi,t−k +
5∑
k=0

γ ′kxi,t−k +π′yi,t + ηi,t ,

where σi,t is a proxy for return volatility per unit of time of the t-th transaction in stock i, which is estimated as the
absolute value of the residual |ε̂i,t | of the following autoregressive model of returns ri,t divided by the duration Ti,t
of the trade (i.e. σi,t = |ε̂i,t |/Ti,t):

ri,t =
5∑
k=1

ψi,kDayk,i,t +
5∑
k=1

φi,kblockk,i,t +
12∑
k=1

ρi,kri,t−k +ϕ′xi,t +λ′yi,t + εi,t .

xi,t is a vector of potential predictors of the volume-volatility relation. yi,t = (ln(Ti,t),Ni,t ,AT Si,t ,OIBi,t ,QT Ti,t)′

is a vector of control variables that allow for the effects of the order flow prior to a trade. Panel A
reports the results when xi,t = (Spreadi,t ,Depthi,t ,Slopei,t)′ , and Panel B reports the results when xi,t =
(Spreadi,t ,BVi,tBi,t ,BVi,tSi,t ,AVi,tBi,t ,AVi,tSi,t ,Slpbi,tBi,t ,Slpbi,tSi,t ,Slpai,tBi,t ,Slpai,tSi,t)′ . See Table 4.8 and the
notes of Table 4.2 for the definitions of the variables and other notation. Panel B of the table only reports the coef-
ficient estimates for xi,t−kvi,t−k and xi,t−k of the order book that are of the opposite side to the direction of a trade
(e.g. vi,t−kSlpai,t−kBi,t−k and Slpai,t−kBi,t−k) from the volatility equation.
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Conclusions and future research

Research into market microstructure is important not only for investors to create op-

timal trading strategies that maximize profits and/or minimize trading costs, but also

for policy makers to design trading platforms that have higher liquidity and less mar-

ket friction and manipulation. Market microstructure theory delivers two important

predictions about the behavior of security prices in financial markets which are: (1)

there is a significant information content from trades that explains the movements in

asset prices; and (2) price volatility is positively correlated with the trading activity

of market participants. The main objective of this thesis is to develop new models

and modeling methods for returns, volatility, trading volume and trade durations us-

ing high frequency tick-by-tick data that can be used to test these above predictions

in market microstructure. This chapter summarizes the key findings from the three

essays presented in this thesis, and it also discusses potential directions for future re-

search.
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5.1 Summary

The first essay, presented in Chapter 2, investigates the impact of trades on stock prices

(i.e. the first empirical prediction) when the times of trade arrivals are endogenous.

This study is motivated by the theoretical finding of Diamond and Verrecchia (1987)

and Easley and O’Hara (1992) that the time durations between trades are informative

about prices, which is empirically supported by the subsequent work of Dufour and

Engle (2000). Unlike Dufour and Engle (2000) and many prior studies in the duration

modeling literature that assume that trade durations are independent of (or strictly

exogenous to) the dynamics of prices and other trade information such as signs and

volumes, we explicitly allow trade durations to depend on these other variables, as

suggested by theory. In particular, we model the joint evolution of trade durations,

trade characteristics (signs and volumes) and returns with a nonlinear vector autore-

gression (VAR) that accommodates the feedback effects between these variables. The

proposed model is employed to study how trades affect the prices of Australian bank-

ing stocks around the releases of monetary policy decisions. The empirical results in

Chapter 2 confirm the endogeneity of trade durations, which are found to be posi-

tively related to the volatility but negatively affected by the volume of the previous

transactions. In agreement with Dufour and Engle (2000), the shorter the time du-

ration between trades, the more serially correlated trades become and the larger the

impact they have on prices.

Chapter 2 also highlights the significant impact of interest rate announcements on

the trade and price dynamics of major Australian banking stocks. Specifically, trading

intensifies significantly and leads to a larger price impact within one minute around

interest rate announcements. Conditioning on an average history prior to the releases

of the announcements that signal monetary policy decisions, an unanticipated trans-

action in the banking stocks tend to have a higher (lower) cumulative impact on prices

if the trade is submitted to the market earlier (later) than on average. However, this

result is only observed when trade durations are endogenously modeled, and there are

no differences in the cumulative price response of an unexpected trade to a duration
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shock if one assumes the strict exogeneity of trade durations.

Finally, based on a generalized forecast error variance decomposition (GFEVD)

method developed in Lanne and Nyberg (2016), we find that shocks to trade durations

only constitute a modest portion of the forecast error variance of returns of the Aus-

tralian banking stocks, which is significantly smaller than the proportion explained

by other trade attribute shocks. Even though the relative informativeness of trade

durations about returns increases markedly either when durations are treated as en-

dogenous or around the monetary policy announcements, trade durations seem to be

less important in explaining price dynamics of these banking stocks than other trade

attributes.

The second essay, presented in Chapter 3, investigates the second market microstruc-

ture empirical prediction about the positive volume-volatility relation by proposing

a bivariate stochastic conditional framework to model the interrelationship between

trading volume and return volatility. In this chapter, latent conditional expected vol-

ume and instantaneous volatility variables are assumed to follow a first order VAR that

explicitly incorporates the dynamic feedback effects between these two variables. Our

bivariate stochastic model generalizes the widely-used univariate stochastic volatility

(SV) and stochastic conditional duration (SCD) models in the literature, and hence

it offers higher fitting flexibility than do the multivariate GARCH-type or VAR-type

models employed in a few previous studies. The key characteristic of the SV and

SCD models is that they relax the conditional deterministic feature assumed by the

GARCH- or VAR-type models. We establish analytical expressions for the moments

and the autocorrelation functions of the volume and volatility processes in our model,

which are all in conformance with those developed previously for the univariate mod-

els.

The proposed bivariate stochastic model is employed to study the volume-volatility

relation of two Australian stocks. We use quasi maximum likelihood (QML) to esti-

mate the bivariate model, and the validity of this method in our context is demon-

strated by simulation. The empirical results show that there is a significant positive

dynamic interrelationship between trading volume and return volatility, lending sup-
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port to market microstructure theory (e.g. Copeland, 1976, Shalen, 1993). However,

there is an asymmetry in the dynamic feedback effects between the two variables in

that the influence of volume on volatility is much more pronounced. As expected,

the incorporation of the joint determination of volume and volatility into our bivari-

ate model significantly enhances the fitting performance of our model, in comparison

with its two separate univariate counterparts. Finally, consistent with the findings of

Holden and Subrahmanyam (1992) and Manganelli (2005), an initial positive pertur-

bation to either trading volume or return volatility remarkably lifts both quantities to

their new long run levels, with the larger and more frequently traded stock converg-

ing more rapidly to the full-information equilibrium in both transaction and calendar

time.

The third essay, presented in Chapter 4, provides another examination of broad

prediction about return volatility put forward by market microstructure theory by

focusing on the role of the limit order book (LOB) characteristics in explaining the

volume-volatility relation in an LOB market. Employing a high frequency tick-by-

tick dataset of Australian stocks in the S&P/ASX200 index, we find that the effects of

trading volume on return volatility are positive, dynamic and strongly related to the

LOB information. In particular, the larger the market depth at the best quotes and/or

the steeper the LOB (i.e. the larger the LOB slope) prior to a transaction, the weaker

the volume-volatility relation becomes, and the smaller is the return volatility of the

trade. On the other hand, a wider bid-ask spread immediately before a transaction

not only strengthens the positive dependence of the return volatility on the trading

volume of the trade, but also increases the return volatility of the trade.

There are two channels through which the LOB attributes affect the return volatility

of an upcoming transaction: a direct channel that is mainly contributed by lagged

LOB information, and an indirect channel that is captured by the volume-volatility

relation and is dominantly driven by the most recent LOB information immediately

before the trade. Consistent with a few previous studies such as Ahn et al. (2001),

Engle and Patton (2004) and Harris and Panchapagesan (2005), the influence of the

bid versus ask order books on return volatility and the dependence of volatility on
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volume is asymmetric. Specifically, the opposite side order book to the sign of an

upcoming trade possesses more dominant predictive power about the return volatility

and the volume-volatility relation of the trade. We also find that the LOB slope, which

summarizes the information of the LOB at all quote levels, dominates both the bid-

ask spread and the market depth at the inner quotes in explaining return volatility

and the volume-volatility relation. In order to explain why a larger LOB slope reduces

return volatility and weakens the volume-volatility relation, we provide an intuitive

graphical rationale that is compatible with the justifications related to heterogeneous

investors documented in some previous studies such as Næs and Skjeltorp (2006).

5.2 Directions for future research

This thesis presents three chapters in which new models for market microstructure

variables such as high frequency returns, volatility, trading volume and trade dura-

tions are proposed in order to test the two important predictions implied by mar-

ket microstructure theory, namely (1) there is a significant information content from

trades that explains price movements; and (2) price volatility is positively correlated

with the trading activity of market participants. There are several aspects of these

papers that could be extended and worth exploring in future work.

First, the nonlinear VAR model of trade durations, trade attributes (signs and vol-

umes) and returns developed in Chapter 2 is employed to investigate (i) the impact

of trades on the prices of Australian banking stocks around interest rate announce-

ments when trade arrival times are endogenous; and (ii) the effects of the interest rate

announcements on the price formation and trade generation processes of the banking

stocks. It will be of interest to extend the analysis in this chapter to study how var-

ious types of announcements, either market-wide (macroeconomic) or firm-specific

(microeconomic) or both, affect the joint system of trading activities and prices of a

wider range of stocks and different asset classes such as bonds and foreign exchanges.

Previous studies have shown that news announcements have significant effects on the

trade and price behaviors of various assets; however, they primarily examine how news
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releases affect trade and prices separately, rather than jointly within a system. For ex-

ample, Andersen et al. (2003, 2007) find that the unexpected component of macro

announcements leads to jumps in the conditional mean of exchange rates, whereas

it only affects the exchange-rate conditional variance gradually. Similarly, macroeco-

nomic news significantly affects the return and volatility of both equities (e.g. Boyd

et al., 2005, Andersen et al., 2007, Berk and Rauch, 2016) and bonds (e.g. Balduzzi

et al., 2001, Boyd et al., 2005, Andersen et al., 2007, Nowak et al., 2011). Meanwhile,

Nowak and Anderson (2014) document that while macroeconomic news increases the

trading frequency of US airline stocks, firm-specific announcements reduce it. A gen-

eralization of these studies to account for the joint determination of trade characteris-

tics and prices while examining the impact of news announcements will help enrich

our understanding of how information drives trade and price dynamics. It will also

be useful to ascertain whether the findings in Chapter 2 for Australian banking stocks

generalize in various empirical contexts.

Second, the bivariate stochastic conditional volume-volatility model developed in

Chapter 3 is estimated by QML. Although QML estimators are consistent and asymp-

totically normal under usual regularity conditions and correct model specifications,

they are not as efficient as the exact maximum likelihood estimators, and their asymp-

totic efficiency, relative to the latters’, generally deteriorates with the difference be-

tween the true non-Gaussian density and its quasi Gaussian approximation (e.g. White,

1982, Hamilton, 1994). A better approximation of the true non-Gaussian distribution

as discussed further below will help increase the asymptotic efficiency of the QML

estimators. Even though the number of observations in the empirical application in

Chapter 3 is sufficiently large to ensure that the estimated results are close to the true

values, it is still worthwhile to employ a more effective method to estimate our bivari-

ate stochastic model.

One possible method is the Monte Carlo maximum likelihood (MCML) technique

proposed by Durbin and Koopman (1997), which has been applied to various contexts

by subsequent studies (e.g. Sandmann and Koopman, 1998, Durbin and Koopman,

2000, Feng et al., 2004, Strickland et al., 2006). This method first approximates the true
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non-Gaussian density with a Gaussian distribution that has the first two derivatives of

the log density equal to those of the true log density, and then corrects for the differ-

ence between the exact log likelihood function and the quasi one with a bias correction

term computed by simulating from the approximating Gaussian density. However, this

method (and other more sophisticated methods that better approximate the exact like-

lihood such as Kim et al. (1998)) cannot be performed unless the true non-Gaussian

density is entirely known, which is generally not the case in our bivariate stochastic

volume-volatility model. Nevertheless, we can assume that the true joint non-Gaussian

density fw of the measurement innovations wt B (wv,t,we2,t)′ = (logεt, logζ2
t )′ in Equa-

tion (3.6) can be expressed by a copula of the following form, according to Sklar’s

(1959) theorem,

fw(wt) = fwv
(wv,t)fwe2

(we2,t)c
(
Fwv

(wv,t),Fwe2
(we2,t)

)
, (5.1)

where fwv
and fwe2

are respectively the marginal probability densities of wv,t and we2,t

discussed in subsection 3.2.2, Fwv
and Fwe2

are the corresponding cumulative density

functions (cdf), and c(·) is a bivariate copula density that captures the dependence be-

tween wv,t and we2,t. Various types of copula densities with different tail dependence

structures can be considered. The use of copulas is increasingly popular in finance and

financial econometric literatures (see, amongst others, Patton, 2006, Lee and Long,

2009, Brownlees and Engle, 2017, Oh and Patton, 2017, 2018). The MCML method

can be implemented with the assumed copula representation (5.1). However, given

the large dataset in our empirical application, it will be computationally challenging

and time consuming to implement this method, since the Gaussian approximation and

bias correction need to be calculated for each observation. The bivariate structure of

our model also adds an extra layer of computational complexity to the implementation

of the MCML method, which has primarily been applied to univariate situations. The

treatment of the bivariate series of volume and volatility as two sequential univariate

time series when running the Kalman filtering (and smoothing), which brings signifi-

cant computational gains over traditional Kalman filtering (see Section 6.4 of Durbin

and Koopman (2012)), may help.
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Third, the stochastic conditional methodology in Chapter 3 can be easily extended

to incorporate other random variables that have a non-negative support such as trade

durations, bid-ask spreads, market depths, or high-low price range. These variables

can be modeled with a multiplicative error model (MEM) proposed by Engle (2002) in

a similar way to trading volumes in our study. The conditional expectations of these

variables, together with the conditional expected volume and instantaneous volatility,

will again be assumed to follow a first order VAR model that accommodates the dy-

namic interrelationships amongst the variables. The joint model is straightforwardly

a multivariate version of equation (3.6) in Chapter 3, which can be easily and con-

sistently estimated, assuming correct model specifications, by QML, even though the

asymptotic efficiency of the QML estimates, relative to the exact maximum likelihood

ones, may not be high because a Gaussian approximation of the true non-Gaussian

density becomes less precise as the dimension of the approximation grows. Alter-

natively, the multivariate stochastic model can be more efficiently estimated by the

MCML method discussed above, but at the price of significantly higher computational

complexity.

The main analysis in Chapter 4 assumes that the volume-volatility relation (or the

impact of trading volume on return volatility) depends linearly on LOB characteristics,

denoted by xi,t. However, one can relax this assumption and allow such dependence

to be nonlinear and nonparametric, as mentioned in footnote 48 of Chapter 4. One

way to do this could be based on the following dynamic endogenous volume-volatility

equation

σi,t = α0 +
q∑
j=1

αjσi,t−j +
p∑
k=0

fk(xi,t−k)vi,t−k +
p∑
k=0

γ ′kxi,t−k + ηi,t, (5.2)

where fk(·) is an unknown function to be estimated that measures the marginal effect of

trading volume vi,t−k on return volatility σi,t, which in turn captures the indirect effect

of xi,t−k on σi,t. Equation (5.2), however, is too general and computationally challeng-

ing to estimate, especially when p is larger than 1 and xi,t−k is high dimensional. We

could reduce the computational complexity by assuming that the effect of lagged trad-

ing volume vi,t−k on the current volatility is linearly related to xi,t−k for all k ≥ 1 or 2,
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and only the current (and perhaps lagged 1) volume has a nonlinear impact on the cur-

rent volatility that is nonparametrically dependent on xi,t−k. Also to avoid the curse

of dimensionality, if xi,t−k consists of more than one variable, we could assume that

fk(xi,t−k) is additive and separable; that is, fk(xi,t−k) = fk,1(xi,1,t−k) + · · · + fk,M(xi,M,t−k),

where xi,t−k = (xi,1,t−k , · · · ,xi,M,t−k)′ is anM×1 vector. The resulting more parsimonious

version of equation (5.2) is

σi,t = α0+
q∑
j=1

αjσi,t−j+
∑̀
k=0

fk(xi,t−k)vi,t−k+
p∑
k=`

[β0,k+δ′kxi,t−k]vi,t−k+
p∑
k=0

γ ′kxi,t−k+ηi,t, (5.3)

where ` = 0 or 1. The semiparametric model (5.3) can be estimated using standard

semi- and non-parametric techniques. An alternative method to allow for a nonlin-

ear dependence of the volume-volatility relation on LOB information, which is also

mentioned in footnote 48, is to replace fk(xi,t−k) in equation (5.2) with the paramet-

ric expression β0,k + δ′zi,t−k, where zi,t−k contains xi,t−k and possibly its higher orders,

nonlinear transformations, and/or interaction terms that allow for nonlinearities. The

resulting model is fully parametric, and it can be consistently estimated by OLS.

Finally, similar to previous studies in the literature, Chapter 4 investigates the ef-

fects of the LOB information on the volume-volatility relation using a single-equation

approach that precludes the interrelationships amongst the variables of interest. Even

though the use of tick-by-tick data and the way in which these variables are computed

in our study offer a natural remedy that saves us from the undetermined causality

problem often faced by prior studies (see the discussion of this in subsection 4.2.4),

it is important to accommodate the joint determination of return volatility, trading

volume and LOB characteristics, as highlighted in market microstructure theory. This

can be allowed for by employing a system of equations similar to the (nonlinear) VAR

model proposed in Chapter 2 to model these variables, as noted in footnote 58. Such

a VAR model will provide richer insights into how each of these variables evolves over

time, as well as how it behaves if there is a shock to the system, regardless of whether

the shock originates from the demand side (e.g. a shock to trading volume) or from

the supply side (e.g. a shock to the LOB information such as market depth or the LOB

slope). The impulse-response functions obtained from VAR models also offer ways
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to study market “resiliency”, an important concept in finance which is defined as the

speed with which prices converge back to their original level after a random, uninfor-

mative shock (Kyle, 1985). A subsequent study by Foucault et al. (2005) extends the

definition of resiliency to other market dimensions such as bid-ask spreads. Market

resiliency measures how quickly the market can recover from or be replenished by liq-

uidity shocks, hence it is an important aspect of market liquidity and efficiency. The

extension of the methodology in Chapter 4 to multivariate settings, which can be used

to investigate market resiliency, is a worthwhile direction for future research.
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Foucault, T., Pagano, M., and Röell, A. (2013). Market liquidity: Theory, evidence, and

policy. Oxford University Press.

Gasbarro, D. and Monroe, G. S. (2004). The impact of monetary policy candidness

on Australian financial markets. Journal of Multinational Financial Management,

14(1):35–46.

Ghysels, E., Harvey, A. C., and Renault, E. (1996). Stochastic volatility. In Maddala,

G. S. and Rao, C. R., editors, Handbook of Statistics, volume 14, pages 119 – 191.

Elsevier.

Giot, P., Laurent, S., and Petitjean, M. (2010). Trading activity, realized volatility and

jumps. Journal of Empirical Finance, 17(1):168–175.

Glosten, L. R. (1994). Is the electronic open limit order book inevitable? The Journal of

Finance, 49(4):1127–1161.

Glosten, L. R. and Milgrom, P. R. (1985). Bid, ask and transaction prices in a special-

ist market with heterogeneously informed traders. Journal of Financial Economics,

14(1):71–100.

Goettler, R. L., Parlour, C. A., and Rajan, U. (2009). Informed traders and limit order

markets. Journal of Financial Economics, 93(1):67–87.

Grammig, J. and Wellner, M. (2002). Modeling the interdependence of volatility and

inter-transaction duration processes. Journal of Econometrics, 106(2):369–400.

Granger, C. W. and Morris, M. J. (1976). Time series modelling and interpretation.

Journal of the Royal Statistical Society. Series A, 139(2):246–257.

Griffiths, M. D., Smith, B. F., Turnbull, D. A. S., and White, R. W. (2000). The costs and

determinants of order aggressiveness. Journal of Financial Economics, 56(1):65–88.

Grundy, B. D. and McNichols, M. (1989). Trade and the revelation of information

215



References

through prices and direct disclosure. Review of Financial Studies, 2(4):495–526.

Hamilton, J. D. (1994). Time series analysis. Princeton University Press.
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